Перейти к содержанию
    

dsl2640free

Участник
  • Постов

    73
  • Зарегистрирован

  • Посещение

Сообщения, опубликованные dsl2640free


  1. Можно использовать данную функцию для записи во flash с помощью HAL библиотеки:

    void Write_Flash(uint8_t data)
    {
         HAL_FLASH_Unlock();
         __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGSERR );
         FLASH_Erase_Sector(FLASH_SECTOR_6, VOLTAGE_RANGE_3);
         HAL_FLASH_Program(TYPEPROGRAM_WORD, FlashAddress, data);
         HAL_FLASH_Lock();
    }
  2. Скрытый текст
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    /**
    *    Keil project for very basic and primitive CPU load monitor
    *
    *    Before you start, select your target, on the right of the "Load" button
    *
    *    @author        Tilen Majerle
    *    @email        [email protected]
    *    @website    http://stm32f4-discovery.net
    *    @ide        Keil uVision 5
    *    @conf        PLL parameters are set in "Options for Target" -> "C/C++" -> "Defines"
    *    @packs        STM32F4xx Keil packs version 2.4.0 or greater required
    *    @stdperiph    STM32F4xx Standard peripheral drivers version 1.5.0 or greater required
    */
    /* Include core modules */
    #include "stm32f4xx.h"
    /* Include my libraries here */
    #include "defines.h"
    #include "tm_stm32f4_delay.h"
    #include "tm_stm32f4_disco.h"
    #include "tm_stm32f4_general.h"
    #include "tm_stm32f4_usart.h"
     
    #include "stdio.h"
     
    /* Go to sleep mode */
    void GoToSleepMode(void);
     
    int main(void) {
        __IO uint32_t i;
        
        /* Initialize system */
        SystemInit();
        
        /* Init DWT timer to count processor cycles */
        TM_GENERAL_DWTCounterEnable();
        
        /* Reset counter */
        TM_GENERAL_DWTCounterSetValue(0);
        
        /* Initialize delay */
        TM_DELAY_Init();
        
        /* Initialize leds on board */
        TM_DISCO_LedInit();
        
        /* Initialize button */
        TM_DISCO_ButtonInit();
        
        /* Init USART2, TX: PA2, RX: PA3, 921600 baud */
        TM_USART_Init(USART2, TM_USART_PinsPack_1, 921600);
        
        while (1) {
            /* If button is pressed, do some useless dummy counting */
            /* Otherwise, go sleep directly */
            if (TM_DISCO_ButtonPressed()) {
                /* Do some while looping */
                i = 0;
                while (i++ < 0x2FFF);
            }
            
            /* Toggle leds */
            TM_DISCO_LedToggle(LED_ALL);
            
            /* Go to sleep mode */
            GoToSleepMode();
        }
    }
     
    void GoToSleepMode(void) {
        uint32_t t;
        static uint32_t l = 0;
        static uint32_t WorkingTime = 0;
        static uint32_t SleepingTime = 0;
        static uint32_t LastTime = 0;
     
        /* Disable interrupts */
        __disable_irq();
        
        /* Add to working time */
        WorkingTime += DWT->CYCCNT - l;
        
        /* Save count cycle time */
        t = DWT->CYCCNT;
        
        /* Go to sleep mode */
        /* Wait for wake up interrupt, systick can do it too */
        __WFI();
        
        /* Increase number of sleeping time in CPU cycles */
        SleepingTime += DWT->CYCCNT - t;
        
        /* Save current time to get number of working CPU cycles */
        l = DWT->CYCCNT;
        
        /* Enable interrupts, process/execute an interrupt routine which wake up CPU */
        __enable_irq();
        
        /* Every 1000ms print CPU load via USART */
        if ((TM_DELAY_Time() - LastTime) >= 1000) {
            /* Save new time */
            LastTime = TM_DELAY_Time();
            
            /* Print to user */
            printf("W: %u; S: %u; L: %5.2f %%\n", WorkingTime, SleepingTime, ((float)WorkingTime / (float)(SleepingTime + WorkingTime) * 100));
            
            /* Reset time */
            SleepingTime = 0;
            WorkingTime = 0;
        }
    }
     
    /* Handle printf functionality */
    int fputc(int ch, FILE* fil) {
        /* Send character over USART */
        TM_USART_Putc(USART2, ch);
        
        /* Return character */
        return ch;
    }

    управление потребляемой мощностью в сложных устройствах.

  3. Похожая система реализована в iPhone. Обмен между приложением и кабелем, а через него и телефоном, зашифрован. В кабеле есть микросхема с ключами. Apple запрещает кабели с левыми фишками.

  4. Спойлер

     

    Ниже приведен пример более сложной процедуры, которая использует DSP особенности dsPIC33E.

    Спойлер
    #include <dsp.h>;
    #define FFT_BLOCK_LENGTH 1024 //Number of frequency points in the FFT
    #define LOG2_BLOCK_LENGTH 10 //Number of "Butterfly" Stages in FFT processing should be related to FFT_BLOCK as in 2^9=512
    #define AUDIO_FS 44100//Sampling frequency of audio signal captured by the mic
    int16_t peakFrequencyBin;
    uint16_t ix_MicADCbuff;
    uint16_t peakFrequency;
    extern const fractcomplex twiddleFactors[FFT_BLOCK_LENGTH/2]__attribute__ ((space(auto_psv), aligned (FFT_BLOCK_LENGTH*2)));
    fractcomplex sigCmpx[FFT_BLOCK_LENGTH] __attribute__ ((section (".ydata, data, ymemory"), aligned (FFT_BLOCK_LENGTH * 2 *2)))={{0}};
    void readMic(void)//Sample microphone input
    {
    ADC1_ChannelSelectSet(ADC1_AI_MIC);
    ix_MicADCbuff=0;
    for(ix_MicADCbuff=0;ix_MicADCbuff&lt;FFT_BLOCK_LENGTH;ix_MicADCbuff++)
    {

    //Insert delay subroutine here
    ADC1_SamplingStop();
    while(!ADC1_IsConversionComplete()){}
    sigCmpx[ix_MicADCbuff].real = ADC1_Channel0ConversionResultGet();
    sigCmpx[ix_MicADCbuff].imag = 0;
    }
    }

    void signalFreq(void)//Detect the dominant frequency of the audio picked by the microphone
    {
    readMic();
    FFTComplexIP (LOG2_BLOCK_LENGTH, &amp;sigCmpx[0], (fractcomplex *) __builtin_psvoffset(&amp;twiddleFactors[0]), (int) __builtin_psvpage(&amp;twiddleFactors[0]));// Perform FFT operation
    BitReverseComplex (LOG2_BLOCK_LENGTH, &amp;sigCmpx[0]);// Store output samples in bit-reversed order of their addresses
    SquareMagnitudeCplx(FFT_BLOCK_LENGTH, &amp;sigCmpx[0], &amp;sigCmpx[0].real);//Compute the square magnitude of the complex FFT output array so we have a Real output vector
    VectorMax(FFT_BLOCK_LENGTH/2, &amp;sigCmpx[0].real, &amp;peakFrequencyBin);//Find the frequency Bin ( = index into the SigCmpx[] array) that has the largest energy
    peakFrequency = peakFrequencyBin*(AUDIO_FS/FFT_BLOCK_LENGTH); //Compute the frequency (in Hz) of the largest spectral component
    }

     

  5. кусок кода, детектирующий гармоники в составе сигнала
    
    Спойлер
    
    public ArrayList<SynthesizableSignal> detectHarmonics() {
        SignalCutter cutter = new SignalCutter(source, new Signal(source));
        SynthesizableComplexExponent heterodinParameter = new SynthesizableComplexExponent();
        heterodinParameter.setProperty("frequency", 0.0);
        Signal heterodin = new Signal(source.getLength());
        Signal heterodinedSignal = new Signal(cutter.getCurrentSignal());
        Spectrum spectrum = new Spectrum(heterodinedSignal);
        int harmonic;
        while ((harmonic = spectrum.detectStrongPeak(min)) != -1) {
            if (cutter.getCuttersCount() > 10)
                throw new RuntimeException("Unable to analyze signal! Try another parameters.");
            double heterodinSelected = 0.0;
            double signalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize);
            for (double heterodinFrequency = -0.5; heterodinFrequency < (0.5 + heterodinAccuracy); heterodinFrequency += heterodinAccuracy) {
                heterodinParameter.setProperty("frequency", heterodinFrequency);
                heterodinParameter.synthesizeIn(heterodin);
                heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin);
                spectrum.recalc();
                double newSignalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize);
                if (newSignalToNoise > signalToNoise) {
                    signalToNoise = newSignalToNoise;
                    heterodinSelected = heterodinFrequency;
                }
            }
            SynthesizableCosine parameter = new SynthesizableCosine();
            heterodinParameter.setProperty("frequency", heterodinSelected);
            heterodinParameter.synthesizeIn(heterodin);
            heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin);
            spectrum.recalc();
            parameter.setProperty("amplitude", MathHelper.adaptiveRound(spectrum.getRealAmplitude(harmonic)));
            parameter.setProperty("frequency", harmonic - heterodinSelected);
            parameter.setProperty("phase", MathHelper.round(spectrum.getPhase(harmonic), 1));
            cutter.addSignal(parameter);
            cutter.cutNext();
            heterodinedSignal.set(cutter.getCurrentSignal());
            spectrum.recalc();
        }
        return cutter.getSignalsParameters();
    }

     

  6. можно вот так инициализировать

    Spoiler
    #include <xc.h>
    #include "epwm2.h"
     
    /**
    Section: Macro Declarations
    */
     
    #define PWM2_INITIALIZE_DUTY_VALUE 511
     
    /**
    Section: EPWM Module APIs
    */
     
    void EPWM2_Initialize (void)
    {
    // Set the PWM to the options selected in MPLAB® Code Configurator
     
    // CCP2M P2AP2Chi_P2BP2Dlo; P2M halfbridge; DC2B 48;
    CCP2CON = 0xBD;
     
    // PSS2BD P2BP2D_0; CCP2AS disabled; CCP2ASE operating; PSS2AC P2AP2C_0;
    ECCP2AS = 0x00;
     
    // P2RSEN automatic_restart; P2DC 0;
    PWM2CON = 0x80;
     
    // STR2D P2D_to_port; STR2C P2C_to_port; STR2B P2B_to_port; STR2A P2A_to_port; STR2SYNC start_at_begin;
    PSTR2CON = 0x00;
     
    // CCPR2L 127;
    CCPR2L = 0x7F;
     
    // CCPR2H 0x0;
    CCPR2H = 0x00;
     
     
    // Selecting Timer2
    CCPTMRS0bits.C2TSEL = 0x0;
    }
     
    void EPWM2_LoadDutyValue(uint16_t dutyValue)
    {
    // Writing to 8 MSBs of pwm duty cycle in CCPRL register
    CCPR2L = ((dutyValue & 0x03FC)>>2);
     
    // Writing to 2 LSBs of pwm duty cycle in CCPCON register
    CCP2CON = (CCP2CON & 0xCF) | ((dutyValue & 0x0003)<<4);
    }

     

  7. специально взял попробовал - авторазмещение работает.
    просто исправил файл pcb.ini - указад путь к спекктре и к файлам accel2sp и sp2accel (причем Спекктра довольно старая 9.02, да и конвертеры тоже не новые - проверенные временем) - и, как говорится,- вуаля! - все работает и результат возвращается обратно в PCAD.

    Другой вопрос, что в Спекктре авторазмещение, в отличие от автотрассировщика, используется мало в силу неудовлетворительных результатов. Вручную оказывается практически всегда лучше, да и операция не такая трудоемкая

  8. У меня так тоже было.
    помогла специальная инициализация:
    
    GPIO_InitTypeDef GPIO_InitStructure;
    USART_InitTypeDef USART_InitStructure;
    NVIC_InitTypeDef NVIC_InitStructure;
    
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_UART4, ENABLE);
    
    
    //UART4_TX   PC.10 PC.11
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
      GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
      GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
    GPIO_Init(GPIOC, &GPIO_InitStructure); 
    
    
        GPIO_PinAFConfig(GPIOC, GPIO_PinSource10, GPIO_AF_UART4);
      GPIO_PinAFConfig(GPIOC, GPIO_PinSource11, GPIO_AF_UART4);
    
    //Usart1 NVIC 
    
    NVIC_InitStructure.NVIC_IRQChannel = UART4_IRQn;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;      
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;         
    NVIC_Init(&NVIC_InitStructure); 
    
    USART_InitStructure.USART_BaudRate = Baud;
    USART_InitStructure.USART_WordLength = USART_WordLength_8b;
    USART_InitStructure.USART_StopBits = USART_StopBits_1;
    USART_InitStructure.USART_Parity = USART_Parity_No;
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; 
    
    USART_Init(UART4, &USART_InitStructure); 
    USART_ITConfig(UART4, USART_IT_RXNE, ENABLE);
    USART_Cmd(UART4, ENABLE);
    
  9. Spoiler
    
    
    #include <linux/ctype.h>
    #include <linux/module.h>
    #include <linux/moduleparam.h>
    #include <linux/init.h>
    #include <linux/delay.h>
    #include <linux/firmware.h>
    #include <linux/list.h>
    #include <linux/pm.h>
    #include <linux/pm_runtime.h>
    #include <linux/regmap.h>
    #include <linux/regulator/consumer.h>
    #include <linux/slab.h>
    #include <linux/vmalloc.h>
    #include <linux/workqueue.h>
    #include <linux/debugfs.h>
    #include <sound/core.h>
    #include <sound/pcm.h>
    #include <sound/pcm_params.h>
    #include <sound/soc.h>
    #include <sound/jack.h>
    #include <sound/initval.h>
    #include <sound/tlv.h>
    
    #include "wm_adsp.h"
    
    #define adsp_crit(_dsp, fmt, ...) \
    	dev_crit(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
    #define adsp_err(_dsp, fmt, ...) \
    	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
    #define adsp_warn(_dsp, fmt, ...) \
    	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
    #define adsp_info(_dsp, fmt, ...) \
    	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
    #define adsp_dbg(_dsp, fmt, ...) \
    	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
    
    #define compr_err(_obj, fmt, ...) \
    	adsp_err(_obj->dsp, "%s: " fmt, _obj->name ? _obj->name : "legacy", \
    		 ##__VA_ARGS__)
    #define compr_dbg(_obj, fmt, ...) \
    	adsp_dbg(_obj->dsp, "%s: " fmt, _obj->name ? _obj->name : "legacy", \
    		 ##__VA_ARGS__)
    
    #define ADSP1_CONTROL_1                   0x00
    #define ADSP1_CONTROL_2                   0x02
    #define ADSP1_CONTROL_3                   0x03
    #define ADSP1_CONTROL_4                   0x04
    #define ADSP1_CONTROL_5                   0x06
    #define ADSP1_CONTROL_6                   0x07
    #define ADSP1_CONTROL_7                   0x08
    #define ADSP1_CONTROL_8                   0x09
    #define ADSP1_CONTROL_9                   0x0A
    #define ADSP1_CONTROL_10                  0x0B
    #define ADSP1_CONTROL_11                  0x0C
    #define ADSP1_CONTROL_12                  0x0D
    #define ADSP1_CONTROL_13                  0x0F
    #define ADSP1_CONTROL_14                  0x10
    #define ADSP1_CONTROL_15                  0x11
    #define ADSP1_CONTROL_16                  0x12
    #define ADSP1_CONTROL_17                  0x13
    #define ADSP1_CONTROL_18                  0x14
    #define ADSP1_CONTROL_19                  0x16
    #define ADSP1_CONTROL_20                  0x17
    #define ADSP1_CONTROL_21                  0x18
    #define ADSP1_CONTROL_22                  0x1A
    #define ADSP1_CONTROL_23                  0x1B
    #define ADSP1_CONTROL_24                  0x1C
    #define ADSP1_CONTROL_25                  0x1E
    #define ADSP1_CONTROL_26                  0x20
    #define ADSP1_CONTROL_27                  0x21
    #define ADSP1_CONTROL_28                  0x22
    #define ADSP1_CONTROL_29                  0x23
    #define ADSP1_CONTROL_30                  0x24
    #define ADSP1_CONTROL_31                  0x26
    
    /*
     * ADSP1 Control 19
     */
    #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
    #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
    #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
    
    
    /*
     * ADSP1 Control 30
     */
    #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
    #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
    #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
    #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
    #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
    #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
    #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
    #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
    #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
    #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
    #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
    #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
    #define ADSP1_START                       0x0001  /* DSP1_START */
    #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
    #define ADSP1_START_SHIFT                      0  /* DSP1_START */
    #define ADSP1_START_WIDTH                      1  /* DSP1_START */
    
    /*
     * ADSP1 Control 31
     */
    #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
    #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
    #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
    
    #define ADSP2_CONTROL                     0x0
    #define ADSP2_CLOCKING                    0x1
    #define ADSP2V2_CLOCKING                  0x2
    #define ADSP2_STATUS1                     0x4
    #define ADSP2_WDMA_CONFIG_1               0x30
    #define ADSP2_WDMA_CONFIG_2               0x31
    #define ADSP2V2_WDMA_CONFIG_2             0x32
    #define ADSP2_RDMA_CONFIG_1               0x34
    
    #define ADSP2_SCRATCH0                    0x40
    #define ADSP2_SCRATCH1                    0x41
    #define ADSP2_SCRATCH2                    0x42
    #define ADSP2_SCRATCH3                    0x43
    
    #define ADSP2V2_SCRATCH0_1                0x40
    #define ADSP2V2_SCRATCH2_3                0x42
    
    /*
     * ADSP2 Control
     */
    
    #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
    #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
    #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
    #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
    #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
    #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
    #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
    #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
    #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
    #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
    #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
    #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
    #define ADSP2_START                       0x0001  /* DSP1_START */
    #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
    #define ADSP2_START_SHIFT                      0  /* DSP1_START */
    #define ADSP2_START_WIDTH                      1  /* DSP1_START */
    
    /*
     * ADSP2 clocking
     */
    #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
    #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
    #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
    
    /*
     * ADSP2V2 clocking
     */
    #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
    #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
    #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
    
    #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
    #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
    #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
    
    /*
     * ADSP2 Status 1
     */
    #define ADSP2_RAM_RDY                     0x0001
    #define ADSP2_RAM_RDY_MASK                0x0001
    #define ADSP2_RAM_RDY_SHIFT                    0
    #define ADSP2_RAM_RDY_WIDTH                    1
    
    /*
     * ADSP2 Lock support
     */
    #define ADSP2_LOCK_CODE_0                    0x5555
    #define ADSP2_LOCK_CODE_1                    0xAAAA
    
    #define ADSP2_WATCHDOG                       0x0A
    #define ADSP2_BUS_ERR_ADDR                   0x52
    #define ADSP2_REGION_LOCK_STATUS             0x64
    #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
    #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
    #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
    #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
    #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
    #define ADSP2_LOCK_REGION_CTRL               0x7A
    #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
    
    #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
    #define ADSP2_SLAVE_ERR_MASK                 0x4000
    #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
    #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
    #define ADSP2_CTRL_ERR_EINT                  0x0001
    
    #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
    #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
    #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
    #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
    #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
    
    #define ADSP2_LOCK_REGION_SHIFT              16
    
    #define ADSP_MAX_STD_CTRL_SIZE               512
    
    #define WM_ADSP_ACKED_CTL_TIMEOUT_MS         100
    #define WM_ADSP_ACKED_CTL_N_QUICKPOLLS       10
    #define WM_ADSP_ACKED_CTL_MIN_VALUE          0
    #define WM_ADSP_ACKED_CTL_MAX_VALUE          0xFFFFFF
    
    /*
     * Event control messages
     */
    #define WM_ADSP_FW_EVENT_SHUTDOWN            0x000001
    
    struct wm_adsp_buf {
    	struct list_head list;
    	void *buf;
    };
    
    static struct wm_adsp_buf *wm_adsp_buf_alloc(const void *src, size_t len,
    					     struct list_head *list)
    {
    	struct wm_adsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
    
    	if (buf == NULL)
    		return NULL;
    
    	buf->buf = vmalloc(len);
    	if (!buf->buf) {
    		kfree(buf);
    		return NULL;
    	}
    	memcpy(buf->buf, src, len);
    
    	if (list)
    		list_add_tail(&buf->list, list);
    
    	return buf;
    }
    
    static void wm_adsp_buf_free(struct list_head *list)
    {
    	while (!list_empty(list)) {
    		struct wm_adsp_buf *buf = list_first_entry(list,
    							   struct wm_adsp_buf,
    							   list);
    		list_del(&buf->list);
    		vfree(buf->buf);
    		kfree(buf);
    	}
    }
    
    #define WM_ADSP_FW_MBC_VSS  0
    #define WM_ADSP_FW_HIFI     1
    #define WM_ADSP_FW_TX       2
    #define WM_ADSP_FW_TX_SPK   3
    #define WM_ADSP_FW_RX       4
    #define WM_ADSP_FW_RX_ANC   5
    #define WM_ADSP_FW_CTRL     6
    #define WM_ADSP_FW_ASR      7
    #define WM_ADSP_FW_TRACE    8
    #define WM_ADSP_FW_SPK_PROT 9
    #define WM_ADSP_FW_MISC     10
    
    #define WM_ADSP_NUM_FW      11
    
    static const char *wm_adsp_fw_text[WM_ADSP_NUM_FW] = {
    	[WM_ADSP_FW_MBC_VSS] =  "MBC/VSS",
    	[WM_ADSP_FW_HIFI] =     "MasterHiFi",
    	[WM_ADSP_FW_TX] =       "Tx",
    	[WM_ADSP_FW_TX_SPK] =   "Tx Speaker",
    	[WM_ADSP_FW_RX] =       "Rx",
    	[WM_ADSP_FW_RX_ANC] =   "Rx ANC",
    	[WM_ADSP_FW_CTRL] =     "Voice Ctrl",
    	[WM_ADSP_FW_ASR] =      "ASR Assist",
    	[WM_ADSP_FW_TRACE] =    "Dbg Trace",
    	[WM_ADSP_FW_SPK_PROT] = "Protection",
    	[WM_ADSP_FW_MISC] =     "Misc",
    };
    
    struct wm_adsp_system_config_xm_hdr {
    	__be32 sys_enable;
    	__be32 fw_id;
    	__be32 fw_rev;
    	__be32 boot_status;
    	__be32 watchdog;
    	__be32 dma_buffer_size;
    	__be32 rdma[6];
    	__be32 wdma[8];
    	__be32 build_job_name[3];
    	__be32 build_job_number;
    };
    
    struct wm_adsp_alg_xm_struct {
    	__be32 magic;
    	__be32 smoothing;
    	__be32 threshold;
    	__be32 host_buf_ptr;
    	__be32 start_seq;
    	__be32 high_water_mark;
    	__be32 low_water_mark;
    	__be64 smoothed_power;
    };
    
    struct wm_adsp_host_buf_coeff_v1 {
    	__be32 host_buf_ptr;		/* Host buffer pointer */
    	__be32 versions;		/* Version numbers */
    	__be32 name[4];			/* The buffer name */
    };
    
    struct wm_adsp_buffer {
    	__be32 buf1_base;		/* Base addr of first buffer area */
    	__be32 buf1_size;		/* Size of buf1 area in DSP words */
    	__be32 buf2_base;		/* Base addr of 2nd buffer area */
    	__be32 buf1_buf2_size;		/* Size of buf1+buf2 in DSP words */
    	__be32 buf3_base;		/* Base addr of buf3 area */
    	__be32 buf_total_size;		/* Size of buf1+buf2+buf3 in DSP words */
    	__be32 high_water_mark;		/* Point at which IRQ is asserted */
    	__be32 irq_count;		/* bits 1-31 count IRQ assertions */
    	__be32 irq_ack;			/* acked IRQ count, bit 0 enables IRQ */
    	__be32 next_write_index;	/* word index of next write */
    	__be32 next_read_index;		/* word index of next read */
    	__be32 error;			/* error if any */
    	__be32 oldest_block_index;	/* word index of oldest surviving */
    	__be32 requested_rewind;	/* how many blocks rewind was done */
    	__be32 reserved_space;		/* internal */
    	__be32 min_free;		/* min free space since stream start */
    	__be32 blocks_written[2];	/* total blocks written (64 bit) */
    	__be32 words_written[2];	/* total words written (64 bit) */
    };
    
    struct wm_adsp_compr;
    
    struct wm_adsp_compr_buf {
    	struct list_head list;
    	struct wm_adsp *dsp;
    	struct wm_adsp_compr *compr;
    
    	struct wm_adsp_buffer_region *regions;
    	u32 host_buf_ptr;
    
    	u32 error;
    	u32 irq_count;
    	int read_index;
    	int avail;
    	int host_buf_mem_type;
    
    	char *name;
    };
    
    struct wm_adsp_compr {
    	struct list_head list;
    	struct wm_adsp *dsp;
    	struct wm_adsp_compr_buf *buf;
    
    	struct snd_compr_stream *stream;
    	struct snd_compressed_buffer size;
    
    	u32 *raw_buf;
    	unsigned int copied_total;
    
    	unsigned int sample_rate;
    
    	const char *name;
    };
    
    #define WM_ADSP_DATA_WORD_SIZE         3
    
    #define WM_ADSP_MIN_FRAGMENTS          1
    #define WM_ADSP_MAX_FRAGMENTS          256
    #define WM_ADSP_MIN_FRAGMENT_SIZE      (64 * WM_ADSP_DATA_WORD_SIZE)
    #define WM_ADSP_MAX_FRAGMENT_SIZE      (4096 * WM_ADSP_DATA_WORD_SIZE)
    
    #define WM_ADSP_ALG_XM_STRUCT_MAGIC    0x49aec7
    
    #define HOST_BUFFER_FIELD(field) \
    	(offsetof(struct wm_adsp_buffer, field) / sizeof(__be32))
    
    #define ALG_XM_FIELD(field) \
    	(offsetof(struct wm_adsp_alg_xm_struct, field) / sizeof(__be32))
    
    #define HOST_BUF_COEFF_SUPPORTED_COMPAT_VER	1
    
    #define HOST_BUF_COEFF_COMPAT_VER_MASK		0xFF00
    #define HOST_BUF_COEFF_COMPAT_VER_SHIFT		8
    
    static int wm_adsp_buffer_init(struct wm_adsp *dsp);
    static int wm_adsp_buffer_free(struct wm_adsp *dsp);
    
    struct wm_adsp_buffer_region {
    	unsigned int offset;
    	unsigned int cumulative_size;
    	unsigned int mem_type;
    	unsigned int base_addr;
    };
    
    struct wm_adsp_buffer_region_def {
    	unsigned int mem_type;
    	unsigned int base_offset;
    	unsigned int size_offset;
    };
    
    static const struct wm_adsp_buffer_region_def default_regions[] = {
    	{
    		.mem_type = WMFW_ADSP2_XM,
    		.base_offset = HOST_BUFFER_FIELD(buf1_base),
    		.size_offset = HOST_BUFFER_FIELD(buf1_size),
    	},
    	{
    		.mem_type = WMFW_ADSP2_XM,
    		.base_offset = HOST_BUFFER_FIELD(buf2_base),
    		.size_offset = HOST_BUFFER_FIELD(buf1_buf2_size),
    	},
    	{
    		.mem_type = WMFW_ADSP2_YM,
    		.base_offset = HOST_BUFFER_FIELD(buf3_base),
    		.size_offset = HOST_BUFFER_FIELD(buf_total_size),
    	},
    };
    
    struct wm_adsp_fw_caps {
    	u32 id;
    	struct snd_codec_desc desc;
    	int num_regions;
    	const struct wm_adsp_buffer_region_def *region_defs;
    };
    
    static const struct wm_adsp_fw_caps ctrl_caps[] = {
    	{
    		.id = SND_AUDIOCODEC_BESPOKE,
    		.desc = {
    			.max_ch = 8,
    			.sample_rates = { 16000 },
    			.num_sample_rates = 1,
    			.formats = SNDRV_PCM_FMTBIT_S16_LE,
    		},
    		.num_regions = ARRAY_SIZE(default_regions),
    		.region_defs = default_regions,
    	},
    };
    
    static const struct wm_adsp_fw_caps trace_caps[] = {
    	{
    		.id = SND_AUDIOCODEC_BESPOKE,
    		.desc = {
    			.max_ch = 8,
    			.sample_rates = {
    				4000, 8000, 11025, 12000, 16000, 22050,
    				24000, 32000, 44100, 48000, 64000, 88200,
    				96000, 176400, 192000
    			},
    			.num_sample_rates = 15,
    			.formats = SNDRV_PCM_FMTBIT_S16_LE,
    		},
    		.num_regions = ARRAY_SIZE(default_regions),
    		.region_defs = default_regions,
    	},
    };
    
    static const struct {
    	const char *file;
    	int compr_direction;
    	int num_caps;
    	const struct wm_adsp_fw_caps *caps;
    	bool voice_trigger;
    } wm_adsp_fw[WM_ADSP_NUM_FW] = {
    	[WM_ADSP_FW_MBC_VSS] =  { .file = "mbc-vss" },
    	[WM_ADSP_FW_HIFI] =     { .file = "hifi" },
    	[WM_ADSP_FW_TX] =       { .file = "tx" },
    	[WM_ADSP_FW_TX_SPK] =   { .file = "tx-spk" },
    	[WM_ADSP_FW_RX] =       { .file = "rx" },
    	[WM_ADSP_FW_RX_ANC] =   { .file = "rx-anc" },
    	[WM_ADSP_FW_CTRL] =     {
    		.file = "ctrl",
    		.compr_direction = SND_COMPRESS_CAPTURE,
    		.num_caps = ARRAY_SIZE(ctrl_caps),
    		.caps = ctrl_caps,
    		.voice_trigger = true,
    	},
    	[WM_ADSP_FW_ASR] =      { .file = "asr" },
    	[WM_ADSP_FW_TRACE] =    {
    		.file = "trace",
    		.compr_direction = SND_COMPRESS_CAPTURE,
    		.num_caps = ARRAY_SIZE(trace_caps),
    		.caps = trace_caps,
    	},
    	[WM_ADSP_FW_SPK_PROT] = { .file = "spk-prot" },
    	[WM_ADSP_FW_MISC] =     { .file = "misc" },
    };
    
    struct wm_coeff_ctl_ops {
    	int (*xget)(struct snd_kcontrol *kcontrol,
    		    struct snd_ctl_elem_value *ucontrol);
    	int (*xput)(struct snd_kcontrol *kcontrol,
    		    struct snd_ctl_elem_value *ucontrol);
    };
    
    struct wm_coeff_ctl {
    	const char *name;
    	const char *fw_name;
    	struct wm_adsp_alg_region alg_region;
    	struct wm_coeff_ctl_ops ops;
    	struct wm_adsp *dsp;
    	unsigned int enabled:1;
    	struct list_head list;
    	void *cache;
    	unsigned int offset;
    	size_t len;
    	unsigned int set:1;
    	struct soc_bytes_ext bytes_ext;
    	unsigned int flags;
    	unsigned int type;
    };
    
    static const char *wm_adsp_mem_region_name(unsigned int type)
    {
    	switch (type) {
    	case WMFW_ADSP1_PM:
    		return "PM";
    	case WMFW_ADSP1_DM:
    		return "DM";
    	case WMFW_ADSP2_XM:
    		return "XM";
    	case WMFW_ADSP2_YM:
    		return "YM";
    	case WMFW_ADSP1_ZM:
    		return "ZM";
    	default:
    		return NULL;
    	}
    }
    
    #ifdef CONFIG_DEBUG_FS
    static void wm_adsp_debugfs_save_wmfwname(struct wm_adsp *dsp, const char *s)
    {
    	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
    
    	kfree(dsp->wmfw_file_name);
    	dsp->wmfw_file_name = tmp;
    }
    
    static void wm_adsp_debugfs_save_binname(struct wm_adsp *dsp, const char *s)
    {
    	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
    
    	kfree(dsp->bin_file_name);
    	dsp->bin_file_name = tmp;
    }
    
    static void wm_adsp_debugfs_clear(struct wm_adsp *dsp)
    {
    	kfree(dsp->wmfw_file_name);
    	kfree(dsp->bin_file_name);
    	dsp->wmfw_file_name = NULL;
    	dsp->bin_file_name = NULL;
    }
    
    static ssize_t wm_adsp_debugfs_wmfw_read(struct file *file,
    					 char __user *user_buf,
    					 size_t count, loff_t *ppos)
    {
    	struct wm_adsp *dsp = file->private_data;
    	ssize_t ret;
    
    	mutex_lock(&dsp->pwr_lock);
    
    	if (!dsp->wmfw_file_name || !dsp->booted)
    		ret = 0;
    	else
    		ret = simple_read_from_buffer(user_buf, count, ppos,
    					      dsp->wmfw_file_name,
    					      strlen(dsp->wmfw_file_name));
    
    	mutex_unlock(&dsp->pwr_lock);
    	return ret;
    }
    
    static ssize_t wm_adsp_debugfs_bin_read(struct file *file,
    					char __user *user_buf,
    					size_t count, loff_t *ppos)
    {
    	struct wm_adsp *dsp = file->private_data;
    	ssize_t ret;
    
    	mutex_lock(&dsp->pwr_lock);
    
    	if (!dsp->bin_file_name || !dsp->booted)
    		ret = 0;
    	else
    		ret = simple_read_from_buffer(user_buf, count, ppos,
    					      dsp->bin_file_name,
    					      strlen(dsp->bin_file_name));
    
    	mutex_unlock(&dsp->pwr_lock);
    	return ret;
    }
    
    static const struct {
    	const char *name;
    	const struct file_operations fops;
    } wm_adsp_debugfs_fops[] = {
    	{
    		.name = "wmfw_file_name",
    		.fops = {
    			.open = simple_open,
    			.read = wm_adsp_debugfs_wmfw_read,
    		},
    	},
    	{
    		.name = "bin_file_name",
    		.fops = {
    			.open = simple_open,
    			.read = wm_adsp_debugfs_bin_read,
    		},
    	},
    };
    
    static void wm_adsp2_init_debugfs(struct wm_adsp *dsp,
    				  struct snd_soc_component *component)
    {
    	struct dentry *root = NULL;
    	int i;
    
    	if (!component->debugfs_root) {
    		adsp_err(dsp, "No codec debugfs root\n");
    		goto err;
    	}
    
    	root = debugfs_create_dir(dsp->name, component->debugfs_root);
    
    	if (!root)
    		goto err;
    
    	if (!debugfs_create_bool("booted", 0444, root, &dsp->booted))
    		goto err;
    
    	if (!debugfs_create_bool("running", 0444, root, &dsp->running))
    		goto err;
    
    	if (!debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id))
    		goto err;
    
    	if (!debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version))
    		goto err;
    
    	for (i = 0; i < ARRAY_SIZE(wm_adsp_debugfs_fops); ++i) {
    		if (!debugfs_create_file(wm_adsp_debugfs_fops[i].name,
    					 0444, root, dsp,
    					 &wm_adsp_debugfs_fops[i].fops))
    			goto err;
    	}
    
    	dsp->debugfs_root = root;
    	return;
    
    err:
    	debugfs_remove_recursive(root);
    	adsp_err(dsp, "Failed to create debugfs\n");
    }
    
    static void wm_adsp2_cleanup_debugfs(struct wm_adsp *dsp)
    {
    	wm_adsp_debugfs_clear(dsp);
    	debugfs_remove_recursive(dsp->debugfs_root);
    }
    #else
    static inline void wm_adsp2_init_debugfs(struct wm_adsp *dsp,
    					 struct snd_soc_component *component)
    {
    }
    
    static inline void wm_adsp2_cleanup_debugfs(struct wm_adsp *dsp)
    {
    }
    
    static inline void wm_adsp_debugfs_save_wmfwname(struct wm_adsp *dsp,
    						 const char *s)
    {
    }
    
    static inline void wm_adsp_debugfs_save_binname(struct wm_adsp *dsp,
    						const char *s)
    {
    }
    
    static inline void wm_adsp_debugfs_clear(struct wm_adsp *dsp)
    {
    }
    #endif
    
    int wm_adsp_fw_get(struct snd_kcontrol *kcontrol,
    		   struct snd_ctl_elem_value *ucontrol)
    {
    	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
    	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
    	struct wm_adsp *dsp = snd_soc_component_get_drvdata(component);
    
    	ucontrol->value.enumerated.item[0] = dsp[e->shift_l].fw;
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(wm_adsp_fw_get);
    
    int wm_adsp_fw_put(struct snd_kcontrol *kcontrol,
    		   struct snd_ctl_elem_value *ucontrol)
    {
    	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
    	struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
    	struct wm_adsp *dsp = snd_soc_component_get_drvdata(component);
    	int ret = 0;
    
    	if (ucontrol->value.enumerated.item[0] == dsp[e->shift_l].fw)
    		return 0;
    
    	if (ucontrol->value.enumerated.item[0] >= WM_ADSP_NUM_FW)
    		return -EINVAL;
    
    	mutex_lock(&dsp[e->shift_l].pwr_lock);
    
    	if (dsp[e->shift_l].booted || !list_empty(&dsp[e->shift_l].compr_list))
    		ret = -EBUSY;
    	else
    		dsp[e->shift_l].fw = ucontrol->value.enumerated.item[0];
    
    	mutex_unlock(&dsp[e->shift_l].pwr_lock);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(wm_adsp_fw_put);
    
    const struct soc_enum wm_adsp_fw_enum[] = {
    	SOC_ENUM_SINGLE(0, 0, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
    	SOC_ENUM_SINGLE(0, 1, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
    	SOC_ENUM_SINGLE(0, 2, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
    	SOC_ENUM_SINGLE(0, 3, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
    	SOC_ENUM_SINGLE(0, 4, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
    	SOC_ENUM_SINGLE(0, 5, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
    	SOC_ENUM_SINGLE(0, 6, ARRAY_SIZE(wm_adsp_fw_text), wm_adsp_fw_text),
    };
    EXPORT_SYMBOL_GPL(wm_adsp_fw_enum);
    
    static struct wm_adsp_region const *wm_adsp_find_region(struct wm_adsp *dsp,
    							int type)
    {
    	int i;
    
    	for (i = 0; i < dsp->num_mems; i++)
    		if (dsp->mem[i].type == type)
    			return &dsp->mem[i];
    
    	return NULL;
    }
    
    static unsigned int wm_adsp_region_to_reg(struct wm_adsp_region const *mem,
    					  unsigned int offset)
    {
    	if (WARN_ON(!mem))
    		return offset;
    	switch (mem->type) {
    	case WMFW_ADSP1_PM:
    		return mem->base + (offset * 3);
    	case WMFW_ADSP1_DM:
    		return mem->base + (offset * 2);
    	case WMFW_ADSP2_XM:
    		return mem->base + (offset * 2);
    	case WMFW_ADSP2_YM:
    		return mem->base + (offset * 2);
    	case WMFW_ADSP1_ZM:
    		return mem->base + (offset * 2);
    	default:
    		WARN(1, "Unknown memory region type");
    		return offset;
    	}
    }
    
    static void wm_adsp2_show_fw_status(struct wm_adsp *dsp)
    {
    	unsigned int scratch[4];
    	unsigned int addr = dsp->base + ADSP2_SCRATCH0;
    	unsigned int i;
    	int ret;
    
    	for (i = 0; i < ARRAY_SIZE(scratch); ++i) {
    		ret = regmap_read(dsp->regmap, addr + i, &scratch[i]);
    		if (ret) {
    			adsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
    			return;
    		}
    	}
    
    	adsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
    		 scratch[0], scratch[1], scratch[2], scratch[3]);
    }
    
    static void wm_adsp2v2_show_fw_status(struct wm_adsp *dsp)
    {
    	unsigned int scratch[2];
    	int ret;
    
    	ret = regmap_read(dsp->regmap, dsp->base + ADSP2V2_SCRATCH0_1,
    			  &scratch[0]);
    	if (ret) {
    		adsp_err(dsp, "Failed to read SCRATCH0_1: %d\n", ret);
    		return;
    	}
    
    	ret = regmap_read(dsp->regmap, dsp->base + ADSP2V2_SCRATCH2_3,
    			  &scratch[1]);
    	if (ret) {
    		adsp_err(dsp, "Failed to read SCRATCH2_3: %d\n", ret);
    		return;
    	}
    
    	adsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
    		 scratch[0] & 0xFFFF,
    		 scratch[0] >> 16,
    		 scratch[1] & 0xFFFF,
    		 scratch[1] >> 16);
    }
    
    static inline struct wm_coeff_ctl *bytes_ext_to_ctl(struct soc_bytes_ext *ext)
    {
    	return container_of(ext, struct wm_coeff_ctl, bytes_ext);
    }
    
    static int wm_coeff_base_reg(struct wm_coeff_ctl *ctl, unsigned int *reg)
    {
    	const struct wm_adsp_alg_region *alg_region = &ctl->alg_region;
    	struct wm_adsp *dsp = ctl->dsp;
    	const struct wm_adsp_region *mem;
    
    	mem = wm_adsp_find_region(dsp, alg_region->type);
    	if (!mem) {
    		adsp_err(dsp, "No base for region %x\n",
    			 alg_region->type);
    		return -EINVAL;
    	}
    
    	*reg = wm_adsp_region_to_reg(mem, ctl->alg_region.base + ctl->offset);
    
    	return 0;
    }
    
    static int wm_coeff_info(struct snd_kcontrol *kctl,
    			 struct snd_ctl_elem_info *uinfo)
    {
    	struct soc_bytes_ext *bytes_ext =
    		(struct soc_bytes_ext *)kctl->private_value;
    	struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
    
    	switch (ctl->type) {
    	case WMFW_CTL_TYPE_ACKED:
    		uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
    		uinfo->value.integer.min = WM_ADSP_ACKED_CTL_MIN_VALUE;
    		uinfo->value.integer.max = WM_ADSP_ACKED_CTL_MAX_VALUE;
    		uinfo->value.integer.step = 1;
    		uinfo->count = 1;
    		break;
    	default:
    		uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
    		uinfo->count = ctl->len;
    		break;
    	}
    
    	return 0;
    }
    
    static int wm_coeff_write_acked_control(struct wm_coeff_ctl *ctl,
    					unsigned int event_id)
    {
    	struct wm_adsp *dsp = ctl->dsp;
    	u32 val = cpu_to_be32(event_id);
    	unsigned int reg;
    	int i, ret;
    
    	ret = wm_coeff_base_reg(ctl, &reg);
    	if (ret)
    		return ret;
    
    	adsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
    		 event_id, ctl->alg_region.alg,
    		 wm_adsp_mem_region_name(ctl->alg_region.type), ctl->offset);
    
    	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
    	if (ret) {
    		adsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
    		return ret;
    	}
    
    	/*
    	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
    	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
    	 * to ack instantly so we do the first 1ms delay before reading the
    	 * control to avoid a pointless bus transaction
    	 */
    	for (i = 0; i < WM_ADSP_ACKED_CTL_TIMEOUT_MS;) {
    		switch (i) {
    		case 0 ... WM_ADSP_ACKED_CTL_N_QUICKPOLLS - 1:
    			usleep_range(1000, 2000);
    			i++;
    			break;
    		default:
    			usleep_range(10000, 20000);
    			i += 10;
    			break;
    		}
    
    		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
    		if (ret) {
    			adsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
    			return ret;
    		}
    
    		if (val == 0) {
    			adsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
    			return 0;
    		}
    	}
    
    	adsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
    		  reg, ctl->alg_region.alg,
    		  wm_adsp_mem_region_name(ctl->alg_region.type),
    		  ctl->offset);
    
    	return -ETIMEDOUT;
    }
    
    static int wm_coeff_write_control(struct wm_coeff_ctl *ctl,
    				  const void *buf, size_t len)
    {
    	struct wm_adsp *dsp = ctl->dsp;
    	void *scratch;
    	int ret;
    	unsigned int reg;
    
    	ret = wm_coeff_base_reg(ctl, &reg);
    	if (ret)
    		return ret;
    
    	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
    	if (!scratch)
    		return -ENOMEM;
    
    	ret = regmap_raw_write(dsp->regmap, reg, scratch,
    			       len);
    	if (ret) {
    		adsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
    			 len, reg, ret);
    		kfree(scratch);
    		return ret;
    	}
    	adsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
    
    	kfree(scratch);
    
    	return 0;
    }
    
    static int wm_coeff_put(struct snd_kcontrol *kctl,
    			struct snd_ctl_elem_value *ucontrol)
    {
    	struct soc_bytes_ext *bytes_ext =
    		(struct soc_bytes_ext *)kctl->private_value;
    	struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
    	char *p = ucontrol->value.bytes.data;
    	int ret = 0;
    
    	mutex_lock(&ctl->dsp->pwr_lock);
    
    	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
    		ret = -EPERM;
    	else
    		memcpy(ctl->cache, p, ctl->len);
    
    	ctl->set = 1;
    	if (ctl->enabled && ctl->dsp->running)
    		ret = wm_coeff_write_control(ctl, p, ctl->len);
    
    	mutex_unlock(&ctl->dsp->pwr_lock);
    
    	return ret;
    }
    
    static int wm_coeff_tlv_put(struct snd_kcontrol *kctl,
    			    const unsigned int __user *bytes, unsigned int size)
    {
    	struct soc_bytes_ext *bytes_ext =
    		(struct soc_bytes_ext *)kctl->private_value;
    	struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
    	int ret = 0;
    
    	mutex_lock(&ctl->dsp->pwr_lock);
    
    	if (copy_from_user(ctl->cache, bytes, size)) {
    		ret = -EFAULT;
    	} else {
    		ctl->set = 1;
    		if (ctl->enabled && ctl->dsp->running)
    			ret = wm_coeff_write_control(ctl, ctl->cache, size);
    		else if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
    			ret = -EPERM;
    	}
    
    	mutex_unlock(&ctl->dsp->pwr_lock);
    
    	return ret;
    }
    
    static int wm_coeff_put_acked(struct snd_kcontrol *kctl,
    			      struct snd_ctl_elem_value *ucontrol)
    {
    	struct soc_bytes_ext *bytes_ext =
    		(struct soc_bytes_ext *)kctl->private_value;
    	struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
    	unsigned int val = ucontrol->value.integer.value[0];
    	int ret;
    
    	if (val == 0)
    		return 0;	/* 0 means no event */
    
    	mutex_lock(&ctl->dsp->pwr_lock);
    
    	if (ctl->enabled && ctl->dsp->running)
    		ret = wm_coeff_write_acked_control(ctl, val);
    	else
    		ret = -EPERM;
    
    	mutex_unlock(&ctl->dsp->pwr_lock);
    
    	return ret;
    }
    
    static int wm_coeff_read_control(struct wm_coeff_ctl *ctl,
    				 void *buf, size_t len)
    {
    	struct wm_adsp *dsp = ctl->dsp;
    	void *scratch;
    	int ret;
    	unsigned int reg;
    
    	ret = wm_coeff_base_reg(ctl, &reg);
    	if (ret)
    		return ret;
    
    	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
    	if (!scratch)
    		return -ENOMEM;
    
    	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
    	if (ret) {
    		adsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
    			 len, reg, ret);
    		kfree(scratch);
    		return ret;
    	}
    	adsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
    
    	memcpy(buf, scratch, len);
    	kfree(scratch);
    
    	return 0;
    }
    
    static int wm_coeff_get(struct snd_kcontrol *kctl,
    			struct snd_ctl_elem_value *ucontrol)
    {
    	struct soc_bytes_ext *bytes_ext =
    		(struct soc_bytes_ext *)kctl->private_value;
    	struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
    	char *p = ucontrol->value.bytes.data;
    	int ret = 0;
    
    	mutex_lock(&ctl->dsp->pwr_lock);
    
    	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
    		if (ctl->enabled && ctl->dsp->running)
    			ret = wm_coeff_read_control(ctl, p, ctl->len);
    		else
    			ret = -EPERM;
    	} else {
    		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
    			ret = wm_coeff_read_control(ctl, ctl->cache, ctl->len);
    
    		memcpy(p, ctl->cache, ctl->len);
    	}
    
    	mutex_unlock(&ctl->dsp->pwr_lock);
    
    	return ret;
    }
    
    static int wm_coeff_tlv_get(struct snd_kcontrol *kctl,
    			    unsigned int __user *bytes, unsigned int size)
    {
    	struct soc_bytes_ext *bytes_ext =
    		(struct soc_bytes_ext *)kctl->private_value;
    	struct wm_coeff_ctl *ctl = bytes_ext_to_ctl(bytes_ext);
    	int ret = 0;
    
    	mutex_lock(&ctl->dsp->pwr_lock);
    
    	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
    		if (ctl->enabled && ctl->dsp->running)
    			ret = wm_coeff_read_control(ctl, ctl->cache, size);
    		else
    			ret = -EPERM;
    	} else {
    		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
    			ret = wm_coeff_read_control(ctl, ctl->cache, size);
    	}
    
    	if (!ret && copy_to_user(bytes, ctl->cache, size))
    		ret = -EFAULT;
    
    	mutex_unlock(&ctl->dsp->pwr_lock);
    
    	return ret;
    }
    
    static int wm_coeff_get_acked(struct snd_kcontrol *kcontrol,
    			      struct snd_ctl_elem_value *ucontrol)
    {
    	/*
    	 * Although it's not useful to read an acked control, we must satisfy
    	 * user-side assumptions that all controls are readable and that a
    	 * write of the same value should be filtered out (it's valid to send
    	 * the same event number again to the firmware). We therefore return 0,
    	 * meaning "no event" so valid event numbers will always be a change
    	 */
    	ucontrol->value.integer.value[0] = 0;
    
    	return 0;
    }
    
    struct wmfw_ctl_work {
    	struct wm_adsp *dsp;
    	struct wm_coeff_ctl *ctl;
    	struct work_struct work;
    };
    
    static unsigned int wmfw_convert_flags(unsigned int in, unsigned int len)
    {
    	unsigned int out, rd, wr, vol;
    
    	if (len > ADSP_MAX_STD_CTRL_SIZE) {
    		rd = SNDRV_CTL_ELEM_ACCESS_TLV_READ;
    		wr = SNDRV_CTL_ELEM_ACCESS_TLV_WRITE;
    		vol = SNDRV_CTL_ELEM_ACCESS_VOLATILE;
    
    		out = SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
    	} else {
    		rd = SNDRV_CTL_ELEM_ACCESS_READ;
    		wr = SNDRV_CTL_ELEM_ACCESS_WRITE;
    		vol = SNDRV_CTL_ELEM_ACCESS_VOLATILE;
    
    		out = 0;
    	}
    
    	if (in) {
    		if (in & WMFW_CTL_FLAG_READABLE)
    			out |= rd;
    		if (in & WMFW_CTL_FLAG_WRITEABLE)
    			out |= wr;
    		if (in & WMFW_CTL_FLAG_VOLATILE)
    			out |= vol;
    	} else {
    		out |= rd | wr | vol;
    	}
    
    	return out;
    }
    
    static int wmfw_add_ctl(struct wm_adsp *dsp, struct wm_coeff_ctl *ctl)
    {
    	struct snd_kcontrol_new *kcontrol;
    	int ret;
    
    	if (!ctl || !ctl->name)
    		return -EINVAL;
    
    	kcontrol = kzalloc(sizeof(*kcontrol), GFP_KERNEL);
    	if (!kcontrol)
    		return -ENOMEM;
    
    	kcontrol->name = ctl->name;
    	kcontrol->info = wm_coeff_info;
    	kcontrol->iface = SNDRV_CTL_ELEM_IFACE_MIXER;
    	kcontrol->tlv.c = snd_soc_bytes_tlv_callback;
    	kcontrol->private_value = (unsigned long)&ctl->bytes_ext;
    	kcontrol->access = wmfw_convert_flags(ctl->flags, ctl->len);
    
    	switch (ctl->type) {
    	case WMFW_CTL_TYPE_ACKED:
    		kcontrol->get = wm_coeff_get_acked;
    		kcontrol->put = wm_coeff_put_acked;
    		break;
    	default:
    		if (kcontrol->access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) {
    			ctl->bytes_ext.max = ctl->len;
    			ctl->bytes_ext.get = wm_coeff_tlv_get;
    			ctl->bytes_ext.put = wm_coeff_tlv_put;
    		} else {
    			kcontrol->get = wm_coeff_get;
    			kcontrol->put = wm_coeff_put;
    		}
    		break;
    	}
    
    	ret = snd_soc_add_component_controls(dsp->component, kcontrol, 1);
    	if (ret < 0)
    		goto err_kcontrol;
    
    	kfree(kcontrol);
    
    	return 0;
    
    err_kcontrol:
    	kfree(kcontrol);
    	return ret;
    }
    
    static int wm_coeff_init_control_caches(struct wm_adsp *dsp)
    {
    	struct wm_coeff_ctl *ctl;
    	int ret;
    
    	list_for_each_entry(ctl, &dsp->ctl_list, list) {
    		if (!ctl->enabled || ctl->set)
    			continue;
    		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
    			continue;
    
    		/*
    		 * For readable controls populate the cache from the DSP memory.
    		 * For non-readable controls the cache was zero-filled when
    		 * created so we don't need to do anything.
    		 */
    		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
    			ret = wm_coeff_read_control(ctl, ctl->cache, ctl->len);
    			if (ret < 0)
    				return ret;
    		}
    	}
    
    	return 0;
    }
    
    static int wm_coeff_sync_controls(struct wm_adsp *dsp)
    {
    	struct wm_coeff_ctl *ctl;
    	int ret;
    
    	list_for_each_entry(ctl, &dsp->ctl_list, list) {
    		if (!ctl->enabled)
    			continue;
    		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
    			ret = wm_coeff_write_control(ctl, ctl->cache, ctl->len);
    			if (ret < 0)
    				return ret;
    		}
    	}
    
    	return 0;
    }
    
    static void wm_adsp_signal_event_controls(struct wm_adsp *dsp,
    					  unsigned int event)
    {
    	struct wm_coeff_ctl *ctl;
    	int ret;
    
    	list_for_each_entry(ctl, &dsp->ctl_list, list) {
    		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
    			continue;
    
    		if (!ctl->enabled)
    			continue;
    
    		ret = wm_coeff_write_acked_control(ctl, event);
    		if (ret)
    			adsp_warn(dsp,
    				  "Failed to send 0x%x event to alg 0x%x (%d)\n",
    				  event, ctl->alg_region.alg, ret);
    	}
    }
    
    static void wm_adsp_ctl_work(struct work_struct *work)
    {
    	struct wmfw_ctl_work *ctl_work = container_of(work,
    						      struct wmfw_ctl_work,
    						      work);
    
    	wmfw_add_ctl(ctl_work->dsp, ctl_work->ctl);
    	kfree(ctl_work);
    }
    
    static void wm_adsp_free_ctl_blk(struct wm_coeff_ctl *ctl)
    {
    	kfree(ctl->cache);
    	kfree(ctl->name);
    	kfree(ctl);
    }
    
    static int wm_adsp_create_control(struct wm_adsp *dsp,
    				  const struct wm_adsp_alg_region *alg_region,
    				  unsigned int offset, unsigned int len,
    				  const char *subname, unsigned int subname_len,
    				  unsigned int flags, unsigned int type)
    {
    	struct wm_coeff_ctl *ctl;
    	struct wmfw_ctl_work *ctl_work;
    	char name[SNDRV_CTL_ELEM_ID_NAME_MAXLEN];
    	const char *region_name;
    	int ret;
    
    	region_name = wm_adsp_mem_region_name(alg_region->type);
    	if (!region_name) {
    		adsp_err(dsp, "Unknown region type: %d\n", alg_region->type);
    		return -EINVAL;
    	}
    
    	switch (dsp->fw_ver) {
    	case 0:
    	case 1:
    		snprintf(name, SNDRV_CTL_ELEM_ID_NAME_MAXLEN, "%s %s %x",
    			 dsp->name, region_name, alg_region->alg);
    		break;
    	default:
    		ret = snprintf(name, SNDRV_CTL_ELEM_ID_NAME_MAXLEN,
    				"%s%c %.12s %x", dsp->name, *region_name,
    				wm_adsp_fw_text[dsp->fw], alg_region->alg);
    
    		/* Truncate the subname from the start if it is too long */
    		if (subname) {
    			int avail = SNDRV_CTL_ELEM_ID_NAME_MAXLEN - ret - 2;
    			int skip = 0;
    
    			if (dsp->component->name_prefix)
    				avail -= strlen(dsp->component->name_prefix) + 1;
    
    			if (subname_len > avail)
    				skip = subname_len - avail;
    
    			snprintf(name + ret,
    				 SNDRV_CTL_ELEM_ID_NAME_MAXLEN - ret, " %.*s",
    				 subname_len - skip, subname + skip);
    		}
    		break;
    	}
    
    	list_for_each_entry(ctl, &dsp->ctl_list, list) {
    		if (!strcmp(ctl->name, name)) {
    			if (!ctl->enabled)
    				ctl->enabled = 1;
    			return 0;
    		}
    	}
    
    	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
    	if (!ctl)
    		return -ENOMEM;
    	ctl->fw_name = wm_adsp_fw_text[dsp->fw];
    	ctl->alg_region = *alg_region;
    	ctl->name = kmemdup(name, strlen(name) + 1, GFP_KERNEL);
    	if (!ctl->name) {
    		ret = -ENOMEM;
    		goto err_ctl;
    	}
    	ctl->enabled = 1;
    	ctl->set = 0;
    	ctl->ops.xget = wm_coeff_get;
    	ctl->ops.xput = wm_coeff_put;
    	ctl->dsp = dsp;
    
    	ctl->flags = flags;
    	ctl->type = type;
    	ctl->offset = offset;
    	ctl->len = len;
    	ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
    	if (!ctl->cache) {
    		ret = -ENOMEM;
    		goto err_ctl_name;
    	}
    
    	list_add(&ctl->list, &dsp->ctl_list);
    
    	if (flags & WMFW_CTL_FLAG_SYS)
    		return 0;
    
    	ctl_work = kzalloc(sizeof(*ctl_work), GFP_KERNEL);
    	if (!ctl_work) {
    		ret = -ENOMEM;
    		goto err_ctl_cache;
    	}
    
    	ctl_work->dsp = dsp;
    	ctl_work->ctl = ctl;
    	INIT_WORK(&ctl_work->work, wm_adsp_ctl_work);
    	schedule_work(&ctl_work->work);
    
    	return 0;
    
    err_ctl_cache:
    	kfree(ctl->cache);
    err_ctl_name:
    	kfree(ctl->name);
    err_ctl:
    	kfree(ctl);
    
    	return ret;
    }
    
    struct wm_coeff_parsed_alg {
    	int id;
    	const u8 *name;
    	int name_len;
    	int ncoeff;
    };
    
    struct wm_coeff_parsed_coeff {
    	int offset;
    	int mem_type;
    	const u8 *name;
    	int name_len;
    	int ctl_type;
    	int flags;
    	int len;
    };
    
    static int wm_coeff_parse_string(int bytes, const u8 **pos, const u8 **str)
    {
    	int length;
    
    	switch (bytes) {
    	case 1:
    		length = **pos;
    		break;
    	case 2:
    		length = le16_to_cpu(*((__le16 *)*pos));
    		break;
    	default:
    		return 0;
    	}
    
    	if (str)
    		*str = *pos + bytes;
    
    	*pos += ((length + bytes) + 3) & ~0x03;
    
    	return length;
    }
    
    static int wm_coeff_parse_int(int bytes, const u8 **pos)
    {
    	int val = 0;
    
    	switch (bytes) {
    	case 2:
    		val = le16_to_cpu(*((__le16 *)*pos));
    		break;
    	case 4:
    		val = le32_to_cpu(*((__le32 *)*pos));
    		break;
    	default:
    		break;
    	}
    
    	*pos += bytes;
    
    	return val;
    }
    
    static inline void wm_coeff_parse_alg(struct wm_adsp *dsp, const u8 **data,
    				      struct wm_coeff_parsed_alg *blk)
    {
    	const struct wmfw_adsp_alg_data *raw;
    
    	switch (dsp->fw_ver) {
    	case 0:
    	case 1:
    		raw = (const struct wmfw_adsp_alg_data *)*data;
    		*data = raw->data;
    
    		blk->id = le32_to_cpu(raw->id);
    		blk->name = raw->name;
    		blk->name_len = strlen(raw->name);
    		blk->ncoeff = le32_to_cpu(raw->ncoeff);
    		break;
    	default:
    		blk->id = wm_coeff_parse_int(sizeof(raw->id), data);
    		blk->name_len = wm_coeff_parse_string(sizeof(u8), data,
    						      &blk->name);
    		wm_coeff_parse_string(sizeof(u16), data, NULL);
    		blk->ncoeff = wm_coeff_parse_int(sizeof(raw->ncoeff), data);
    		break;
    	}
    
    	adsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
    	adsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
    	adsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
    }
    
    static inline void wm_coeff_parse_coeff(struct wm_adsp *dsp, const u8 **data,
    					struct wm_coeff_parsed_coeff *blk)
    {
    	const struct wmfw_adsp_coeff_data *raw;
    	const u8 *tmp;
    	int length;
    
    	switch (dsp->fw_ver) {
    	case 0:
    	case 1:
    		raw = (const struct wmfw_adsp_coeff_data *)*data;
    		*data = *data + sizeof(raw->hdr) + le32_to_cpu(raw->hdr.size);
    
    		blk->offset = le16_to_cpu(raw->hdr.offset);
    		blk->mem_type = le16_to_cpu(raw->hdr.type);
    		blk->name = raw->name;
    		blk->name_len = strlen(raw->name);
    		blk->ctl_type = le16_to_cpu(raw->ctl_type);
    		blk->flags = le16_to_cpu(raw->flags);
    		blk->len = le32_to_cpu(raw->len);
    		break;
    	default:
    		tmp = *data;
    		blk->offset = wm_coeff_parse_int(sizeof(raw->hdr.offset), &tmp);
    		blk->mem_type = wm_coeff_parse_int(sizeof(raw->hdr.type), &tmp);
    		length = wm_coeff_parse_int(sizeof(raw->hdr.size), &tmp);
    		blk->name_len = wm_coeff_parse_string(sizeof(u8), &tmp,
    						      &blk->name);
    		wm_coeff_parse_string(sizeof(u8), &tmp, NULL);
    		wm_coeff_parse_string(sizeof(u16), &tmp, NULL);
    		blk->ctl_type = wm_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
    		blk->flags = wm_coeff_parse_int(sizeof(raw->flags), &tmp);
    		blk->len = wm_coeff_parse_int(sizeof(raw->len), &tmp);
    
    		*data = *data + sizeof(raw->hdr) + length;
    		break;
    	}
    
    	adsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
    	adsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
    	adsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
    	adsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
    	adsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
    	adsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
    }
    
    static int wm_adsp_check_coeff_flags(struct wm_adsp *dsp,
    				const struct wm_coeff_parsed_coeff *coeff_blk,
    				unsigned int f_required,
    				unsigned int f_illegal)
    {
    	if ((coeff_blk->flags & f_illegal) ||
    	    ((coeff_blk->flags & f_required) != f_required)) {
    		adsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
    			 coeff_blk->flags, coeff_blk->ctl_type);
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static int wm_adsp_parse_coeff(struct wm_adsp *dsp,
    			       const struct wmfw_region *region)
    {
    	struct wm_adsp_alg_region alg_region = {};
    	struct wm_coeff_parsed_alg alg_blk;
    	struct wm_coeff_parsed_coeff coeff_blk;
    	const u8 *data = region->data;
    	int i, ret;
    
    	wm_coeff_parse_alg(dsp, &data, &alg_blk);
    	for (i = 0; i < alg_blk.ncoeff; i++) {
    		wm_coeff_parse_coeff(dsp, &data, &coeff_blk);
    
    		switch (coeff_blk.ctl_type) {
    		case SNDRV_CTL_ELEM_TYPE_BYTES:
    			break;
    		case WMFW_CTL_TYPE_ACKED:
    			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
    				continue;	/* ignore */
    
    			ret = wm_adsp_check_coeff_flags(dsp, &coeff_blk,
    						WMFW_CTL_FLAG_VOLATILE |
    						WMFW_CTL_FLAG_WRITEABLE |
    						WMFW_CTL_FLAG_READABLE,
    						0);
    			if (ret)
    				return -EINVAL;
    			break;
    		case WMFW_CTL_TYPE_HOSTEVENT:
    			ret = wm_adsp_check_coeff_flags(dsp, &coeff_blk,
    						WMFW_CTL_FLAG_SYS |
    						WMFW_CTL_FLAG_VOLATILE |
    						WMFW_CTL_FLAG_WRITEABLE |
    						WMFW_CTL_FLAG_READABLE,
    						0);
    			if (ret)
    				return -EINVAL;
    			break;
    		case WMFW_CTL_TYPE_HOST_BUFFER:
    			ret = wm_adsp_check_coeff_flags(dsp, &coeff_blk,
    						WMFW_CTL_FLAG_SYS |
    						WMFW_CTL_FLAG_VOLATILE |
    						WMFW_CTL_FLAG_READABLE,
    						0);
    			if (ret)
    				return -EINVAL;
    			break;
    		default:
    			adsp_err(dsp, "Unknown control type: %d\n",
    				 coeff_blk.ctl_type);
    			return -EINVAL;
    		}
    
    		alg_region.type = coeff_blk.mem_type;
    		alg_region.alg = alg_blk.id;
    
    		ret = wm_adsp_create_control(dsp, &alg_region,
    					     coeff_blk.offset,
    					     coeff_blk.len,
    					     coeff_blk.name,
    					     coeff_blk.name_len,
    					     coeff_blk.flags,
    					     coeff_blk.ctl_type);
    		if (ret < 0)
    			adsp_err(dsp, "Failed to create control: %.*s, %d\n",
    				 coeff_blk.name_len, coeff_blk.name, ret);
    	}
    
    	return 0;
    }
    
    static int wm_adsp_load(struct wm_adsp *dsp)
    {
    	LIST_HEAD(buf_list);
    	const struct firmware *firmware;
    	struct regmap *regmap = dsp->regmap;
    	unsigned int pos = 0;
    	const struct wmfw_header *header;
    	const struct wmfw_adsp1_sizes *adsp1_sizes;
    	const struct wmfw_adsp2_sizes *adsp2_sizes;
    	const struct wmfw_footer *footer;
    	const struct wmfw_region *region;
    	const struct wm_adsp_region *mem;
    	const char *region_name;
    	char *file, *text = NULL;
    	struct wm_adsp_buf *buf;
    	unsigned int reg;
    	int regions = 0;
    	int ret, offset, type, sizes;
    
    	file = kzalloc(PAGE_SIZE, GFP_KERNEL);
    	if (file == NULL)
    		return -ENOMEM;
    
    	snprintf(file, PAGE_SIZE, "%s-%s-%s.wmfw", dsp->part, dsp->fwf_name,
    		 wm_adsp_fw[dsp->fw].file);
    	file[PAGE_SIZE - 1] = '\0';
    
    	ret = request_firmware(&firmware, file, dsp->dev);
    	if (ret != 0) {
    		adsp_err(dsp, "Failed to request '%s'\n", file);
    		goto out;
    	}
    	ret = -EINVAL;
    
    	pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
    	if (pos >= firmware->size) {
    		adsp_err(dsp, "%s: file too short, %zu bytes\n",
    			 file, firmware->size);
    		goto out_fw;
    	}
    
    	header = (void *)&firmware->data[0];
    
    	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
    		adsp_err(dsp, "%s: invalid magic\n", file);
    		goto out_fw;
    	}
    
    	switch (header->ver) {
    	case 0:
    		adsp_warn(dsp, "%s: Depreciated file format %d\n",
    			  file, header->ver);
    		break;
    	case 1:
    	case 2:
    		break;
    	default:
    		adsp_err(dsp, "%s: unknown file format %d\n",
    			 file, header->ver);
    		goto out_fw;
    	}
    
    	adsp_info(dsp, "Firmware version: %d\n", header->ver);
    	dsp->fw_ver = header->ver;
    
    	if (header->core != dsp->type) {
    		adsp_err(dsp, "%s: invalid core %d != %d\n",
    			 file, header->core, dsp->type);
    		goto out_fw;
    	}
    
    	switch (dsp->type) {
    	case WMFW_ADSP1:
    		pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
    		adsp1_sizes = (void *)&(header[1]);
    		footer = (void *)&(adsp1_sizes[1]);
    		sizes = sizeof(*adsp1_sizes);
    
    		adsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n",
    			 file, le32_to_cpu(adsp1_sizes->dm),
    			 le32_to_cpu(adsp1_sizes->pm),
    			 le32_to_cpu(adsp1_sizes->zm));
    		break;
    
    	case WMFW_ADSP2:
    		pos = sizeof(*header) + sizeof(*adsp2_sizes) + sizeof(*footer);
    		adsp2_sizes = (void *)&(header[1]);
    		footer = (void *)&(adsp2_sizes[1]);
    		sizes = sizeof(*adsp2_sizes);
    
    		adsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n",
    			 file, le32_to_cpu(adsp2_sizes->xm),
    			 le32_to_cpu(adsp2_sizes->ym),
    			 le32_to_cpu(adsp2_sizes->pm),
    			 le32_to_cpu(adsp2_sizes->zm));
    		break;
    
    	default:
    		WARN(1, "Unknown DSP type");
    		goto out_fw;
    	}
    
    	if (le32_to_cpu(header->len) != sizeof(*header) +
    	    sizes + sizeof(*footer)) {
    		adsp_err(dsp, "%s: unexpected header length %d\n",
    			 file, le32_to_cpu(header->len));
    		goto out_fw;
    	}
    
    	adsp_dbg(dsp, "%s: timestamp %llu\n", file,
    		 le64_to_cpu(footer->timestamp));
    
    	while (pos < firmware->size &&
    	       sizeof(*region) < firmware->size - pos) {
    		region = (void *)&(firmware->data[pos]);
    		region_name = "Unknown";
    		reg = 0;
    		text = NULL;
    		offset = le32_to_cpu(region->offset) & 0xffffff;
    		type = be32_to_cpu(region->type) & 0xff;
    		mem = wm_adsp_find_region(dsp, type);
    
    		switch (type) {
    		case WMFW_NAME_TEXT:
    			region_name = "Firmware name";
    			text = kzalloc(le32_to_cpu(region->len) + 1,
    				       GFP_KERNEL);
    			break;
    		case WMFW_ALGORITHM_DATA:
    			region_name = "Algorithm";
    			ret = wm_adsp_parse_coeff(dsp, region);
    			if (ret != 0)
    				goto out_fw;
    			break;
    		case WMFW_INFO_TEXT:
    			region_name = "Information";
    			text = kzalloc(le32_to_cpu(region->len) + 1,
    				       GFP_KERNEL);
    			break;
    		case WMFW_ABSOLUTE:
    			region_name = "Absolute";
    			reg = offset;
    			break;
    		case WMFW_ADSP1_PM:
    		case WMFW_ADSP1_DM:
    		case WMFW_ADSP2_XM:
    		case WMFW_ADSP2_YM:
    		case WMFW_ADSP1_ZM:
    			region_name = wm_adsp_mem_region_name(type);
    			reg = wm_adsp_region_to_reg(mem, offset);
    			break;
    		default:
    			adsp_warn(dsp,
    				  "%s.%d: Unknown region type %x at %d(%x)\n",
    				  file, regions, type, pos, pos);
    			break;
    		}
    
    		adsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
    			 regions, le32_to_cpu(region->len), offset,
    			 region_name);
    
    		if (le32_to_cpu(region->len) >
    		    firmware->size - pos - sizeof(*region)) {
    			adsp_err(dsp,
    				 "%s.%d: %s region len %d bytes exceeds file length %zu\n",
    				 file, regions, region_name,
    				 le32_to_cpu(region->len), firmware->size);
    			ret = -EINVAL;
    			goto out_fw;
    		}
    
    		if (text) {
    			memcpy(text, region->data, le32_to_cpu(region->len));
    			adsp_info(dsp, "%s: %s\n", file, text);
    			kfree(text);
    			text = NULL;
    		}
    
    		if (reg) {
    			buf = wm_adsp_buf_alloc(region->data,
    						le32_to_cpu(region->len),
    						&buf_list);
    			if (!buf) {
    				adsp_err(dsp, "Out of memory\n");
    				ret = -ENOMEM;
    				goto out_fw;
    			}
    
    			ret = regmap_raw_write_async(regmap, reg, buf->buf,
    						     le32_to_cpu(region->len));
    			if (ret != 0) {
    				adsp_err(dsp,
    					"%s.%d: Failed to write %d bytes at %d in %s: %d\n",
    					file, regions,
    					le32_to_cpu(region->len), offset,
    					region_name, ret);
    				goto out_fw;
    			}
    		}
    
    		pos += le32_to_cpu(region->len) + sizeof(*region);
    		regions++;
    	}
    
    	ret = regmap_async_complete(regmap);
    	if (ret != 0) {
    		adsp_err(dsp, "Failed to complete async write: %d\n", ret);
    		goto out_fw;
    	}
    
    	if (pos > firmware->size)
    		adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
    			  file, regions, pos - firmware->size);
    
    	wm_adsp_debugfs_save_wmfwname(dsp, file);
    
    out_fw:
    	regmap_async_complete(regmap);
    	wm_adsp_buf_free(&buf_list);
    	release_firmware(firmware);
    	kfree(text);
    out:
    	kfree(file);
    
    	return ret;
    }
    
    static void wm_adsp_ctl_fixup_base(struct wm_adsp *dsp,
    				  const struct wm_adsp_alg_region *alg_region)
    {
    	struct wm_coeff_ctl *ctl;
    
    	list_for_each_entry(ctl, &dsp->ctl_list, list) {
    		if (ctl->fw_name == wm_adsp_fw_text[dsp->fw] &&
    		    alg_region->alg == ctl->alg_region.alg &&
    		    alg_region->type == ctl->alg_region.type) {
    			ctl->alg_region.base = alg_region->base;
    		}
    	}
    }
    
    static void *wm_adsp_read_algs(struct wm_adsp *dsp, size_t n_algs,
    			       const struct wm_adsp_region *mem,
    			       unsigned int pos, unsigned int len)
    {
    	void *alg;
    	unsigned int reg;
    	int ret;
    	__be32 val;
    
    	if (n_algs == 0) {
    		adsp_err(dsp, "No algorithms\n");
    		return ERR_PTR(-EINVAL);
    	}
    
    	if (n_algs > 1024) {
    		adsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
    		return ERR_PTR(-EINVAL);
    	}
    
    	/* Read the terminator first to validate the length */
    	reg = wm_adsp_region_to_reg(mem, pos + len);
    
    	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
    	if (ret != 0) {
    		adsp_err(dsp, "Failed to read algorithm list end: %d\n",
    			ret);
    		return ERR_PTR(ret);
    	}
    
    	if (be32_to_cpu(val) != 0xbedead)
    		adsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
    			  reg, be32_to_cpu(val));
    
    	/* Convert length from DSP words to bytes */
    	len *= sizeof(u32);
    
    	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
    	if (!alg)
    		return ERR_PTR(-ENOMEM);
    
    	reg = wm_adsp_region_to_reg(mem, pos);
    
    	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
    	if (ret != 0) {
    		adsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
    		kfree(alg);
    		return ERR_PTR(ret);
    	}
    
    	return alg;
    }
    
    static struct wm_adsp_alg_region *
    	wm_adsp_find_alg_region(struct wm_adsp *dsp, int type, unsigned int id)
    {
    	struct wm_adsp_alg_region *alg_region;
    
    	list_for_each_entry(alg_region, &dsp->alg_regions, list) {
    		if (id == alg_region->alg && type == alg_region->type)
    			return alg_region;
    	}
    
    	return NULL;
    }
    
    static struct wm_adsp_alg_region *wm_adsp_create_region(struct wm_adsp *dsp,
    							int type, __be32 id,
    							__be32 base)
    {
    	struct wm_adsp_alg_region *alg_region;
    
    	alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
    	if (!alg_region)
    		return ERR_PTR(-ENOMEM);
    
    	alg_region->type = type;
    	alg_region->alg = be32_to_cpu(id);
    	alg_region->base = be32_to_cpu(base);
    
    	list_add_tail(&alg_region->list, &dsp->alg_regions);
    
    	if (dsp->fw_ver > 0)
    		wm_adsp_ctl_fixup_base(dsp, alg_region);
    
    	return alg_region;
    }
    
    static void wm_adsp_free_alg_regions(struct wm_adsp *dsp)
    {
    	struct wm_adsp_alg_region *alg_region;
    
    	while (!list_empty(&dsp->alg_regions)) {
    		alg_region = list_first_entry(&dsp->alg_regions,
    					      struct wm_adsp_alg_region,
    					      list);
    		list_del(&alg_region->list);
    		kfree(alg_region);
    	}
    }
    
    static int wm_adsp1_setup_algs(struct wm_adsp *dsp)
    {
    	struct wmfw_adsp1_id_hdr adsp1_id;
    	struct wmfw_adsp1_alg_hdr *adsp1_alg;
    	struct wm_adsp_alg_region *alg_region;
    	const struct wm_adsp_region *mem;
    	unsigned int pos, len;
    	size_t n_algs;
    	int i, ret;
    
    	mem = wm_adsp_find_region(dsp, WMFW_ADSP1_DM);
    	if (WARN_ON(!mem))
    		return -EINVAL;
    
    	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
    			      sizeof(adsp1_id));
    	if (ret != 0) {
    		adsp_err(dsp, "Failed to read algorithm info: %d\n",
    			 ret);
    		return ret;
    	}
    
    	n_algs = be32_to_cpu(adsp1_id.n_algs);
    	dsp->fw_id = be32_to_cpu(adsp1_id.fw.id);
    	adsp_info(dsp, "Firmware: %x v%d.%d.%d, %zu algorithms\n",
    		  dsp->fw_id,
    		  (be32_to_cpu(adsp1_id.fw.ver) & 0xff0000) >> 16,
    		  (be32_to_cpu(adsp1_id.fw.ver) & 0xff00) >> 8,
    		  be32_to_cpu(adsp1_id.fw.ver) & 0xff,
    		  n_algs);
    
    	alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_ZM,
    					   adsp1_id.fw.id, adsp1_id.zm);
    	if (IS_ERR(alg_region))
    		return PTR_ERR(alg_region);
    
    	alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_DM,
    					   adsp1_id.fw.id, adsp1_id.dm);
    	if (IS_ERR(alg_region))
    		return PTR_ERR(alg_region);
    
    	/* Calculate offset and length in DSP words */
    	pos = sizeof(adsp1_id) / sizeof(u32);
    	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
    
    	adsp1_alg = wm_adsp_read_algs(dsp, n_algs, mem, pos, len);
    	if (IS_ERR(adsp1_alg))
    		return PTR_ERR(adsp1_alg);
    
    	for (i = 0; i < n_algs; i++) {
    		adsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
    			  i, be32_to_cpu(adsp1_alg[i].alg.id),
    			  (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
    			  (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
    			  be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
    			  be32_to_cpu(adsp1_alg[i].dm),
    			  be32_to_cpu(adsp1_alg[i].zm));
    
    		alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_DM,
    						   adsp1_alg[i].alg.id,
    						   adsp1_alg[i].dm);
    		if (IS_ERR(alg_region)) {
    			ret = PTR_ERR(alg_region);
    			goto out;
    		}
    		if (dsp->fw_ver == 0) {
    			if (i + 1 < n_algs) {
    				len = be32_to_cpu(adsp1_alg[i + 1].dm);
    				len -= be32_to_cpu(adsp1_alg[i].dm);
    				len *= 4;
    				wm_adsp_create_control(dsp, alg_region, 0,
    						     len, NULL, 0, 0,
    						     SNDRV_CTL_ELEM_TYPE_BYTES);
    			} else {
    				adsp_warn(dsp, "Missing length info for region DM with ID %x\n",
    					  be32_to_cpu(adsp1_alg[i].alg.id));
    			}
    		}
    
    		alg_region = wm_adsp_create_region(dsp, WMFW_ADSP1_ZM,
    						   adsp1_alg[i].alg.id,
    						   adsp1_alg[i].zm);
    		if (IS_ERR(alg_region)) {
    			ret = PTR_ERR(alg_region);
    			goto out;
    		}
    		if (dsp->fw_ver == 0) {
    			if (i + 1 < n_algs) {
    				len = be32_to_cpu(adsp1_alg[i + 1].zm);
    				len -= be32_to_cpu(adsp1_alg[i].zm);
    				len *= 4;
    				wm_adsp_create_control(dsp, alg_region, 0,
    						     len, NULL, 0, 0,
    						     SNDRV_CTL_ELEM_TYPE_BYTES);
    			} else {
    				adsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
    					  be32_to_cpu(adsp1_alg[i].alg.id));
    			}
    		}
    	}
    
    out:
    	kfree(adsp1_alg);
    	return ret;
    }
    
    static int wm_adsp2_setup_algs(struct wm_adsp *dsp)
    {
    	struct wmfw_adsp2_id_hdr adsp2_id;
    	struct wmfw_adsp2_alg_hdr *adsp2_alg;
    	struct wm_adsp_alg_region *alg_region;
    	const struct wm_adsp_region *mem;
    	unsigned int pos, len;
    	size_t n_algs;
    	int i, ret;
    
    	mem = wm_adsp_find_region(dsp, WMFW_ADSP2_XM);
    	if (WARN_ON(!mem))
    		return -EINVAL;
    
    	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
    			      sizeof(adsp2_id));
    	if (ret != 0) {
    		adsp_err(dsp, "Failed to read algorithm info: %d\n",
    			 ret);
    		return ret;
    	}
    
    	n_algs = be32_to_cpu(adsp2_id.n_algs);
    	dsp->fw_id = be32_to_cpu(adsp2_id.fw.id);
    	dsp->fw_id_version = be32_to_cpu(adsp2_id.fw.ver);
    	adsp_info(dsp, "Firmware: %x v%d.%d.%d, %zu algorithms\n",
    		  dsp->fw_id,
    		  (dsp->fw_id_version & 0xff0000) >> 16,
    		  (dsp->fw_id_version & 0xff00) >> 8,
    		  dsp->fw_id_version & 0xff,
    		  n_algs);
    
    	alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_XM,
    					   adsp2_id.fw.id, adsp2_id.xm);
    	if (IS_ERR(alg_region))
    		return PTR_ERR(alg_region);
    
    	alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_YM,
    					   adsp2_id.fw.id, adsp2_id.ym);
    	if (IS_ERR(alg_region))
    		return PTR_ERR(alg_region);
    
    	alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_ZM,
    					   adsp2_id.fw.id, adsp2_id.zm);
    	if (IS_ERR(alg_region))
    		return PTR_ERR(alg_region);
    
    	/* Calculate offset and length in DSP words */
    	pos = sizeof(adsp2_id) / sizeof(u32);
    	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
    
    	adsp2_alg = wm_adsp_read_algs(dsp, n_algs, mem, pos, len);
    	if (IS_ERR(adsp2_alg))
    		return PTR_ERR(adsp2_alg);
    
    	for (i = 0; i < n_algs; i++) {
    		adsp_info(dsp,
    			  "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
    			  i, be32_to_cpu(adsp2_alg[i].alg.id),
    			  (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
    			  (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
    			  be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
    			  be32_to_cpu(adsp2_alg[i].xm),
    			  be32_to_cpu(adsp2_alg[i].ym),
    			  be32_to_cpu(adsp2_alg[i].zm));
    
    		alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_XM,
    						   adsp2_alg[i].alg.id,
    						   adsp2_alg[i].xm);
    		if (IS_ERR(alg_region)) {
    			ret = PTR_ERR(alg_region);
    			goto out;
    		}
    		if (dsp->fw_ver == 0) {
    			if (i + 1 < n_algs) {
    				len = be32_to_cpu(adsp2_alg[i + 1].xm);
    				len -= be32_to_cpu(adsp2_alg[i].xm);
    				len *= 4;
    				wm_adsp_create_control(dsp, alg_region, 0,
    						     len, NULL, 0, 0,
    						     SNDRV_CTL_ELEM_TYPE_BYTES);
    			} else {
    				adsp_warn(dsp, "Missing length info for region XM with ID %x\n",
    					  be32_to_cpu(adsp2_alg[i].alg.id));
    			}
    		}
    
    		alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_YM,
    						   adsp2_alg[i].alg.id,
    						   adsp2_alg[i].ym);
    		if (IS_ERR(alg_region)) {
    			ret = PTR_ERR(alg_region);
    			goto out;
    		}
    		if (dsp->fw_ver == 0) {
    			if (i + 1 < n_algs) {
    				len = be32_to_cpu(adsp2_alg[i + 1].ym);
    				len -= be32_to_cpu(adsp2_alg[i].ym);
    				len *= 4;
    				wm_adsp_create_control(dsp, alg_region, 0,
    						     len, NULL, 0, 0,
    						     SNDRV_CTL_ELEM_TYPE_BYTES);
    			} else {
    				adsp_warn(dsp, "Missing length info for region YM with ID %x\n",
    					  be32_to_cpu(adsp2_alg[i].alg.id));
    			}
    		}
    
    		alg_region = wm_adsp_create_region(dsp, WMFW_ADSP2_ZM,
    						   adsp2_alg[i].alg.id,
    						   adsp2_alg[i].zm);
    		if (IS_ERR(alg_region)) {
    			ret = PTR_ERR(alg_region);
    			goto out;
    		}
    		if (dsp->fw_ver == 0) {
    			if (i + 1 < n_algs) {
    				len = be32_to_cpu(adsp2_alg[i + 1].zm);
    				len -= be32_to_cpu(adsp2_alg[i].zm);
    				len *= 4;
    				wm_adsp_create_control(dsp, alg_region, 0,
    						     len, NULL, 0, 0,
    						     SNDRV_CTL_ELEM_TYPE_BYTES);
    			} else {
    				adsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
    					  be32_to_cpu(adsp2_alg[i].alg.id));
    			}
    		}
    	}
    
    out:
    	kfree(adsp2_alg);
    	return ret;
    }
    
    static int wm_adsp_load_coeff(struct wm_adsp *dsp)
    {
    	LIST_HEAD(buf_list);
    	struct regmap *regmap = dsp->regmap;
    	struct wmfw_coeff_hdr *hdr;
    	struct wmfw_coeff_item *blk;
    	const struct firmware *firmware;
    	const struct wm_adsp_region *mem;
    	struct wm_adsp_alg_region *alg_region;
    	const char *region_name;
    	int ret, pos, blocks, type, offset, reg;
    	char *file;
    	struct wm_adsp_buf *buf;
    
    	file = kzalloc(PAGE_SIZE, GFP_KERNEL);
    	if (file == NULL)
    		return -ENOMEM;
    
    	snprintf(file, PAGE_SIZE, "%s-%s-%s.bin", dsp->part, dsp->fwf_name,
    		 wm_adsp_fw[dsp->fw].file);
    	file[PAGE_SIZE - 1] = '\0';
    
    	ret = request_firmware(&firmware, file, dsp->dev);
    	if (ret != 0) {
    		adsp_warn(dsp, "Failed to request '%s'\n", file);
    		ret = 0;
    		goto out;
    	}
    	ret = -EINVAL;
    
    	if (sizeof(*hdr) >= firmware->size) {
    		adsp_err(dsp, "%s: file too short, %zu bytes\n",
    			file, firmware->size);
    		goto out_fw;
    	}
    
    	hdr = (void *)&firmware->data[0];
    	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
    		adsp_err(dsp, "%s: invalid magic\n", file);
    		goto out_fw;
    	}
    
    	switch (be32_to_cpu(hdr->rev) & 0xff) {
    	case 1:
    		break;
    	default:
    		adsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
    			 file, be32_to_cpu(hdr->rev) & 0xff);
    		ret = -EINVAL;
    		goto out_fw;
    	}
    
    	adsp_dbg(dsp, "%s: v%d.%d.%d\n", file,
    		(le32_to_cpu(hdr->ver) >> 16) & 0xff,
    		(le32_to_cpu(hdr->ver) >>  8) & 0xff,
    		le32_to_cpu(hdr->ver) & 0xff);
    
    	pos = le32_to_cpu(hdr->len);
    
    	blocks = 0;
    	while (pos < firmware->size &&
    	       sizeof(*blk) < firmware->size - pos) {
    		blk = (void *)(&firmware->data[pos]);
    
    		type = le16_to_cpu(blk->type);
    		offset = le16_to_cpu(blk->offset);
    
    		adsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
    			 file, blocks, le32_to_cpu(blk->id),
    			 (le32_to_cpu(blk->ver) >> 16) & 0xff,
    			 (le32_to_cpu(blk->ver) >>  8) & 0xff,
    			 le32_to_cpu(blk->ver) & 0xff);
    		adsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
    			 file, blocks, le32_to_cpu(blk->len), offset, type);
    
    		reg = 0;
    		region_name = "Unknown";
    		switch (type) {
    		case (WMFW_NAME_TEXT << 8):
    		case (WMFW_INFO_TEXT << 8):
    			break;
    		case (WMFW_ABSOLUTE << 8):
    			/*
    			 * Old files may use this for global
    			 * coefficients.
    			 */
    			if (le32_to_cpu(blk->id) == dsp->fw_id &&
    			    offset == 0) {
    				region_name = "global coefficients";
    				mem = wm_adsp_find_region(dsp, type);
    				if (!mem) {
    					adsp_err(dsp, "No ZM\n");
    					break;
    				}
    				reg = wm_adsp_region_to_reg(mem, 0);
    
    			} else {
    				region_name = "register";
    				reg = offset;
    			}
    			break;
    
    		case WMFW_ADSP1_DM:
    		case WMFW_ADSP1_ZM:
    		case WMFW_ADSP2_XM:
    		case WMFW_ADSP2_YM:
    			adsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
    				 file, blocks, le32_to_cpu(blk->len),
    				 type, le32_to_cpu(blk->id));
    
    			mem = wm_adsp_find_region(dsp, type);
    			if (!mem) {
    				adsp_err(dsp, "No base for region %x\n", type);
    				break;
    			}
    
    			alg_region = wm_adsp_find_alg_region(dsp, type,
    						le32_to_cpu(blk->id));
    			if (alg_region) {
    				reg = alg_region->base;
    				reg = wm_adsp_region_to_reg(mem, reg);
    				reg += offset;
    			} else {
    				adsp_err(dsp, "No %x for algorithm %x\n",
    					 type, le32_to_cpu(blk->id));
    			}
    			break;
    
    		default:
    			adsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
    				 file, blocks, type, pos);
    			break;
    		}
    
    		if (reg) {
    			if (le32_to_cpu(blk->len) >
    			    firmware->size - pos - sizeof(*blk)) {
    				adsp_err(dsp,
    					 "%s.%d: %s region len %d bytes exceeds file length %zu\n",
    					 file, blocks, region_name,
    					 le32_to_cpu(blk->len),
    					 firmware->size);
    				ret = -EINVAL;
    				goto out_fw;
    			}
    
    			buf = wm_adsp_buf_alloc(blk->data,
    						le32_to_cpu(blk->len),
    						&buf_list);
    			if (!buf) {
    				adsp_err(dsp, "Out of memory\n");
    				ret = -ENOMEM;
    				goto out_fw;
    			}
    
    			adsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
    				 file, blocks, le32_to_cpu(blk->len),
    				 reg);
    			ret = regmap_raw_write_async(regmap, reg, buf->buf,
    						     le32_to_cpu(blk->len));
    			if (ret != 0) {
    				adsp_err(dsp,
    					"%s.%d: Failed to write to %x in %s: %d\n",
    					file, blocks, reg, region_name, ret);
    			}
    		}
    
    		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
    		blocks++;
    	}
    
    	ret = regmap_async_complete(regmap);
    	if (ret != 0)
    		adsp_err(dsp, "Failed to complete async write: %d\n", ret);
    
    	if (pos > firmware->size)
    		adsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
    			  file, blocks, pos - firmware->size);
    
    	wm_adsp_debugfs_save_binname(dsp, file);
    
    out_fw:
    	regmap_async_complete(regmap);
    	release_firmware(firmware);
    	wm_adsp_buf_free(&buf_list);
    out:
    	kfree(file);
    	return ret;
    }
    
    static int wm_adsp_create_name(struct wm_adsp *dsp)
    {
    	char *p;
    
    	if (!dsp->name) {
    		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
    					   dsp->num);
    		if (!dsp->name)
    			return -ENOMEM;
    	}
    
    	if (!dsp->fwf_name) {
    		p = devm_kstrdup(dsp->dev, dsp->name, GFP_KERNEL);
    		if (!p)
    			return -ENOMEM;
    
    		dsp->fwf_name = p;
    		for (; *p != 0; ++p)
    			*p = tolower(*p);
    	}
    
    	return 0;
    }
    
    static int wm_adsp_common_init(struct wm_adsp *dsp)
    {
    	int ret;
    
    	ret = wm_adsp_create_name(dsp);
    	if (ret)
    		return ret;
    
    	INIT_LIST_HEAD(&dsp->alg_regions);
    	INIT_LIST_HEAD(&dsp->ctl_list);
    	INIT_LIST_HEAD(&dsp->compr_list);
    	INIT_LIST_HEAD(&dsp->buffer_list);
    
    	mutex_init(&dsp->pwr_lock);
    
    	return 0;
    }
    
    int wm_adsp1_init(struct wm_adsp *dsp)
    {
    	return wm_adsp_common_init(dsp);
    }
    EXPORT_SYMBOL_GPL(wm_adsp1_init);
    
    int wm_adsp1_event(struct snd_soc_dapm_widget *w,
    		   struct snd_kcontrol *kcontrol,
    		   int event)
    {
    	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
    	struct wm_adsp *dsps = snd_soc_component_get_drvdata(component);
    	struct wm_adsp *dsp = &dsps[w->shift];
    	struct wm_coeff_ctl *ctl;
    	int ret;
    	unsigned int val;
    
    	dsp->component = component;
    
    	mutex_lock(&dsp->pwr_lock);
    
    	switch (event) {
    	case SND_SOC_DAPM_POST_PMU:
    		regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
    				   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
    
    		/*
    		 * For simplicity set the DSP clock rate to be the
    		 * SYSCLK rate rather than making it configurable.
    		 */
    		if (dsp->sysclk_reg) {
    			ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
    			if (ret != 0) {
    				adsp_err(dsp, "Failed to read SYSCLK state: %d\n",
    				ret);
    				goto err_mutex;
    			}
    
    			val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
    
    			ret = regmap_update_bits(dsp->regmap,
    						 dsp->base + ADSP1_CONTROL_31,
    						 ADSP1_CLK_SEL_MASK, val);
    			if (ret != 0) {
    				adsp_err(dsp, "Failed to set clock rate: %d\n",
    					 ret);
    				goto err_mutex;
    			}
    		}
    
    		ret = wm_adsp_load(dsp);
    		if (ret != 0)
    			goto err_ena;
    
    		ret = wm_adsp1_setup_algs(dsp);
    		if (ret != 0)
    			goto err_ena;
    
    		ret = wm_adsp_load_coeff(dsp);
    		if (ret != 0)
    			goto err_ena;
    
    		/* Initialize caches for enabled and unset controls */
    		ret = wm_coeff_init_control_caches(dsp);
    		if (ret != 0)
    			goto err_ena;
    
    		/* Sync set controls */
    		ret = wm_coeff_sync_controls(dsp);
    		if (ret != 0)
    			goto err_ena;
    
    		dsp->booted = true;
    
    		/* Start the core running */
    		regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
    				   ADSP1_CORE_ENA | ADSP1_START,
    				   ADSP1_CORE_ENA | ADSP1_START);
    
    		dsp->running = true;
    		break;
    
    	case SND_SOC_DAPM_PRE_PMD:
    		dsp->running = false;
    		dsp->booted = false;
    
    		/* Halt the core */
    		regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
    				   ADSP1_CORE_ENA | ADSP1_START, 0);
    
    		regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
    				   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
    
    		regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
    				   ADSP1_SYS_ENA, 0);
    
    		list_for_each_entry(ctl, &dsp->ctl_list, list)
    			ctl->enabled = 0;
    
    
    		wm_adsp_free_alg_regions(dsp);
    		break;
    
    	default:
    		break;
    	}
    
    	mutex_unlock(&dsp->pwr_lock);
    
    	return 0;
    
    err_ena:
    	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
    			   ADSP1_SYS_ENA, 0);
    err_mutex:
    	mutex_unlock(&dsp->pwr_lock);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(wm_adsp1_event);
    
    static int wm_adsp2_ena(struct wm_adsp *dsp)
    {
    	unsigned int val;
    	int ret, count;
    
    	switch (dsp->rev) {
    	case 0:
    		ret = regmap_update_bits_async(dsp->regmap,
    					       dsp->base + ADSP2_CONTROL,
    					       ADSP2_SYS_ENA, ADSP2_SYS_ENA);
    		if (ret != 0)
    			return ret;
    		break;
    	default:
    		break;
    	}
    
    	/* Wait for the RAM to start, should be near instantaneous */
    	for (count = 0; count < 10; ++count) {
    		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
    		if (ret != 0)
    			return ret;
    
    		if (val & ADSP2_RAM_RDY)
    			break;
    
    		usleep_range(250, 500);
    	}
    
    	if (!(val & ADSP2_RAM_RDY)) {
    		adsp_err(dsp, "Failed to start DSP RAM\n");
    		return -EBUSY;
    	}
    
    	adsp_dbg(dsp, "RAM ready after %d polls\n", count);
    
    	return 0;
    }
    
    static void wm_adsp2_boot_work(struct work_struct *work)
    {
    	struct wm_adsp *dsp = container_of(work,
    					   struct wm_adsp,
    					   boot_work);
    	int ret;
    
    	mutex_lock(&dsp->pwr_lock);
    
    	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
    				 ADSP2_MEM_ENA, ADSP2_MEM_ENA);
    	if (ret != 0)
    		goto err_mutex;
    
    	ret = wm_adsp2_ena(dsp);
    	if (ret != 0)
    		goto err_mem;
    
    	ret = wm_adsp_load(dsp);
    	if (ret != 0)
    		goto err_ena;
    
    	ret = wm_adsp2_setup_algs(dsp);
    	if (ret != 0)
    		goto err_ena;
    
    	ret = wm_adsp_load_coeff(dsp);
    	if (ret != 0)
    		goto err_ena;
    
    	/* Initialize caches for enabled and unset controls */
    	ret = wm_coeff_init_control_caches(dsp);
    	if (ret != 0)
    		goto err_ena;
    
    	switch (dsp->rev) {
    	case 0:
    		/* Turn DSP back off until we are ready to run */
    		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
    					 ADSP2_SYS_ENA, 0);
    		if (ret != 0)
    			goto err_ena;
    		break;
    	default:
    		break;
    	}
    
    	dsp->booted = true;
    
    	mutex_unlock(&dsp->pwr_lock);
    
    	return;
    
    err_ena:
    	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
    			   ADSP2_SYS_ENA | ADSP2_CORE_ENA | ADSP2_START, 0);
    err_mem:
    	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
    			   ADSP2_MEM_ENA, 0);
    err_mutex:
    	mutex_unlock(&dsp->pwr_lock);
    }
    
    static void wm_adsp2_set_dspclk(struct wm_adsp *dsp, unsigned int freq)
    {
    	int ret;
    
    	switch (dsp->rev) {
    	case 0:
    		ret = regmap_update_bits_async(dsp->regmap,
    					       dsp->base + ADSP2_CLOCKING,
    					       ADSP2_CLK_SEL_MASK,
    					       freq << ADSP2_CLK_SEL_SHIFT);
    		if (ret) {
    			adsp_err(dsp, "Failed to set clock rate: %d\n", ret);
    			return;
    		}
    		break;
    	default:
    		/* clock is handled by parent codec driver */
    		break;
    	}
    }
    
    int wm_adsp2_preloader_get(struct snd_kcontrol *kcontrol,
    			   struct snd_ctl_elem_value *ucontrol)
    {
    	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
    	struct wm_adsp *dsps = snd_soc_component_get_drvdata(component);
    	struct soc_mixer_control *mc =
    		(struct soc_mixer_control *)kcontrol->private_value;
    	struct wm_adsp *dsp = &dsps[mc->shift - 1];
    
    	ucontrol->value.integer.value[0] = dsp->preloaded;
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(wm_adsp2_preloader_get);
    
    int wm_adsp2_preloader_put(struct snd_kcontrol *kcontrol,
    			   struct snd_ctl_elem_value *ucontrol)
    {
    	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
    	struct wm_adsp *dsps = snd_soc_component_get_drvdata(component);
    	struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
    	struct soc_mixer_control *mc =
    		(struct soc_mixer_control *)kcontrol->private_value;
    	struct wm_adsp *dsp = &dsps[mc->shift - 1];
    	char preload[32];
    
    	snprintf(preload, ARRAY_SIZE(preload), "%s Preload", dsp->name);
    
    	dsp->preloaded = ucontrol->value.integer.value[0];
    
    	if (ucontrol->value.integer.value[0])
    		snd_soc_component_force_enable_pin(component, preload);
    	else
    		snd_soc_component_disable_pin(component, preload);
    
    	snd_soc_dapm_sync(dapm);
    
    	flush_work(&dsp->boot_work);
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(wm_adsp2_preloader_put);
    
    static void wm_adsp_stop_watchdog(struct wm_adsp *dsp)
    {
    	switch (dsp->rev) {
    	case 0:
    	case 1:
    		return;
    	default:
    		regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
    				   ADSP2_WDT_ENA_MASK, 0);
    	}
    }
    
    int wm_adsp2_early_event(struct snd_soc_dapm_widget *w,
    			 struct snd_kcontrol *kcontrol, int event,
    			 unsigned int freq)
    {
    	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
    	struct wm_adsp *dsps = snd_soc_component_get_drvdata(component);
    	struct wm_adsp *dsp = &dsps[w->shift];
    	struct wm_coeff_ctl *ctl;
    
    	switch (event) {
    	case SND_SOC_DAPM_PRE_PMU:
    		wm_adsp2_set_dspclk(dsp, freq);
    		queue_work(system_unbound_wq, &dsp->boot_work);
    		break;
    	case SND_SOC_DAPM_PRE_PMD:
    		mutex_lock(&dsp->pwr_lock);
    
    		wm_adsp_debugfs_clear(dsp);
    
    		dsp->fw_id = 0;
    		dsp->fw_id_version = 0;
    
    		dsp->booted = false;
    
    		regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
    				   ADSP2_MEM_ENA, 0);
    
    		list_for_each_entry(ctl, &dsp->ctl_list, list)
    			ctl->enabled = 0;
    
    		wm_adsp_free_alg_regions(dsp);
    
    		mutex_unlock(&dsp->pwr_lock);
    
    		adsp_dbg(dsp, "Shutdown complete\n");
    		break;
    	default:
    		break;
    	}
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(wm_adsp2_early_event);
    
    int wm_adsp2_event(struct snd_soc_dapm_widget *w,
    		   struct snd_kcontrol *kcontrol, int event)
    {
    	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
    	struct wm_adsp *dsps = snd_soc_component_get_drvdata(component);
    	struct wm_adsp *dsp = &dsps[w->shift];
    	int ret;
    
    	switch (event) {
    	case SND_SOC_DAPM_POST_PMU:
    		flush_work(&dsp->boot_work);
    
    		mutex_lock(&dsp->pwr_lock);
    
    		if (!dsp->booted) {
    			ret = -EIO;
    			goto err;
    		}
    
    		ret = wm_adsp2_ena(dsp);
    		if (ret != 0)
    			goto err;
    
    		/* Sync set controls */
    		ret = wm_coeff_sync_controls(dsp);
    		if (ret != 0)
    			goto err;
    
    		wm_adsp2_lock(dsp, dsp->lock_regions);
    
    		ret = regmap_update_bits(dsp->regmap,
    					 dsp->base + ADSP2_CONTROL,
    					 ADSP2_CORE_ENA | ADSP2_START,
    					 ADSP2_CORE_ENA | ADSP2_START);
    		if (ret != 0)
    			goto err;
    
    		if (wm_adsp_fw[dsp->fw].num_caps != 0) {
    			ret = wm_adsp_buffer_init(dsp);
    			if (ret < 0)
    				goto err;
    		}
    
    		dsp->running = true;
    
    		mutex_unlock(&dsp->pwr_lock);
    
    		break;
    
    	case SND_SOC_DAPM_PRE_PMD:
    		/* Tell the firmware to cleanup */
    		wm_adsp_signal_event_controls(dsp, WM_ADSP_FW_EVENT_SHUTDOWN);
    
    		wm_adsp_stop_watchdog(dsp);
    
    		/* Log firmware state, it can be useful for analysis */
    		switch (dsp->rev) {
    		case 0:
    			wm_adsp2_show_fw_status(dsp);
    			break;
    		default:
    			wm_adsp2v2_show_fw_status(dsp);
    			break;
    		}
    
    		mutex_lock(&dsp->pwr_lock);
    
    		dsp->running = false;
    
    		regmap_update_bits(dsp->regmap,
    				   dsp->base + ADSP2_CONTROL,
    				   ADSP2_CORE_ENA | ADSP2_START, 0);
    
    		/* Make sure DMAs are quiesced */
    		switch (dsp->rev) {
    		case 0:
    			regmap_write(dsp->regmap,
    				     dsp->base + ADSP2_RDMA_CONFIG_1, 0);
    			regmap_write(dsp->regmap,
    				     dsp->base + ADSP2_WDMA_CONFIG_1, 0);
    			regmap_write(dsp->regmap,
    				     dsp->base + ADSP2_WDMA_CONFIG_2, 0);
    
    			regmap_update_bits(dsp->regmap,
    					   dsp->base + ADSP2_CONTROL,
    					   ADSP2_SYS_ENA, 0);
    			break;
    		default:
    			regmap_write(dsp->regmap,
    				     dsp->base + ADSP2_RDMA_CONFIG_1, 0);
    			regmap_write(dsp->regmap,
    				     dsp->base + ADSP2_WDMA_CONFIG_1, 0);
    			regmap_write(dsp->regmap,
    				     dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
    			break;
    		}
    
    		if (wm_adsp_fw[dsp->fw].num_caps != 0)
    			wm_adsp_buffer_free(dsp);
    
    		dsp->fatal_error = false;
    
    		mutex_unlock(&dsp->pwr_lock);
    
    		adsp_dbg(dsp, "Execution stopped\n");
    		break;
    
    	default:
    		break;
    	}
    
    	return 0;
    err:
    	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
    			   ADSP2_SYS_ENA | ADSP2_CORE_ENA | ADSP2_START, 0);
    	mutex_unlock(&dsp->pwr_lock);
    	return ret;
    }
    EXPORT_SYMBOL_GPL(wm_adsp2_event);
    
    int wm_adsp2_component_probe(struct wm_adsp *dsp, struct snd_soc_component *component)
    {
    	char preload[32];
    
    	snprintf(preload, ARRAY_SIZE(preload), "%s Preload", dsp->name);
    	snd_soc_component_disable_pin(component, preload);
    
    	wm_adsp2_init_debugfs(dsp, component);
    
    	dsp->component = component;
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(wm_adsp2_component_probe);
    
    int wm_adsp2_component_remove(struct wm_adsp *dsp, struct snd_soc_component *component)
    {
    	wm_adsp2_cleanup_debugfs(dsp);
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(wm_adsp2_component_remove);
    
    int wm_adsp2_init(struct wm_adsp *dsp)
    {
    	int ret;
    
    	ret = wm_adsp_common_init(dsp);
    	if (ret)
    		return ret;
    
    	switch (dsp->rev) {
    	case 0:
    		/*
    		 * Disable the DSP memory by default when in reset for a small
    		 * power saving.
    		 */
    		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
    					 ADSP2_MEM_ENA, 0);
    		if (ret) {
    			adsp_err(dsp,
    				 "Failed to clear memory retention: %d\n", ret);
    			return ret;
    		}
    		break;
    	default:
    		break;
    	}
    
    	INIT_WORK(&dsp->boot_work, wm_adsp2_boot_work);
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(wm_adsp2_init);
    
    void wm_adsp2_remove(struct wm_adsp *dsp)
    {
    	struct wm_coeff_ctl *ctl;
    
    	while (!list_empty(&dsp->ctl_list)) {
    		ctl = list_first_entry(&dsp->ctl_list, struct wm_coeff_ctl,
    					list);
    		list_del(&ctl->list);
    		wm_adsp_free_ctl_blk(ctl);
    	}
    }
    EXPORT_SYMBOL_GPL(wm_adsp2_remove);
    
    static inline int wm_adsp_compr_attached(struct wm_adsp_compr *compr)
    {
    	return compr->buf != NULL;
    }
    
    static int wm_adsp_compr_attach(struct wm_adsp_compr *compr)
    {
    	struct wm_adsp_compr_buf *buf = NULL, *tmp;
    
    	if (compr->dsp->fatal_error)
    		return -EINVAL;
    
    	list_for_each_entry(tmp, &compr->dsp->buffer_list, list) {
    		if (!tmp->name || !strcmp(compr->name, tmp->name)) {
    			buf = tmp;
    			break;
    		}
    	}
    
    	if (!buf)
    		return -EINVAL;
    
    	compr->buf = buf;
    	compr->buf->compr = compr;
    
    	return 0;
    }
    
    static void wm_adsp_compr_detach(struct wm_adsp_compr *compr)
    {
    	if (!compr)
    		return;
    
    	/* Wake the poll so it can see buffer is no longer attached */
    	if (compr->stream)
    		snd_compr_fragment_elapsed(compr->stream);
    
    	if (wm_adsp_compr_attached(compr)) {
    		compr->buf->compr = NULL;
    		compr->buf = NULL;
    	}
    }
    
    int wm_adsp_compr_open(struct wm_adsp *dsp, struct snd_compr_stream *stream)
    {
    	struct wm_adsp_compr *compr, *tmp;
    	struct snd_soc_pcm_runtime *rtd = stream->private_data;
    	int ret = 0;
    
    	mutex_lock(&dsp->pwr_lock);
    
    	if (wm_adsp_fw[dsp->fw].num_caps == 0) {
    		adsp_err(dsp, "%s: Firmware does not support compressed API\n",
    			 rtd->codec_dai->name);
    		ret = -ENXIO;
    		goto out;
    	}
    
    	if (wm_adsp_fw[dsp->fw].compr_direction != stream->direction) {
    		adsp_err(dsp, "%s: Firmware does not support stream direction\n",
    			 rtd->codec_dai->name);
    		ret = -EINVAL;
    		goto out;
    	}
    
    	list_for_each_entry(tmp, &dsp->compr_list, list) {
    		if (!strcmp(tmp->name, rtd->codec_dai->name)) {
    			adsp_err(dsp, "%s: Only a single stream supported per dai\n",
    				 rtd->codec_dai->name);
    			ret = -EBUSY;
    			goto out;
    		}
    	}
    
    	compr = kzalloc(sizeof(*compr), GFP_KERNEL);
    	if (!compr) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	compr->dsp = dsp;
    	compr->stream = stream;
    	compr->name = rtd->codec_dai->name;
    
    	list_add_tail(&compr->list, &dsp->compr_list);
    
    	stream->runtime->private_data = compr;
    
    out:
    	mutex_unlock(&dsp->pwr_lock);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(wm_adsp_compr_open);
    
    int wm_adsp_compr_free(struct snd_compr_stream *stream)
    {
    	struct wm_adsp_compr *compr = stream->runtime->private_data;
    	struct wm_adsp *dsp = compr->dsp;
    
    	mutex_lock(&dsp->pwr_lock);
    
    	wm_adsp_compr_detach(compr);
    	list_del(&compr->list);
    
    	kfree(compr->raw_buf);
    	kfree(compr);
    
    	mutex_unlock(&dsp->pwr_lock);
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(wm_adsp_compr_free);
    
    static int wm_adsp_compr_check_params(struct snd_compr_stream *stream,
    				      struct snd_compr_params *params)
    {
    	struct wm_adsp_compr *compr = stream->runtime->private_data;
    	struct wm_adsp *dsp = compr->dsp;
    	const struct wm_adsp_fw_caps *caps;
    	const struct snd_codec_desc *desc;
    	int i, j;
    
    	if (params->buffer.fragment_size < WM_ADSP_MIN_FRAGMENT_SIZE ||
    	    params->buffer.fragment_size > WM_ADSP_MAX_FRAGMENT_SIZE ||
    	    params->buffer.fragments < WM_ADSP_MIN_FRAGMENTS ||
    	    params->buffer.fragments > WM_ADSP_MAX_FRAGMENTS ||
    	    params->buffer.fragment_size % WM_ADSP_DATA_WORD_SIZE) {
    		compr_err(compr, "Invalid buffer fragsize=%d fragments=%d\n",
    			  params->buffer.fragment_size,
    			  params->buffer.fragments);
    
    		return -EINVAL;
    	}
    
    	for (i = 0; i < wm_adsp_fw[dsp->fw].num_caps; i++) {
    		caps = &wm_adsp_fw[dsp->fw].caps[i];
    		desc = &caps->desc;
    
    		if (caps->id != params->codec.id)
    			continue;
    
    		if (stream->direction == SND_COMPRESS_PLAYBACK) {
    			if (desc->max_ch < params->codec.ch_out)
    				continue;
    		} else {
    			if (desc->max_ch < params->codec.ch_in)
    				continue;
    		}
    
    		if (!(desc->formats & (1 << params->codec.format)))
    			continue;
    
    		for (j = 0; j < desc->num_sample_rates; ++j)
    			if (desc->sample_rates[j] == params->codec.sample_rate)
    				return 0;
    	}
    
    	compr_err(compr, "Invalid params id=%u ch=%u,%u rate=%u fmt=%u\n",
    		  params->codec.id, params->codec.ch_in, params->codec.ch_out,
    		  params->codec.sample_rate, params->codec.format);
    	return -EINVAL;
    }
    
    static inline unsigned int wm_adsp_compr_frag_words(struct wm_adsp_compr *compr)
    {
    	return compr->size.fragment_size / WM_ADSP_DATA_WORD_SIZE;
    }
    
    int wm_adsp_compr_set_params(struct snd_compr_stream *stream,
    			     struct snd_compr_params *params)
    {
    	struct wm_adsp_compr *compr = stream->runtime->private_data;
    	unsigned int size;
    	int ret;
    
    	ret = wm_adsp_compr_check_params(stream, params);
    	if (ret)
    		return ret;
    
    	compr->size = params->buffer;
    
    	compr_dbg(compr, "fragment_size=%d fragments=%d\n",
    		  compr->size.fragment_size, compr->size.fragments);
    
    	size = wm_adsp_compr_frag_words(compr) * sizeof(*compr->raw_buf);
    	compr->raw_buf = kmalloc(size, GFP_DMA | GFP_KERNEL);
    	if (!compr->raw_buf)
    		return -ENOMEM;
    
    	compr->sample_rate = params->codec.sample_rate;
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(wm_adsp_compr_set_params);
    
    int wm_adsp_compr_get_caps(struct snd_compr_stream *stream,
    			   struct snd_compr_caps *caps)
    {
    	struct wm_adsp_compr *compr = stream->runtime->private_data;
    	int fw = compr->dsp->fw;
    	int i;
    
    	if (wm_adsp_fw[fw].caps) {
    		for (i = 0; i < wm_adsp_fw[fw].num_caps; i++)
    			caps->codecs[i] = wm_adsp_fw[fw].caps[i].id;
    
    		caps->num_codecs = i;
    		caps->direction = wm_adsp_fw[fw].compr_direction;
    
    		caps->min_fragment_size = WM_ADSP_MIN_FRAGMENT_SIZE;
    		caps->max_fragment_size = WM_ADSP_MAX_FRAGMENT_SIZE;
    		caps->min_fragments = WM_ADSP_MIN_FRAGMENTS;
    		caps->max_fragments = WM_ADSP_MAX_FRAGMENTS;
    	}
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(wm_adsp_compr_get_caps);
    
    static int wm_adsp_read_data_block(struct wm_adsp *dsp, int mem_type,
    				   unsigned int mem_addr,
    				   unsigned int num_words, u32 *data)
    {
    	struct wm_adsp_region const *mem = wm_adsp_find_region(dsp, mem_type);
    	unsigned int i, reg;
    	int ret;
    
    	if (!mem)
    		return -EINVAL;
    
    	reg = wm_adsp_region_to_reg(mem, mem_addr);
    
    	ret = regmap_raw_read(dsp->regmap, reg, data,
    			      sizeof(*data) * num_words);
    	if (ret < 0)
    		return ret;
    
    	for (i = 0; i < num_words; ++i)
    		data[i] = be32_to_cpu(data[i]) & 0x00ffffffu;
    
    	return 0;
    }
    
    static inline int wm_adsp_read_data_word(struct wm_adsp *dsp, int mem_type,
    					 unsigned int mem_addr, u32 *data)
    {
    	return wm_adsp_read_data_block(dsp, mem_type, mem_addr, 1, data);
    }
    
    static int wm_adsp_write_data_word(struct wm_adsp *dsp, int mem_type,
    				   unsigned int mem_addr, u32 data)
    {
    	struct wm_adsp_region const *mem = wm_adsp_find_region(dsp, mem_type);
    	unsigned int reg;
    
    	if (!mem)
    		return -EINVAL;
    
    	reg = wm_adsp_region_to_reg(mem, mem_addr);
    
    	data = cpu_to_be32(data & 0x00ffffffu);
    
    	return regmap_raw_write(dsp->regmap, reg, &data, sizeof(data));
    }
    
    static inline int wm_adsp_buffer_read(struct wm_adsp_compr_buf *buf,
    				      unsigned int field_offset, u32 *data)
    {
    	return wm_adsp_read_data_word(buf->dsp, buf->host_buf_mem_type,
    				      buf->host_buf_ptr + field_offset, data);
    }
    
    static inline int wm_adsp_buffer_write(struct wm_adsp_compr_buf *buf,
    				       unsigned int field_offset, u32 data)
    {
    	return wm_adsp_write_data_word(buf->dsp, buf->host_buf_mem_type,
    				       buf->host_buf_ptr + field_offset, data);
    }
    
    static void wm_adsp_remove_padding(u32 *buf, int nwords, int data_word_size)
    {
    	u8 *pack_in = (u8 *)buf;
    	u8 *pack_out = (u8 *)buf;
    	int i, j;
    
    	/* Remove the padding bytes from the data read from the DSP */
    	for (i = 0; i < nwords; i++) {
    		for (j = 0; j < data_word_size; j++)
    			*pack_out++ = *pack_in++;
    
    		pack_in += sizeof(*buf) - data_word_size;
    	}
    }
    
    static int wm_adsp_buffer_populate(struct wm_adsp_compr_buf *buf)
    {
    	const struct wm_adsp_fw_caps *caps = wm_adsp_fw[buf->dsp->fw].caps;
    	struct wm_adsp_buffer_region *region;
    	u32 offset = 0;
    	int i, ret;
    
    	buf->regions = kcalloc(caps->num_regions, sizeof(*buf->regions),
    			       GFP_KERNEL);
    	if (!buf->regions)
    		return -ENOMEM;
    
    	for (i = 0; i < caps->num_regions; ++i) {
    		region = &buf->regions[i];
    
    		region->offset = offset;
    		region->mem_type = caps->region_defs[i].mem_type;
    
    		ret = wm_adsp_buffer_read(buf, caps->region_defs[i].base_offset,
    					  &region->base_addr);
    		if (ret < 0)
    			return ret;
    
    		ret = wm_adsp_buffer_read(buf, caps->region_defs[i].size_offset,
    					  &offset);
    		if (ret < 0)
    			return ret;
    
    		region->cumulative_size = offset;
    
    		compr_dbg(buf,
    			  "region=%d type=%d base=%08x off=%08x size=%08x\n",
    			  i, region->mem_type, region->base_addr,
    			  region->offset, region->cumulative_size);
    	}
    
    	return 0;
    }
    
    static void wm_adsp_buffer_clear(struct wm_adsp_compr_buf *buf)
    {
    	buf->irq_count = 0xFFFFFFFF;
    	buf->read_index = -1;
    	buf->avail = 0;
    }
    
    static struct wm_adsp_compr_buf *wm_adsp_buffer_alloc(struct wm_adsp *dsp)
    {
    	struct wm_adsp_compr_buf *buf;
    
    	buf = kzalloc(sizeof(*buf), GFP_KERNEL);
    	if (!buf)
    		return NULL;
    
    	buf->dsp = dsp;
    
    	wm_adsp_buffer_clear(buf);
    
    	list_add_tail(&buf->list, &dsp->buffer_list);
    
    	return buf;
    }
    
    static int wm_adsp_buffer_parse_legacy(struct wm_adsp *dsp)
    {
    	struct wm_adsp_alg_region *alg_region;
    	struct wm_adsp_compr_buf *buf;
    	u32 xmalg, addr, magic;
    	int i, ret;
    
    	buf = wm_adsp_buffer_alloc(dsp);
    	if (!buf)
    		return -ENOMEM;
    
    	alg_region = wm_adsp_find_alg_region(dsp, WMFW_ADSP2_XM, dsp->fw_id);
    	xmalg = sizeof(struct wm_adsp_system_config_xm_hdr) / sizeof(__be32);
    
    	addr = alg_region->base + xmalg + ALG_XM_FIELD(magic);
    	ret = wm_adsp_read_data_word(dsp, WMFW_ADSP2_XM, addr, &magic);
    	if (ret < 0)
    		return ret;
    
    	if (magic != WM_ADSP_ALG_XM_STRUCT_MAGIC)
    		return -ENODEV;
    
    	addr = alg_region->base + xmalg + ALG_XM_FIELD(host_buf_ptr);
    	for (i = 0; i < 5; ++i) {
    		ret = wm_adsp_read_data_word(dsp, WMFW_ADSP2_XM, addr,
    					     &buf->host_buf_ptr);
    		if (ret < 0)
    			return ret;
    
    		if (buf->host_buf_ptr)
    			break;
    
    		usleep_range(1000, 2000);
    	}
    
    	if (!buf->host_buf_ptr)
    		return -EIO;
    
    	buf->host_buf_mem_type = WMFW_ADSP2_XM;
    
    	ret = wm_adsp_buffer_populate(buf);
    	if (ret < 0)
    		return ret;
    
    	compr_dbg(buf, "legacy host_buf_ptr=%x\n", buf->host_buf_ptr);
    
    	return 0;
    }
    
    static int wm_adsp_buffer_parse_coeff(struct wm_coeff_ctl *ctl)
    {
    	struct wm_adsp_host_buf_coeff_v1 coeff_v1;
    	struct wm_adsp_compr_buf *buf;
    	unsigned int val, reg;
    	int ret, i;
    
    	ret = wm_coeff_base_reg(ctl, &reg);
    	if (ret)
    		return ret;
    
    	for (i = 0; i < 5; ++i) {
    		ret = regmap_raw_read(ctl->dsp->regmap, reg, &val, sizeof(val));
    		if (ret < 0)
    			return ret;
    
    		if (val)
    			break;
    
    		usleep_range(1000, 2000);
    	}
    
    	if (!val) {
    		adsp_err(ctl->dsp, "Failed to acquire host buffer\n");
    		return -EIO;
    	}
    
    	buf = wm_adsp_buffer_alloc(ctl->dsp);
    	if (!buf)
    		return -ENOMEM;
    
    	buf->host_buf_mem_type = ctl->alg_region.type;
    	buf->host_buf_ptr = be32_to_cpu(val);
    
    	ret = wm_adsp_buffer_populate(buf);
    	if (ret < 0)
    		return ret;
    
    	/*
    	 * v0 host_buffer coefficients didn't have versioning, so if the
    	 * control is one word, assume version 0.
    	 */
    	if (ctl->len == 4) {
    		compr_dbg(buf, "host_buf_ptr=%x\n", buf->host_buf_ptr);
    		return 0;
    	}
    
    	ret = regmap_raw_read(ctl->dsp->regmap, reg, &coeff_v1,
    			      sizeof(coeff_v1));
    	if (ret < 0)
    		return ret;
    
    	coeff_v1.versions = be32_to_cpu(coeff_v1.versions);
    	val = coeff_v1.versions & HOST_BUF_COEFF_COMPAT_VER_MASK;
    	val >>= HOST_BUF_COEFF_COMPAT_VER_SHIFT;
    
    	if (val > HOST_BUF_COEFF_SUPPORTED_COMPAT_VER) {
    		adsp_err(ctl->dsp,
    			 "Host buffer coeff ver %u > supported version %u\n",
    			 val, HOST_BUF_COEFF_SUPPORTED_COMPAT_VER);
    		return -EINVAL;
    	}
    
    	for (i = 0; i < ARRAY_SIZE(coeff_v1.name); i++)
    		coeff_v1.name[i] = be32_to_cpu(coeff_v1.name[i]);
    
    	wm_adsp_remove_padding((u32 *)&coeff_v1.name,
    			       ARRAY_SIZE(coeff_v1.name),
    			       WM_ADSP_DATA_WORD_SIZE);
    
    	buf->name = kasprintf(GFP_KERNEL, "%s-dsp-%s", ctl->dsp->part,
    			      (char *)&coeff_v1.name);
    
    	compr_dbg(buf, "host_buf_ptr=%x coeff version %u\n",
    		  buf->host_buf_ptr, val);
    
    	return val;
    }
    
    static int wm_adsp_buffer_init(struct wm_adsp *dsp)
    {
    	struct wm_coeff_ctl *ctl;
    	int ret;
    
    	list_for_each_entry(ctl, &dsp->ctl_list, list) {
    		if (ctl->type != WMFW_CTL_TYPE_HOST_BUFFER)
    			continue;
    
    		if (!ctl->enabled)
    			continue;
    
    		ret = wm_adsp_buffer_parse_coeff(ctl);
    		if (ret < 0) {
    			adsp_err(dsp, "Failed to parse coeff: %d\n", ret);
    			goto error;
    		} else if (ret == 0) {
    			/* Only one buffer supported for version 0 */
    			return 0;
    		}
    	}
    
    	if (list_empty(&dsp->buffer_list)) {
    		/* Fall back to legacy support */
    		ret = wm_adsp_buffer_parse_legacy(dsp);
    		if (ret) {
    			adsp_err(dsp, "Failed to parse legacy: %d\n", ret);
    			goto error;
    		}
    	}
    
    	return 0;
    
    error:
    	wm_adsp_buffer_free(dsp);
    	return ret;
    }
    
    static int wm_adsp_buffer_free(struct wm_adsp *dsp)
    {
    	struct wm_adsp_compr_buf *buf, *tmp;
    
    	list_for_each_entry_safe(buf, tmp, &dsp->buffer_list, list) {
    		if (buf->compr)
    			wm_adsp_compr_detach(buf->compr);
    
    		kfree(buf->name);
    		kfree(buf->regions);
    		list_del(&buf->list);
    		kfree(buf);
    	}
    
    	return 0;
    }
    
    static int wm_adsp_buffer_get_error(struct wm_adsp_compr_buf *buf)
    {
    	int ret;
    
    	ret = wm_adsp_buffer_read(buf, HOST_BUFFER_FIELD(error), &buf->error);
    	if (ret < 0) {
    		compr_err(buf, "Failed to check buffer error: %d\n", ret);
    		return ret;
    	}
    	if (buf->error != 0) {
    		compr_err(buf, "Buffer error occurred: %d\n", buf->error);
    		return -EIO;
    	}
    
    	return 0;
    }
    
    int wm_adsp_compr_trigger(struct snd_compr_stream *stream, int cmd)
    {
    	struct wm_adsp_compr *compr = stream->runtime->private_data;
    	struct wm_adsp *dsp = compr->dsp;
    	int ret = 0;
    
    	compr_dbg(compr, "Trigger: %d\n", cmd);
    
    	mutex_lock(&dsp->pwr_lock);
    
    	switch (cmd) {
    	case SNDRV_PCM_TRIGGER_START:
    		if (!wm_adsp_compr_attached(compr)) {
    			ret = wm_adsp_compr_attach(compr);
    			if (ret < 0) {
    				compr_err(compr, "Failed to link buffer and stream: %d\n",
    					  ret);
    				break;
    			}
    		}
    
    		ret = wm_adsp_buffer_get_error(compr->buf);
    		if (ret < 0)
    			break;
    
    		/* Trigger the IRQ at one fragment of data */
    		ret = wm_adsp_buffer_write(compr->buf,
    					   HOST_BUFFER_FIELD(high_water_mark),
    					   wm_adsp_compr_frag_words(compr));
    		if (ret < 0) {
    			compr_err(compr, "Failed to set high water mark: %d\n",
    				  ret);
    			break;
    		}
    		break;
    	case SNDRV_PCM_TRIGGER_STOP:
    		if (wm_adsp_compr_attached(compr))
    			wm_adsp_buffer_clear(compr->buf);
    		break;
    	default:
    		ret = -EINVAL;
    		break;
    	}
    
    	mutex_unlock(&dsp->pwr_lock);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(wm_adsp_compr_trigger);
    
    static inline int wm_adsp_buffer_size(struct wm_adsp_compr_buf *buf)
    {
    	int last_region = wm_adsp_fw[buf->dsp->fw].caps->num_regions - 1;
    
    	return buf->regions[last_region].cumulative_size;
    }
    
    static int wm_adsp_buffer_update_avail(struct wm_adsp_compr_buf *buf)
    {
    	u32 next_read_index, next_write_index;
    	int write_index, read_index, avail;
    	int ret;
    
    	/* Only sync read index if we haven't already read a valid index */
    	if (buf->read_index < 0) {
    		ret = wm_adsp_buffer_read(buf,
    				HOST_BUFFER_FIELD(next_read_index),
    				&next_read_index);
    		if (ret < 0)
    			return ret;
    
    		read_index = sign_extend32(next_read_index, 23);
    
    		if (read_index < 0) {
    			compr_dbg(buf, "Avail check on unstarted stream\n");
    			return 0;
    		}
    
    		buf->read_index = read_index;
    	}
    
    	ret = wm_adsp_buffer_read(buf, HOST_BUFFER_FIELD(next_write_index),
    			&next_write_index);
    	if (ret < 0)
    		return ret;
    
    	write_index = sign_extend32(next_write_index, 23);
    
    	avail = write_index - buf->read_index;
    	if (avail < 0)
    		avail += wm_adsp_buffer_size(buf);
    
    	compr_dbg(buf, "readindex=0x%x, writeindex=0x%x, avail=%d\n",
    		  buf->read_index, write_index, avail * WM_ADSP_DATA_WORD_SIZE);
    
    	buf->avail = avail;
    
    	return 0;
    }
    
    int wm_adsp_compr_handle_irq(struct wm_adsp *dsp)
    {
    	struct wm_adsp_compr_buf *buf;
    	struct wm_adsp_compr *compr;
    	int ret = 0;
    
    	mutex_lock(&dsp->pwr_lock);
    
    	if (list_empty(&dsp->buffer_list)) {
    		ret = -ENODEV;
    		goto out;
    	}
    
    	adsp_dbg(dsp, "Handling buffer IRQ\n");
    
    	list_for_each_entry(buf, &dsp->buffer_list, list) {
    		compr = buf->compr;
    
    		ret = wm_adsp_buffer_get_error(buf);
    		if (ret < 0)
    			goto out_notify; /* Wake poll to report error */
    
    		ret = wm_adsp_buffer_read(buf, HOST_BUFFER_FIELD(irq_count),
    					  &buf->irq_count);
    		if (ret < 0) {
    			compr_err(buf, "Failed to get irq_count: %d\n", ret);
    			goto out;
    		}
    
    		ret = wm_adsp_buffer_update_avail(buf);
    		if (ret < 0) {
    			compr_err(buf, "Error reading avail: %d\n", ret);
    			goto out;
    		}
    
    		if (wm_adsp_fw[dsp->fw].voice_trigger && buf->irq_count == 2)
    			ret = WM_ADSP_COMPR_VOICE_TRIGGER;
    
    out_notify:
    		if (compr && compr->stream)
    			snd_compr_fragment_elapsed(compr->stream);
    	}
    
    out:
    	mutex_unlock(&dsp->pwr_lock);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(wm_adsp_compr_handle_irq);
    
    static int wm_adsp_buffer_reenable_irq(struct wm_adsp_compr_buf *buf)
    {
    	if (buf->irq_count & 0x01)
    		return 0;
    
    	compr_dbg(buf, "Enable IRQ(0x%x) for next fragment\n", buf->irq_count);
    
    	buf->irq_count |= 0x01;
    
    	return wm_adsp_buffer_write(buf, HOST_BUFFER_FIELD(irq_ack),
    				    buf->irq_count);
    }
    
    int wm_adsp_compr_pointer(struct snd_compr_stream *stream,
    			  struct snd_compr_tstamp *tstamp)
    {
    	struct wm_adsp_compr *compr = stream->runtime->private_data;
    	struct wm_adsp *dsp = compr->dsp;
    	struct wm_adsp_compr_buf *buf;
    	int ret = 0;
    
    	compr_dbg(compr, "Pointer request\n");
    
    	mutex_lock(&dsp->pwr_lock);
    
    	buf = compr->buf;
    
    	if (!compr->buf || compr->buf->error) {
    		snd_compr_stop_error(stream, SNDRV_PCM_STATE_XRUN);
    		ret = -EIO;
    		goto out;
    	}
    
    	if (buf->avail < wm_adsp_compr_frag_words(compr)) {
    		ret = wm_adsp_buffer_update_avail(buf);
    		if (ret < 0) {
    			compr_err(compr, "Error reading avail: %d\n", ret);
    			goto out;
    		}
    
    		/*
    		 * If we really have less than 1 fragment available tell the
    		 * DSP to inform us once a whole fragment is available.
    		 */
    		if (buf->avail < wm_adsp_compr_frag_words(compr)) {
    			ret = wm_adsp_buffer_get_error(buf);
    			if (ret < 0) {
    				if (compr->buf->error)
    					snd_compr_stop_error(stream,
    							SNDRV_PCM_STATE_XRUN);
    				goto out;
    			}
    
    			ret = wm_adsp_buffer_reenable_irq(buf);
    			if (ret < 0) {
    				compr_err(compr, "Failed to re-enable buffer IRQ: %d\n",
    					  ret);
    				goto out;
    			}
    		}
    	}
    
    	tstamp->copied_total = compr->copied_total;
    	tstamp->copied_total += buf->avail * WM_ADSP_DATA_WORD_SIZE;
    	tstamp->sampling_rate = compr->sample_rate;
    
    out:
    	mutex_unlock(&dsp->pwr_lock);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(wm_adsp_compr_pointer);
    
    static int wm_adsp_buffer_capture_block(struct wm_adsp_compr *compr, int target)
    {
    	struct wm_adsp_compr_buf *buf = compr->buf;
    	unsigned int adsp_addr;
    	int mem_type, nwords, max_read;
    	int i, ret;
    
    	/* Calculate read parameters */
    	for (i = 0; i < wm_adsp_fw[buf->dsp->fw].caps->num_regions; ++i)
    		if (buf->read_index < buf->regions[i].cumulative_size)
    			break;
    
    	if (i == wm_adsp_fw[buf->dsp->fw].caps->num_regions)
    		return -EINVAL;
    
    	mem_type = buf->regions[i].mem_type;
    	adsp_addr = buf->regions[i].base_addr +
    		    (buf->read_index - buf->regions[i].offset);
    
    	max_read = wm_adsp_compr_frag_words(compr);
    	nwords = buf->regions[i].cumulative_size - buf->read_index;
    
    	if (nwords > target)
    		nwords = target;
    	if (nwords > buf->avail)
    		nwords = buf->avail;
    	if (nwords > max_read)
    		nwords = max_read;
    	if (!nwords)
    		return 0;
    
    	/* Read data from DSP */
    	ret = wm_adsp_read_data_block(buf->dsp, mem_type, adsp_addr,
    				      nwords, compr->raw_buf);
    	if (ret < 0)
    		return ret;
    
    	wm_adsp_remove_padding(compr->raw_buf, nwords, WM_ADSP_DATA_WORD_SIZE);
    
    	/* update read index to account for words read */
    	buf->read_index += nwords;
    	if (buf->read_index == wm_adsp_buffer_size(buf))
    		buf->read_index = 0;
    
    	ret = wm_adsp_buffer_write(buf, HOST_BUFFER_FIELD(next_read_index),
    				   buf->read_index);
    	if (ret < 0)
    		return ret;
    
    	/* update avail to account for words read */
    	buf->avail -= nwords;
    
    	return nwords;
    }
    
    static int wm_adsp_compr_read(struct wm_adsp_compr *compr,
    			      char __user *buf, size_t count)
    {
    	int ntotal = 0;
    	int nwords, nbytes;
    
    	compr_dbg(compr, "Requested read of %zu bytes\n", count);
    
    	if (!compr->buf || compr->buf->error) {
    		snd_compr_stop_error(compr->stream, SNDRV_PCM_STATE_XRUN);
    		return -EIO;
    	}
    
    	count /= WM_ADSP_DATA_WORD_SIZE;
    
    	do {
    		nwords = wm_adsp_buffer_capture_block(compr, count);
    		if (nwords < 0) {
    			compr_err(compr, "Failed to capture block: %d\n",
    				  nwords);
    			return nwords;
    		}
    
    		nbytes = nwords * WM_ADSP_DATA_WORD_SIZE;
    
    		compr_dbg(compr, "Read %d bytes\n", nbytes);
    
    		if (copy_to_user(buf + ntotal, compr->raw_buf, nbytes)) {
    			compr_err(compr, "Failed to copy data to user: %d, %d\n",
    				  ntotal, nbytes);
    			return -EFAULT;
    		}
    
    		count -= nwords;
    		ntotal += nbytes;
    	} while (nwords > 0 && count > 0);
    
    	compr->copied_total += ntotal;
    
    	return ntotal;
    }
    
    int wm_adsp_compr_copy(struct snd_compr_stream *stream, char __user *buf,
    		       size_t count)
    {
    	struct wm_adsp_compr *compr = stream->runtime->private_data;
    	struct wm_adsp *dsp = compr->dsp;
    	int ret;
    
    	mutex_lock(&dsp->pwr_lock);
    
    	if (stream->direction == SND_COMPRESS_CAPTURE)
    		ret = wm_adsp_compr_read(compr, buf, count);
    	else
    		ret = -ENOTSUPP;
    
    	mutex_unlock(&dsp->pwr_lock);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(wm_adsp_compr_copy);
    
    int wm_adsp2_lock(struct wm_adsp *dsp, unsigned int lock_regions)
    {
    	struct regmap *regmap = dsp->regmap;
    	unsigned int code0, code1, lock_reg;
    
    	if (!(lock_regions & WM_ADSP2_REGION_ALL))
    		return 0;
    
    	lock_regions &= WM_ADSP2_REGION_ALL;
    	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
    
    	while (lock_regions) {
    		code0 = code1 = 0;
    		if (lock_regions & BIT(0)) {
    			code0 = ADSP2_LOCK_CODE_0;
    			code1 = ADSP2_LOCK_CODE_1;
    		}
    		if (lock_regions & BIT(1)) {
    			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
    			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
    		}
    		regmap_write(regmap, lock_reg, code0);
    		regmap_write(regmap, lock_reg, code1);
    		lock_regions >>= 2;
    		lock_reg += 2;
    	}
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(wm_adsp2_lock);
    
    static void wm_adsp_fatal_error(struct wm_adsp *dsp)
    {
    	struct wm_adsp_compr *compr;
    
    	dsp->fatal_error = true;
    
    	list_for_each_entry(compr, &dsp->compr_list, list) {
    		if (compr->stream) {
    			snd_compr_stop_error(compr->stream,
    					     SNDRV_PCM_STATE_XRUN);
    			snd_compr_fragment_elapsed(compr->stream);
    		}
    	}
    }
    
    irqreturn_t wm_adsp2_bus_error(struct wm_adsp *dsp)
    {
    	unsigned int val;
    	struct regmap *regmap = dsp->regmap;
    	int ret = 0;
    
    	mutex_lock(&dsp->pwr_lock);
    
    	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
    	if (ret) {
    		adsp_err(dsp,
    			"Failed to read Region Lock Ctrl register: %d\n", ret);
    		goto error;
    	}
    
    	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
    		adsp_err(dsp, "watchdog timeout error\n");
    		wm_adsp_stop_watchdog(dsp);
    		wm_adsp_fatal_error(dsp);
    	}
    
    	if (val & (ADSP2_SLAVE_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
    		if (val & ADSP2_SLAVE_ERR_MASK)
    			adsp_err(dsp, "bus error: slave error\n");
    		else
    			adsp_err(dsp, "bus error: region lock error\n");
    
    		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
    		if (ret) {
    			adsp_err(dsp,
    				 "Failed to read Bus Err Addr register: %d\n",
    				 ret);
    			goto error;
    		}
    
    		adsp_err(dsp, "bus error address = 0x%x\n",
    			 val & ADSP2_BUS_ERR_ADDR_MASK);
    
    		ret = regmap_read(regmap,
    				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
    				  &val);
    		if (ret) {
    			adsp_err(dsp,
    				 "Failed to read Pmem Xmem Err Addr register: %d\n",
    				 ret);
    			goto error;
    		}
    
    		adsp_err(dsp, "xmem error address = 0x%x\n",
    			 val & ADSP2_XMEM_ERR_ADDR_MASK);
    		adsp_err(dsp, "pmem error address = 0x%x\n",
    			 (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
    			 ADSP2_PMEM_ERR_ADDR_SHIFT);
    	}
    
    	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
    			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
    
    error:
    	mutex_unlock(&dsp->pwr_lock);
    
    	return IRQ_HANDLED;
    }
    EXPORT_SYMBOL_GPL(wm_adsp2_bus_error);
    
    MODULE_LICENSE("GPL v2");
    

    рабочий пример для кодеков  Wolfson под ADSP

     

  10. вот пример для распространенного ЦАП CS4385A:
     

    Spoiler

    #include "./include/cs4385a.h"
    #include <def21489.h>
    #include <cdef21489.h>
    #include <math.h>
    #include "./include/ADDS_21489_EzKit.h"
    #include <sru.h>
    #include <sysreg.h>
    #include <stdio.h>

    #if 0
     
    #define SHIFT_NUMBER 31

    #define NOP asm volatile("nop;")
    //
    /*
    *
    *        ¶аНЁµА(TDM)РиТЄЕдЦГµДјДґжЖч
    *
    *        DIVx    
    *        SPCTLx    
    *        SPCTLNx
    *        SPMCTLx
    *        MTxCSy,MRxCSy
    *        MTxCCSy,MRxCCSy
    *        SPERRCTLx
    *        SPERRSTAT
    *
    *        see reference at : ADSP-214xx SHARC Processor Hardware Reference,Rev. 0.3  . P515.
    *    
    *    
    *        P1148 as the TDM MODE detail.
    *
    *        К№УГSPCTLxєНSPMCTLxЕдЦГSPORTФЛРРФЪ¶аНЁµАДЈКЅЎЈ
    */

    //section("seg_ext_dmda")
    int TxBlock_TDM_CS4385[2][CIRCLEDAMDATABUFFNUM*NUM_SAMPLES*NUM_TX_SLOTS * 8/2];
    int    TCB_TxBlock_TDM_CS4385[2][CIRCLEDAMDATABUFFNUM][4];

    static unsigned int PCI = 0x00080000;
    static unsigned int OFFSET = 0x00080000;


    void clearDAIpins()
    {
        //------------------------------------------------------------------------
        //  Tie the pin buffer inputs LOW for all DAI pins.  Even though
        //    these pins are inputs to the SHARC, tying unused pin buffer inputs
        //    LOW is "good coding style" to eliminate the possibility of
        //    termination artifacts internal to the IC.  Note that signal
        //    integrity is degraded only with a few specific SRU combinations.
        //    In practice, this occurs VERY rarely, and these connections are
        //    typically unnecessary.  This is GROUP D
        SRU(LOW, DAI_PB01_I);
        SRU(LOW, DAI_PB02_I);
        SRU(LOW, DAI_PB03_I);
        SRU(LOW, DAI_PB04_I);
        SRU(LOW, DAI_PB05_I);
        SRU(LOW, DAI_PB06_I);
        SRU(LOW, DAI_PB07_I);
        SRU(LOW, DAI_PB08_I);
        SRU(LOW, DAI_PB09_I);
        SRU(LOW, DAI_PB10_I);
        SRU(LOW, DAI_PB11_I);
        SRU(LOW, DAI_PB12_I);
        SRU(LOW, DAI_PB13_I);
        SRU(LOW, DAI_PB14_I);
        SRU(LOW, DAI_PB15_I);
        SRU(LOW, DAI_PB16_I);
        SRU(LOW, DAI_PB17_I);
        SRU(LOW, DAI_PB18_I);
        SRU(LOW, DAI_PB19_I);
        SRU(LOW, DAI_PB20_I);

        //------------------------------------------------------------------------
        //  Tie the pin buffer enable inputs LOW for all DAI pins so
        //  that they are always input pins.  This is GROUP F.
        SRU(LOW, PBEN01_I);
        SRU(LOW, PBEN02_I);
        SRU(LOW, PBEN03_I);
        SRU(LOW, PBEN04_I);
        SRU(LOW, PBEN05_I);
        SRU(LOW, PBEN06_I);
        SRU(LOW, PBEN07_I);
        SRU(LOW, PBEN08_I);
        SRU(LOW, PBEN09_I);
        SRU(LOW, PBEN10_I);
        SRU(LOW, PBEN11_I);
        SRU(LOW, PBEN12_I);
        SRU(LOW, PBEN13_I);
        SRU(LOW, PBEN14_I);
        SRU(LOW, PBEN15_I);
        SRU(LOW, PBEN16_I);
        SRU(LOW, PBEN17_I);
        SRU(LOW, PBEN18_I);
        SRU(LOW, PBEN19_I);
        SRU(LOW, PBEN20_I);
    }

     


    /*
    *
    *    2016-10-08 by yuan at qj
    *
    *    DAРѕЖ¬µДіхКј»ЇµИ
    *
    *    DAI_P07    TDM_DA_BCLK1
    *    DAI_P19    TDM_DA_LRCLK1
    *    DAI_P13    TDM_DA_DATA01
    *    DAI_P01    TDM_DA_DATA02
    *
    *    К№УГTDMµДЕдЦГ·ЅКЅ
    */
    void CS4385A_Pin_Init(void)
    {
        SRU(HIGH,PBEN07_I);            
        SRU(PCG_CLKB_O,    DAI_PB07_I);
        SRU(PCG_CLKB_O, SPORT0_CLK_I);

        //DA-LRCLK----DAI.19                                     
        SRU(HIGH,PBEN19_I);            
        SRU(PCG_FSB_O, SPORT0_FS_I);
        SRU(PCG_FSB_O, DAI_PB19_I);        

        //DA-DATA01-----DAI.01         
        SRU(HIGH,PBEN01_I);
        SRU(SPORT0_DB_O,DAI_PB01_I);
        
        //DA-DATA02-----DAI.13    
        SRU(HIGH,PBEN13_I);            
        SRU(SPORT0_DA_O,DAI_PB13_I);            
    }

    void CS4385A_Reset(void)
    {
        int i;
     
        //****************************reset DA**************************
        SRU(HIGH, DPI_PBEN06_I);
        SRU(LOW, DPI_PB06_I);  //DA_RESET
        for(i = 0; i < 65536 ; i++)
            NOP;

        SRU(HIGH, DPI_PB06_I);  //DA_RESET
        //Wait for recommended number of cycles
        for(i = 0; i < 4096; i++)
            NOP;      
    }

    /*
    *
    *    DA_Mute№ЬЅЕ    : DPI_P08
    *
    *
    */
    void CS4385A_Mute(int i_choice)
    {
        int i;

        //****************************reset DA**************************
        SRU(HIGH, DPI_PBEN08_I);
     
        switch(i_choice)
        {
        case 0://unmute
              SRU(LOW, DPI_PB08_I);
        break;
        case 1://mute
            SRU(HIGH, DPI_PB08_I);     
        break;    
        }
       
        for(i = 0; i < 4096; i++)
        NOP;
     
         
    }

     


    static void Init_PCG(void )
    {
        int i = 0;
        static int Init_PCG_FLAG = 0;    
        
        if(Init_PCG_FLAG == 1)
            return ;

        Init_PCG_FLAG = 1;

        //PCGµДК±ЦУКдИл
          SRU(LOW,PBEN03_I);                                             //PCG DAI_P03  ЈЁPCK clk inputЈ©
         SRU(DAI_PB03_O,PCG_EXTB_I);                                    //PCG clock in
         *pPCG_CTLB1 = (2) | CLKBSOURCE | FSBSOURCE | ((2/2)<<20);    //Division for clock
        *pPCG_CTLB0 = 512 | ENCLKB | ENFSB;                         // Frame syn Division
        *pPCG_PW = (2 << 16);
    }


    void CS4385A_InitData(void)
    {
        int i = 0;
        int j = 0;    
        //Setting Up and Starting Chained DMA
        //1.Clear the chain pointer register.
        *pCPSP0A = 0;
        //Д¬ИПґ¦Ан
           //as the reference say
           //1.Clear all control registers
        *pSPCTL0  = 0;
        *pSPMCTL0 = 0;
        *pSP0CS0  = 0;
        *pSP1CS0  = 0;
        //2.configure the channel section register
        *pSP0CS0 = 0xff;//TX//8НЁµА
        *pSP1CS0 = 0;   //RX
        
          *pMT0CCS0 = 0;
          //*pMT0CS0 = 0xff;
        //*pDIV0 = 0x008F0002;//ЧчОЄДЪІїК±ЦУ·ЦЖµК№УГ
        
        //3.configure the dma parameter registers.index,modify,count etc..
        
        //printf("---use tdm configuration----\n");
        
        for(i = 0 ; i < 2 ; i ++)
        {
            for(j = 0; j < CIRCLEDMADATABUFFNUM; j++){
                TCB_TxBlock_TDM_CS4385[j][0] = (unsigned int)(TCB_TxBlock_TDM_CS4385[( j + 1 ) % CIRCLEDMADATABUFFNUM]) + 3 - OFFSET + PCI ;
                TCB_TxBlock_TDM_CS4385[j][1] = NUM_SAMPLES * NUM_TX_SLOTS * 8/2;                                                        
                TCB_TxBlock_TDM_CS4385[j][2] = 1;                                                                              
                TCB_TxBlock_TDM_CS4385[j][3] = (int)(&TxBlock_TDM_CS4385[j * NUM_SAMPLES * NUM_TX_SLOTS * 8 /2 ]);                                       
            }
        }
        
        //3.Write the address containing the index register value of the first TCB to the chain pointer register, which starts the chain.
        *pCPSP0A = (unsigned int)(TCB_TxBlock_TDM_CS4385[0][0]) - OFFSET + 3 + PCI;
        *pCPSP0B = (unsigned int)(TCB_TxBlock_TDM_CS4385[1][0]) - OFFSET + 3 + PCI;
        //4.configure the sport control register ,SPCTLx and enable the dma chaining.
        //printf("-----use tdm configuration-----------\n");
        
        //reference P482.Multichannel Mode
        *pSPCTL0 = (
                    SPTRAN                //SPTRAN=1 transfer
                    //| OPMODE            //I2S mode
                    | SLEN32             //word length = 32
                   // | SPEN_A             //serial port A channel enable
                    | SCHEN_A             //Enable serial port channal A DMA channing
                    | SDEN_A             //Enable serial port channal A DMA
                    | L_FIRST         //Left channal first
                    //| CKRE            //ЙПЙэСШІЙСщ
                    //| DIFS
                    //| BHD
                    | SCHEN_B             //Enable serial port channal B DMA channing
                    | SDEN_B             //Enable serial port channal B DMA
                    );
        //5.configure the receiver SPORT pair SPCTLy and enable the dma chaining.    
        //6.in multiple mode, operation starts as soon as the MCEx bit is enabled.                          
        //7.configure and enable multichannel in the multichannel control registers.
        *pSPCTLN0 |= FSED;
        
        while(1)
        {
            if((*pSPCTL0 & (DXS0_A | DXS0_B)))
                break;
        }      
        *pSPMCTL0 = (NCH7);
        *pSPMCTL0 |= MCEA;                         
        
        for(i = 0; i < 10000; i++)
            NOP;
    }

    void Clear_CS4385_Buffer(void)
    {
        memset(TxBlock_TDM_CS4385[0],0,CIRCLEDAMDATABUFFNUM*NUM_SAMPLES*NUM_TX_SLOTS * 8/2 * sizeof(int));    
        memset(TxBlock_TDM_CS4385[1],0,CIRCLEDAMDATABUFFNUM*NUM_SAMPLES*NUM_TX_SLOTS * 8/2 * sizeof(int));
    }
        
    void Stop_CS4385_DMA(){

        *pCPSP0A = 0;
        *pCPSP0B = 0;
    }

    void dai_isr(int sig){

        int temp;
        temp = *pDAI_IRPTL_H;
    }

    section("seg_ext_dmda") int g_temp[NUM_SAMPLES * NUM_TX_SLOTS * CIRCLEDMADATABUFFNUM];

    void ReadFile( void )
    {
        FILE* file_p;
        int  i;    
        
    //    return;    
    //    printf("write file\n");
    //    return;


        //printf("\n");
        file_p = fopen("../a.wav","rb");
            
        if(file_p == NULL)
        {
            printf("file open bad\n");
        }
        else
        {
            printf("file open ok\n");        
        }
        
        printf("----------read file start------");

        //РґОДјю
        fread(g_temp,1,NUM_SAMPLES * NUM_TX_SLOTS * CIRCLEDMADATABUFFNUM ,file_p);    
        //fwrite(DIR9001_RxBlock_TDM_Temp,1,NUM_SAMPLES *NUM_RX_SLOTS,file_p);

        for(i = 0 ; i < NUM_SAMPLES * NUM_TX_SLOTS * CIRCLEDMADATABUFFNUM ;i ++)
        {
            TxBlock_TDM_CS4385[0][8*i+0] = g_temp << 15 ;    
            TxBlock_TDM_CS4385[0][8*i+1] = g_temp << 15 ;
            TxBlock_TDM_CS4385[0][8*i+2] = g_temp << 15 ;    
            TxBlock_TDM_CS4385[0][8*i+3] = g_temp << 15 ;    
            TxBlock_TDM_CS4385[0][8*i+4] = g_temp << 15 ;
            TxBlock_TDM_CS4385[0][8*i+5] = g_temp << 15 ;    
            TxBlock_TDM_CS4385[0][8*i+6] = g_temp << 15 ;
            TxBlock_TDM_CS4385[0][8*i+7] = g_temp << 15 ;        
        }    
            
        fclose(file_p);    
         
        printf("----------read file end-------\n");        
    }


    #define DA_DIVIDER_VALUE (1)

    void WaveFun2()
    {
        int i = 0;
        
        int g_sinBaseValue = 100;
    //    ReadFile();    
    }


    int Get_Current_CS4385_Dma_Txblock(){

        int i;
        for (i = 0; i < 4; i++){
            if (*pCPSP0A == (unsigned int)(TCB_TxBlock_TDM_CS4385[0]) - OFFSET + 3 + PCI)
                break;
        }
        return (i < 4) ? i : 0;
    }

     

    void Register_DA_Interrupt( void )
    {
        interrupt(SIG_SP0, SP0ADCSend_ISR);    
    }


    void Re_Init_CS4385()
    {
        Stop_CS4385_DMA();
        
        CS4385A_InitData();    
        //їЄЖф
        //CS4385A_Mute(0);
        //ЧўІбDAЦР¶П
        Register_DA_Interrupt();        
    }


    /*
    *
    *
    *    CS4385AіхКј»Ї
    *
    *    ОЄ¶ФНвЅУїЪ
    *
    */
    void CS4385A_Init(void)
    {
        //PCGіхКј»Ї
        Init_PCG();
        //ТэЅЕіхКј»Ї
        CS4385A_Pin_Init(  );
        //CS4385AіхКј»Ї
        CS4385A_Reset();
        
        CS4385A_InitData();    
        //їЄЖф
        //CS4385A_Mute(0);
        //ЧўІбDAЦР¶П
        Register_DA_Interrupt();        
    }

    #endif


     

     

  11. есть пример по PDM  в верилог

    `timescale 1ns / 1ps
    
    module Mic_Demo(
        output anout,
        output ampSD,
    	output sclk,
    	output ncs,
    	input sdata,
        input clk
        );
    
    reg [4:0]clk_cntr_reg;
    reg pwm_val_reg;
    
    always @(posedge clk)
    begin
        clk_cntr_reg <= clk_cntr_reg + 1;
    end
    
    always @(posedge clk)
    begin
        if(clk_cntr_reg == 5'b01111) begin
            pwm_val_reg <= sdata;
        end
    end
    
    //sclk = 100MHz / 32 = 3.125 MHz
    assign sclk = clk_cntr_reg[4];
    
    assign anout = pwm_val_reg;
    assign ncs = 1'b0;      //mic LRSel
    assign ampSD = 1'b1;
    
    
    endmodule

     

    1. // чтение из регистра W5300
    2. uint16_t ReadReg (uint16_t Addr)
    3. {
    4. uint16_t data;
    5. GPIOD->MODER = 0x00000000; // порт для данных сделать входом
    6. GPIOE->ODR = Addr;
    7. GPIOB->ODR = 0x00009800; // WRC
    8. data = GPIOD->IDR;
    9. GPIOB->ODR = 0x0000F800; // WRC
    10. GPIOE->ODR = Addr;
    11. GPIOD->MODER = 0x55555555; // порт D сделать выходом
    12. return (data);
    13. }
    1. // запись в регистр W5300
    2. void WriteReg (uint16_t Addr, uint16_t Data)
    3. {
    4. GPIOE->ODR = Addr;
    5. GPIOD->ODR = Data;
    6. GPIOB->ODR = 0x00005800; // WRC
    7. __NOP();
    8. GPIOB->ODR = 0x0000F800; // WRC
    9. GPIOE->ODR = 0x0000;
    10. GPIOD->ODR = 0x0000;
    11. }

    Тут я думаю, ничего сложного.

×
×
  • Создать...