Jump to content

    

Сложение сигналов в самый "узкий"

Но как же так, ведь регрессия формулируется так:

X1 = V2 * X2 + ... + Vn * Xn + E, где E имеет мин. дисперсию. Здесь E = D / V1

 

 

Приведите, пожалуйста, простой невырожденный контрпример.

 

Вы не знаете D.

Контрпример вы уже сами когда-то приводили. Пока не начнете видеть решение своей задачи - всё равно бестолку. Думайте.

Share this post


Link to post
Share on other sites
Ну а для многомерного случая... Опять же, искомая функция будет кусочно-линейной. На замкнутой кусочно-линейной гиперповерхности размерности n-1, каждый из гипертетраэдров будет разбиваться десятками тысяч узлов на множество мелких тетраэдров, на которых целевая функция - линейна. Соотвтетсвенно, минимум достигается в одной из одномерных вершин этой конструкции. Если очень хотите - можете решить сами эту бессмыссленную чисто программистскую задачу. :)

Спасибо, задачу решил. Решение оказалось значительно проще:

5408.gif

Edited by getch

Share this post


Link to post
Share on other sites
Спасибо, задачу решил. Решение оказалось значительно проще:

 

Но остался без ответа вопрос: какую именно задачу вы решили?

Share this post


Link to post
Share on other sites
Но остался без ответа вопрос: какую именно задачу вы решили?

Сумма абсолютных значений весовых коэффициентов равна единице.

Share this post


Link to post
Share on other sites
Сумма абсолютных значений весовых коэффициентов равна единице.

:1111493779: Ура товарищи! после 8 листов обсуждения, нить которого многкратно терялась, мы наконец-то сумели сумму абсолютных значений весовых коэффициентов отнормировать к еденице! :1111493779:

 

:biggrin::biggrin:

Share this post


Link to post
Share on other sites
Сумма абсолютных значений весовых коэффициентов равна единице.

 

Такую задачу можно решить гораздо проще. Возьмите первый коэффициент равным единице, остальные - нулю. И будет вам щастье.

Share this post


Link to post
Share on other sites
Такую задачу можно решить гораздо проще. Возьмите первый коэффициент равным единице, остальные - нулю. И будет вам щастье.

Ага, прикол оценил. Вот полная формулировка задачи:

Найти такой вектор V, чтобы дисперсия вектора (InMatrix*V) была минимальна.

При этом сумма АБСОЛЮТНЫХ значений элементов вектора V равна единице.

(Решение с условием "сумма КВАДРАТОВ равна единице" Вами ранее было предоставлено)

Мат. ожидание столбцов матрицы InMatrix равно нулю.

Edited by getch

Share this post


Link to post
Share on other sites
Ага, прикол оценил. Вот полная формулировка задачи:

Найти такой вектор V, чтобы дисперсия вектора (InMatrix*V) была минимальна.

При этом сумма АБСОЛЮТНЫХ значений элементов вектора V равна единице.

(Решение с условием "сумма КВАДРАТОВ равна единице" Вами ранее было предоставлено)

Мат. ожидание столбцов матрицы InMatrix равно нулю.

 

В той задаче, на которую вы сослались, опубликовав цитату из моего поста, формулировка была совершенно другая.

Share this post


Link to post
Share on other sites
В той задаче, на которую вы сослались, опубликовав цитату из моего поста, формулировка была совершенно другая.

Ссылка на этот пост. Выдержка из него:

Во-первых, условие, что сумма модулей весов равна единице. Из этого следует, что минимум расположен на одном из четырех отрезков. Их можно перебрать поочередно.

Share this post


Link to post
Share on other sites

И не забудьте заглянуть на два поста выше.

 

Подскажите, если задача будет ставиться, не как минимизация дисперсии, а как минимизация средней абсолютной (не квадрат) ошибки, то такая задача подходит под класс линейного программирования? Или это вообще нечто иное?

Share this post


Link to post
Share on other sites
И не забудьте заглянуть на два поста выше.

Выходит, мы не поняли друг друга...

С полной формулировкой, что привел выше, каким видится Вам решение?

P.S. Возможно, мой пост с решением выглядит, как упрек или тыканье носом. На самом же деле хотел поделиться своим результатом изучения основ линейной алгебры, учиться которой Вы рекомендовали.

Edited by getch

Share this post


Link to post
Share on other sites
С полной формулировкой, что привел выше, каким видится Вам решение?

 

Не знаю, подумаю потом.

 

 

Share this post


Link to post
Share on other sites
Спасибо, задачу решил. Решение оказалось значительно проще:

5408.gif

Поторопился, решение неправильное.

 

Share this post


Link to post
Share on other sites

Пока решение такое (правильное, но медленное):

1. Сначала решается задача для условия, что сумма коэффициентов (не их модулей) равна единице.

1.1 Составляется ковариационная матрица из столбцов исходной.

1.2. Берется обратная.

1.3. i-й искомый весовой коэффициент равен сумме элементов i-го столбца обратной матрицы, деленной на сумму всех элементов обратной матрицы.

1.4. Дисперсия, которую мы минимизировали, равна единице, деленной на сумму всех элементов обратной матрицы.

 

2. Используем решение выше для решения задачи, где сумма МОДУЛЕЙ коэффициентов равна единице.

2.1 "Перебираем" (есть свои оптимизации, но все равно не особо быстро) все варианты. Если коэффициентов N, то количество вариантов 2^N. Таким образом находим решение. Для N = 10 - работает быстро. А вот для больших N - плохо.

Edited by getch

Share this post


Link to post
Share on other sites
Приветствую всех!

 

Совсем новичек, от ЦОС очень далек, но подумал, что среди именно спецов ЦОС кто-нибудь сталкивался с такой задачей:

Есть значения нескольких сигналов на одном временном интервале.

Надо их сложить так (найти весовые коэффициенты), чтобы на выходе получился сигнал с минимальной дисперсией.

 

Ознакомился с несколькими численными методами безусловной минимизации функций многих переменных. Но эти методы очень универсальны, а потому не оптимальны по скоростным показателям.

 

Ребята, если кто сталкивался с подобным или знает, где копать-читать, подскажите!

 

Простите, но вам нужно еще наложить некие условия на коэффициенты, например, что бы сумма всех весов равнялась единице. Иначе вы получите бессмысленное решение: все коэффициенты просто равны нулю. Потом, надо, наверное, что либо сказать о когерентности сигналов, которые вы складываете. Если они статистически зависимы, то, сначала, для упрощения задачи будет неглупо их сделать максимально статистически независимыми. В случае сигналов с гауссовым распределением - просто декоррелировать.

 

А если сигналы можно считать независимыми, то, например, с вышеозначенным ограничением на веса, решение этой задачи давно и хорошо известно из теории измерений: i-ый вес будет просто обратно пропорционален дисперсии i-го сигнала, нормированной к корню из суммы квадратов суммы дисперсий всех сигналов.

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this