Перейти к содержанию
    

Поиск

Показаны результаты для тегов 'solidworks simulation'.

  • Поиск по тегам

    Введите теги через запятую.
  • Поиск по автору

Тип контента


Форумы

  • Сайт и форум
    • Новости и обсуждения сайта и форума
    • Другие известные форумы и сайты по электронике
    • В помощь начинающему
    • International Forum
    • Образование в области электроники
    • Обучающие видео-материалы и обмен опытом
  • Cистемный уровень проектирования
    • Вопросы системного уровня проектирования
    • Математика и Физика
    • Операционные системы
    • Документация
    • Системы CAD/CAM/CAE/PLM
    • Разработка цифровых, аналоговых, аналого-цифровых ИС
    • Электробезопасность и ЭМС
    • Управление проектами
    • Нейронные сети и машинное обучение (NN/ML)
  • Программируемая логика ПЛИС (FPGA,CPLD, PLD)
    • Среды разработки - обсуждаем САПРы
    • Работаем с ПЛИС, области применения, выбор
    • Языки проектирования на ПЛИС (FPGA)
    • Системы на ПЛИС - System on a Programmable Chip (SoPC)
    • Методы и средства верификации ПЛИС/ASIC
  • Цифровая обработка сигналов - ЦОС (DSP)
    • Сигнальные процессоры и их программирование - DSP
    • Алгоритмы ЦОС (DSP)
  • Микроконтроллеры (MCU)
    • Cредства разработки для МК
    • ARM
    • RISC-V
    • AVR
    • MSP430
    • Все остальные микроконтроллеры
    • Отладочные платы
  • Печатные платы (PCB)
    • Разрабатываем ПП в САПР - PCB development
    • Работаем с трассировкой
    • Изготовление ПП - PCB manufacturing
  • Сборка РЭУ
    • Пайка и монтаж
    • Корпуса
    • Вопросы надежности и испытаний
  • Аналоговая и цифровая техника, прикладная электроника
    • Вопросы аналоговой техники
    • Цифровые схемы, высокоскоростные ЦС
    • RF & Microwave Design
    • Метрология, датчики, измерительная техника
    • АВТО электроника
    • Умный дом
    • 3D печать
    • Робототехника
    • Ремонт и отладка
  • Силовая электроника - Power Electronics
    • Силовая Преобразовательная Техника
    • Обратная Связь, Стабилизация, Регулирование, Компенсация
    • Первичные и Вторичные Химические Источники Питания
    • Высоковольтные Устройства - High-Voltage
    • Электрические машины, Электропривод и Управление
    • Индукционный Нагрев - Induction Heating
    • Системы Охлаждения, Тепловой Расчет – Cooling Systems
    • Моделирование и Анализ Силовых Устройств – Power Supply Simulation
    • Компоненты Силовой Электроники - Parts for Power Supply Design
  • Интерфейсы
    • Форумы по интерфейсам
  • Поставщики компонентов для электроники
    • Поставщики всего остального
    • Компоненты
  • Майнеры криптовалют и их разработка, BitCoin, LightCoin, Dash, Zcash, Эфир
    • Обсуждение Майнеров, их поставки и производства
  • Дополнительные разделы - Additional sections
    • Встречи и поздравления
    • Ищу работу
    • Предлагаю работу
    • Куплю
    • Продам
    • Объявления пользователей
    • Общение заказчиков и потребителей электронных разработок

Поиск результатов в...

Поиск контента, содержащего...


Дата создания

  • Начало

    Конец


Дата обновления

  • Начало

    Конец


Фильтр по количеству...

Регистрация

  • Начало

    Конец


Группа


AIM


MSN


Сайт


ICQ


Yahoo


Jabber


Skype


Город


Код проверки


skype


Facebook


Vkontakte


LinkedIn


Twitter


G+


Одноклассники


Звание

Найдено: 0 результатов

  1. Дополнительный модуль SOLIDWORKS Simulation позволяет проводить инженерные расчеты в деталях и сборках. В этой статье мы рассмотрим реализацию сварных соединений на примере небольшой части трубопровода. Постановка задачи Нам необходимо создать три твердотельных тела (рис. 1). Рис. 1 Создаем новое исследование, выбираем Статический анализ. Затем заходим во вкладку Детали. Здесь представлены три элемента, два из которых имеют значки, означающие твердотельный элемент, и один значок, означающий оболочку (рис. 2). Рис. 2 Если щелкнем правой кнопкой мыши по этим оболочечным деталям и выберем Рассматривать как твердое тело, значок поменяется на твердотельный элемент, как и сама деталь (рис. 3). Рис. 3 Рядом с деталями расположены значки треугольников, которые показывают порядок элементов (рис. 4). Рис. 4 Их кромки немного кривые. Это означает, что будет строиться сетка 2-го порядка (высококачественная сетка). Если щелкнуть правой кнопкой мыши по детали и выбрать Применить сетку чернового качества, значок изменится на треугольник с прямыми кромками (рис. 5). Рис. 5 Сетка элементов в данном случае станет 1-го порядка. Это значит, что сеточные элементы не будут иметь промежуточного узла и все элементы могут перемещаться и деформироваться, но не могут изменять свои стенки и ребра, то есть не изгибаются. Вернем сетку 2-го порядка. Затем для примера преобразуем верхнюю деталь в оболочку. Это можно сделать двумя способами. Первый способ – воспользоваться вкладкой Менеджер оболочки, в которой выбираются необходимые тонкостенные детали или грани (рис. 6). Рис. 6 Второй способ – использование функции Определить оболочку выбранными гранями. Устанавливаем тип Тонкая и выбираем переднюю грань. Пока указываем тип без предварительного просмотра. Толщину по умолчанию оставляем в 1 мм (рис. 7). Рис. 7 Переходим во вкладку Смещения и видим, что выбрана Срединная поверхность. Если включить Полный предварительный просмотр, от выбранной грани в каждую сторону программа отложит по 0.5 мм. Поскольку нам нужна Нижняя поверхность, зададим значение толщины до 1.5 мм, чтобы достичь визуального соответствия (рис. 8). Рис. 8 Значок изменится с «твердотельного» на «оболочку» (рис. 9). Рис. 9 Теперь зададим одинаковый материал для всех элементов, для примера выберем оцинкованную сталь. Следующий шаг – редактируем Глобальное взаимодействие, поскольку с версии 2021 года изменилась терминология контактов: теперь она логичней передает смысл оставшихся неизменными функций. Например, то, что раньше называлось Нет проникновения, сейчас носит название Контакт, а Проникновение допускается – Свободно. Таким образом, поскольку тип Связанные склеивает элементы, а Контакт не допускает проникновение, мы выбираем тип Свободно, когда проникновение допускается (рис. 10). Рис. 10 Это сделано, чтобы увидеть только сварочные контакты. Правда, если удалить Глобальное взаимодействие, результат будет тем же. Граничные условия Ознакомиться с полным текстом статьи
  2. Дополнительный модуль SOLIDWORKS Simulation позволяет проводить инженерные расчеты в деталях и сборках. В этой статье мы рассмотрим некоторые соединения для сборок и покажем, чем они отличаются и как выбор соединения влияет на результаты перемещения. Постановка задачи У нас имеются две пластины с отверстиями, а также один штырек (рис. 1). Рис. 1 Произведем новое статическое исследование. Первый вариант соединения – болт. Исключим из анализа штырек, чтобы создать на этом месте болт (рис. 2). Рис. 2 Не забываем задать материал для наших деталей. Выберем для примера литую легированную сталь. Затем во вкладке Соединения → Взаимодействие компонентов определим Глобальное взаимодействие. По умолчанию у нас указан тип взаимодействия Связанные: это означает, что элементы ведут себя, как сваренные друг с другом. Нам же нужен тип Контакт, который означает, что выбранные детали не пересекаются друг с другом. Даже если во время моделирования деформация приводит к самопересечению, тела не пересекают сами себя. В этом окне также можно указать диапазон зазора для учета контакта (рис. 3). Рис. 3 Затем щелкаем правой кнопкой мыши на пункте Соединения, выбираем параметр Болт и указываем тип болта Стандартный (рис. 4). Здесь также можно поменять параметр соединения. Указываем первую кромку, где будет находиться головка болта, а вторую кромку обозначим как соответствующую гайке. Диаметр головки и номинальный диаметр определяются автоматически, исходя из диаметра кромки. Далее можно выбрать тип соединения Распределенные, что позволяет деформировать грани, прикрепленные к болтовым соединениям, и обеспечивает реалистичное поведение соединителя. При указании пункта Жестко мы получим обратный эффект. Также можно выбирать материал болта и различные параметры, определяющие силы зажима и т.д. Рис. 4 Теперь автоматически создадим штырек для второго отверстия: выберем грани, где будет прилегать штырек; зададим тип штырька С удерживающим кольцом (Нет смещения). Это позволит предотвратить относительное осевое перемещение между гранями, соединенными со штырьком. Тип С ключом (Нет вращения) предотвращает относительное вращение. В этом окне можно выбирать такие параметры, как Осевая жесткость и Жесткость вращения при некоторых условиях (рис. 5). Рис. 5 Граничные условия Ознакомиться с полным текстом статьи
  3. А вы знаете, что многофункциональный модуль Simulation может решать задачи термического исследования? Он не только позволяет увидеть, как температура распространяется по деталям, но и дает возможность узнать, за какое время деталь нагревается. Обо всем этом и многом другом – в нашей статье. Введение В качестве модели взята сборка микрочипа, которая состоит из теплоотвода (снизу) и собственно чипа (сверху) – рис. 1. Рис. 1 Добавив модуль Simulation в интерфейс SOLIDWORKS, создаем Новое исследование и выбираем Термический анализ. У нас загрузилось дерево исследования, в котором мы можем задавать настройки для проведения анализа (рис. 2). Рис. 2 Сразу скажу, что если чтению учебных материалов вы предпочитаете просмотр уроков, – добро пожаловать на наш YouTube-канал «Школа SOLIDWORKS». По ссылке вы найдете видео, где мы учимся проводить термическое исследование в SOLIDWORKS Simulation и задавать различные термические нагрузки, такие как температура, тепловая мощность и конвекция. Задание материала Первое, что нам необходимо сделать, – это задать материал. Щелкаем правой кнопкой мыши по одной из деталей и нажимаем Применить/редактировать материал. В нашем примере выберем для теплоотвода алюминий, а именно Сплав 1060. Материалом для чипа пусть будет оцинкованная сталь. Потребуется указать теплопроводность – такие обязательные параметры выделяются красным цветом в открывающейся таблице (рис. 3). Скопируем «оцинкованную сталь» в папку Настроенный пользователем материал и добавим материалу теплопроводность: 50. Рис. 3 Задание граничных условий Для удобства задания граничных условий разнесем чип и теплоотвод друг от друга. Для этого переходим во вкладку Конфигурации (рис. 4) и, нажав правую кнопку мыши, добавляем Новый вид с разнесенными частями. Выбираем в настройках, что именно мы хотим сместить. Потянув за стрелку, выполняем смещение. И нажимаем кнопку Применить. Рис. 4 Следующим шагом зададим тепловую мощность микрочипа. Щелкнем правой кнопкой мыши по кнопке Термические нагрузки и перейдем в настройки тепловой мощности. Выберем в дереве сборки весь элемент «Чип» и укажем 15 ватт (рис. 5). Тепло будет выделяться из этого элемента. Рис. 5 Далее задаем набор контактов. Для этого щелкаем правой кнопкой мыши по кнопке Соединения , выбираем тип контакта Тепловое сопротивление и указываем грани, где чип и теплоотвод соприкасаются. Устанавливаем тепловое сопротивление равным 2,857е-6 К/Вт. Теперь вновь соединим наши детали через вкладку Конфигурации и перейдем к определению конвекции этих деталей. По правой кнопке мыши выбираем Термические нагрузки , а затем открываем меню Конвекция . Выбираем грани теплоотвода, которые не касаются нагревающегося чипа. Задаем коэффициент конвективной теплоотдачи: 200 Вт/м2К. Этот коэффициент характеризует интенсивность теплообмена между поверхностью тела и окружающей средой. Указываем массовую температуру окружающей среды, то есть температуру, которая окружает нашу модель. Для этого параметра установим 300 К (рис. 6). Рис. 6 То же самое сделаем и для чипа. Выбираем внешние грани чипа, задаем коэффициент конвективной теплоотдачи равным 90 Вт/м2К, а массовую температуру окружающей среды, как и в предыдущем случае, – 300 К. Результаты Запустим исследование (рис. 7). По умолчанию сетка будет построена автоматически. Рис. 7 Исследование завершено, можно ознакомиться с распределением температуры. Для этого выберем параметр Ограничение сечения по плоскости «справа» (рис. 8). Рис. 8 Теперь мы видим, как температура распространяется от чипа по теплоотводу (рис. 9). Рис. 9 Задание переходного процесса Если мы хотим узнать, за какое время нагревается теплоотвод, нужно задать переходный процесс. Для этого скопируем наше исследование (рис. 10). Рис. 10 Щелкнув по исследованию правой кнопкой мыши, зайдем в его свойства (рис. 11). Рис. 11 Изменим тип решения на Переходный процесс. Укажем общее время (например, 100 секунд) и установим пятисекундный временной интервал (рис. 12). Рис. 12 Теперь для выполнения нестационарного термического исследования требуется использовать начальную температуру. Выбираем температуру в Термических нагрузках и задаем начальную температуру для всех тел: 22 °C (рис. 13). Рис. 13 Запускаем решение. Получив результат, можем посмотреть распределение температуры и ее значение в выбранный момент времени (рис. 14). Рис. 14 Вывод Инженерный модуль SOLIDWORKS Simulation позволяет проводить термический анализ, анализировать распространение температуры по деталям, исследовать изменение температуры с течением времени и многое другое. Если вы хотите смоделировать тепловые потоки, которые исходят из деталей, вам потребуется другой модуль: SOLIDWORKS Flow Simulation. Но о нем мы расскажем в следующий раз. Максим Салимов, технический специалист по SOLIDWORKS ГК CSoft
×
×
  • Создать...