PIC16(L)F1512/1513 Family Silicon Errata and Data Sheet Clarification

The PIC16(L)F1512/1513 family devices that you have received conform functionally to the current Device Data Sheet (DS41624**C**), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC16(L)F1512/1513 silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A3).

Data Sheet clarifications and corrections start on page 5, following the discussion of silicon issues.

The silicon revision level can be identified using the current version of MPLAB® IDE and Microchip's programmers, debuggers, and emulation tools, which are available at the Microchip corporate web site (www.microchip.com).

For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger:

- 1. Using the appropriate interface, connect the device to the hardware debugger.
- 2. Open an MPLAB IDE project.
- 3. Configure the MPLAB IDE project for the appropriate device and hardware debugger.
- 4. Based on the version of MPLAB IDE you are using, do one of the following:
 - a) For MPLAB IDE 8, select <u>Programmer ></u> Reconnect.
 - b) For MPLAB X IDE, select <u>Window > Dashboard</u> and click the **Refresh Debug Tool**Status icon ().
- Depending on the development tool used, the part number and Device Revision ID value appear in the **Output** window.

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The DEVREV values for the various PIC16(L)F1512/1513 silicon revisions are shown in Table 1.

TABLE 1: SILICON DEVREV VALUES

		DEVICE ID<13:0	>(1),(2)	-	
Part Number	DEV<8:0>	REV<4:0> Silicon Revision			
		A1	A2	А3	
PIC16F1512	01 0111 000	0 0001	0 0010	0 0011	
PIC16LF1512	01 0111 001	0 0001	0 0010	0 0011	
PIC16F1513	01 0110 010	0 0001	0 0010	0 0011	
PIC16LF1513	01 0111 010	0 0001	0 0010	0 0011	

Note 1: The Device ID is located in the configuration memory at address 8006h.

2: Refer to the "PIC16(L)F151X/152X Memory Programming Specification" (DS41442) for detailed information on Device and Revision IDs for your specific device.

TABLE 2: SILICON ISSUE SUMMARY

Module	Feature	Item Number	Issue Summary	Affected Revisions ⁽¹⁾		
		Number		A 1	A2	А3
Oscillator	Clock Switching	1.1	Clock switching can cause a single corrupted instruction.	Х		
Oscillator	Oscillator Start-up Timer (OST) bit	1.2	OST bit remains set.	Х		
ADC	ADOUT Function	2.1	ADOEN bit issue during ADOUT function.	Х		
ADC	Automated CVD	2.2	Cannot run back-to-back conversions using FRC.	Х	Х	Х
ADC	TRIS Control during conversions	2.3	No auto TRIS control, must be done manually.	Х		
Program Flash Memory (PFM)	PFM Self-Write	3.1	PFM self-write will not work depending on clock selection.		Х	
Fixed Voltage Reference (FVR)	Gain Amplifier Output	4.1	Use of FVR module can cause device Reset.	Х	Х	
Fixed Voltage Reference (FVR)	FVR Output Levels	4.2	Large errors are possible.	Х		

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

Silicon Errata Issues

Note:

This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A3).

1. Module: Oscillator

1.1 Clock Switching

When switching clock sources between INTOSC clock source and an external clock source, one corrupted instruction may be executed after the switch occurs.

Work around

When switching from an external oscillator clock source, first switch to 16 MHz HFINTOSC. Once running at 16 MHz HFINTOSC, configure IRCF to run at desired internal oscillator frequency.

When switching from an internal oscillator (INTOSC) to an external oscillator clock source, first switch to HFINTOSC High-Power mode (16 MHz). Once running from HFINTOSC, switch to the external oscillator clock source.

Affected Silicon Revisions

A 1	A2	А3			
Х					

1.2 Oscillator Start-up Timer (OST) bit

During the Two-Speed Start-up sequence, the OST is enabled to count 1024 clock cycles. After the count is reached, the OSTS bit is set, the system clock is held low until the next falling edge of the external crystal (LP, XT or HS mode), before switching to the external clock source.

When an external oscillator is configured as the primary clock and Fail-Safe Clock mode is enabled (FCMEN = 1), any of the following conditions will result in the Oscillator Start-up Timer (OST) failing to restart:

- MCLR Reset
- · Wake from Sleep
- Clock change from INTOSC to Primary Clock

This anomaly will manifest itself as a clock failure condition for external oscillators which take longer than the clock failure time-out period to start.

Work around

None.

Affected Silicon Revisions

A 1	A2	А3			
Х					

2. Module: ADC

2.1 ADOEN Bit Issue During ADOUT Function

To operate the ADC during the pre-charge stage of conversion as stated in the data sheet, the ADOUT output-override must be disabled (ADOOEN = 0) when the ADOUT pin is not connected to the ADC conversion bus (ADOEN/ADOLEN = 0). Likewise, the ADOUT output-override should be enabled (ADOOEN = 1) when ADOUT is enabled (ADOEN/ADOLEN = 1).

Work around

Stated above.

Affected Silicon Revisions

A1	A2	А3			
Χ					

2.2 Automated CVD

The double conversion procedure for the ADC is activated by setting the ADDSEN bit in the AADCON3 register. Double conversions do not work reliably if the FRC is selected as the ADC clock source. This is true whether or not the part is in Sleep mode. Single conversions can be performed, in Sleep mode or not, with the FRC selected.

Work around

Do not run double conversions with the FRC selected as the clock for the ADC.

Affected Silicon Revisions

A 1	A2	А3			
Χ	Χ	Χ			

2.3 TRIS Control During Conversions

When running conversions using the acquisition timer feature, the TRIS control for the selected analog pin will not be automatically set to '1' if its current value is '0'. This will cause the charge on the ADC hold capacitor to be driven to Vss or VDD. However, if the selected analog pin's current TRIS value is '1', the pre-charge timer will correctly override it to an output during the pre-charge stage.

Work around

Set the TRIS bit (TRISx = 1) to configure the pin as a digital input before starting the ADC conversion. When the conversion completes, the TRIS bit can be cleared (TRISx = 0) to return the pin as a digital output

Affected Silicon Revisions

A 1	A2	А3			
Χ					

3. Module: Program Flash Memory (PFM)

3.1 PFM Self-Write

Writes to the PFM will not execute if the device's clock source is HS or ECH, or if the internal oscillator is at 16 MHz.

Work around

To write to the PFM, the clock source must have one of the following settings: internal oscillator set to 8 MHz or lower, ECM, ECL, XT, External RC, LP or T1OSC.

Affected Silicon Revisions

A 1	A2	А3			
	Х				

4. Module: Fixed Voltage Reference (FVR)

4.1 Gain Amplifier Output

When using the FVR module, if the gain amplifier outputs are set via the CDAFVR or ADFVR bits in FVRCON, while the module is disabled (FVREN = 0), the internal oscillator frequency may shift, device current consumption can increase, and a Brown-out Reset may occur.

Work around

Set the FVREN bit of FVRCON to enable the module prior to adjusting the amplifier output selections with the CDAFVR and ADFVR bits. If switching from the 4x output setting to the 1x output setting, select the 2x output setting as an intermediary step. Always set the amplifier output selections to off ('00') before disabling the FVR module.

Affected Silicon Revisions

A1	A2	А3			
Χ	X				

4.2 FVR Output Levels

The output levels of the FVR are likely to contain large errors that can exceed 30% of the 1.024/2.048/4.096V target levels stated in the Electrical Specifications section of the data sheet.

Work around

None.

Affected Silicon Revisions

A1	A2	А3			
Χ					

Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS41624 \mathbf{C}):

Note: Corrections are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

None.

APPENDIX A: DOCUMENT

REVISION HISTORY

Rev A Document (03/2012)

Initial release of this document.

Rev B Document (08/2012)

Added MPLAB X IDE; Added Silicon Revision A2; Updated Modules 1.2 and 2.2; Added Module 3, Program Flash Memory, and Module 4, Fixed Voltage Reference.

Data Sheet Clarifications: Added Module 1, Electrical Specifications.

Rev C Document (03/2014)

Added Silicon Revision A3; Other minor corrections.

Data Sheet Clarification: Removed Module 1.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2012-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-63276-050-0

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277
Technical Support: http://www.microchip.com/

support

Web Address: www.microchip.com Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA

Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 **Germany - Pforzheim**

Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

03/25/14