
Turbo-like Decoding Algorithm for Structured LDPC codes

Ajit Nimbalker, Yufei Blankenship and Brian Classon

Motorola Labs - Wireless and Solutions Research,

1301 E. Algonquin Road, Rm:2928,

Schaumburg, IL 60196 USA

Email: {A.Nimbalker, Yufei.Blankenship, Brian.Classon}@motorola.com

Abstract – This paper presents a high-speed “turbo-

like” decoding algorithm for certain structured LDPC

codes such as those adopted in IEEE 802.16e and in the

draft 802.11n standards. It is shown that after a key

modification, such LDPC codes may be processed as

Generalized Repeat Accumulate codes, codes which are

known to support “turbo-like” decoding. A GRA-like

encoder of structured LDPC codes is derived, which in

turn leads to the decoding algorithm. It is also shown

that the “structured” properties result in an inherent

parallelism, leading to an efficient high speed decoder

implementation.

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] are powerful

error-correcting codes that are appearing in standards such

as IEEE 802.16e [2] and 802.11n, Digital Video Broad-

cast, etc. Extensive research in recent years has focused on

exploring the theoretical performance of LDPC codes, and

on the design of practical encoding/decoding techniques.

LDPC codes are usually decoded via iterative message

passing algorithms such as the standard belief propagation

(SBP) or the layered BP (LBP) [3]. Although LDPC codes

may be viewed as general codes on graphs, additional

matrix properties may allow more specific encod-

ing/decoding algorithms. For instance, the class of LDPC

codes known as Generalized Repeat Accumulate codes

(GRA) allows linear time encoding [4].

By definition, a GRA code is a serial concatenation of

several component codes, such as repetition codes, single-

parity-check (SPC) codes, and Accumulator (ACC).

Therefore, such LDPC codes support both LDPC-like and

“turbo-like” decoding algorithms [5]. In general, the par-

ity-check matrix of GRA codes has a full dual-diagonal

parity-check portion including a weight-1 parity column.

However, the weight-1 column (when used in structured

LDPC codes) leads to a performance loss and hence,

matrices with partial dual-diagonal parity-check portion

are often preferred in practice, e.g., in IEEE802.16e and

802.11n. These LDPC codes are still easily encodable [6],

but it is not clear if such codes still support the “turbo-

like” decoding algorithms [5].

This paper describes a method that allows turbo-like de-

coding of structured LDPC codes. These LDPC codes [7]

have parity check matrices (H) that comprise of all-zero or

shifted identity submatrices, and they also have a partial

dual-diagonal parity portion. An interpretation that allows

a parallelized “turbo-like” decoding (TLD) algorithm of

such LDPC codes is presented. TLD can reuse technolo-

gies developed for turbo decoders such as log-MAP proc-

essors, fixed point analysis, and parallelization techniques,

and it can potentially combine the features of LDPC and

turbo decoders to achieve high throughput and good per-

formance.

II. BACKGROUND

An LDPC code is specified by a sparse parity-check ma-

trix H, with , where “T” denotes matrix trans-

pose, 0 is a zero vector. The codeword is x=[s p]=[s0, s1,

…, sk-1, p0, p1, …, pm-1], where p0, . . , pm-1 are the parity-

check bits; and s0, . ., sk-1 are the systematic bits. An H

matrix of an LDPC code is often described by a bipartite

graph which also provides a framework for deriving (and

visualizing) iterative message passing algorithms. Each 1

in H defines an edge (i.e., a connection between a variable

node and a check node) in the bipartite graph, each column

in H corresponds to a variable node and each row in H

corresponds to a check node.

TT
0Hx

For example, let an n = 12, rate-1/2 code be defined by

100001101000

110000010010

011000001001

001101100100

000110010010

000011000101

ps

 ,
(1)

with the left side portion corresponding to k (=6) informa-

tion bits s, the right side portion corresponding to m (=6)

parity-check bits p. By definition, the H in (1) defines six

parity-check equations shown in (2). Since H is full-rank,

and the systematic bits (i.e., x0 through x5) are known, the

six equations can be solved to obtain the six unknown

parity-check bits ([x6, x7, …, x11]), thus providing the

codeword after systematic encoding.

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

17081­4244­0504­1/06/$20.00 ©2006 IEEE

(2)

)(

)(

)(

)(

)(

)(

65311

411011

30910

65289

4178

6207

xxxx

xxxx

xxxx

xxxxx

xxxx

xxxx

From a decoding perspective, turbo-like decoding of an

LDPC code is easiest when the entire parity-check portion

of the H matrix is dual-diagonal as shown in (3). In such a

case, all the parity-check bits are obtained by a repeat-

accumulate structure and this serial concatenation leads to

the “turbo-like” decoding algorithm.

m

m

100000

110

01000

00100

000110

000011

p
 (3)

However, the matrix in (1) is only partial dual-diagonal

(since the first column of Hp is different from the first

column in (3)), and it is not clear how to handle LDPC

codes of (1) with a GRA-like structure. The following

sections show how to modify GRA-like algorithms [5] to

handle LDPC codes with partial dual diagonal parity-

check portion.

III. A GRA-LIKE ENCODER

This paper illustrates the key ideas using the H matrix

in (1), and they can be readily extended to other LDPC

codes with a partial dual-diagonal parity portion. Consider-

ing a systematic encoding, the six equations of (2) can be

solved to obtain the parity bits in two steps as follows:

i).The systematic portion of the codeword is used to com-

pute the parity bit corresponding to the non-dual-

diagonal portion of Hp, which is the first parity bit x6 for

(1). Simply adding all the parity-check equations in (2)

cancels all unknown variables except x6.

ii).The parity bits corresponding to the partial dual-

diagonal portion, which are (x7, x8, x9, x10, x11) for (1), are

obtained through successive back-substitution (i.e., ac-

cumulation) using the parity-check equations in (2).

The rest of the paper considers Step ii), which is a GRA-

like structure, leading to the proposed decoding algorithm.

First the input bits [x0, x1, x2, x3, x4, x5, x6] (including a

computed parity bit x6) are repeated according to the

number of times each bit appears on the right-hand-side

(RHS) of (2). The output of the repetition code is rear-

ranged via an interleaver so that the bits can be grouped in

the order they appear on the RHS of (2). The RHS of (2)

represents SPC codes, whose outputs are accumulated

(i.e., the back substitution on the LHS of (2)) using an

ACC. The ACC begins and ends in zero-state, and its last

output of the ACC is always 0 (thus not transmitted),

because the sum of the LHS (and RHS) of (2) is zero.

Figure 1. A GRA-like encoder of H matrices with a partial dual-

diagonal parity portion. The input consists of the information bits

and one parity bit (x0 through x6). Vector Q contains the repetition

factors, and vector J contains the SPC parameters.

While all parity bits are computed using GRA structure

in [5], the new method pre-computes the parity bit of the

non-dual-diagonal portion (parity bit x6) in a non-GRA

fashion, before applying a GRA-like encoder to compute

the remaining parity bits. A block diagram of a GRA-like

encoder for the H of (1) is shown in Figure 1. The GRA-

like encoder may be interpreted as follows (using the

notation of [5]).

The input [x0, x1, x2, x3, x4, x5, x6] passes through a repeti-

tion code with a repetition factor Q = [Q0, Q1, Q2, Q3, Q4,

Q5, Q6], where input bit xi is repeated Qi times. The P/S

indicates the bits generated in parallel are converted to

serial. An interleaver permutes the output of repetition

code before the SPC encoder according to a permutation .

The SPC code outputs one bit for every Ji serialized input

bits (Ji [J0, J1, J2, J3, J4, J5]). The S/P indicates that Ji bits

are input to the SPC to obtain a temporary bit ui, where ui

is equal to the RHS of ith equation in (2). The ui’s are

accumulated to obtain remaining unknown parity-check

bits.

The exact parameters of the GRA-like encoder may be

obtained by partitioning H into two parts, H = [HGRA Hp2],

as shown in (4), where Hp2 is the partial dual-diagona

parity portion. Note that the columns of HGRA correspond

to the systematic bits and one parity bit.

l

2

10000

11000

01100

00110

00011

00001

 ,

1101000

0010010

0001001

1100100

0010010

1000101

11

p

mk

GRA
 , (4)

Parameter Qi is equal to the number of ones in ith column

of HGRA, i = 0, 1,…, k. Parameter Ji is equal to the number

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

1709

of ones in the ith row of HGRA, i = 0, 1,…, m-1. The inter-

leaver () length W is equal to the number of ones in HGRA.

By definition, the ith input bit is permuted to the (i)th

position in the output as a result of the permutation (),

which is obtained as follows. Label the ones (i.e., edges) in

HGRA in a column-wise order starting with the left-most

column as shown in the left hand side of (5). These indices

sequentially number the edges after repetition and before

interleaving. Label the ones in HGRA in a row-wise order

from the top-most row as shown on the right hand side of

(5). These indices sequentially number the edges after

interleaving, before being input to the SPC. The permuta-

tion () is given by reading the row-wise label in column-

wise order.

141312

1110

98

765

43

210

14117

93

61

13105

82

1240

1101000

0010010

0001001

1100100

0010010

1000101

1101000

0010010

0001001

1100100

0010010

1000101

GRAH

(5)

For the (12,6) code of (1), the parameters are Q = [2 2 2 2

2 2 3], J = [3 2 3 2 2 3], and the interleaver is = [0 8 3 10

1 5 9 12 4 11 6 13 2 7 14], with W=15.

IV. A TURBO-LIKE DECODER

The GRA-like encoder described in the previous section is

used to derive a corresponding “turbo-like” decoder whose

graphical model with corresponding GRA-parameters is

shown in Figure 2. Solid circles indicate repetition nodes

(variable nodes corresponding to non-dual diagonal parity

portion), the solid squares represent the SPC nodes (or the

check nodes) and empty circles represent the variable

nodes corresponding to the dual-diagonal parity portion.

The non-dual-diagonal parity bit is highlighted to show

that it can be treated as a systematic bit during decoding.

A TLD for LDPC codes consists of two component decod-

ers - a repetition decoder which is similar to the variable

node update in conventional LDPC decoders, and a com-

bined SPC-ACC decoder (below the interleaver in Figure

2). The SPC-ACC concatenation is equivalent to a 2-state

state convolutional code with irregular puncturing (with

periods given by vector J). Therefore, a trellis-based SPC-

ACC decoder can be used as a constituent decoder of a

“turbo-like” decoder. Note that as the values of Ji in-

creases, there is increased puncturing in the trellis and

hence the resulting SPC-ACC decoder (and the overall

TLD) becomes weaker. This property of TLD is further

discussed in Section VI.

An iteration of TLD consists of the repetition decoding

followed by SPC-ACC decoding (see [5] for trellis update

equations). From a graph perspective, the two decoders

iteratively exchange extrinsic LLRs related to the edges of

HGRA via the (de)interleaver. Therefore, the extrinsic

message memory is proportional to the number of 1’s in

HGRA which is the interleaver size W. The proposed TLD

algorithm updates all edges connected to the systematic

bits and one parity bit while the GRA decoder of [5] only

updates the edges connected to the systematic bits.

The SPC-ACC processing in TLD is similar yet different

from the “check node update” (CNU) in LDPC literature.

In TLD, several parity-check equations are linked directly

through the ACC. This allows the check nodes to send

messages to each other directly during the SPC-ACC

decoding. In contrast, in a SBP decoder, parity-check

equations do not interact with each other directly.

0y 1y 2y
3y 4y 5y

6y

7y
8y 9y 10y

11y

:GRAy

: p2y

Figure 2. A graphical model of a turbo-like decoder of an LDPC

code with a partial dual-diagonal parity portion.

V. STRUCTURED LDPC CODES

Structured LDPC codes are constructed with all-zero

submatrix and shifted identity submatrices as building

blocks [7]. This enables block-wise or vectorized encoding

and decoding which leads to efficient hardware de-

signs [2]. In addition, such codes can also be designed to

have a block-wise partial dual-diagonal parity portion,

(e.g., in IEEE 802.16e, 802.11n) for easy encoding. This

section extends the TLD algorithm of previous sections to

structured LDPC codes by deriving an equivalent GRA-

like encoder. In particular, the resulting TLD is shown to

be highly parallelizable because of the contention-free

memory access property of the GRA-like interleaver [8].

A structured LDPC code design starts with a small mb nb

base matrix Hb, makes z copies of Hb, and interconnects

the z copies to form a large M N binary H matrix, where

M= mb z, N= nb z. The binary H matrix is obtained by

replacing each 1 in Hb by a z z shifted identity matrix (P),

and each 0 in Hb by a z z all-zero matrix. Hence, the H

matrix can also be described by an mb nb model matrix

Hbm, which is obtained by replacing each 0 in Hb by “–1”

(to denote a z z all-zero matrix), and by replacing each

hi,j=1 in Hb by a shift size p(i,j) to denote a z z identity

matrix whose columns are cyclically shifted by p(i,j).

For example, the matrix in (1) may be used as a base

matrix Hb to build a model matrix Hbm in (6). When z=3,

Hbm is converted to a (6 z) (12 z) binary matrix H by

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

1710

replacing each –1 with a 3 3 all-zero matrix and each i

with Pi, i=0, 1, 2, where Pi is a 3 3 identity matrix whose

columns are cyclically shifted to the right by i positions.

The resulting H matrix has a codeword size N=12 3=36,

and an information block size K=6 3=18.

bm

b
n

011110110111

001111101111

100111111112

110012211111

111001101121

111100111011

bm
, (6)

It was shown earlier that base matrix Hb of (1) can be

encoded and decoded using GRA-like structure. If such a

base matrix is used to create an H matrix by expansion

(e.g., as in (6)), then the resulting H matrix also has a

GRA-like encoder which bears many similarity to that of

the base matrix Hb.

Let S = [S0, S1,…, Sk-1] and X = [X0, X1,…, Xn-1] represent

the information block and the codeword block, respec-

tively, where each element is a z-bit vector (i.e., size z 1).

The blockwise encoding may be done as follows.

i). Fill the systematic portion of codeword with a direct

copy of the information bits [S0, S1,…, Sk-1], i.e.,

X0=S0, X1=S1, X2=S2,…, Xk-1=Sk-1.

ii). Compute the parity block (Xk) related to the non-dual-

diagonal parity portion (i.e., by solving the corre-

sponding parity-check equations).

iii). Compute the parity blocks related to the partial dual-

diagonal parity portion (Xk+1,…, Xn-1) using a struc-

tured GRA-like encoder (block-wise accumulation).

Note that the third step is similar to GRA-like encoding at

a blockwise level, which can be divided in z equivalent

bitwise counterparts. As illustrated in Figure 3, the encoder

consists of z copies of the GRA-like encoder of the base

matrix Hb interconnected by a vector interleaver. The

figure assumes that each group of z bits is represented by a

column vector.

The main advantage of using a structured LDPC is evident

from Figure 3 : highly parallelizable encoding/decoding

operations. Note also that the parameters Qb, and Jb of all z

copies of structured GRA-like encoder are identical to that

of the base matrix. The vector interleaver consists of two

stages: i) a permutation () of the extrinsic LLR vectors

that is the same as the base matrix permutation, and ii) a

set of shift sizes (Rbm) corresponding to rotation within

each extrinsic LLR vector which depends on the model

matrix. Referring to Figure 3, the two stages of permuta-

tions correspond to column permutations and column

rotations, respectively.

Figure 3. A GRA-like encoder of a structured LDPC code.

For the (36, 18) code of (6), the GRA parameters are

identical to those of the base matrix Hb of (1): Qb = [2 2 2

2 2 2 3], Jb = [3 2 3 2 2 3], the permutation is = [0 8 3 10

1 5 9 12 4 11 6 13 2 7 14].

The only new parameter required to describe structured

GRA-like encoder are the shift values Rbm, which are

obtained from the model matrix of (6) by reading the shift

sizes in a columnwise order starting from the left hand side

of the Hbm,GRA shown in (7) . This leads to a set of shift

sizes given by Rbm=[1 2 2 1 0 1 1 0 0 0 2 1 0 2 0].

 14117

93

61

13105

82

1240

,

0110111

1101111

1111112

2211111

1101121

0111011

GRAbm

(7)

The TLD of structured LDPC codes can also be performed

in a structured (or parallelized) manner, analogous to the

structured encoding. The parallelized turbo-like decoder

consists of z identical copies of repetition and SPC-ACC

decoders that are interconnected through the vector inter-

leaver (z copies of Figure 2). The received LLR values are

suitably distributed to the appropriate decoders alike Figure

2.

High speed TLD is achieved by using several (up to z)

processors operating in parallel. The LLRs are stored in

multiple memories to allow several concurrent read/write

operations. In the iterative process, the extrinsic LLRs are

exchanged between the processors (through memory

operations) according to the vector interleaver.

The vector interleaver of structured LDPC codes can be

described as a contention-free (CF) inter-window shuffle

(IWS) interleaver [8]. CF interleaving is important for

maximizing decoder throughput as it ensures that concur-

rent read/write operations for the z processors do not result

in any memory access contentions, thereby minimizing

(de)interleaving latency in the iterative decoding.

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

1711

The interleaver of a structured LDPC code may be inter-

preted as a CF interleaver by making the following obser-

vation about the two stages of the permutation. The cyclic

shift of individual vectors (i.e., column rotation) as speci-

fied by Rbm is equivalent to the inter-window shuffle

pattern, while the permutation among the vectors (i.e.,

column permutation) as specified by is equivalent to the

intra-window permutation described in [8].

In general, the CF interleaver can be described as

 WiWWii
Wi

modmod , (8)

where vector defines the intra-window shuffling, (i)

defines inter-window shuffling for the ith index of the

window. For the structured TLD decoder, the window size

is W which is the length of the base matrix interleaver ,

and (i) is the cyclic shifted index vector with shift size

Rbm(i). For the (36, 12) code of (6), if Rbm(i) = 2, (i) = (2,

3, …, z-1, 0, 1). Mathematically, the inter-window shuffle

pattern can be expressed as follows,

 z
W

i
WiRWi bmWi mod)mod(mod (9)

and it indicates which window the position i is mapped to.

In the next section, performance results for TLD and SBP

are shown using IEEE 802.16e LDPC codes.

VI. PERFORMANCE

Structured LDPC codes from the IEEE 802.16e are chosen

to compare the proposed algorithm with SBP decoding. In

the IEEE 802.16e standard, the model matrices of all the

code rates (1/2, 2/3, 3/4, 5/6) have 24 columns, while the

number of rows is a function of the code rate. Different

codeword sizes are obtained by suitably choosing an

expansion factor z. For example, the rate-1/2 code has a

12 24 base matrix, and with an expansion factor of z=24,

it results in a 576-bit codeword.

The 20th iteration FER performance of the IEEE 802.16e

LDPC codes with rates-1/2, 2/3 and 3/4, and an expansion

factor z=96 (N=2304-bit codeword) is shown in Figure 4

for a BPSK-modulated AWGN channel. The complexity

of the SBP and TLD algorithms per iteration is assumed to

be similar as the number of equivalent check node updates

is the same. Figure 4 indicates that TLD outperforms SBP

when the LDPC code has a substantial dual-diagonal parity

portion, i.e., at lower code rates.

As the rate increases (e.g., from rate-1/2 to 2/3 or 3/4), the

number of dual-diagonal parity columns decreases, and

each ACC trellis of the TLD now connects fewer check

equations together. This can also be interpreted as in-

creased puncturing in the SPC-ACC trellis, and therefore

the performance advantage of TLD performance over SBP

is reduced as the rate increases.

1 1.5 2 2.5 3 3.5

10
4

10
3

10
2

10
1

10
0

E
b
/N

0
 (dB)

F
E

R

IEEE 802.16e, code size=2304, AWGN, QPSK

BP, 50 iter

BP, 20 iter

turbo, 20 iter

Rate 1/2

Rate 2/3A

Rate 3/4A

Figure 4. IEEE 802.16e LDPC codes, N = 2304 (with z=96), R =

1/2, 2/3 and 3/4 with flooding schedule for both standard BP and

“turbo-like” decoding. For rate-2/3 and 3/4, the codes designated

as 2/3A and 3/4A were simulated.

VII. CONCLUSIONS

In this paper, a turbo-like decoding (TLD) algorithm is

proposed for structured LDPC codes with partial dual-

diagonal parity portion. The encoding and turbo-like

decoding algorithm is described for such LDPC codes by

deriving a GRA-like structure. It is demonstrated that

structured LDPC codes facilitate high speed TLD due to

the contention-free property of its interleaver. The per-

formance of the TLD algorithm is compared with standard

belief propagation using IEEE 802.16e LDPC codes. It is

noted that the proposed algorithm successfully applies the

turbo decoding concepts to the decoding of LDPC codes

and has the potential of achieving better complex-

ity/performance tradeoffs.

VIII. REFERENCES

[1] R. G. Gallager, “Low density parity check codes,” IRE
Trans. Inform. Theory, IT-8, pp. 21-28, Jan. 1962.

[2] IEEE Std 802.16e-2005, approved Dec 2005, pub. Feb 2006.
[3] M. Mansour, N. Shanbag, “High-throughput LDPC decod-

ers”, IEEE Trans. on VLSI, vol. 11, pp. 976-996, Dec. 2003.
[4] H. Jin, A. Khandekar, and R. McEliece, “Irregular Repeat-

Accumulate Codes,” in Proc. 2nd Int. Symp. Turbo Codes
and Rel. Topics, Brest, pp. 1-8, Sep. 2000.

[5] K. M. Chugg, P. Thiennviboon, G. D. Dimou, P. Gray, and
J. Melzer, “A new class of turbo-like codes with universally
good performance and high-speed decoding”,
MILCOM, 2005.

[6] T. Richardson and R. Urbanke, “Efficient encoding of low-
density parity-check codes,” IEEE Trans. Inform. Theory,
vol. 47, pp. 638-656, Feb. 2001.

[7] D. Sridhara, T. Fuja, and R. M. Tanner, “Low density parity
check codes from permutation matrices”, Conf. on Inform.
Sciences and Sys., John Hopkins University, Mar. 2001.

[8] A. Nimbalker, T. K. Blankenship, B. Classon, T. Fuja, and
D. J. Costello, Jr, “Inter-window shuffle interleavers for
high throughput turbo decoding”, in 3rd Int. Symp. On Turbo
Codes and Rel. Topics, Brest, pp. 355-358, Sep. 2003.

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

1712

