
Turbo-like Decoding Algorithm for Structured LDPC codes 

Ajit Nimbalker, Yufei Blankenship and Brian Classon 

Motorola Labs - Wireless and Solutions Research, 

1301 E. Algonquin Road, Rm:2928,  

Schaumburg, IL 60196 USA 

Email: {A.Nimbalker, Yufei.Blankenship, Brian.Classon}@motorola.com 

Abstract – This paper presents a high-speed “turbo-

like” decoding algorithm for certain structured LDPC 

codes such as those adopted in IEEE 802.16e and in the 

draft 802.11n standards. It is shown that after a key 

modification, such LDPC codes may be processed as 

Generalized Repeat Accumulate codes, codes which are 

known to support “turbo-like” decoding. A GRA-like 

encoder of structured LDPC codes is derived, which in 

turn leads to the decoding algorithm. It is also shown 

that the “structured” properties result in an inherent 

parallelism, leading to an efficient high speed decoder 

implementation. 

I. INTRODUCTION 

Low-density parity-check (LDPC) codes [1] are powerful 

error-correcting codes that are appearing in standards such 

as IEEE 802.16e [2] and 802.11n, Digital Video Broad-

cast, etc. Extensive research in recent years has focused on 

exploring the theoretical performance of LDPC codes, and 

on the design of practical encoding/decoding techniques.  

LDPC codes are usually decoded via iterative message 

passing algorithms such as the standard belief propagation 

(SBP) or the layered BP (LBP) [3]. Although LDPC codes 

may be viewed as general codes on graphs, additional 

matrix properties may allow more specific encod-

ing/decoding algorithms. For instance, the class of LDPC 

codes known as Generalized Repeat Accumulate codes 

(GRA) allows linear time encoding [4].

By definition, a GRA code is a serial concatenation of 

several component codes, such as repetition codes, single-

parity-check (SPC) codes, and Accumulator (ACC). 

Therefore, such LDPC codes support both LDPC-like and 

“turbo-like” decoding algorithms [5]. In general, the par-

ity-check matrix of GRA codes has a full dual-diagonal 

parity-check portion including a weight-1 parity column. 

However, the weight-1 column (when used in structured 

LDPC codes) leads to a performance loss and hence, 

matrices with partial dual-diagonal parity-check portion

are often preferred in practice, e.g., in IEEE802.16e and 

802.11n. These LDPC codes are still easily encodable [6],

but it is not clear if such codes still support the “turbo-

like” decoding algorithms [5].

This paper describes a method that allows turbo-like de-

coding of structured LDPC codes. These LDPC codes [7]

have parity check matrices (H) that comprise of all-zero or 

shifted identity submatrices, and they also have a partial 

dual-diagonal parity portion. An interpretation that allows 

a parallelized “turbo-like” decoding (TLD) algorithm of 

such LDPC codes is presented. TLD can reuse technolo-

gies developed for turbo decoders such as log-MAP proc-

essors, fixed point analysis, and parallelization techniques, 

and it can potentially combine the features of LDPC and 

turbo decoders to achieve high throughput and good per-

formance.  

II. BACKGROUND 

An LDPC code is specified by a sparse parity-check ma-

trix H, with , where “T” denotes matrix trans-

pose, 0 is a zero vector. The codeword is x=[s p]=[s0, s1,

…, sk-1, p0, p1, …, pm-1], where p0, . . , pm-1 are the parity-

check bits; and s0, . ., sk-1 are the systematic bits. An H

matrix of an LDPC code is often described by a bipartite 

graph which also provides a framework for deriving (and 

visualizing) iterative message passing algorithms. Each 1 

in H defines an edge (i.e., a connection between a variable 

node and a check node) in the bipartite graph, each column 

in H corresponds to a variable node and each row in H

corresponds to a check node.  
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For example, let an n = 12, rate-1/2 code be defined by  
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(1)

with the left side portion corresponding to k (=6) informa-

tion bits s, the right side portion corresponding to m (=6) 

parity-check bits p. By definition, the H in (1) defines six 

parity-check equations shown in (2). Since H is full-rank, 

and the systematic bits (i.e., x0 through x5) are known, the 

six equations can be solved to obtain the six unknown 

parity-check bits ([x6, x7, …, x11]), thus providing the 

codeword after systematic encoding. 
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From a decoding perspective, turbo-like decoding of an 

LDPC code is easiest when the entire parity-check portion

of the H matrix is dual-diagonal as shown in (3). In such a 

case, all the parity-check bits are obtained by a repeat-

accumulate structure and this serial concatenation leads to 

the “turbo-like” decoding algorithm. 
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However, the matrix in (1) is only partial dual-diagonal 

(since the first column of Hp is different from the first 

column in (3)), and it is not clear how to handle LDPC 

codes of (1) with a GRA-like structure. The following 

sections show how to modify GRA-like algorithms [5] to 

handle LDPC codes with partial dual diagonal parity-

check portion.  

III. A GRA-LIKE ENCODER 

This paper illustrates the key ideas using the H matrix 

in (1), and they can be readily extended to other LDPC 

codes with a partial dual-diagonal parity portion. Consider-

ing a systematic encoding, the six equations of (2) can be 

solved to obtain the parity bits in two steps as follows: 

i).The systematic portion of the codeword is used to com-

pute the parity bit corresponding to the non-dual-

diagonal portion of Hp, which is the first parity bit x6 for 

(1). Simply adding all the parity-check equations in (2)

cancels all unknown variables except x6.

ii).The parity bits corresponding to the partial dual-

diagonal portion, which are (x7, x8, x9, x10, x11) for (1), are 

obtained through successive back-substitution (i.e., ac-

cumulation) using the parity-check equations in (2).

The rest of the paper considers Step ii), which is a GRA-

like structure, leading to the proposed decoding algorithm. 

First the input bits [x0, x1, x2, x3, x4, x5, x6] (including a 

computed parity bit x6) are repeated according to the 

number of times each bit appears on the right-hand-side 

(RHS) of (2). The output of the repetition code is rear-

ranged via an interleaver so that the bits can be grouped in 

the order they appear on the RHS of (2). The RHS of (2)

represents SPC codes, whose outputs are accumulated

(i.e., the back substitution on the LHS of (2)) using an 

ACC. The ACC begins and ends in zero-state, and its last 

output of the ACC is always 0 (thus not transmitted), 

because the sum of the LHS (and RHS) of (2) is zero.

Figure 1. A GRA-like encoder of H matrices with a partial dual-

diagonal parity portion. The input consists of the information bits 

and one parity bit (x0 through x6). Vector Q contains the repetition 

factors, and vector J contains the SPC parameters. 

While all parity bits are computed using GRA structure 

in [5], the new method pre-computes the parity bit of the 

non-dual-diagonal portion (parity bit x6) in a non-GRA 

fashion, before applying a GRA-like encoder to compute 

the remaining parity bits. A block diagram of a GRA-like 

encoder for the H of (1) is shown in Figure 1. The GRA-

like encoder may be interpreted as follows (using the 

notation of [5]).  

The input [x0, x1, x2, x3, x4, x5, x6] passes through a repeti-

tion code with a repetition factor Q = [Q0, Q1, Q2, Q3, Q4,

Q5, Q6], where input bit xi is repeated Qi times. The P/S 

indicates the bits generated in parallel are converted to 

serial. An interleaver permutes the output of repetition 

code before the SPC encoder according to a permutation .

The SPC code outputs one bit for every Ji serialized input 

bits (Ji  [J0, J1, J2, J3, J4, J5]). The S/P indicates that Ji bits 

are input to the SPC to obtain a temporary bit ui, where ui

is equal to the RHS of ith equation in (2). The ui’s are 

accumulated to obtain remaining unknown parity-check 

bits.  

The exact parameters of the GRA-like encoder may be 

obtained by partitioning H into two parts, H = [HGRA Hp2], 

as shown in (4), where Hp2 is the partial dual-diagona

parity portion. Note that the columns of HGRA correspond 

to the systematic bits and one parity bit.  
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Parameter Qi is equal to the number of ones in ith column 

of HGRA, i = 0, 1,…, k. Parameter Ji is equal to the number 
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of ones in the ith row of HGRA, i = 0, 1,…, m-1. The inter-

leaver ( ) length W is equal to the number of ones in HGRA.

By definition, the ith input bit is permuted to the (i)th

position in the output as a result of the permutation ( ), 

which is obtained as follows. Label the ones (i.e., edges) in 

HGRA in a column-wise order starting with the left-most 

column as shown in the left hand side of (5). These indices 

sequentially number the edges after repetition and before 

interleaving. Label the ones in HGRA in a row-wise order 

from the top-most row as shown on the right hand side of 

(5). These indices sequentially number the edges after 

interleaving, before being input to the SPC. The permuta-

tion ( ) is given by reading the row-wise label in column-

wise order.  
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(5)

For the (12,6) code of (1), the parameters are Q = [2 2 2 2 

2 2 3], J = [3 2 3 2 2 3], and the interleaver is  = [0 8 3 10 

1 5 9 12 4 11 6 13 2 7 14], with W=15.  

IV. A TURBO-LIKE DECODER  

The GRA-like encoder described in the previous section is 

used to derive a corresponding “turbo-like” decoder whose 

graphical model with corresponding GRA-parameters is 

shown in Figure 2. Solid circles indicate repetition nodes 

(variable nodes corresponding to non-dual diagonal parity 

portion), the solid squares represent the SPC nodes (or the 

check nodes) and empty circles represent the variable 

nodes corresponding to the dual-diagonal parity portion. 

The non-dual-diagonal parity bit is highlighted to show 

that it can be treated as a systematic bit during decoding. 

A TLD for LDPC codes consists of two component decod-

ers - a repetition decoder which is similar to the variable 

node update in conventional LDPC decoders, and a com-

bined SPC-ACC decoder (below the interleaver in Figure

2). The SPC-ACC concatenation is equivalent to a 2-state 

state convolutional code with irregular puncturing (with 

periods given by vector J). Therefore, a trellis-based SPC-

ACC decoder can be used as a constituent decoder of a 

“turbo-like” decoder. Note that as the values of Ji in-

creases, there is increased puncturing in the trellis and 

hence the resulting SPC-ACC decoder (and the overall 

TLD) becomes weaker. This property of TLD is further 

discussed in Section VI.

An iteration of TLD consists of the repetition decoding 

followed by SPC-ACC decoding (see [5] for trellis update 

equations). From a graph perspective, the two decoders 

iteratively exchange extrinsic LLRs related to the edges of 

HGRA via the (de)interleaver. Therefore, the extrinsic 

message memory is proportional to the number of 1’s in 

HGRA which is the interleaver size W. The proposed TLD 

algorithm updates all edges connected to the systematic 

bits and one parity bit while the GRA decoder of [5] only 

updates the edges connected to the systematic bits. 

The SPC-ACC processing in TLD is similar yet different 

from the “check node update” (CNU) in LDPC literature. 

In TLD, several parity-check equations are linked directly 

through the ACC. This allows the check nodes to send 

messages to each other directly during the SPC-ACC 

decoding. In contrast, in a SBP decoder, parity-check 

equations do not interact with each other directly.  
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Figure 2. A graphical model of a turbo-like decoder of an LDPC 

code with a partial dual-diagonal parity portion.  

V. STRUCTURED LDPC CODES 

Structured LDPC codes are constructed with all-zero 

submatrix and shifted identity submatrices as building 

blocks [7]. This enables block-wise or vectorized encoding 

and decoding which leads to efficient hardware de-

signs [2]. In addition, such codes can also be designed to 

have a block-wise partial dual-diagonal parity portion, 

(e.g., in IEEE 802.16e, 802.11n) for easy encoding. This 

section extends the TLD algorithm of previous sections to 

structured LDPC codes by deriving an equivalent GRA-

like encoder. In particular, the resulting TLD is shown to 

be highly parallelizable because of the contention-free 

memory access property of the GRA-like interleaver [8].

A structured LDPC code design starts with a small mb nb

base matrix Hb, makes z copies of Hb, and interconnects 

the z copies to form a large M N binary H matrix, where 

M= mb z, N= nb z. The binary H matrix is obtained by 

replacing each 1 in Hb by a z z shifted identity matrix (P),

and each 0 in Hb by a z z all-zero matrix. Hence, the H

matrix can also be described by an mb nb model matrix 

Hbm, which is obtained by replacing each 0 in Hb by “–1” 

(to denote a z z all-zero matrix), and by replacing each 

hi,j=1 in Hb by a shift size p(i,j) to denote a z z identity 

matrix whose columns are cyclically shifted by p(i,j).

For example, the matrix in (1) may be used as a base 

matrix Hb to build a model matrix Hbm in (6). When z=3, 

Hbm is converted to a (6 z) (12 z) binary matrix H by 
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replacing each –1 with a 3 3 all-zero matrix and each i

with Pi, i=0, 1, 2, where Pi is a 3 3 identity matrix whose 

columns are cyclically shifted to the right by i positions. 

The resulting H matrix has a codeword size N=12 3=36, 

and an information block size K=6 3=18.

bm

b
n

011110110111

001111101111

100111111112

110012211111

111001101121

111100111011

bm
,       (6)

It was shown earlier that base matrix Hb of (1) can be 

encoded and decoded using GRA-like structure. If such a 

base matrix is used to create an H matrix by expansion 

(e.g., as in (6)), then the resulting H matrix also has a 

GRA-like encoder which bears many similarity to that of 

the base matrix Hb.

Let S = [S0, S1,…, Sk-1] and X = [X0, X1,…, Xn-1] represent 

the information block and the codeword block, respec-

tively, where each element is a z-bit vector (i.e., size z 1). 

The blockwise encoding may be done as follows.  

i). Fill the systematic portion of codeword with a direct 

copy of the information bits [S0, S1,…, Sk-1], i.e., 

X0=S0, X1=S1, X2=S2,…, Xk-1=Sk-1.

ii). Compute the parity block (Xk) related to the non-dual-

diagonal parity portion (i.e., by solving the corre-

sponding parity-check equations).  

iii). Compute the parity blocks related to the partial dual-

diagonal parity portion (Xk+1,…, Xn-1) using a struc-

tured GRA-like encoder (block-wise accumulation). 

Note that the third step is similar to GRA-like encoding at 

a blockwise level, which can be divided in z equivalent 

bitwise counterparts. As illustrated in Figure 3, the encoder 

consists of z copies of the GRA-like encoder of the base 

matrix Hb interconnected by a vector interleaver. The 

figure assumes that each group of z bits is represented by a 

column vector.  

The main advantage of using a structured LDPC is evident 

from Figure 3 : highly parallelizable encoding/decoding 

operations. Note also that the parameters Qb, and Jb of all z

copies of structured GRA-like encoder are identical to that 

of the base matrix. The vector interleaver consists of two 

stages: i) a permutation ( ) of the extrinsic LLR vectors 

that is the same as the base matrix permutation, and ii) a 

set of shift sizes (Rbm) corresponding to rotation within 

each extrinsic LLR vector which depends on the model 

matrix. Referring to Figure 3, the two stages of permuta-

tions correspond to column permutations and column 

rotations, respectively. 

Figure 3. A GRA-like encoder of a structured LDPC code.  

For the (36, 18) code of (6), the GRA parameters are 

identical to those of the base matrix Hb of (1): Qb = [2 2 2 

2 2 2 3], Jb = [3 2 3 2 2 3], the permutation is  = [0 8 3 10 

1 5 9 12 4 11 6 13 2 7 14]. 

The only new parameter required to describe structured 

GRA-like encoder are the shift values Rbm, which are 

obtained from the model matrix of (6) by reading the shift 

sizes in a columnwise order starting from the left hand side 

of the Hbm,GRA shown in (7) . This leads to a set of shift 

sizes given by Rbm=[1 2 2 1 0 1 1 0 0 0 2 1 0 2 0]. 
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(7)

The TLD of structured LDPC codes can also be performed 

in a structured (or parallelized) manner, analogous to the 

structured encoding. The parallelized turbo-like decoder 

consists of z identical copies of repetition and SPC-ACC 

decoders that are interconnected through the vector inter-

leaver (z copies of Figure 2). The received LLR values are 

suitably distributed to the appropriate decoders alike Figure

2.

High speed TLD is achieved by using several (up to z)

processors operating in parallel. The LLRs are stored in 

multiple memories to allow several concurrent read/write 

operations. In the iterative process, the extrinsic LLRs are 

exchanged between the processors (through memory 

operations) according to the vector interleaver.  

The vector interleaver of structured LDPC codes can be 

described as a contention-free (CF) inter-window shuffle 

(IWS) interleaver [8]. CF interleaving is important for 

maximizing decoder throughput as it ensures that concur-

rent read/write operations for the z processors do not result 

in any memory access contentions, thereby minimizing 

(de)interleaving latency in the iterative decoding. 
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The interleaver of a structured LDPC code may be inter-

preted as a CF interleaver by making the following obser-

vation about the two stages of the permutation. The cyclic 

shift of individual vectors (i.e., column rotation) as speci-

fied by Rbm is equivalent to the inter-window shuffle 

pattern, while the permutation among the vectors (i.e., 

column permutation) as specified by  is equivalent to the 

intra-window permutation described in [8].

In general, the CF interleaver can be described as 

           WiWWii
Wi

modmod ,         (8) 

where vector  defines the intra-window shuffling, (i)

defines inter-window shuffling for the ith index of the 

window. For the structured TLD decoder, the window size 

is W which is the length of the base matrix interleaver ,

and (i) is the cyclic shifted index vector with shift size 

Rbm(i). For the (36, 12) code of (6), if Rbm(i) = 2, (i) = (2, 

3, …, z-1, 0, 1). Mathematically, the inter-window shuffle 

pattern can be expressed as follows, 

          z
W

i
WiRWi bmWi mod)mod(mod           (9)

and it indicates which window the position i is mapped to. 

In the next section, performance results for TLD and SBP 

are shown using IEEE 802.16e LDPC codes. 

VI. PERFORMANCE 

Structured LDPC codes from the IEEE 802.16e are chosen 

to compare the proposed algorithm with SBP decoding. In 

the IEEE 802.16e standard, the model matrices of all the 

code rates (1/2, 2/3, 3/4, 5/6) have 24 columns, while the 

number of rows is a function of the code rate. Different 

codeword sizes are obtained by suitably choosing an 

expansion factor z. For example, the rate-1/2 code has a 

12 24 base matrix, and with an expansion factor of z=24, 

it results in a 576-bit codeword.  

The 20th iteration FER performance of the IEEE 802.16e 

LDPC codes with rates-1/2, 2/3 and 3/4, and an expansion 

factor z=96 (N=2304-bit codeword) is shown in Figure 4

for a BPSK-modulated AWGN channel. The complexity 

of the SBP and TLD algorithms per iteration is assumed to 

be similar as the number of equivalent check node updates 

is the same. Figure 4 indicates that TLD outperforms SBP 

when the LDPC code has a substantial dual-diagonal parity 

portion, i.e., at lower code rates.  

As the rate increases (e.g., from rate-1/2 to 2/3 or 3/4), the 

number of dual-diagonal parity columns decreases, and 

each ACC trellis of the TLD now connects fewer check 

equations together. This can also be interpreted as in-

creased puncturing in the SPC-ACC trellis, and therefore 

the performance advantage of TLD performance over SBP 

is reduced as the rate increases.  
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Figure 4. IEEE 802.16e LDPC codes, N = 2304 (with z=96), R = 

1/2, 2/3 and 3/4 with flooding schedule for both standard BP and 

“turbo-like” decoding. For rate-2/3 and 3/4, the codes designated 

as 2/3A and 3/4A were simulated.  

VII. CONCLUSIONS 

In this paper, a turbo-like decoding (TLD) algorithm is 

proposed for structured LDPC codes with partial dual-

diagonal parity portion. The encoding and turbo-like 

decoding algorithm is described for such LDPC codes by 

deriving a GRA-like structure. It is demonstrated that 

structured LDPC codes facilitate high speed TLD due to 

the contention-free property of its interleaver. The per-

formance of the TLD algorithm is compared with standard 

belief propagation using IEEE 802.16e LDPC codes. It is 

noted that the proposed algorithm successfully applies the 

turbo decoding concepts to the decoding of LDPC codes 

and has the potential of achieving better complex-

ity/performance tradeoffs.  
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