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Unification of MLSE Receivers and
Extension to Time-Varying Channels

Gregory E. Bottomley,Member, IEEE, and Sandeep Chennakeshu,Senior Member, IEEE

Abstract— Forney and Ungerboeck have each developed
maximum-likelihood sequence estimation (MLSE) receivers for
intersymbol interference (ISI) channels. The Forney receiver
uses a whitened matched filter, followed by a sequence estimation
algorithm using the Euclidean distance metric. The Ungerboeck
receiver uses a matched filter, followed by a sequence estimation
algorithm using a modified metric. In this paper a unified
development of both receivers is given, in which each receiver
is derived from the other. By deriving the Ungerboeck receiver
from the Forney receiver, we show that the whitening operation
is canceled in the Euclidean distance metric, leaving the modified
metric. In addition, the Ungerboeck receiver is extended to the
case of a time-varying known channel. When the channel is
unknown, decision-directed channel estimation is assumed, which
requires channel prediction to account for the decision delay.
It is shown that the Ungerboeck receiver requires additional
channel prediction, degrading performance due to prediction
uncertainty. To solve this problem, two alternative receiver
forms are developed which do not require additional prediction,
though computational complexity is increased. Performance and
complexity of the receiver forms are compared for the IS-136
digital cellular time-division multiple-access (TDMA) standard.

Index Terms—Adaptive equalizers, equalizers, fading chan-
nels, maximum likelihood estimation, radio receivers, sequence
estimation, time-varying channels.

I. INTRODUCTION

DIGITAL cellular and personal communication systems
(PCS’s) based on digital advanced mobile phone service

(D-AMPS, IS-136) and Global System for Mobile commu-
nication (GSM) require an equalizer to handle intersymbol
interference (ISI) arising from time dispersion. Typically,
nonlinear equalization such as maximum-likelihood sequence
estimation (MLSE) [1]–[3] is used in such channels, and
MLSE approaches have been studied in particular for the D-
AMPS channel [4]–[7]. Most MLSE receivers used in ISI
channels are based on one of two classic approaches provided
by Forney [1] and Ungerboeck [2]. The purpose of this paper
is to relate these two classic MLSE approaches and to extend
them to time-varying channels.
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Fig. 1. Forney receiver.

Fig. 2. Ungerboeck receiver.

The Forney receiver [1] was developed by first filtering and
sampling the received signal to produce sufficient statistics,
then applying MLSE to detect the transmitted symbol se-
quence. Fig. 1 illustrates the baseband portion of the receiver,
which consists of a matched filter, a sampling operation, a
whitening filter, and a sequence estimation algorithm, such as
the Viterbi algorithm [3]. In [1] the two filtering operations are
combined to form a whitened matched filter, and the sequence
estimation algorithm employs the standard Euclidean distance
metric.

The Ungerboeck receiver [2] was developed from a contin-
uous time representation of the received signal, and a block
diagram is shown in Fig. 2. The baseband portion of the
receiver comprises a matched filter, a sampling operation, and
a sequence estimation algorithm which employs a modified
metric.

The first part of this paper unifies the Forney and Unger-
boeck receivers through a step-by-step development of the
two forms. First, the Forney and Ungerboeck receivers are
derived from the likelihood function in [2], showing their
mathematical equivalence. Next, the Ungerboeck receiver is
derived from the Forney receiver. This approach provides an
interesting insight in that the Euclidean distance metric can
be rewritten to include a filtering operation that cancels the
whitening operation required in the Forney receiver.

Most practical channels are unknown and time-varying,
such as channels in mobile radio applications. The MLSE
solution for unknown channel coefficients which have known
distribution (Gaussian) and known autocorrelation can be
found in [9] and [10]. However, the complexity of this solution
can be high because it depends not only on the length of the
channel impulse response but also on the time correlation of
each channel coefficient. A practical suboptimal solution is to
employ MLSE receivers based on known channel coefficients
in conjunction with adaptive channel estimation [11]. In this
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case an estimate of the channel is updated using tentative
decisions on previously transmitted data symbols. Per-survivor
processing (PSP) techniques can be used to minimize estima-
tion delay (see, for example, [12], [13], and the list of early
references provided in [14]). Linear and decision feedback
equalization, using the zero-forcing criterion, have already
been extended to known time-varying channels [15].

A second purpose of this paper is to develop MLSE re-
ceivers for time-varying channels, to be used in conjunction
with adaptive channel estimation. First, the Ungerboeck re-
ceiver is extended to the case of known time-varying channels.
When the channel is unknown, channel estimation using deci-
sion feedback is assumed. One case of interest is the mobile
communications channel, in which the channel comprises a
time-invariant transmit filter and a time-varying dispersive
propagation medium. For this channel, it is shown that the
Ungerboeck receiver requires a set of channel estimates corre-
sponding to future symbol periods. With imperfect channel
predictions, as is the case in a noisy fading channel, the
performance degrades.

To solve this problem, two alternative receiver forms are
derived which minimize the need for channel prediction. The
first form, referred to as the “direct form,” comprises a time-
invariant receive filter matched to the transmit filter, a sampler,
and MLSE that operates on the sampled data. This form is
more complex than the Ungerboeck form but it minimizes
channel prediction. While this form is commonly used [12],
[13], the formal derivation indicates under what assumptions
the form is optimal. A second novel form, referred to as
the “partial Ungerboeck form,” is derived from the direct
form. It is less complex than the direct form but it has
equivalent performance. It is demonstrated via simulation that
the standard direct form and the partial Ungerboeck form
provide superior performance to the standard Ungerboeck form
when channel estimation is included.

The paper is organized as follows. Ungerboeck’s receiver
formulation is reviewed in Section II with added detail.
In Sections III and IV Forney’s receiver is derived from
Ungerboeck’s formulation and vice versa. In Section V the
Ungerboeck receiver is extended to the time-varying channel
case. In Section VI the specific case of a channel comprising a
time-invariant transmit filter and a time-varying transmission
medium is considered, and two MLSE receiver forms that
minimize channel prediction are derived. Performance and
complexity of the receiver forms are compared for the IS-
136 digital cellular time-division multiple-access (TDMA)
standard in Section VII. Section VIII concludes this paper.

II. UNGERBOECK’S RECEIVER FORMULATION

The system model in [2] consists of a transmitter, transmis-
sion medium, and receiver. The receiver converts the radio
signal to a complex-valued baseband signal. It is assumed
that the complex information symbol sequence passes
through a linear time-invariant channel with impulse response

, and is received as

(1)

where is a stationary white complex Gaussian noise
process (colored noise is considered in [2] as well). The
received signal is collected over a finite time interval,
denoted .

The MLSE receiver finds the hypothetical set of information
symbols that maximizes the likelihood of the received
data, given that was transmitted. This is equivalent
to maximizing the log-likelihood function which, ignoring
constant scaling factors and additive terms, reduces to the
form [2]

(2)

where is the hypothesis corresponding to the information
symbol set . As in [2], it is assumed that has been
bandlimited in the receiver front end, using a bandwidth much
larger than the signal bandwidth, so that the integral in (2)
is well defined. The expression in (2) is referred to as the
sequence estimation metric.

The first step is toexpand the log-likelihood function (step
1), giving

(3)

where

(4)

(5)

(6)

Term is independent of the sequence hypothesisand can
be omitted.

The next step is tointerchange integration with summation
(step 2) in (5) and (6), giving

(7)

(8)

where

(9)

(10)
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which are referred to as the matched filter outputs and the
“ -parameters,” respectively.

Interpreting (8) as a matrix summation, the double sum can
be split into a single summation along the matrix diagonal and
a double summation, in which partial rows and partial columns
are combined. Mathematically, this can be expressed as

(11)

where the indexes and refer to row and column indexes
of the matrix.

The third step is torearrange the double summation (step
3) in (8) by applying (11) and using the fact that

, which gives

(12)

Finally, the summation over can be replaced by a summation
over , giving

(13)

Collecting the results of (7) and (13), the sequence estima-
tion metric can be expressed as

(14)

where the branch metric is defined as

(15)

The hypothesis which maximizes (14) can be determined
using a sequence estimation algorithm such as the Viterbi
algorithm, in which each iteration of the algorithm uses

.

III. FORNEY’S RECEIVER FROM

UNGERBOECK’S FORMULATION

In this section Forney’s receiver for ISI channels [1] is
derived from the same continuous-time log-likelihood function
used to derive the Ungerboeck receiver. This formulation
of Forney’s receiver considers complex channel coefficients,
which is a simple extension of the real coefficient case
described in [1].

In the previous section the sequence estimation metric in
(2) was shown to comprise two terms: in (7) and in
(8), which depend on in (9) and in (10). A
change in notation from to is used to
provide consistency with [1] and to stress that is
the channel deterministic autocorrelation. Substituting (1) in
(9) gives the model

(16)

where

(17)

Next, consider the spectral factorization of . For
consistency with [1], the -transform is used instead of the
more prevalent -transform, though the two are easily related
by . Spectral factorization gives

(18)

and the inverse -transform gives the discrete convolution

(19)

The noise sequence has a statistical autocorrelation
function of the form

(20)

where the constant depends on the noise power spectral
density and the gain of the channel. From (18)–(20), can
be generated by passing a white noise sequencethrough
a filter whose -transformed impulse response is .
Mathematically

(21)

Substituting (19) and (21) into (16) gives the model

(22)

Substituting (22) into (7) gives the following alternative ex-
pression for :

(23)

where

(24)

(25)

An alternative expression for is obtained by substituting
(19) in (8), giving

(26)

Adding a constant term, independent of the sequence hypoth-
esis, does not affect performance. Hence, adding a summation
over of with the terms in (23) and (26), the sequence
estimation metric can be expressed as

(27)

which indicates that MLSE can equivalently be performed
using the Euclidean distance metric and discrete-time signal

, whose signal model is given in (24).
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It is shown in [1] that the discrete-time signal can be
obtained by passing the continuous-time signal through
matched filter, sampling, and whitening operations. The
matched filter output is given by (16), and its-transform,
using (21) and (24), is given by

(28)

The whitening filter has a response given by .
Applying this filter to (28) gives

(29)

which is the -transform of , as defined in (24).
Thus, the MLSE metric can be realized by passing the

received signal through a filter matched to the channel
response , producing samples . These samples are
whitened, giving the sequence , which are processed by a
sequence estimation algorithm using the Euclidean distance
metric. This series of steps is the Forney receiver [1], il-
lustrated in Fig. 1. Thus, both the Ungerboeck and Forney
receivers have been derived from a common formulation.

Observe that the Forney receiver was derived from an
intermediate form of the Ungerboeck sequence estimation
metric by partitioning this metric into a whitening operation
followed by the Euclidean distance metric. One can interpret
the whitening operation as a consequence of partitioning the
metric to include the Euclidean distance metric. Using other
partitioning approaches, it is possible to develop other filtering
operations and metric expressions, such as those proposed
in [8]. The partition that leads to the Forney receiver is of
particular interest, as it impacts performance when channel
estimation is used in conjunction with time-varying channels,
as will be discussed in Section VI.

IV. UNGERBOECK’S RECEIVER

FROM FORNEY’S FORMULATION

As with (2), the metric in (27) can be modified by applying
the three steps employed in Section II. However, now the input
is discrete-time signal , and the channel model is given
in (24). The first step is to substitute (24) in (27) and expand.
Dropping the first term leaves

(30)

(31)

The second step, rearranging the summations in (30) and (31),
gives, using (10) and (19)

(32)

(33)

Fig. 3. Modified Forney receiver.

where

(34)

The third step is to rearrange the summation in (33) using (11)
and the fact that , which gives

(35)

Collecting the results of (32) and (35), the sequence estimation
metric is given by (14), where

(36)

This modified form of the Forney receiver is shown in Fig. 3.
To complete the derivation of the Ungerboeck receiver, it

remains to show that is equal to , which is achieved
by taking the -transform of (34) and substituting (24), giving

(37)

This alternative derivation of the Ungerboeck receiver pro-
vides an interesting insight. As shown in (37) and Fig. 3, the
discrete-time filtering operation of (34) cancels the whitening
operation used to form from . This is why the Unger-
boeck form does not require a whitening operation. One can
interpret the Ungerboeck receiver as the result of partitioning
Forney’s Euclidean distance metric into a filtering operation
and a modified metric. The filtering operation undoes the
whitening operation, leaving a matched filter and a modified
metric.

V. EXTENSION TO TIME-VARYING CHANNELS

In this section the Ungerboeck receiver is extended to the
case of a time-varying channel [16]. For such a channel,
the output can be related to the input, in this case

, by means of a time-varying impulse response
in which denotes delay anddenotes time variation.

Additive noise is present at the channel output, so that
the received signal is given by

(38)
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Note that models both the transmit pulse shaping and
the transmission medium response. The sequence estimation
metric is similar to (3), giving

(39)

Once again, the three steps used to derive the Ungerboeck
receiver are applied. Applying the first step gives a metric that
consists of two terms and given by

(40)

(41)

where

(42)

(43)

Applying the remaining two steps in deriving the Ungerboeck
receiver (see Section II) gives the branch metric for a known
time-varying channel

(44)

Observe that the matched filter response and-parametersvary
with time.

VI. PRACTICAL RECEIVERS FORMOBILE COMMUNICATIONS

In mobile communications it is common to consider the
channel as comprising a time-invariant transmit filter (pulse-
shaping filter), with impulse response , followed by a time-
varying transmission medium with impulse response ,
as illustrated in Fig. 4. If the transmitted signal is finite in
bandwidth and employs no excess bandwidth, then an arbitrary
medium response can be modeled by an equivalent symbol-
spaced delay response given by [17]

(45)

where

(46)

Symbol-spaced channel models are commonly used to develop
MLSE receivers [12], [13], and such models yield reasonable
performance when signal excess bandwidth is small. However,

Fig. 4. Mobile communications model.

symbol-spaced equalization of excess bandwidth signals is
suboptimal, as fractionally spaced equalization is optimal.
With the corresponding assumptions on signal bandwidth and
pulse shaping, it is straightforward to extend the results of this
section to fractionally spaced equalization.

In general, is continuous in , so that there is an
infinite number of nonzero symbol-spaced channel taps. It is
assumed that can be well approximated by nonzero
channel coefficients, so that the overall channel response
(transmit filter medium) becomes

(47)

A. Ungerboeck Receiver

Substituting (47) into (42) and (43) gives

(48)

(49)

It is assumed that the time variation of each channel coefficient
is slow relative to the duration of the transmit pulse

shape . This assumption allows for standard radio receiver
design practices but it introduces suboptimality commensurate
with the rate of channel variation relative to the symbol rate.
With this assumption, (48) and (49) become

(50)

(51)

where

(52)

is a sequence of symbol-spaced data samples at the output
of a fixed front-end receive filter, matched to the transmit
filter, and is the deterministic autocorrelation function
for pulse shape . Observe that both the pulse shape
autocorrelation and the medium impulse response impact the
sequence estimation metric.

Assuming the transmit pulse shape convolved with itself is
Nyquist , then

(53)
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Fig. 5. Adaptive Ungerboeck receiver.

and the model for the received samples becomes

(54)

where is a sequence of independent Gaussian noise
samples.

Observe that the continuous-time received signal can
be first passed through a receive filter matched to the transmit
filter, giving rise to a discrete-time signal . Assuming
symbol-spaced equalization and Nyquist pulse shaping, the
Ungerboeck receiver forms metrics using and knowledge
of the time-varying medium coefficients . For the
assumptions given, the medium coefficients are equivalent
to the composite response comprising the transmit filter, the
medium, and the receive filter.

At iteration the Ungerboeck receiver computes for
various symbol hypotheses. From (50) and (53), this requires
knowledge of the time-varying channel coefficients at times

through . This knowledge may be difficult
to obtain when decision feedback is used to estimate the
channel [11]. Typically, after iteration is completed, tentative
decisions on symbols are made, where is an
update decision delay. Using these tentative decisions, the
channel estimates at time are updated, giving values
corresponding to time . The channel coefficients
should then be predicted using some prediction technique to
time , the next iteration of the equalizer [18]. With the
Ungerboeck form, predictions would be needed at times
through . The baseband processor of the receiver is
illustrated in Fig. 5.

With typical channel estimation and prediction algorithms,
the accuracy of the prediction decreases with the number of
steps over which the prediction is made. Thus, from a practical
implementation point of view, there is interest in a receiver
form which minimizes the prediction of channel coefficients.

B. Direct Form

A form which minimizes prediction, referred to as the
“direct form,” can be derived from the Ungerboeck form.
Substituting (50) and (53) into (40) and (41), respectively,
gives

(55)

(56)

Fig. 6. Adaptive direct form receiver.

where

(57)

From (3), with , the branch metric be-
comes

(58)

The final metric is given by (14) with defined by (58).
The direct form processes samples sequentially. At

iteration , branch metric depends only on channel
coefficients at time , as seen in (57) and (58), minimizing the
amount of channel prediction. The direct form is well known,
and the above derivation provides a formal development of
the receiver. Note that the direct form is optimal when there is
zero excess bandwidth and Nyquist pulse shaping. The direct
form is illustrated in Fig. 6.

Under the assumptions given, the direct form can be viewed
as a Forney receiver (see acknowledgment). The matched filter
comprises two filters: one matched to the pulse shape (52) and
one matched to the time-varying channel (50). The former
gives symbol-spaced white noise samples, whereas the latter
colors these noise samples. The whitening filter undoes the
latter, so that the whitened matched filter is simply the filter
matched to the pulse shape.

C. Partial Ungerboeck Form

An alternative form is obtained from the direct form by
applying two of the three steps used to derive the Ungerboeck
form. The first step is performed by substituting (57) and (58)
into (14), expanding the metric, and dropping the hypothesis
independent term, leaving the terms defined by (55) and (56).
Substituting (57) in (55) and (56) gives

(59)

(60)

where are referred to as “-parameters.”
The second step is not performed. Instead, a modified form

of the third step is applied, in which the expression in (11) is
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Fig. 7. Adaptive partial Ungerboeck receiver.

used with being replaced by . As a result, (60)
becomes

(61)

where

(62)

which are referred to as “-parameters.” Putting these results
together, the accumulated metric is given by (14), and the
branch metric is given by

(63)

This form is similar to the Ungerboeck form, except that the
summation over appears on the outside of the branch metric
rather than the inside. Because only some of the steps used
in deriving the Ungerboeck receiver are employed, this form
is referred to as the “partial Ungerboeck form.” The partial
Ungerboeck form is illustrated in Fig. 7.

VII. COMPARISON OF RECEIVER FORMS

The three receiver forms developed in the previous section
are compared in terms of performance and complexity for the
IS-136 digital cellular TDMA standard. It is shown that while
the standard Ungerboeck form minimizes complexity, it suffers
a performance degradation when practical channel estimation
is used. The standard direct form and the partial Ungerboeck
form have higher complexity, but perform better with practical
channel estimation.

A. The IS-136 Example

The IS-136 digital cellular standard [19] is used to illustrate
the performance and complexity tradeoffs of the proposed
receivers. In the IS-136 standard, each 30-kHz downlink (base
station to mobile station) radio channel is divided into six
time slots, each slot having the format shown in Fig. 8. The

Fig. 8. IS-136 traffic channel slot structure.

slot begins with a known synchronization pattern, followed by
various data fields. A full-rate traffic channel uses two slots.

The modulation is /4–shift differential quadrature phase-
shift keying ( /4-DQPSK), and the transmit pulse shaping is
root-raised-cosine with 35% rolloff. The symbol rate is 24.3
kbaud and each slot is 162 symbols long (6.67 ms). A 900-
MHz carrier and a vehicle speed of 100 km/h are assumed, so
that the medium response varies significantly within a single
time slot (83.3-Hz Doppler spread).

For this example, the medium response consists of two
independently fading channel taps, separated by one symbol
period, which is modeled at the receiver with two taps ( ).
There are four states in the sequence estimation process, one
for each possible previous symbol value. The path history of
each state is truncated, so that symbol decisions are made with
a delay of six symbol periods.

Channel estimation is based on the classic least-mean-square
(LMS) approach, using an empirically derived step size of
0.155. Channel estimates are initialized using correlations to
the synchronization pattern, then refined using LMS over the
synchronization field. In adapting the channel estimates over
the data fields, two approaches are considered. In the first,
a single model of the channel is updated after each sequence
estimation iteration by determining the best state, and using the
symbols in its path history two and three symbol periods prior
to the current time instant ( ). In the second approach,
PSP is employed, so that there is a channel model per state.
After each sequence estimation iteration, each channel model
is updated based on the state and one prior symbol in the path
history.

B. Performance

If the medium impulse response is known and time-
invariant, then all MLSE receiver forms have the same
performance, which can be estimated using the results in [1]
and [2]. Additional analysis is needed for the case of known
time-varying channels. When adaptive channel estimation is
employed, performance can differ between forms and depends
on the channel estimation approach employed. The direct and
partial Ungerboeck forms have the same performance, so only
the direct and Ungerboeck forms are examined.

The direct and Ungerboeck forms were initially simulated
using perfect knowledge of the channel, except that only
knowledge of the channel at discrete timewas available at
iteration . The results, given by the first two curves in Fig. 9,
indicate that there is negligible loss in the Ungerboeck form
relative to the other forms by approximating with

. However, when the channel is estimated, the loss can
be significant, as illustrated by the remaining simulation curves
in Fig. 9. At 3% bit-error rate (BER) the Ungerboeck form
loses 0.4 dB relative to the direct form, when both employ
the first channel estimation approach. For the second channel
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Fig. 9. Performance comparison of MLSE receivers. (a) Direct form, known
channel. (b) Ungerboeck form, known channel. (c) Direct form, estimated
channel. (d) Ungerboeck form, estimated channel. (e) Direct form, estimated
channel with PSP. (f) Ungerboeck form, estimated channel with PSP.

estimation approach, the loss of the Ungerboeck form is 1.7
dB. At lower BER levels the loss is larger. Thus, in this
example, the direct and partial Ungerboeck forms provide a
significant improvement in performance.

C. Complexity

Relative complexity is defined as the number of arithmetic
operations required to compute the metrics for each
iteration . A scalar addition or scalar multiplication consti-
tutes an arithmetic operation. For/4-DQPSK, all symbols
have a constant modulus, so that computation of the terms

and in (44) and (63), respectively,
can be omitted.

Using these simplifications, the Ungerboeck form requires
100 arithmetic operations, the partial Ungerboeck form 126
arithmetic operations, and the direct form 160 operations. In
this example it is interesting to see that minimization of the
channel prediction, as with the direct form, increases complex-
ity. The partial Ungerboeck form provides a good tradeoff
between minimization of channel prediction and increase in
complexity.

In general, complexity calculation is more involved and
depends on the hardware implementation and memory require-
ments. Further, simplifications in the metric and reordering of
operations can be done to reduce the number of computations
per iteration in all forms. Hence, the conclusions of the above
example do not change significantly.

VIII. C ONCLUSION

In this paper we have unified the theory of MLSE for
channels with ISI. We showed that the MLSE receivers derived
by Forney and Ungerboeck are mathematically equivalent,
although their realizations are quite different. We also showed
a method by which each receiver could be derived from the
other. The Ungerboeck receiver can be derived by further
developing the MLSE (nonlinear) part of the Forney receiver,
resulting in a second filtering operation that cancels the whiten-
ing operation. This is why the Ungerboeck receiver does
not require the whitening filter operation used in the Forney
receiver. Also, the whitening operation in the Forney receiver
can be viewed as a result of partitioning the Ungerboeck metric
to include the Euclidean distance metric.

Having developed the basic theory of the two receivers, we
have extended their application to time-varying channels such

as the mobile radio channel. For this channel, it was shown
that the Ungerboeck receiver requires significant channel pre-
diction. Two alternative receiver forms were developed which
minimize channel prediction but increase computational com-
plexity. The “partial Ungerboeck” form offers a compromise
in complexity and performance.
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