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Abstract— Based on recently published low complexity 
parallel FIR filter structures, this paper proposes a new 
scheme to further reduce their hardware complexity. FIR 
filter is firstly transformed into linear convolution, which is 
then implemented by Iterated Short Convolution algorithm. 
This linear convolution structure for FIR filter is used as a 
processing core to implement the subfitlers of previously 
proposed parallel FIR filter structures. Large amount of 
hardware can be saved by the new scheme. For example, for 
a 576-tap FIR filter, when the parallelism level changes from 
12 to 72, the new scheme can save 1755 to 3375 
multiplications at the cost of 21 to 4658 additions and 1516 
to 4749 delay elements, respectively. 

I. INTRODUCTION  
Fast parallel filter structures have been thoroughly 
discussed in [1-7]. Although their basic idea is the same: 
i.e., first derive smaller length fast parallel filters and then 
cascade or iterate these short length filters for long block 
sizes, their starting point is not the same.  
Designs in [1-4] are based on polyphase decomposition, 
which buries additional delay elements inside the 
postaddition matrix and leads to large amount of delay 
elements and irregular structures when block sizes are 
long. However, the matrix form of linear convolution is 
used in [5-7], the delay element is regularly placed and 
the fast linear convolution algorithm can be used to 
reduce the hardware cost, especially the number of 
multiplications. 
Recently, an Iterated Short Convolution (ISC) algorithm 
for long block size linear convolution was proposed and 
used to implement fast parallel FIR filter in [5]. This 
approach leads to large amount of hardware savings, 
compared to previous designs. According to the iterated 
short convolution algorithm in [5], a LL×  (

rLLLL L21= ) 
linear convolution can be first decomposed into r short 
convolutions, which can be computed by Cook-Toom or 
Winograd algorithm [3], 

iiiii LLLLL XPHQS =−12
 ( ri L,2,1= ), 

and then combined by (1.1) to get LL×  linear 
convolution.  
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LX  is the input sequence { }110 ,, −Lxxx L , and 
LA is defined 

in [5]. 
An L (

rLLLL L21= ) parallel N-tap FIR filter based on 
iterated 

ii LL ×  convolutions, 
iiiii LLLLL XPHQS =−12
 

( ri L,2,1= ), can be expressed as: 
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iH , (i =0,1,…,L-1) are the subfilters containing the 
coefficients 

iLkh +
,(k=0,1,2…), 

))))((((
112211

T
nm

T
nm

T
nm

T
nm

T
rrrr

PPPPP ×××× ⊗⊗⊗=
−−

L  

))))((((
112211

T
nm

T
nm

T
nm

T
nm

T
rrrr

QQQQQ ×××× ⊗⊗⊗=
−−

L . 
When L is large, this iterated short convolution based 
parallel involves many subfilters, which contain many 
multiplication operations and the same hardware 
structure. If we can develop an efficient core to share the 
computation of all these subfilters in different time slots, 
we can save a lot of hardware cost. 
This paper is organized as follows. In section II, we will 
first give a scheme to transform N-tap FIR into NxN 
linear convolution, which generate N FIR filter outputs in 
just 1 clock cycle. In this process, the iterated short 
convolution algorithm in [5] will be used to reduce the 
hardware cost. Its application to reduce the hardware cost 
of previous FIR parallel filter design is discussed in the 
following sections. Section III presents the proposed new 
parallel FIR filter design. In section IV, we discuss the 
computational complexity of the new design. Obvious 
reduction of hardware cost will be shown, when a 
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comparison between the new design and previous one is 
carried in section V. 

II. TRANSFORM FIR INTO LINEAR CONVOLUTION 
We start with a simple example. 
A 3-tap FIR filter can be represented as: 
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 (2.1) 
The computation of 3-tap FIR filter is transformed into 
that of 3x3 linear convolution algorithm. The last two 
rows of the five outputs of previous 3x3 linear 
convolution are summed with the upper two rows of the 
five outputs of the following convolution to get the 3 
outputs of the 3-tap filter.  
This property can be generalized, when an N-tap FIR 
filter is represented in the form of (2.1). The last N-1 rows 
of the 2N-1 outputs of previous NxN linear convolution 
are summed with the upper N-1 rows of the 2N-1 outputs 
of the following convolution to get the N outputs of the 
N-tap filter. Then the N-tap FIR filter can be represented 
with NxN linear convolution and can be represented as: 
 

NxN Linear
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Fig. 2. 1. Implementation of N-tap FIR filter with NxN 

linear convoltution. 
In Fig. 2.1, the hardware cost will depend on the 
complexity of the NxN linear convolution. Additional N-1 
additions and N-1 delay elements are also required. We 
will use iterated short convolution algorithm in [5] to 
compute NxN linear convolution.  

III. IMPROVED FAST PARALLEL FIR FILTER 
STRUCTURE 

According to (1.2), 2-parallel 6-tap FIR filter with 
coefficients {h0, h1, h2, h3, h4, h5, h6} can be 
represented as:  

L
TT XQHPY ⋅⋅⋅= 2222

               (3.1) 
where, outputs [ ]TkykyY )12()2(2 += ; 
            inputs [ ]TkxkxkxX )12()2()12(2 −+= ; k=0,1,2…. 

[ ]1H1H0H0H2 −= diagH ; H0={h0, h2, h4}, 
H0-H1={h1-h1, h3-h2, h5-h3}, H1={h1, h3, h5}; 
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It can be implemented as shown in Fig. 3.1. 
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Fig. 3.1 implementation of 2-parallel FIR filter 

In Fig. 3.1, H0, H0-H1, H1 are all 3-tap subfilters and 
require 9 multiplications, 6 additions and 6 delay 
elements. They have the same hardware structure, thus 
can be implemented, in consecutive time slots, with the 
same structure as shown in Fig. 2.1 (N=3).  
We must first get the 3 consecutive inputs for each of 
these three 3-tap subfilters. These inputs can be first 
loaded from the first 6 sampling inputs, which will result 
in 3-clock delay before the filtering. When the outputs 
from the 3 subfilters H0, H0-H1 and H1 are computed in 
3 consecutives with the structure in Fig. 2.1, 3 groups of 
new data are loaded. This process can be implemented 
with the following structure: 

D
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Fig. 3.2 (a) Proposed new 3-parallel FIR filter 
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Fig. 3.2 (b) 3x3 Delay element Matrix 
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Fig. 3.2 (c) Delay element function 

The data flow of the delay element matrix in Fig. 3.2 (b) 
is ‘horizontal in, vertical out’ or ‘vertical in, horizontal 
out’ and controlled by C0, C1 and C2 signals. C0 signal 
controls whether the data are ‘horizontal’ in or ‘vertical 
in’. C1 signal controls whether the data are ‘horizontal 
out’ or ‘vertical out’. C2 signal controls whether the data 
flow horizontally or vertically in the delay element 
matrix. 
A 3x3 linear convolution can be implemented with fast 
linear convolution algorithm by 5 multiplications and 14 
additions. The proposed structure for subfilters requires 5 
multiplications, 16 additions and 24 delay elements. Thus 
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it saves 4 multiplications at the cost of 10 additions and 
18 delay elements.  
The proposed structure can compute 6 input data in 3 
clock cycles, thus it has the same throughput rate as 
previous 2-parallel FIR filter structure. 
The proposed structures for a given L-parallel N-tap FIR 
filter can be generalized as: 
①Form an ISC based FIR filter by (1.2); ② Replace the 
subfilters with a core (N/L)x(N/L) linear convolution and 
two delay element matrices to arrange the input and 
output of the  (N/L)x(N/L) linear convolution; ③ 
Implement the (N/L)x(N/L) linear convolution using the 
iterated short convolution algorithm. 

IV. COMPLEXITY COMPUTATION 
For a proposed L-parallel N-tap FIR filter, the 
computation is based on (N/L)x(N/L) linear convolution, 
which can be implemented with the iterated short 
convolution algorithm in [5].  
The hardware complexity is computed as follows. 
1) The number of required multiplications for the parallel 
FIR filter is equal to that of (N/L)x(N/L) linear 
convolution. If N/L can be decomposed as sLLL L21 , 
then the number of required multiplications can be given 
as: 

∏
=

=
s

i
iMM

1

                                                        (4.1) 

where, s is the number of ii LL ×  convolutions used to 
implement (N/L)x(N/L) linear convolution in (1.1), 

iM  is 
the number of multiplications used in the 

ii LL ×  
convolution, which is determined by 

iLH  . 
2) The number of required additions is made up of three 
parts: ①  additions used for the preprocessing and 
postprocessing matrices TP  and TQ  in (1.2); ② additions 
used to implement the (N/L)x(N/L) linear convolution by 
iterated short convolution (1.1); ③ additions used in Fig. 
2.2 for transforming (N/L)-tap FIR filter into (N/L)x(N/L) 
linear convolution, which can be given by (N/L)-1. 
Therefore, the total number of required addition can be 
given by: 
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where, r is the number of ii LL ×  convolutions used to 
implement the L-parallel FIR filter in (1.2). Function 

)( nmMA ×
 is the minimum number of adders used to 

calculate 
nnm XM ×
, where T

nn xxxX ],,[ 21 L= . 
3) The number of required delay elements is also made up 
of three parts: ① L-1 delay elements in the input side as 

shown in (1.2); ② delay elements used in Fig. 2.2 for 
transforming (N/L)-tap FIR filter into (N/L)x(N/L) linear 
convolution, which can be given by 






 −⋅










∏
=

1
1 L

NM
r

i
i

; ③ 

delay elements used in the two delay element matrices, 
which can be noted as eD2 , where eD  is given by 
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where, ∏
=

r

i
iM

1

 is actually the number of output of matrix 

TQ  in (1.2) and is also the number of input data that go 
into the delay element matrix before the (N/L)x(N/L) 
linear convolution; it may be greater or less than N/L,  
and may be equal to N/L as in Fig. 3.2; when it is less 
than N/L, the shape of the delay element matrix is like 
Fig. 4.1 (a); when it is greater than N/L, the shape of the 
delay element matrix is like Fig. 4.1 (b). 
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Fig 4.1 Shape of delay element matrix; 
 
Therefore, the total number of required delay elements 
can be given by: 
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V. IMPLEMENTATION ANALYSIS AND COMPLEXITY 
COMPARISON 

As shown in the example of section II, the number of 
clock cycles required for the computation of the new 
structure depends on the number of subfilters of previous 
parallel FIR filter design. When the number of subfilters 
is too large, the proposed structure will have lower 
throughput rate, and thus may not be comparable to 
previous designs under the same criterion. Therefore, we 
may need to change the level of parallelism of the new 
structure, in order to control the number of subfilters to 
make sure the new structure and the previous one have the 
same throughput rate.  
Here is another example. For a 4 parallel 24-tap FIR filter, 
the previous structures will use 6 clock cycles to compute 
24 sampling data. But this 4-parallel filter has 9 subfilters. 
If we use this structure directly, the proposed design will 
require 9 clock cycles to compute 24 samples. In order to 
compensate this, we must use a 3-parallel structure, 
because it will have 6 subfilters. Then the length of the 
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core linear convolution will be 24/3=8, which is also the 
length of the subfilters in the 3-parallel structure. In this 
case, the new structure requires 3x9=27 multiplications, 
when 8 is decomposed as 2x4. However, the previous 
structure needs 9x6=54 multiplications, which is two 
times that of the new structure. 
Compared with previous ISC based parallel FIR filter 
design, the new design can save large amount of hardware 
cost. A comparison in terms of required multiplications, 
additions and delay elements are summarized for different 
throughput rates in Table 5.1 for a 144-tap FIR filter and 
Table 5.2 for a 576-tap FIR filter. ‘T’ means the transpose 
forms of used short linear convolutions. 

TABLE 5.1 NUMBER OF REQUIRED MULTIPLICATIONS (R.M.), ADDITIONS 
(R.A.) AND DELAY ELEMENTS (R.D.) FOR A 144-TAP FIR FILTER, 

IMPLEMENTED WITH DIFFERENT THROUGHPUT 

Thro. Algorithms R.M.& 
saved M. 

R.A. & 
saved A. 

R.D.& 
saved D. 

ISC L=4 (4T) 288 308 283
4/N Prop. 

① 
L=9 (3T, 3T) 
Ls=16 (4x4) 72 

216 
 437 

-129 
 972

-689 
 

ISC L=6 (3T, 2T) 360 406 350
6/N Prop. 

② 
L=8 (4T, 2T) 

Ls=18 (2x3x3) 90 
270 

 525 
-119 

 1495
-1145 

 

ISC L=8 (4T,2T) 432 509 415
8/N Prop. 

③ 
L=6 (3T, 2T) 

Ls=24 (2x3x4) 135 
297 

 694 
-185 

 1499
-1084 

 

ISC L=16 (4T, 4T) 576 926 591
16/N Prop. 

④ 
L=4 (4T) 

Ls=36 (3x3x4) 270 
306 

 1384 
+63 

-521 
 1452

-861 
 

ISC L=18 (3T, 3T, 2T) 600 1007 542
18/N Prop. 

⑤ 
L=4 (4T) 

Ls=36 (3x3x4) 270 
330 

 1391 
+112 

-496 
 1307

-765 
 

ISC L=24 (4T, 3T, 2T) 810 1375 698
24/N Prop. 

⑥ 
L=3 (3T) 

Ls=48 (3x4x4) 405 
405 

 2140 
+84 

-849 
 1364

-666 
 

ISC L=48 (4T,4T,3T) 1215 3088 857
48/N Prop. 

⑦ 
L=2 (2T) 

Ls=72 (2x3x3x4) 810 
405 

 4364 
+92 

-1368 
 1060

-203 
 

In Table 5.1, ① and ② can preload input data in less 
clock cycles than the core linear convolution can finish 
processing all the previously loaded data. Thus, in these 
cases, delay element matrices will hold data for the linear 
convolution. Especially in the case of ①, the input data 
can be loaded into the delay element matrix in only 16 
clock cycles, but 36 clock cycles are required to 
implement the 36 16-tap subfilters with the 16x16 core 
linear convolution hardware. Too many input data are 
loaded before they can be processed, which will lead to 
unnecessary large delay element matrices. We can 
actually divide the 36 16-size input data for the 16-tap 
subfilters into two groups, each with 18 16-size input 
data, and load them in consecutive two 16 cycles. The 
second group of data can be loaded in time before the 
linear core finishes processing the first group of data, so 
the processing speed will be maintained. This will reduce 

the number of required delay elements that are counted by 
(4.4) by 50%.  
However, ④, ⑤, ⑥ and ⑦ will use more clock cycles to 
preload input data than the core linear convolution can 
finish processing all the previously loaded data. In order 
to maintain the processing speed, more preprocessing and 
postprocessing matrices are used in parallel. This will 
slightly increase the number of required additions that are 
counted by the (4.2). 

TABLE 5.2 NUMBER OF REQUIRED MULTIPLICATIONS (R.M.), ADDITIONS 
(R.A.) AND DELAY ELEMENTS (R.D.) FOR A 576-TAP FIR FILTER, 

IMPLEMENTED WITH DIFFERENT THROUGHPUT 

Thro
. Algorithms R.M.& 

saved M. 
R.A.& 

saved A. 
R.D.& 

saved D. 
ISC L=12 (4T, 3T) 2160 2326 2126

12/N
Prop. L= 12 (4T, 3T) 

Ls=48 (3x4x4) 405 
1755 

 2347 
-21 

 6875
-4749 

 

ISC L=24 (4T,3T,2T) 3240 3805 3128
24/N

Prop. L=8 (4T, 2T) 
Ls=72 (2x3x3x4) 810 

2430 
 4461 

+170 

-826 
 7472

-4344 
 

ISC L=72(4T,3T,3T,2T) 5400 9428 4796
72/N

Prop. L=4 (4T) 
L= 144 (3x3x4x4) 2025 

3375 
 13780 

+306 

-4658 
 6312

-1516 
 

From Table 5.1 and Table 5.2, we can see that with the 
increase of throughput, we can save more and more 
multiplications at cost of less and less delay elements. 
This is because the higher the throughput, the less the 
number of intermediate results needed to be held by delay 
elements. Although the number of additions also 
increases, it’s reasonable, compared with the number of 
multiplications saved. Thus, the new design can save a 
large amount of hardware cost, compared with the 
previous parallel FIR design. This is especially true when 
the length of the FIR filter is long, as shown in Table 5.2. 
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