Further Complexity Reduction of Parallel FIR Filters

Chao Cheng

Dept. of Electrical and Computer Engineering,
Univ. of Minnesota, Twin Cities
Minneapolis, MN 55455, USA
chao@ece.umn.edu

Abstract— Based on recently published low complexity
parallel FIR filter structures, this paper proposes a new
scheme to further reduce their hardware complexity. FIR
filter is firstly transformed into linear convolution, which is
then implemented by Iterated Short Convolution algorithm.
This linear convolution structure for FIR filter is used as a
processing core to implement the subfitlers of previously
proposed parallel FIR filter structures. Large amount of
hardware can be saved by the new scheme. For example, for
a 576-tap FIR filter, when the parallelism level changes from
12 to 72, the new scheme can save 1755 to 3375
multiplications at the cost of 21 to 4658 additions and 1516
to 4749 delay elements, respectively.

L INTRODUCTION

Fast parallel filter structures have been thoroughly
discussed in [1-7]. Although their basic idea is the same:
i.e., first derive smaller length fast parallel filters and then
cascade or iterate these short length filters for long block
sizes, their starting point is not the same.

Designs in [1-4] are based on polyphase decomposition,
which buries additional delay elements inside the
postaddition matrix and leads to large amount of delay
elements and irregular structures when block sizes are
long. However, the matrix form of linear convolution is
used in [5-7], the delay element is regularly placed and
the fast linear convolution algorithm can be used to
reduce the hardware cost, especially the number of
multiplications.

Recently, an Iterated Short Convolution (ISC) algorithm
for long block size linear convolution was proposed and
used to implement fast parallel FIR filter in [5]. This
approach leads to large amount of hardware savings,
compared to previous designs. According to the iterated
short convolution algorithm in [5],a Lx L (1= LL,-L)
linear convolution can be first decomposed into r short
convolutions, which can be computed by Cook-Toom or
Winograd algorithm [3], Sy =0, H,PX, (i=1,2,--1),
and then combined by (l1.1) to get LxL
convolution.

linear

0-7803-8834-8/05/$20.00 ©2005 IEEE.

1835

Keshab K. Parhi

Dept. of Electrical and Computer Engineering,
Univ. of Minnesota, Twin Cities
Minneapolis, MN 55455, USA
parhi@ece.umn.edu

Sy =40, ®¢-+(Q,,®0,))-H,
(P, ®(+(P, ®P,)X, (1.1)
where, 11, = diag[(P, ® (--(P,, ® P)[h,h...h, ,]']
X, is the input sequence (osXpoex,) and 4, is defined

in [5].
An L (L=LL,---L,) parallel N-tap FIR filter based on

iterated L xL, S a=0,H, P X,
(i=1,2,---r), can be expressed as:

convolutions,

Y,=P"H,Q"A"X, (1.2)
Where’ Y, = [YL—] Y, ., Y,]T ’
X, =[x, X, X, X, tx, x|

X, (i=0,1,...,L-1), represents the inputs Xx,,,. ,
(k=0,1,2...)

H, =diag[Px[Hy,H,,,H, 1]
P=(F,., ®F, . OC(P, . ®F, ..))

myxn,

H,, (1 =0,1,...,L-1) are the subfilters containing the
,(k=0,1,2...),

Lk+i
®(B,.,, ®C(P, ., ®F,.,)))

0" =0, ®(Qy.., ®C(Q, . B0, .,)

When L is large, this iterated short convolution based
parallel involves many subfilters, which contain many
multiplication operations and the same hardware
structure. If we can develop an efficient core to share the
computation of all these subfilters in different time slots,
we can save a lot of hardware cost.

This paper is organized as follows. In section II, we will
first give a scheme to transform N-tap FIR into NxN
linear convolution, which generate N FIR filter outputs in
just 1 clock cycle. In this process, the iterated short
convolution algorithm in [5] will be used to reduce the
hardware cost. Its application to reduce the hardware cost
of previous FIR parallel filter design is discussed in the
following sections. Section III presents the proposed new
parallel FIR filter design. In section IV, we discuss the
computational complexity of the new design. Obvious
reduction of hardware cost will be shown, when a

coefficients
P =(P!

myxm,

comparison between the new design and previous one is
carried in section V.
II. TRANSFORM FIR INTO LINEAR CONVOLUTION

We start with a simple example.
A 3-tap FIR filter can be represented as:

[0 I [h0-x0
WO | a1 x0 B RO - x0+h0- x1
L2 xl X0 2 L HOY [x0] | 42-x0+h1-x]+40-x2

B0 %3442 x1+hl-x2

e RO2| | x2| =| Bl x3+ 0. ¥E+h2: x2

y2| 2322 al|[hO] [AO~p2 h1||x
y3|=| x4 v3\x2 | Al |=

v4| x5 x4 a3\ [h2] (62 M WO| 33| | h2-a3+hl x4+h0 xS
YS| | S x4 N T N R
T NS FR2 | x5 h

Trefi2:x5
- -t IR ; @
The computation of 3-tap FIR filter is transformed into
that of 3x3 linear convolution algorithm. The last two
rows of the five outputs of previous 3x3 linear
convolution are summed with the upper two rows of the
five outputs of the following convolution to get the 3
outputs of the 3-tap filter.

This property can be generalized, when an N-tap FIR
filter is represented in the form of (2.1). The last N-1 rows
of the 2N-1 outputs of previous NxN linear convolution
are summed with the upper N-1 rows of the 2N-1 outputs
of the following convolution to get the N outputs of the
N-tap filter. Then the N-tap FIR filter can be represented
with NxN linear convolution and can be represented as:

x(kN) :CA) y(.kl\;/)
x(kN +1) .
MMEAN o) MV EN-2)
NxN Linear X Y(kN + N -1)
: Convolution ”
x(kN+N-1) _@_
— f where,k =0,1,2,...

Fig. 2. 1. Implementation of N-tap FIR filter with NxN
linear convoltution.
In Fig. 2.1, the hardware cost will depend on the
complexity of the NxN linear convolution. Additional N-1
additions and N-1 delay elements are also required. We
will use iterated short convolution algorithm in [5] to
compute NxN linear convolution.

III. IMPROVED FAST PARALLEL FIR FILTER

STRUCTURE

According to (1.2), 2-parallel 6-tap FIR filter with
coefficients {hO, hl, h2, h3, h4, h5, h6} can be
represented as:
Y, :PzT'Hz'QZT’XL

where, outputs v, =[y(2k) y(2k+D)]’;

inputs x, =[x(2k+1) x(2k) x(2k-1)];k=0,1,2....
H, =diag[HO HO-H1 HI1]; HO={h0, h2, h4},
HO-H1={h1-h1, h3-h2, h5-h3}, H1={hl1, h3, h5};

3.1)

1836

10 100].
B=[1-1] 0, =[1-11
01 001

It can be implemented as shown in Fig. 3.1.

x(2k+1) Yk+1)
x(2k) T T >
O, o Py | vk
>{D}>

Fig. 3.1 implementation of 2-parallel FIR filter

In Fig. 3.1, HO, HO-H1, H1 are all 3-tap subfilters and
require 9 multiplications, 6 additions and 6 delay
elements. They have the same hardware structure, thus
can be implemented, in consecutive time slots, with the
same structure as shown in Fig. 2.1 (N=3).

We must first get the 3 consecutive inputs for each of
these three 3-tap subfilters. These inputs can be first
loaded from the first 6 sampling inputs, which will result
in 3-clock delay before the filtering. When the outputs
from the 3 subfilters HO, HO-H1 and H1 are computed in
3 consecutives with the structure in Fig. 2.1, 3 groups of
new data are loaded. This process can be implemented
with the following structure:

Q0 €Q1 Q2 HIHO-HI,HO CPO CP1 CP2

—N—
YV Y vy Y iy
> N
[oo w [7] e AP 3

N g g %Y e el e e ,
39 +(2) Ly B}»| Matrix |y Tution LY Matrix igj {8
x(3) x(4) -> v V)

Fig. 3.2 (a) Proposed new 3-parallel FIR filter

co Cl 2

— = Delay

Ly Element
—>» Matrix >

Fig. 3.2 (b) 3x3 Delay element Matrix
C2 Vo
|

Vo
C2
Ly <:> Hi Ho
Ho
Vi

Tvi

Hi —

Fig. 3.2 (c) Delay element function

The data flow of the delay element matrix in Fig. 3.2 (b)
is ‘horizontal in, vertical out’ or ‘vertical in, horizontal
out’ and controlled by CO, C1 and C2 signals. CO signal
controls whether the data are ‘horizontal’ in or ‘vertical
in’. Cl signal controls whether the data are ‘horizontal
out’ or ‘vertical out’. C2 signal controls whether the data
flow horizontally or vertically in the delay element
matrix.

A 3x3 linear convolution can be implemented with fast
linear convolution algorithm by 5 multiplications and 14
additions. The proposed structure for subfilters requires 5
multiplications, 16 additions and 24 delay elements. Thus

it saves 4 multiplications at the cost of 10 additions and
18 delay elements.

The proposed structure can compute 6 input data in 3
clock cycles, thus it has the same throughput rate as
previous 2-parallel FIR filter structure.

The proposed structures for a given L-parallel N-tap FIR
filter can be generalized as:

(DForm an ISC based FIR filter by (1.2); @ Replace the
subfilters with a core (N/L)x(N/L) linear convolution and
two delay element matrices to arrange the input and
output of the (N/L)x(N/L) linear convolution;
Implement the (N/L)x(N/L) linear convolution using the
iterated short convolution algorithm.

IV. COMPLEXITY COMPUTATION

For a proposed L-parallel N-tap FIR filter, the
computation is based on (N/L)x(N/L) linear convolution,
which can be implemented with the iterated short
convolution algorithm in [5].

The hardware complexity is computed as follows.

1) The number of required multiplications for the parallel
FIR filter is equal to that of (N/L)x(N/L) linear
convolution. If N/L can be decomposed as L,L,---L_,
then the number of required multiplications can be given
as:

4.1)

M :ﬁM,
i=1

where, s is the number of 1 xz convolutions used to
implement (N/L)x(N/L) linear convolution in (1.1), p, is
the number of multiplications used in the [x[,
convolution, which is determined by 7, .

2) The number of required additions is made up of three
parts: (O additions used for the preprocessing and
postprocessing matrices P" and Q7 in (1.2); @ additions
used to implement the (N/L)x(N/L) linear convolution by
iterated short convolution (1.1); 3 additions used in Fig.
2.2 for transforming (N/L)-tap FIR filter into (N/L)x(N/L)
linear convolution, which can be given by (N/L)-1.

Therefore, the total number of required addition can be
given by:

A= 2{(]![n,.>(f[mk>A<fzf,m,)} + 2{(f[n,><f[mk)A(QJ,‘,m,)}
k=i+1

i=l | j=1 i=l | j=l =i+l

s i-1 s s i1 s
+Z{(Hn,)(]‘[mk)A(Pm,x,,,)}+Z{(Hn,-)(HmnA(Q,,,,m,)}2’—1
i=1 =1 k=i+1 i=1 =1 k=i+1
4.2)
where, r is the number of ; «xz convolutions used to

implement the L-parallel FIR filter in (1.2). Function
AM,,) is the minimum number of adders used to

calculate s x ,where x =[x, x,,---x,] -

3) The number of required delay elements is also made up
of three parts: O L-1 delay elements in the input side as

1837

shown in (1.2); @ delay elements used in Fig. 2.2 for
transforming (N/L)-tap FIR filter into (N/L)x(N/L) linear

convolution, which can be given by [H M](% _1); ®

delay elements used in the two delay element matrices,
which can be noted as 2D, , where D, is given by

- N (1 N)|T N
D“:(I;IM"J'Z*—mm((l:I[M")’ZJ'(IA:IM‘)_I

where, H M, is actually the number of output of matrix
i=1

(4.3)

0" in (1.2) and is also the number of input data that go

into the delay element matrix before the (N/L)x(N/L)
linear convolution; it may be greater or less than N/L,
and may be equal to N/L as in Fig. 3.2; when it is less
than N/L, the shape of the delay element matrix is like
Fig. 4.1 (a); when it is greater than N/L, the shape of the
delay element matrix is like Fig. 4.1 (b).

Nzl Al
= N/L = Aj”-
=
—_ ;
]:[M, I HM i)
(a) (b)

Fig 4.1 Shape of delay element matrix;

Therefore, the total number of required delay elements
can be given by:

: N
D:[HMAJ(Z—ljuDﬁL—l

V. IMPLEMENTATION ANALYSIS AND COMPLEXITY
COMPARISON

(4.4)

As shown in the example of section II, the number of
clock cycles required for the computation of the new
structure depends on the number of subfilters of previous
parallel FIR filter design. When the number of subfilters
is too large, the proposed structure will have lower
throughput rate, and thus may not be comparable to
previous designs under the same criterion. Therefore, we
may need to change the level of parallelism of the new
structure, in order to control the number of subfilters to
make sure the new structure and the previous one have the
same throughput rate.

Here is another example. For a 4 parallel 24-tap FIR filter,
the previous structures will use 6 clock cycles to compute
24 sampling data. But this 4-parallel filter has 9 subfilters.
If we use this structure directly, the proposed design will
require 9 clock cycles to compute 24 samples. In order to
compensate this, we must use a 3-parallel structure,
because it will have 6 subfilters. Then the length of the

core linear convolution will be 24/3=8, which is also the
length of the subfilters in the 3-parallel structure. In this
case, the new structure requires 3x9=27 multiplications,
when 8 is decomposed as 2x4. However, the previous
structure needs 9x6=54 multiplications, which is two
times that of the new structure.

Compared with previous ISC based parallel FIR filter
design, the new design can save large amount of hardware
cost. A comparison in terms of required multiplications,
additions and delay elements are summarized for different
throughput rates in Table 5.1 for a 144-tap FIR filter and
Table 5.2 for a 576-tap FIR filter. ‘T’ means the transpose
forms of used short linear convolutions.

TABLE 5.1 NUMBER OF REQUIRED MULTIPLICATIONS (R.M.), ADDITIONS
(R.A.) AND DELAY ELEMENTS (R.D.) FOR A 144-TAP FIR FILTER,
IMPLEMENTED WITH DIFFERENT THROUGHPUT

. R.M.& RA. & R.D.&

Thro. Algorithms saved M. saved A. saved D.
4N ;rso(; L—L9=f3(T4T3)T) a6 [20129 7 e

o | Tetecns | 7 437 972
N PISC t:g S:llj, ii; 360 270 406 119 350 1145

Top. =]

5 | L8 oxd) | 525 1495

ISC L=8 (4T,2T) 432 297 509 185 415 1084
SN | Prop. | L=6 (3T.2T) | |3, 694 1499

® Ls=24 (2x3x4)

ISC L=16 (4T, 47T) 576 306 926 591 591 861
16/N[Prop. L=4 (4T) 70 1384 1452

@ | Ls=36 (3x3x4) +63

ISC |L=18 (3T, 3T, 2T)| 600 330 1007 496 542 765
18/N| Prop. L=4 (4T) 270 1391 1307

® | Ls=36(3x3x4) +112

ISC |L=24 (4T, 3T, 2T)| 810 405 1375 849 698 -666
24/N[Prop. =3 (3T) 105 2140 64

©® | Ls=48 (3xdxd) +84

ISC | L=48 (4T, 4T,3T) | 1215 405 3088 1368 857 203
48/N[Prop. L=22T) 810 4364 1060

@ | Ls=72 (2x3x3x4) +92

In Table 5.1, @ and @ can preload input data in less
clock cycles than the core linear convolution can finish
processing all the previously loaded data. Thus, in these
cases, delay element matrices will hold data for the linear
convolution. Especially in the case of D, the input data
can be loaded into the delay element matrix in only 16
clock cycles, but 36 clock cycles are required to
implement the 36 16-tap subfilters with the 16x16 core
linear convolution hardware. Too many input data are
loaded before they can be processed, which will lead to
unnecessary large delay element matrices. We can
actually divide the 36 16-size input data for the 16-tap
subfilters into two groups, each with 18 16-size input
data, and load them in consecutive two 16 cycles. The
second group of data can be loaded in time before the
linear core finishes processing the first group of data, so
the processing speed will be maintained. This will reduce

1838

the number of required delay elements that are counted by
(4.4) by 50%.

However, @, ®, ® and (D will use more clock cycles to
preload input data than the core linear convolution can
finish processing all the previously loaded data. In order
to maintain the processing speed, more preprocessing and
postprocessing matrices are used in parallel. This will
slightly increase the number of required additions that are
counted by the (4.2).

TABLE 5.2 NUMBER OF REQUIRED MULTIPLICATIONS (R.M.), ADDITIONS
(R.A.) AND DELAY ELEMENTS (R.D.) FOR A 576-TAP FIR FILTER,
IMPLEMENTED WITH DIFFERENT THROUGHPUT

Thro Algorithms RM.& RA& RD.&
g saved M. saved A. saved D.
ISC| L=12(4T.3T) |2160|, s 2326 |, [2126] 4 49
12/N L= 12 (4T, 3T)
Prop| | (Grixd) 405 2347 6875
ISC| L=24 (4T3T.2T) |3240|, .01 3805 | o, [3128] .,
24/N o L=8 (4T, 2T) 810 4461 2472
Pl Ls=72 (2x3x3x4) +170
. ISC L=72(L4133(I,T3;)T,2T) 5400|355 193472880 658 1479 1516
Prop| |- 144 3x3x4xa) 295 1306 6312

From Table 5.1 and Table 5.2, we can see that with the
increase of throughput, we can save more and more
multiplications at cost of less and less delay elements.
This is because the higher the throughput, the less the
number of intermediate results needed to be held by delay
elements. Although the number of additions also
increases, it’s reasonable, compared with the number of
multiplications saved. Thus, the new design can save a
large amount of hardware cost, compared with the
previous parallel FIR design. This is especially true when
the length of the FIR filter is long, as shown in Table 5.2.

REFERENCES

D.A. Parker and K.K. Parhi, "Low-Area/Power Parallel FIR
Digital Filter Implementations", Journal of VLSI Signal Processing
Systems, Vol. 17, No.1, pp. 75-92, Sept. 1997.

J.G. Chung and K.K. Parhi, "Frequency-Spectrum Based Low-
Area Low-Power Parallel FIR Filter Design", EURASIP Journal
on Applied Signal Processing, Vol. 2002, No. 9, pp. 444-453,
2002.

K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation, John Wiley and Sons, 1999.

Z. -J. Mou and P. Duhamel, “Short-length FIR filters and their use
in fast nonrecursive filtering,” [EEE Transactions on Signal
Processing, vol. 39, pp. 1322-1332, June 1991.

Chao Cheng, K. K. Parhi, "Hardware Efficient Fast Parallel FIR
Filter Structures Based on Iterated Short Convolution," /EEE
Transactions. on Circuits and System-1: Regular Papers, vol. 51,
No.8, August 2004.

J.I. Acha, “Computational structures for fast implementation of L-
path and L-block digital filters,” Circuits and Systems, IEEE
Transactions on, Vol. 36, pp. 805 —812, June 1989.

I-S. Lin and S.K. Mitra, “Overlapped block digital filtering,”

Circuits and Systems II: Analog and Digital Signal Processing,
IEEE Transactions on, Vol. 43, pp. 586 —596, Aug. 1996.

(1]

[2]

[3]

[4]

(3]

(6]

[7]

