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Abstract—We study the mathematical treatment |l. CHARACTERIZATION OF RANDOM SIGNALS
of phase noise in oscillators. The stochastic Process A The Oscillator
is characterized and the relevant quantities for the

OFDM performance are discussed. Comparing with We consider an oscillator signal of average power
line core measurements, we argue that more attention equal to one given by

should be paid to theslow part of the phase noise.
P P P z(t) = V2 cos (2w fot + ©(t)) . 1)

The center frequency is denoted By, and p(t)
I. INTRODUCTION is a random time-variant phase that we model as a
stochastic process. Let(t) = exp (je(t)) be the

SCILLATOR phase noise is often a criticalcomplex baseband signal corresponding:(o), i.e.
item in the receiver design for an OFDM _ .
system. There exists a long list of papers that deal #(t) = ﬁ%{z(t) exp(j2m fol)}- @
with this item. In this connection, the main interestWe define the time derivative of the phas€f) =
seems to be thinter-carrier interference (ICl), see ¢(t), as the (angular) instantanuous frequency of the
e.g. [1], [2], [3], [4], [5]. It is caused by theapid signal.
part of the phase fluctuations and depends on the To distinguish between a stochastic process and
line wings (the outer parts of the spectral shape). one of its possible realisations callsdmple path,
However, theslow part of of the phase fluctu- We use capital letterX'(¢), ®(¢), Q(¢) and Z(¢) for
ations may cause additional degradations for eadhe stochastic processes with the sample paths
single carrier of an OFDM system in a time-varianto(t), w(t), andz(t).
fading (mobile) radio channel. This is because the
OFDM symbol length is typically choosen to beB. Autocorrelation and Power Density Spectrum
as long as possible to cope with long echoes. The\ye assume that the instantanuous angular fre-

limitation is giyen by_the time variance _of th‘?quencyQ(t) — &(t) is a stationary process with
channel. If the time variance of the local oscillator is, ;g correlation function (ACF)

of the same order, both must be considered together.
Measurements suggest that there is really a need Rq (t) = E{Q(t1 +)Q(t1)} . 3)

for such investigations. To investigate these effect§hiS implies that X (¢) is wide-sense stationary

analytically or by computer simulations, one hafWSS) [6]. Its ACF,Rx (1), is related to the complex
to choose an appropriate stochastic model for tkl‘r;aseband ACE ’ ’

random signal of the oscillator phase.

We note that this stochastic process is not uniquely Rz (t) =E{Z(t1 +t) Z" ()}, 4)
determined by the line shape of the oscillator how if
can be seen on the spectrum analyzer. To get more Ry (1) = R{R, (t o ft 5
insight into its statistical properties, the phase itself x(®) {Rz (1) exp (j2m fot)}- ®)
must be measured. Note thatRx (0) = Rz(0) = 1 is the average total

In this paper, we discuss stochastic models fgtower of the random signal. For a WSS process with
this random phase that can be applied to analy$&€F Rx (1), the power spectral density (PSB) f)
the impact of phase noise on the performance of dh given as the Fourier transform of the ACF, i.e.
OFDM system. We compare with measurements and ™ —jonft
sketch the direction of future work. S(f)= /_Oo R(t)e dt 6)



We denote the ACF for the random phabg) as  For a small phase angle, the exponential can be
approximated by one and we may wrife, (1)

R (t1,t2) = E{® (t1) P (t2)}. (7) Rq(t). From the Lemma we then conclude that for
small values of the relation

For the proces®(t), the WSS property can often not i
be assumed. There exist reasonable model processes Rz(t) ~ —Rq (1) (15)

for (¢) that are not WSS. The most popular one igy,|4s From this relation, we may heuristically argue
the Wiener process that we treat in the next sectio

~
~

For such processes, the PSD can not defined by Eq. 1

(6), even though one may attempt to calculate a PSD  Sz(f) =

from a sample path with numerical methods .

C. Relations Between the Spectra

H—mzoalf) (16)

(27 f)?
holds. Note that for this version of the SMAP, it was

not necessarry to assume thiatt) is WSS andSs
is well-defined. If it is even WSS, we may conclude

(f = £00)

We derive a simple relation between the PSD dfom (11) and (16) that the relation

a stochastic process and the PSD of its derivative.
Lemma 1. Let Z(¢t) be a WSS stochastic process

Sz(f) = Sa(f) (f — £o0) (17)

(complex or real) with the ACFRz(t). Then the holds.
time-derivative Z(t) is also WSS and its ACF is

given by )
R, (t) = =Rz (1), (8)

where R(t) denotes the second time-derivative

R(t). _

Proof: The ACF of Z(t) is given by

. . 9?2
E{Z (1) 77 (1)} = 5= -E{Z (1) Z" ()}
©)
Using the WSS property of (t) we may write
0?2 .

MRZ (t1 —t2) = —Rz (t1 — t2) (10)

which completes the proof. [ |

Corollary 1: If ®(t) is WSS, then the relation

IIl. WIENER PHASE NOISE

The Wiener (or Wiener-Lévy) proces$¥ (t) was
O]originally introduced as a statistical model to de-
scribe certain diffusion processes like Brownian mo-
tion [7]. For us, it is most convenient to defifé(¢)
as integrated white noise, i.e.

/Ot N (7) dr,

where N (t) is white Gaussian noise with an ACF
given by

W(t)

(18)

Ry (t) = 2Dod(t), (19)

where Dy is called thediffusion constant. Because
such a Gaussiaphase diffusion is very easy to
analyse, several authors (see e.g. [1], [3], [5]) used
the modelQ2(t) = N(t), i.e.

o(t) = W(t) + @0,

(20)

Proof: This follows from the Lemma by setting Where®, = ®(0) is a uniformly distributed (initial)

1
58(£) = G ppolf) (1)
holds.
Ro (t) = —Rg (t). 12)
[

To relate the aymptotic behavior ofqo(f) and
Sz(f) for f — +oo, we make the so-callesmall

random phase.
The ACF of W (t) can easily be derived as

Rw(tl, tg) = 2Dy min(tl, tg) (21)

for t1,t, > 0. Obviously, W (t) is not WSS, but it
is Gaussian with variance

angle approximation (SMAP, see e.g. [2], [4]). We

study the behavior for smadlwhich corresponds to

small (phase) angles. From

Z(t) = jQU) Z(t)

(13)

we conclude

Ry (t) = E{Q (#) 2 (0) exp (j /OtQ () dt') }
(14)

o> = Rw (t,t) = 2Dy [t] (22)

(which reflects Einstein’s [8] famous result about
Brownian Motion). The ACFRz(t) can easily be
obtained from the characteristic functiari(k) =
exp (—%0%2) for the Gaussian random variable
W (t) to be

Ry(t) = exp(—Do |t]). (23)



The corresponding PSD is the Lorentzian and (by using Parseval's equation)

_ 2 1 UQZ/OOG 280 (f)d 31
S2(0) = 5T @nf /Do) (24) o= [ GO Sa(f)df, (31)
with 3dB bandwidth whereG (f) is the Fourier transform of(t).
D We note that fort > 0, the ACF Ry (t) is just
B = 2—72 (25) the characteristic function (28) d, for g(7) =

o . _ rectr/t) evaluated ak = 1. We write
The PSDSq(f) = 2Dy is simply white noise. The

PSD Ss(f) of the phased(t) itself is not defined Rz (t) = E{GXP (—%U?ect(t)>} (32)
becauseb(t) is not WSS. where the expressions

We note that this phase diffusion model is an -
appropriate model rather for a laser than for a quartz  ofact(t) = t2/ siné (ft) Sa (f)df  (33)
oscillator (see the discussion in [9], [2]). The phase -0
noise sample path of a quartz oscillator (see Figu’ +
1 below) looks very different from Wiener Brownian otect(t) = / t (t—|r) R (r)dr  (34)
motion which has a sample path that is continuous . g
but nowhere differentiable. The reason for using thi(s:an be derived from from Eq. (31).
process it is more or less its simplicity for theoretical Asymptotic Behavior
analysis and for simulation. Note that the Lorentzian

. : w _ tor ¢ s .
decays very poorly as f~2 which may lead to an Sincet - $inc* (f¢) — §(f) for £ — co we obtain

2 e
overestimation of the intercarrier-interference (ICI) };,,, orect(t) = 6 (0) :/ Rq (1) dr =: 2a
for OFDM systems. tooo 1 —o0 (35)
IV. GENERAL GAUSSIAN PHASE NOISE which means that
Ry (t) ~ exp (—at) (36)

We may now generalize from the Wiener phase
noise to arbitrary Gaussian processes. Gaussian pfor ¢t — oco. If there is acorrelation time 7. of the
cesses are also convenient for the theoretical analypi®cess(2 (t) with the property thatRqg (t) ~ 0
as well as for computer simulations. Note that anfor ¢ > 7. we conclude from Egs. (34,35) that
Gaussian process can be obtained as suitably filtereﬁgct(t) ~ 2at and, thus, the relation (36) holds
white Gaussian noise. for t > 7.. Thus, if the correlation time, is small

We consider the case that the phase is driven byemough compared to the time contamt! of the
general (non-white) mean-zero stationary Gaussiaxponential decay, i.e. if

process(t), i.e. Sa(0)r. < 1, 37)
O(t) = /tQ(T) dr + ®,. (26) the ACF is governed by (36). Then the line core
0 of Sz (f) is Lorentzian shaped wittDy = « in
A (mean-zero) Gaussian procelét) can be char- Equation (24).
acterized by the fact that its detector output For the line wings, we conclude from (16) that of
0o Sz (f) must decay faster thafi 2 if we can assume
Qy = /Oog(t)ﬂ(t)dt (27)  that S () is integrable.

for any linear measurement given byt) is a Gaus- B. Gaussian Processes and Cumulants
sian (mean-zero) random variable. The characteristic\yg would like to point out that Gaussian pro-

function of €}, is given by cesses can be interpreted as the second order ap-

proximation of the cumulant expansion of a more
general stochastic process, see [10]. The higher-
(28)  order cumulants are small if

o2 =e{a2}. (29) e <1, (38)
wherer, is the correlation time angl is the strength
of the process that may be defined e.g. by

o2 = /_ O:O g(1)(Roxg) (dt  (30) v =e{2’)}. (39)

. 1
Co, (k) = E {exp (jk9Q,)} = exp (_§g§k2

with

Using stationarity, we find the expression



V. THE EFFECTOF PHASE NOISEON OFDM (and correct) this phase error [4], [2]. A frequency-
We now consider an OFDM system with car-Selective static fading channel does not hurt. In that
rier spacingl/T. If the transmision is corrupted C@S€,5:80 has only to be replaced by 1,0y,
by nothing else but the multiplicative phase nois&here Hy is the complex fading amplitude at the
processZ(t), the Fourier analysis detector output aff€duency fi. For a time-variant channel transfer

subcarrier frequency, = k/T is given by Lungtion H,_g(r:‘,), however, the desired term is given
y SipZ, wit
Ry=> SpOp_i, (40) 1 T
v == / Hy (1) Z (¢) dt. (46)
0

where the S, are the (PSK or QAM) modulation

symbols, and the random variables are given by Now the time variance is no longer common to

all frequencies, and the time-variant fading at each
o) = 1 /T exp (j2rkt/T) Z (t) dt. (41) subgar_rier_ frequency, is affected by an agditional
T Jo multiplicative factor due to the phase noise. If the
system has already to cope withst fading, the
A. Inter-Carrier Interference (ICI) problems become more severe if the time variance of
The terms in the sum (40) with’ # k are unde- the phase-noise is in the same order as time variance
sired contributions (due to the loss of orthogonalitypf the channel. The Doppler spectrusip(f) expe-
from other subcarriers and are thus named intefiences an additional broadening By (). The re-
carrier interference (ICI) terms. They are due to th&ulting spectrum is given by the convolutiéiy (f)
rapid part of the phase fluctuations. The contribuSz(f), and its bandwidth is approximately the sum
tions are statistically independent if the factsts  of the bandwidth of the components. For a system
can assumed to be independent zero-mean randwvth differential PSK (like DAB), the phase errors
variables. The variance of each of them can bef both components add up. For a system with
calculated, and thaignal-to-interference ratio can coherent demodulation, the channel estimation will
be obtained as [4] be degraded due to the slow phase fluctuations over
oo 1 several OFDM symbols. It is surprising that very few
SIRy = </ Sz (f)Wrcrk (fT) df) (42) attention has paid to this problems in the literature.
- We note that even in a static Gaussian channel, the
with the ICI weighting function CPE becomes more severe if the OFDM carrier spac-
_ . / ing 1/T decreases. This can easily be understood for
Wicrk(z) = >_ sinc (z— (k= k)  (43) Wien/er phase noise. From Einstein’s equation (22)

one may argue thab? grows linearly with7. This
which can conveniently be approximated by a simx y arg g y

ler f ion if When the li _ éan be proven. In fact, we can easily derive from
pler function 1t necessary. en the line wings o gs. (21), 44, and (45) that for Wiener phase noise
Sx(f) are known by measurement, tif&/ R can

the equation

k'#k

thus easily be evaluated. 2
®* = 2 DyT (47)
B. Sow Phase Fluctuations holds. We expect a similar behavior for other pro-
cesses.

In the sum in Eq. (40), the tern$.©y corre-
sponding tok’ = k contains the desired information VI

. . AN EXAMPLE OF MEASURED PHASE NOISE
symbol .S, but phase-shifted by a phasor

- To illustrate the theoretical concepts, we refer to
Oy = l/ Z(t)dt (44) @ practical example. Because ICI effects on OFDM
T Jo systems are already well-understood, we focus our
that is common to all subcarriers. Its average phasattention to the line core. We study a quartz os-
shift @ is thus named theommon phase error (CPE) cillator stabilized by a PLL and located at the
and can be characterized by center frequencyfy = 24.576 MHz. After down-
52 — E{@z} (45) conversion to frequency zero, one million sa_mples
- 0f- of the quadrature components were recotdeith

In the literature, the CPE is usua"y not regarded 1The author would like to thank Dr. Frank Hofmann at Robert

as a (_:ritical ite_m if continuous pilot carriers haveBosch GmbH for providing him with these data sampled from
been inserted into the OFDM symbols to estimate laboratory prototype.



a sampling frequency of; = 24000 Hz, leading to a frequency components may become quite important
measured sample path of 41.667 seconds. A residead. in a DRM system where the Doppler spread is
frequency offset has been corrected digitally. Figuref the same order. From a more detailed numerical
1 shows the sample path of the phase obtained froamalysis we found that both conditions (37) and (38)
for Wiener and Gaussian processes are not fulfilled
and, thus, more sophicticated models are necessary
to reflect the reality.

Sample Path of the Phase
3 T T T T

VIl. DIScUSSION ANDCONCLUSIONS

We have discussed the parameters that character-
ize ocillator phase noise to understand their impact
on OFDM systems. ICI effects are well understood
and have been treated frequently in the literature.
These additive perturbations depend only on the
wings of the spectral line shap&;(f), but not
directly on the statistical properties of the phase. For
25 simulations, we may thus use any model process.

In contrast, the effects of the phase erdris
much less understood and its effect on an OFDM
system is often neglected. The measured phase noise
example shows that one should take more care of

this measurement. One can see clearly that thelte To analyse the OFDM system performance by
are slow fluctuations in the phase on the time scalumerical simulations, either a reasonable statistical
of one second, which leads to the conclusion thanodel must be chosen (Wiener and Gaussian seems
there is a correlation time, of that order. Figure 2 to be too simple), or the the recorded sample paths
shows the spectr&z(f), Se(f), and %Sﬂ(f) themselves may be used for simulations. This is our

. . 2mf)? . .
on a logarithmic scale. We observe a decay of 4gtarting point for future work.

t [sec]

Fig. 1. Sample path of the measured Phase.
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