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Abstract— We study the mathematical treatment
of phase noise in oscillators. The stochastic process
is characterized and the relevant quantities for the
OFDM performance are discussed. Comparing with
line core measurements, we argue that more attention
should be paid to theslow part of the phase noise.

I. INTRODUCTION

OSCILLATOR phase noise is often a critical
item in the receiver design for an OFDM

system. There exists a long list of papers that deal
with this item. In this connection, the main interest
seems to be theinter-carrier interference (ICI), see
e.g. [1], [2], [3], [4], [5]. It is caused by therapid
part of the phase fluctuations and depends on the
line wings (the outer parts of the spectral shape).

However, theslow part of of the phase fluctu-
ations may cause additional degradations for each
single carrier of an OFDM system in a time-variant
fading (mobile) radio channel. This is because the
OFDM symbol length is typically choosen to be
as long as possible to cope with long echoes. The
limitation is given by the time variance of the
channel. If the time variance of the local oscillator is
of the same order, both must be considered together.
Measurements suggest that there is really a need
for such investigations. To investigate these effects
analytically or by computer simulations, one has
to choose an appropriate stochastic model for the
random signal of the oscillator phase.

We note that this stochastic process is not uniquely
determined by the line shape of the oscillator how it
can be seen on the spectrum analyzer. To get more
insight into its statistical properties, the phase itself
must be measured.

In this paper, we discuss stochastic models for
this random phase that can be applied to analyse
the impact of phase noise on the performance of an
OFDM system. We compare with measurements and
sketch the direction of future work.

II. CHARACTERIZATION OF RANDOM SIGNALS

A. The Oscillator

We consider an oscillator signal of average power
equal to one given by

x(t) =
√

2 cos (2πf0t + ϕ(t)) . (1)

The center frequency is denoted byf0, and ϕ(t)
is a random time-variant phase that we model as a
stochastic process. Letz(t) = exp (jϕ(t)) be the
complex baseband signal corresponding tox(t), i.e.

x(t) =
√

2<{z(t) exp(j2πf0t)}. (2)

We define the time derivative of the phase,ω(t) =
ϕ̇(t), as the (angular) instantanuous frequency of the
signal.

To distinguish between a stochastic process and
one of its possible realisations calledsample path,
we use capital lettersX(t), Φ(t), Ω(t) andZ(t) for
the stochastic processes with the sample pathsx(t),
ϕ(t), ω(t), andz(t).

B. Autocorrelation and Power Density Spectrum

We assume that the instantanuous angular fre-
quencyΩ(t) = Φ̇(t) is a stationary process with
autocorrelation function (ACF)

RΩ (t) = E{Ω(t1 + t)Ω(t1)} . (3)

This implies that X(t) is wide-sense stationary
(WSS) [6]. Its ACF,RX (t), is related to the complex
baseband ACF,

RZ (t) = E{Z (t1 + t)Z∗ (t1)} , (4)

by
RX (t) = <{RZ (t) exp (j2πf0t)} . (5)

Note thatRX(0) = RZ(0) = 1 is the average total
power of the random signal. For a WSS process with
ACF RX (t), the power spectral density (PSD)S (f)
is given as the Fourier transform of the ACF, i.e.

S (f) =

∫ ∞

−∞
R(t)e−j2πftdt (6)



We denote the ACF for the random phaseΦ(t) as

RΦ (t1, t2) = E{Φ (t1)Φ (t2)} . (7)

For the processΦ(t), the WSS property can often not
be assumed. There exist reasonable model processes
for Φ(t) that are not WSS. The most popular one is
the Wiener process that we treat in the next section.
For such processes, the PSD can not defined by Eq.
(6), even though one may attempt to calculate a PSD
from a sample path with numerical methods .

C. Relations Between the Spectra

We derive a simple relation between the PSD of
a stochastic process and the PSD of its derivative.

Lemma 1: Let Z(t) be a WSS stochastic process
(complex or real) with the ACFRZ(t). Then the
time-derivativeŻ(t) is also WSS and its ACF is
given by

RŻ(t) = −R̈Z(t), (8)

where R̈(t) denotes the second time-derivative of
R(t).

Proof: The ACF of Ż(t) is given by

E
{

Ż (t1) Ż∗ (t2)
}

=
∂2

∂t1∂t2
E{Z (t1)Z∗ (t2)} .

(9)
Using the WSS property ofZ(t) we may write

∂2

∂t1∂t2
RZ (t1 − t2) = −R̈Z (t1 − t2) (10)

which completes the proof.
Corollary 1: If Φ(t) is WSS, then the relation

SΦ(f) =
1

(2πf)2
SΩ(f) (11)

holds.
Proof: This follows from the Lemma by setting

RΩ (t) = −R̈Φ (t) . (12)

To relate the aymptotic behavior ofSΩ(f) and
SZ(f) for f → ±∞, we make the so-calledsmall
angle approximation (SMAP, see e.g. [2], [4]). We
study the behavior for smallt which corresponds to
small (phase) angles. From

Ż(t) = jΩ(t)Z(t) (13)

we conclude

RŻ (t) = E
{

Ω (t)Ω (0) exp

(

j

∫ t

0
Ω

(

t′
)

dt′
)}

.

(14)

For a small phase angle, the exponential can be
approximated by one and we may writeRŻ (t) ≈
RΩ (t). From the Lemma we then conclude that for
small values oft the relation

R̈Z(t) ≈ −RΩ (t) (15)

holds. From this relation, we may heuristically argue
that

SZ(f) ≈ 1

(2πf)2
SΩ(f) (f → ±∞) (16)

holds. Note that for this version of the SMAP, it was
not necessarry to assume thatΦ(t) is WSS andSΦ

is well-defined. If it is even WSS, we may conclude
from (11) and (16) that the relation

SZ(f) ≈ SΦ(f) (f → ±∞) (17)

holds.

III. W IENER PHASE NOISE

The Wiener (or Wiener-Lévy) processW (t) was
originally introduced as a statistical model to de-
scribe certain diffusion processes like Brownian mo-
tion [7]. For us, it is most convenient to defineW (t)
as integrated white noise, i.e.

W (t) =

∫ t

0
N (τ) dτ, (18)

whereN (t) is white Gaussian noise with an ACF
given by

RN (t) = 2D0δ(t), (19)

whereD0 is called thediffusion constant. Because
such a Gaussianphase diffusion is very easy to
analyse, several authors (see e.g. [1], [3], [5]) used
the modelΩ(t) = N(t), i.e.

Φ(t) = W (t) + Φ0, (20)

whereΦ0 = Φ(0) is a uniformly distributed (initial)
random phase.

The ACF ofW (t) can easily be derived as

RW (t1, t2) = 2D0 min(t1, t2) (21)

for t1, t2 ≥ 0. Obviously,W (t) is not WSS, but it
is Gaussian with variance

σ2 = RW (t, t) = 2D0 |t| (22)

(which reflects Einstein’s [8] famous result about
Brownian Motion). The ACFRZ(t) can easily be
obtained from the characteristic functionC(k) =

exp
(

−1
2σ2k2

)

for the Gaussian random variable
W (t) to be

RZ(t) = exp(−D0 |t|). (23)



The corresponding PSD is the Lorentzian

SZ(f) =
2

D0

1

1 + (2πf/D0)2
(24)

with 3dB bandwidth

β =
D0

2π
. (25)

The PSDSΩ(f) = 2D0 is simply white noise. The
PSD SΦ(f) of the phaseΦ(t) itself is not defined
becauseΦ(t) is not WSS.

We note that this phase diffusion model is an
appropriate model rather for a laser than for a quartz
oscillator (see the discussion in [9], [2]). The phase
noise sample path of a quartz oscillator (see Figure
1 below) looks very different from Wiener Brownian
motion which has a sample path that is continuous,
but nowhere differentiable. The reason for using this
process it is more or less its simplicity for theoretical
analysis and for simulation. Note that the Lorentzian
decays very poorly as∼ f−2 which may lead to an
overestimation of the intercarrier-interference (ICI)
for OFDM systems.

IV. GENERAL GAUSSIAN PHASE NOISE

We may now generalize from the Wiener phase
noise to arbitrary Gaussian processes. Gaussian pro-
cesses are also convenient for the theoretical analysis
as well as for computer simulations. Note that any
Gaussian process can be obtained as suitably filtered
white Gaussian noise.

We consider the case that the phase is driven by a
general (non-white) mean-zero stationary Gaussian
processΩ(t), i.e.

Φ(t) =

∫ t

0
Ω (τ) dτ + Φ0. (26)

A (mean-zero) Gaussian processΩ(t) can be char-
acterized by the fact that its detector output

Ωg =

∫ ∞

−∞
g(t)Ω(t)dt (27)

for any linear measurement given byg(t) is a Gaus-
sian (mean-zero) random variable. The characteristic
function of Ωg is given by

CΩg
(k) = E{exp (jkΩg)} = exp

(

−1

2
σ2

gk
2
)

(28)
with

σ2
g = E

{

Ω2
g

}

. (29)

Using stationarity, we find the expression

σ2
g =

∫ ∞

−∞
g (t) (RΩ ∗ g) (t) dt (30)

and (by using Parseval’s equation)

σ2
g =

∫ ∞

−∞
|G (f)|2 SΩ (f) df, (31)

whereG (f) is the Fourier transform ofg(t).
We note that fort ≥ 0, the ACF RZ (t) is just

the characteristic function (28) ofΩg for g(τ) =
rect(τ/t) evaluated atk = 1. We write

RZ (t) = E
{

exp

(

−1

2
σ2

rect(t)
)}

(32)

where the expressions

σ2
rect(t) = t2

∫ ∞

−∞
sinc2 (ft)SΩ (f) df (33)

and

σ2
rect(t) =

∫ t

−t
(t − |τ |)RΩ (τ) dτ (34)

can be derived from from Eq. (31).

A. Asymptotic Behavior

Sincet · sinc2 (ft) → δ (f) for t → ∞ we obtain

lim
t→∞

σ2
rect(t)

t
= SΩ (0) =

∫ ∞

−∞
RΩ (τ) dτ =: 2α

(35)
which means that

RZ (t) ∼ exp (−αt) (36)

for t → ∞. If there is acorrelation time τc of the
processΩ (t) with the property thatRΩ (t) ≈ 0
for t � τc we conclude from Eqs. (34,35) that
σ2

rect(t) ≈ 2αt and, thus, the relation (36) holds
for t � τc. Thus, if the correlation timeτc is small
enough compared to the time contantα−1 of the
exponential decay, i.e. if

SΩ(0)τc � 1, (37)

the ACF is governed by (36). Then the line core
of SZ (f) is Lorentzian shaped withD0 = α in
Equation (24).

For the line wings, we conclude from (16) that of
SZ (f) must decay faster thanf−3 if we can assume
that SΩ(f) is integrable.

B. Gaussian Processes and Cumulants

We would like to point out that Gaussian pro-
cesses can be interpreted as the second order ap-
proximation of the cumulant expansion of a more
general stochastic process, see [10]. The higher-
order cumulants are small if

γτc � 1, (38)

whereτc is the correlation time andγ is the strength
of the process that may be defined e.g. by

γ2 = E
{

Ω2(t)
}

. (39)



V. THE EFFECTOF PHASE NOISE ON OFDM

We now consider an OFDM system with car-
rier spacing1/T . If the transmision is corrupted
by nothing else but the multiplicative phase noise
processZ(t), the Fourier analysis detector output at
subcarrier frequencyfk = k/T is given by

Rk =
∑

k′

Sk′Θk′−k , (40)

where theSk are the (PSK or QAM) modulation
symbols, and the random variablesΘk are given by

Θk =
1

T

∫ T

0
exp (j2πkt/T ) Z (t) dt. (41)

A. Inter-Carrier Interference (ICI)

The terms in the sum (40) withk′ 6= k are unde-
sired contributions (due to the loss of orthogonality)
from other subcarriers and are thus named inter-
carrier interference (ICI) terms. They are due to the
rapid part of the phase fluctuations. The contribu-
tions are statistically independent if the factorsSk′

can assumed to be independent zero-mean random
variables. The variance of each of them can be
calculated, and thesignal-to-interference ratio can
be obtained as [4]

SIRk =

(
∫ ∞

−∞
SZ (f)WICI,k (fT ) df

)−1

(42)

with the ICI weighting function

WICI,k (x) =
∑

k′ 6=k

sinc2
(

x −
(

k − k′
))

(43)

which can conveniently be approximated by a sim-
pler function if necessary. When the line wings of
SX(f) are known by measurement, theSIR can
thus easily be evaluated.

B. Slow Phase Fluctuations

In the sum in Eq. (40), the termSkΘ0 corre-
sponding tok′ = k contains the desired information
symbolSk but phase-shifted by a phasor

Θ0 =
1

T

∫ T

0
Z (t) dt (44)

that is common to all subcarriers. Its average phase-
shift Φ̄ is thus named thecommon phase error (CPE)
and can be characterized by

Φ̄2 = E
{

Θ2
0

}

. (45)

In the literature, the CPE is usually not regarded
as a critical item if continuous pilot carriers have
been inserted into the OFDM symbols to estimate

(and correct) this phase error [4], [2]. A frequency-
selective static fading channel does not hurt. In that
case,SkΘ0 has only to be replaced bySkHkΘ0,
where Hk is the complex fading amplitude at the
frequencyfk. For a time-variant channel transfer
function Hk(t), however, the desired term is given
by SkΞk with

Ξk =
1

T

∫ T

0
Hk (t)Z (t) dt. (46)

Now the time variance is no longer common to
all frequencies, and the time-variant fading at each
subcarrier frequencyfk is affected by an additional
multiplicative factor due to the phase noise. If the
system has already to cope withfast fading, the
problems become more severe if the time variance of
the phase-noise is in the same order as time variance
of the channel. The Doppler spectrumSD(f) expe-
riences an additional broadening bySZ(t). The re-
sulting spectrum is given by the convolutionSD(f)∗
SZ(f), and its bandwidth is approximately the sum
of the bandwidth of the components. For a system
with differential PSK (like DAB), the phase errors
of both components add up. For a system with
coherent demodulation, the channel estimation will
be degraded due to the slow phase fluctuations over
several OFDM symbols. It is surprising that very few
attention has paid to this problems in the literature.

We note that even in a static Gaussian channel, the
CPE becomes more severe if the OFDM carrier spac-
ing 1/T decreases. This can easily be understood for
Wiener phase noise. From Einstein’s equation (22)
one may argue that̄Φ2 grows linearly withT . This
can be proven. In fact, we can easily derive from
Eqs. (21), 44, and (45) that for Wiener phase noise
the equation

Φ̄2 =
2

3
D0T (47)

holds. We expect a similar behavior for other pro-
cesses.

VI. A N EXAMPLE OF MEASURED PHASE NOISE

To illustrate the theoretical concepts, we refer to
a practical example. Because ICI effects on OFDM
systems are already well-understood, we focus our
attention to the line core. We study a quartz os-
cillator stabilized by a PLL and located at the
center frequencyf0 = 24.576 MHz. After down-
conversion to frequency zero, one million samples
of the quadrature components were recorded1 with

1The author would like to thank Dr. Frank Hofmann at Robert
Bosch GmbH for providing him with these data sampled from
a laboratory prototype.



a sampling frequency offs = 24000 Hz, leading to a
measured sample path of 41.667 seconds. A residual
frequency offset has been corrected digitally. Figure
1 shows the sample path of the phase obtained from
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Fig. 1. Sample path of the measured Phase.

this measurement. One can see clearly that there
are slow fluctuations in the phase on the time scale
of one second, which leads to the conclusion that
there is a correlation timeτc of that order. Figure 2
shows the spectraSZ(f), SΦ(f), and 1

(2πf)2 SΩ(f)
on a logarithmic scale. We observe a decay of 40
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Fig. 2. The three spectra.

dB between 1 Hz and 10 Hz, which means that
SZ(f) ∼ f−4 in this region. From both figures we
conclude that a Wiener process is not a suited model
for this oscillator. We note that the noise floor that
can be observed is due to the quantization. It is
much lower if a high precision spectrum analyser is
used. It is interesting to look at the line core which
has a width in the order of one Hertz. These low-

frequency components may become quite important
e.g. in a DRM system where the Doppler spread is
of the same order. From a more detailed numerical
analysis we found that both conditions (37) and (38)
for Wiener and Gaussian processes are not fulfilled
and, thus, more sophicticated models are necessary
to reflect the reality.

VII. D ISCUSSION ANDCONCLUSIONS

We have discussed the parameters that character-
ize ocillator phase noise to understand their impact
on OFDM systems. ICI effects are well understood
and have been treated frequently in the literature.
These additive perturbations depend only on the
wings of the spectral line shapeSZ(f), but not
directly on the statistical properties of the phase. For
simulations, we may thus use any model process.

In contrast, the effects of the phase errorΦ̄ is
much less understood and its effect on an OFDM
system is often neglected. The measured phase noise
example shows that one should take more care of
it. To analyse the OFDM system performance by
numerical simulations, either a reasonable statistical
model must be chosen (Wiener and Gaussian seems
to be too simple), or the the recorded sample paths
themselves may be used for simulations. This is our
starting point for future work.
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