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Abstract 

 

Local oscillators are prevalent in most communication systems.  They upcon-

vert the baseband signals to the radio frequency (RF) at the transmitter, or 

downconvert the RF signals to intermediate frequency  or baseband.  Local oscilla-

tors suffer from a type of noises know as the phase noises (PHN).  Since the 

performance of the local oscillators is crucial to the performance of the whole 

communication system, it is important to compensate the effects of the phase noise 

originated from the local oscillators.  In this research, novel PHN compensation 

methods are proposed for both communication receivers and transmitters.  The 

proposed approach uses the information provided by an additional signal path that is 

added with modest hardware overhead to better estimate the PHN.   

For receivers, the oscillator output in this additional signal path is self-down-

converted to the baseband by mixing itself with a delayed and conjugated replica so 

as to provide PHN information that is free from data-modulation.  A joint prediction 

and smoothing Wiener filter can then be employed to obtain the minimum mean-

squared error (MMSE) estimate of the PHN.  Adaptive schemes are also presented 

using the least-mean-square (LMS) algorithm and recursive-least-square (RLS) 

algorithm.  Simulations of a 64-QAM receiver confirm the analysis results of the 

PHN estimation performance, and show that the proposed method can improve the 

receiver performance significantly over the conventional schemes.  Lab testing 
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results for a BPSK receiver is also provided which suggests that the proposed 

scheme outperforms the conventional schemes.   

The concept of self-downconversion is applied to the transmitter PHN com-

pensation as well.  It differs from the receiver PHN compensation in that two self-

downconversion blocks are employed for transmitters, one to obtain a baseband PHN 

signal and one to obtain an estimation error signal.  The adaptive transmitter PHN 

estimation algorithm is devised and simulated.  The improvement in PHN spectrum 

can be as high as 10 dB. 

There are generally two types of PHN models commonly used in the literature: 

the stationary PHN and the Wiener PHN.  Both types of PHN can be compensated 

effectively by the proposed approaches.   
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Chapter 1  

Introduction 

 

In communication systems, oscillators are used extensively at both the trans-

mitters and the receivers [37].  Ideally, an oscillator generates a sinusoidal signal at 

its output.  At the transmitters, communication signals at the baseband are upcon-

verted to the radio frequency (RF) by mixing itself with the local oscillator output.  

Similarly, the RF signal received by the receiver is down-converted to baseband or 

intermediate frequency (IF) by a mixer with the local oscillator as the other input.   

A problem of crucial importance to communication systems is the stability of 

oscillators.  The oscillator instability due to noise, which manifests itself as phase 

noise (PHN), is one of the primary factors that limit the achievable performance in 

many communication systems [1][9][14][22][25][33][39][44][45].  This is especially 

true when integrated oscillators are employed [23][39].  Although many high quality 

off-chip oscillators are available, it is often preferable from both a cost and power 

perspective to employ noisier on-chip oscillators.  Consequently, considerable effort 

has been expended in minimizing the performance degradation caused by PHN.   

The existing work in this area has taken two distinct approaches.  In the first 

approach, the PHN of the local oscillator itself was minimized by making appropri-

ate circuit level design choices.  To understand the mechanism of the PHN generated 

in oscillator circuits, it is important to recognize how the various sources of noise in 
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the oscillator circuits are transformed into PHN [17][19][24][27][38][39].  Factors 

including the carrier frequency, the power dissipation, resonator Q (quality factor) 

and ambient noise are identified to be key parameters and efforts have been ex-

pended to improve these parameters.   

The other approach to combat PHN, carried out on a system level, mainly re-

sorts to signal processing techniques to compensate for the effects of the PHN of a 

given oscillator.  Traditional approaches to combat PHN are based on conventional 

feedback tracking schemes and per-survivor processing techniques [43].  Adaptive 

PHN estimation methods were first proposed in [16] and [10], where the PHN is 

corrected by an adaptive prediction filter.  Adaptive PHN estimation with the aid of 

pilot symbols (or pilot subcarrier in OFDM) was suggested in [43] and [32].  Maxi-

mum-likelihood (ML) non-pilot-based PHN compensation schemes were suggested 

for OFDM in [30].   

In this work, a novel approach is proposed to compensate the PHN [49][50] 

[51][52].  In contrast to many of the existing approaches for combating phase noise, 

we propose to use signal processing techniques together with circuit techniques to 

overcome the phase noise problems.  The basic concept for the receiver PHN com-

pensation, similar to the transmitter counterpart, is to modify the receiver analog 

front-end by adding an additional signal path directly from the oscillator, so as to 

provide a non-data modulated observation of the PHN.  This enables the PHN to be 

estimated by a smoothing filter (a filter that employs both past and future informa-

tion), instead of a conventional prediction filter (a filter that only uses past 



 

                                                                                                                                      
3

information).  The hardware overhead of introducing this additional path in the 

analog front-end is modest, especially in an integrated circuit.   

At the receiver, the information provided by the additional signal path allows a 

joint prediction and smoothing Wiener filter that optimally estimates the PHN in the 

minimum mean-squared error (MMSE) sense.  The PHN is generally modeled as a 

wide sense stationary Gaussian process or a Wiener process [33][27][13].  Perform-

ance of the proposed scheme, in terms of the PHN estimation error variance and the 

signal-to-noise ratio (SNR) after PHN compensation, is analyzed for both types of 

PHN.  Significant improvement in performance over conventional approaches is 

observed.  Since the spectrum of the oscillator PHN is generally unknown at design 

time and varies with the operating environment, adaptive estimation filters based on 

decision-directed least-mean-square (LMS) and recursive least-square (RLS) filters 

are developed.  Simulation results for a 64-QAM receiver employing the proposed 

scheme are presented, demonstrating that the proposed scheme can combat both 

types of PHN very effectively.  Lab testing results for a BPSK receiver employing a 

noisy ring oscillator are also shown, validating the effectiveness of the proposed 

approach on the practical PHN. 

The self-downconversion idea for receivers can be modified to compensate os-

cillator PHN in transmitters as well.  A self-downconversion transmitter scheme is 

proposed that can reduce transmitter PHN effectively.  Although the motivation for a 

second path directly from the oscillator is the same as that for receivers, the transmit-

ter PHN compensation differ itself from the receiver case in several aspects.  Firstly, 
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with only an additional path from oscillator, it is difficult to obtain an effective PHN 

error to drive an adaptive PHN estimation filter.  Another self-downconversion block 

is therefore added to the transmitted signal that enables to form the PHN error.  

Secondly, the goal for transmitter PHN compensation allows a constant difference 

between the actual PHN and the PHN estimate used in compensation.  Thirdly, there 

is no channel noise present in the transmitter, therefore, channel noise effects can be 

ignored and the only noise source is from the quantization. 

Although some overhead is introduced, the proposed approach can relax the 

design requirement of the oscillator in the analogue domain and allow the usage of a 

noisier oscillator, enabling overall simplification in the analogue domain.  Thanks to 

the powerful VLSI technology, powerful signal processing techniques can be applied 

to estimate and compensate for the PHN in the digital domain, which is much easier 

to implement than designing and fine tuning a high quality oscillator.  The motiva-

tion is to shift the task of analogue design to digital signal processing.  This follows 

the observation that the digital VLSI technology has advanced tremendously while 

good analogue designs still rely on the “art” or “craftsmanship” of the experienced 

analogue designers.  

This dissertation is organized as follows. Background on oscillator PHN and 

mathematical models are introduced in Chapter 2.  Chapter 3 introduces the architec-

ture of PHN compensation receiver, in which both conventional and proposed 

schemes are included.  The optimum PHN estimation methods are discussed in 

Chapter 4 for both the stationary PHN and the Wiener PHN.  In the analysis devel-
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oped in Chapter 4, the knowledge of some statistical properties of PHN is assumed.  

This prior knowledge is removed in Chapter 6, where adaptive schemes are intro-

duced, and some lab testing results for receiver PHN compensation are presented.  

The PHN estimation method and the performance for transmitters are provided in 

Chapter 7 and Chapter 8, respectively.  Conclusions are drawn in Chapter 10. 
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Chapter 2  

Background on Phase Noise 

 

2.1 Phase Noise Concepts 

In communication receivers, the sinusoidal signals generated by the LO are 

used to downconvert the passband signal to an intermediate frequency or to the 

baseband.  The output of a practical LO, however, is not a perfect sinusoid.  Instead 

of being an ideal impulse at the carrier frequency, the spectrum of a real LO output is 

spread and has a skirt shape, as shown in Figure 1 

Although circuit and device noises in an oscillator can perturb both the ampli-

tude and the phase of the oscillator output, the deviation in the amplitude is mostly 

negligible because the amplitude is often limited by automatic level control (ALC) in 

the oscillator [18][39].  The problem of major concern remains in the phase of the 

oscillator output.  As such, the practical oscillator output can be written as 

cos( ( ))ot tω θ+ , instead of an ideal sinusoidal output cos( )otω , where oω  is the 

oscillation frequency and ( )tθ  is the phase noise.  The time varying phase noise ( )tθ  

is often treated as a random process representing variations in the sinusoidal period.  

The detailed models of ( )tθ  will be introduced later in this chapter.  

One consequence of the variation in the oscillator period variation is the small 

random deviation of the zero-crossing points in time domain.  The term jitter is often 
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used to quantify this deviation.  Although phase and jitter are often used inter-

changeably in literature, phase noise emphasize the spectral properties of an 

oscillator from a frequency domain view, while jitter is treated more in time domain 

as a measure of the timing accuracy.  Both phase noise and jitter characterize the 

noisy properties of the oscillator and sometimes it is important to convert one to the 

other.  Poore provided a good review of the relationship between phase noise and 

jitter [35] and more related work can be found in [11][15][31][42].  It is beneficial to 

realize the close link between phase noise and jitter to obtain a complete understand-

ing of the problem.   

2.2 The Effects of Phase Noise 

To understand the importance of phase noise in RF communication receives, 

consider a generic receiver as shown in Figure 2, where a local oscillator is mixed 

with the received signal.  The mixing operation is equivalent to convolving the 

incoming signal spectrum with the oscillator spectrum in the frequency domain.  

When an ideal mixer is employed, the received signal spectrum is simply shifted by 

ωo ωo ω ω 

Figure 1. Spectrum of ideal and actual oscillator outputs 
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the frequency of the local oscillator.  In an actual oscillator with phase noise 

present, however, the frequency translation also corrupts the information 

carried in the phase of the signal carrier.  This is especially problematic in 

communication systems operating with large signal constellations.  For exam-

ple. the downconversion of a 64-QAM waveform by a mixer that is driven by a 

low-noise 
amplifier 

IF / baseband 
amplifier 

local oscillator 

Figure 2. A block diagram of a generic receiver  

Figure 3. Constellation of 64 QAM. (a) without PHN. (b) with PHN. 
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noiseless and noisy local oscillator results in the constellations as show in Figure 3(a) 

and Figure 3(b), respectively.  As evident from these plots, the bit error rate of the 

receiver with noisy local oscillator increases significantly.   

Even in communication systems with small signal constellations (e.g. QPSK), 

the phase noise can result in significant performance degradation if the desired 

received signal is accompanied by a large interferer in an adjacent channel.  The 

convolution of the adjacent interferer with the noisy local oscillator in the frequency 

domain causes the downconverted band to consist of two overlapping spectra with 

the desired signal suffering from significant noise due to the tail of the interferer.  

This effect, which is referred to “reciprocal mixing” [39], is illustrated in Figure 4.   

Recently, the multicarrier transmission technique know as orthogonal fre-

quency division multiplexing (OFDM) has drawn considerable attention in 

broadband wireless and broadcasting applications [5][6][8][47].  Powered with the 

techniques known as circular prefix [5][26], OFDM can ease the computationally 

expensive task of equalization in broadband wireless communication channels by 

single tap equalizers.  This is achieved by dividing the wide bandwidth of the chan-

desired 
signal 

interference 

Figure 4. Effect of reciprocal mixing. 
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nel into subchannels and sending data at a lower rate parallelly in the narrowband 

subchannels.  One of the drawbacks of the OFDM system is that it is highly sensitive 

to synchronization errors and phase noise [3][5][33][34][46].  This can be under-

stood intuitively: when the number of subchannels becomes large, the bandwidth of 

each subchannel becomes so narrow that the phase noise of the oscillator can no 

longer be considered as an ideal impulse in frequency domain.   

2.3 Phase Noise Mechanism 

The frequency of the local oscillator is usually adjustable in a RF receiver in 

well defined steps over a frequency band of interest.  This function is typically 

achieved using a phase-locked loop (PLL), which includes as one of its main build-

ing blocks a voltage controlled oscillator (VCO).  The VCO, which is an oscillator 

whose frequency is set by its input voltage signal, is often the main factor limiting 

the sensitivity of many integrated receivers.  From the cost and size perspective, it is 

highly desirable to integrate the VCO with the rest of the receiver on a single chip as 

it removes off-chip resonator and discrete inductors.  

One of the drawbacks of a fully integrated VCO is the low quality factors of 

the resonators compared to discrete devices, resulting in comparatively large phase 

noise levels.  Consequently, the availability of high quality on-chip inductors and 

varactors, both of which are commonly used in realizing the VCO, is crucial to the 

design of high performance oscillators.  Significant research has been expended on 

improving the quality factor of the on-chip inductors [4][48].  The quality factor Q of 
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on-chip inductors, however, still remain relatively low with typical values of around 

10, which is significantly lower than their discrete counterparts with a Q value of 50 

or above.  The main challenge in the design of varactors has been in maintaining 

their tuning range despite the reduction in supply voltage caused by continued 

scaling of process technology [2][7]  

In addition to improving the components of the oscillator, and active research 

area has been on understanding the fundamental mechanisms governing the process 

by which the various noise sources turn into phase noise.  Better understanding of 

phase noise mechanism has led to designs with improved phase noise performance.  

In circuit society, the PHN has been investigated for over three decades and a large 

amount of literature is available.  To name a few, [13][17][24][27][38][39][41] 

provide important understandings of phase noise mechanism.  The accumulated 

research results can be roughly categorized into three classes.   

In the first and classical class of work, linear time-invariant (LTI) analysis are 

applied to oscillators [24][38][39].  Based on the observations of phase noise spec-

trum, Leeson heuristically derived the famous Leeson’s phase noise model without 

rigid proof [24].  Leeson’s model states that the phase noise spectrum is composed of 

three regions: 1/f3 region at small frequency offsets, 1/f2 region up to half bandwidth 

of the feedback loop, and above that point a flat spectrum floor.  Using the feedback 

approach, Razavi derived Leeson’s equation (the middle region) by approximate the 

transfer function of the loop in the vicinity of the oscillation frequency using Taylor 

expansion [38][39].  The circuit and device noises in the oscillator are shaped by the 
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transfer function and thus spectrally resemble the transfer function.  These results 

provide insights into the mechanism of phase noise, and reveal the dependence of the 

phase noise upon the quality factor Q of the LC tank, the oscillation frequency, and 

the offset frequency.  Designers can improve their oscillator design by taking these 

factors into consideration.   

The second class of phase noise models is based on linear time-varying analy-

sis.  Although LTI approach and Leeson’s model are simple and thus attractive, it 

includes some parameters that must be determined from measurements, diminishing 

the predictive power.  Upon examining the assumptions, Hajimiri and Lee asserted 

that the time-invariance property does not hold for oscillators and proposed a LTV 

approach [17][18][19][23].  They defined a time-varying impulse sensitivity function 

(ISF, mostly measured from simulation), which has a similar role to the transfer 

function in LTI approach.  The ISF is periodic and suggests that there are sensitive 

and insensitive moments in an oscillation cycle.  The noises in circuits are then 

convolved with the ISF to obtain the output spectrum.  This LTV approach can 

calculate some phase noise spectral parameters that can not be predicted by Leeson’s 

model.   

The LTV approach was again challenged by Demir, Mehrotra, and Roychowd-

hury [12][13][27].  They argue that the linear approach is not valid, and use the state 

equation formulation to describe the dynamics of the oscillator, and derived the 

phase noise spectral properties using stochastic differential equations.  The deriva-

tion is mathematically intensive in this approach and does not provide as much 
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insights as the LTI and LTV approach.  However, the key result is important: the 

oscillator output has a Lorentzian spectrum, i.e., the shape of the magnitude of a one-

pole lowpass filter transfer function.  The Lorentzian spectrum result has a finite 

power at the oscillation frequency and thus avoids the singularity in other PHN 

models. 

2.4 Mathematical Models for Phase Noise 

Although PHN specification of an oscillator is often provided in frequency 

domain, it is helpful for system level analysis to have a time domain model of PHN.  

As stated earlier, there are two commonly used mathematical models of PHN: 

stationary PHN and Wiener PHN [13][33][40].  Communication signals and systems 

are often analyzed in the form of baseband representation for simplicity [36].  The 

LO output in baseband complex form can be expressed as ( )j te θ , where ( )tθ is the 

time-varying phase.  Without loss of generality, the initial phase of the carrier can be 

assumed to be zero herein for simplicity.  Accordingly, ( )tθ , which  represents the 

difference between the carrier phase and the phase of the LO output, should be 

correctly estimated and compensated.   

When the LO output is phase-locked, ( )tθ  can be modeled as a stationary 

PHN: 

 ( ) ( )ot tθ θ φ= + , (1) 

where oθ  is a constant phase difference, and ( )tφ  is a zero-mean, wide sense station-

ary (WSS), colored Gaussian process.  Since ( )tφ  is the jitter in a phase-locked 
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oscillator, ( )tφ  remains small and ( ) 1tφ << .  Therefore, LO output ( )j te θ  approxi-

mates to 

 ( ) (1 ( ))ojj te e j tθθ φ≈ + , (2) 

With (2), the power spectrum density (PSD) of the LO output ( )S f  can be approxi-

mated as ( ) ( ) ( )S f f S fφδ≈ + , which states that ( )S f  is identical to ( )S fφ  except for 

the Dirac pulse [33][43][40].  For the Lorentzian PHN model, the autocorrelation of 

PHN ( )tφ  is 

 2 | |( ) ,R e α τ
φ φτ σ −=  (3) 

where 2
φσ  is the variance of PHN and α  determines the 3 dB bandwidth of the PHN 

PSD.  The corresponding PSD in frequency f (Hz) is  

 
22

( ) 1 fS f
B B
φ

φ
φ φ

σ
π

    
 = +           

, (4) 

where 2Bφ α π= .  It is clear from the above that the parameters describing the 

stationary PHN are 2
φσ  and α  (or Bφ ).  This model ignores the noise floor in the 

PHN PSD, which can be easily included by adding a delta function in (3) or a 

constant in (4). 

When the LO is only frequency-locked (e.g., a free-running oscillator), the 

time-varying phase ( )tθ  is modeled as a Wiener process [33][13][46], which is the 

integration of a white Gaussian random process.  Although Wiener PHN ( )tθ  is 
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nonstationary, the LO output ( )j te θ  can be assumed stationary with a Lorentzian 

spectrum [33][13].  For Wiener PHN ( )tθ : 

 [ ( )] 0E θ τ = ,    1 2 1 2[ ( ) ( )] 4 min( , ),E θ τ θ τ πβ τ τ=  (5) 

where β  is the one-sided 3 dB bandwidth (unit Hz) of the Lorentzian spectrum.  

Discrete-time Wiener PHN can be expressed as [ 1] [ ] [ ]n n w nθθ θ+ = +  where [ ]w nθ  is 

zero-mean white Gaussian with variance 2
θσ .  2

θσ  and β  are related by 2 4 Tθσ πβ= , 

where T  is the sampling period.  

In the literature, ( )j te θ , ( )tθ , and ( )tφ  have been called PHN interchangeably, 

which may easily cause confusion.  For clarity, we differentiate the three by naming 

( )j te θ the LO output, ( )tθ the Wiener PHN, and ( )tφ  the stationary PHN, respectively.   

It is noted that practical oscillator phase noise might be different from or more 

complex than the two described mathematical PHN models.  Stationary PHN and 

Wiener PHN are used in this work to demonstrate the effectiveness of the proposed 

approach.  This does not limit the proposed approach’s applicability to other types of 

PHN.  As demonstrated in the lab testing results, the proposed approach works for 

the PHN collected from a practical oscillator.   
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Chapter 3  

Receiver Structure Overview 

 

Conventional PHN compensation schemes estimate the PHN based on the re-

ceived signal alone. In contrast, the proposed PHN compensation scheme employs an 

additional signal path from the oscillator to provide more information about the 

PHN, and as a result improves the PHN estimation.  

3.1 The Conventional Receiver Architecture 

Figure 5 shows a typical architecture of a conventional digital receiver 

equipped with PHN compensation capability, similar to that described in [29] and 

[16].  The LO output is [ ( )]oj t te ω θ− − , where oω  is the carrier frequency in radians.  The 

received passband signal in complex form is ( ) oj tr t e ω , where the baseband received 

signal ( )r t  is 

 1( ) ( ) ( )k
k

r t a g t kT w t= − +∑ . (6) 

In (6), ak is the complex data symbol, g(t) is the convolution of the transmitter pulse 

with the channel response, T  is the symbol period, and 1( )w t  is the baseband com-

plex white Gaussian noise with spectral density oN .  In the front-end, the mixture of 

the received passband signal with the LO output is followed by a low pass filter F(ω) 

(assumed to be an ideal brickwall lowpass filter) to produce the baseband signal 
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modulated by the PHN.  The analogue delay δ(t-t1) in Figure 5 explicitly models the 

inherent circuit delay associated with the analog front-end.  This delay is included so 

as to be consistent with the proposed scheme where its effect can not be ignored.  

After sampling at the sampling rate 1/Ts which is higher than 1/T, the baseband 

signal in Path I is: 

 1( )
1 1[ ] ( ) sj mT t

sr m r mT t e θ −−! . (7) 

To keep the analysis simple, T/Ts is assumed to be an integer.  1[ ]r m  is then fed into a 

digital pulse matched filter (MF).  Assuming that symbol timing is achieved, which 

is a common assumption when phase recovery is considered [29], the MF output is 

decimated to the symbol rate T.  The resulting signal is 

 
1

1 1

( )
1 1

[ ] [ ] ( )

( ) ( ) s

MF s
m

j mT t
s MF s

m

z n r m g nT mT t

r mT t g nT mT t e θ −

= − +

= − − +

∑

∑
, (8) 

where ( ) ( )MFg t g t= −  is the impulse response of the MF.  The difference in the time 

index used in (7) and (8) should be stressed.  Herein, index n  is used for the dis-

MF
r1[m] 

detector 

e-j( ⋅ )

| 1n̂ nθ −

y[n] z[n] 

na~  

ê[ ]nθ  

phase 
detector 

prediction 
filter 

δ(t-t1)F (ω) 

)](--j[e tto θω  

})(Re{2 tj oetr ω  

LO 

Figure 5. The conventional receiver model.  
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crete-time index at the MF output, which is at the symbol rate, while index m  for the 

discrete-time index before the MF, which is at the sampling rate.  PHN is compen-

sated by multiplying z[n] with the compensator | 1n̂ nje θ −−  where | 1n̂ nθ −  is the PHN 

estimate, as discussed in Chapter 4.  The compensated signal  

 | 1
ˆ

[ ] [ ] n njy n z n e θ −−=  (9) 

is used for data detection and phase error estimation.   

3.2 The Proposed Receiver Architecture 

Figure 6 shows an overview of the proposed digital receiver architecture for 

PHN compensation.  Two signal flow paths can be recognized in Figure 6, i.e., the 

received signal path in the top (similar to the conventional scheme except for the 

delay block [ ]n Dδ − ), and the additional path (in the dotted block) added to enhance 

the LO PHN estimation.  For simplicity, these two paths will be referred to as Path I 

and Path II, respectively.   

MFδ(t-t1)

arg(⋅) 

r2[n+D] 

r2(t) 

F (ω) 

( ⋅ )* δ(t-t2) 

)](--j[e tto θω  

})(Re{2 tj oetr ω  

LO 

detector

e-j( ⋅ ) 

| 1n̂ nθ −  

y[n] 

w2[n+D] Path II 

Path I 

z[n] 
δ[n-D] 

na~

ê[ ]nθ

phase 
detector 

Path II 
smoothing 

filter 

Path I 
prediction 

filter 

[ ]n Dϕ +

Figure 6. The proposed receiver model.  
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Path II is the key of this PHN compensation scheme.  The motivation for add-

ing this path is to observe a cleaner PHN without data modulation directly from the 

LO so as to obtain a better estimate of the PHN.  The oscillator output is downcon-

verted to the baseband by mixing itself with a delayed and conjugated replica. .  This 

is readily implemented by employing an additional complex mixer and a delay 

element, both of which only add small additional area and power to an integrated 

analog front-end.  Although the oscillator output can be directly sampled at a fraction 

of the carrier frequency to obtain the PHN information, such subsampling scheme 

would be overly sensitive to sampling jitter because of the high carrier frequency.  

The downconversion, therefore, is necessary in a practical system to reduce the 

sensitivity to sampling jitter.  The mixer output is 

 2 2 2[ ( ) ( ) ] [ ( ) ( ) ]
2 ( ) oj t t t t j t t tr t e eθ θ ω γθ θ− − − − − += ! , (10) 

where t2 is the delay added by the delay element as shown in Figure 6 and the 

constant -ωot2 is denoted by γ.  Because of the downconversion process, the observed 

signal in Path II is the difference of the PHN θ(t) and θ(t-t2), instead of θ(t) itself.  

r2(t) is then sampled at symbol rate 1/T: 

 2[ ( ) ( ) ]
2 2 2[ ] ( ) [ ]j nT nT tr n r nT e w nθ θ γ− − += +! , (11) 

where 2[ ]w n  is the additive white complex quantization noise, uniformly distributed 

with zero-mean and variance 2
2wσ .  In Path II, quantization noise is the major noise 

source, and hence, it is modeled explicitly.  The power of the quantization noise 

2[ ]w n  depends on the bit resolution of the analog-to-digital converter (ADC).  [ ]nϕ , 
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the phase of 2[ ]r n , is applied to a smoothing filter 2w , the output of which is com-

bined with the PHN estimate from Path I to improve the overall phase estimate. 

In the proposed scheme, Path I is similar to the conventional receiver, consist-

ing of the analog front-end, data detection, and PHN prediction blocks.  The primary 

difference from the conventional receivers is that a delay block [ ]n Dδ −  is added 

after the decimation operation.  The reason for adding the delay block in Path I is so 

that future PHN information is available in Path II.  For example, when data at time 

n is processed in Path I, PHN up to time n+D is available in Path II.  This will enable 

Path II to have access to future PHN information, and therefore estimate the PHN by 

a smoothing filter.   
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Chapter 4 

Decision-Directed One-Step Phase Noise Estimation  

 

Generally, the bandwidth of the LO output ( )j te θ  is much narrower than the 

bandwidth of the data signal and noise.  Consequently, in the time domain, the PHN 

changes slowly compared to the data signal and noise, allowing us with little loss in 

accuracy to move the PHN term outside the convolution operation in (8).  The 

resulting MF output becomes [43][29]  

 [ ][ ] [ ]g j n
n g

s

E
z n a e w n

T
θ≈ + , (12) 

where na  is the complex data symbol, *( ) ( )gE g t g t dt
∞

−∞
∫!  is the energy contained in 

the pulse ( ),g t  1( )
1 1[ ] ( ) ( )sj mT t

g s MF s
m

w n e w mT t g nT mT tθ − − − +∑!  is the noise at the 

output of the MF, and  

 1 1 1 1[ ] ( ( ) / ) ( ) ( )s s n s o sn nT t T T t m T t m T nT tθ θ θ θ+ − − = + −  ! !  (13) 

is the effective PHN that affects symbol na .  In (13), x    denotes the integer part of 

x.  For simplicity, g sE T  in (12) is assumed to be 1 without loss in generality.  The 

noise term [ ]gw n  is zero-mean and approximately white Gaussian.  The noise 

variance, 2 ,
gw o sN Tσ =  is not altered by PHN, since the PHN does not change the 
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amplitude of the noise.  It is noted that, in (12), [ ]nθ  is the approximate PHN of the 

nth symbol, and the task of PHN estimation is to estimate [ ]nθ .   

Before introducing the proposed PHN estimation scheme, the conventional de-

cision-directed one-step PHN estimation [10][29] is reviewed  in Section 4.1.  The 

proposed PHN estimation that employs signals from both paths is introduced in 

Section 4.2.  The improvements of the proposed scheme are discussed in Section 4.3. 

Simulation results are provided in Section 4.4.  Stationary PHN will be considered 

through Section 4.4, and Wiener PHN will be addressed in Section 4.5.   

4.1 Conventional Decision-Directed One-Step Prediction 

Using Only Path I 

The basic idea behind the decision-directed one-step PHN estimation is simple 

and consists of two steps.  First, to estimate PHN [ ]kθ ,  the estimate of the PHN 

[ ]nθ  for n k< , |n̂ nθ , is calculated from the MF output [ ]z n  and past data na .  In 

decision-directed approach, past data na  are available from decision na" .  In another 

approach, namely the data-aided approach, past data na  are known a priori from a 

pilot or training sequence.  In our analysis, decisions are assumed to be correct: 

n na a="  for n k< .  In the second step, |n̂ nθ  for n k<  are used to estimate PHN [ ]kθ , 

and the result of the one-step prediction of PHN [ ]kθ  is denoted as | 1k̂ kθ − .  Herein, the 

subscript “ |n n ” is used for a filtered estimate of the PHN at time n  using decisions 
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up to symbol n , and similarly, “ | 1n n − ” for a prediction of the PHN at time n  using 

decisions up to symbol n-1.   

 Write 1N  prior received signal [ ]z n  and decision na"  in vector and matrix 

form, respectively: 

 1 1[ [ 1], [ 2],..., [ ]Tz k z k z k N= − − −z  (14) 

 
1 11 1 2 1 2{ , , , } { , , , }k k k N k k k Ndiag a a a diag a a a− − − − − −= =A " " "… … , (15) 

where the superscript ‘T’ stands for transpose and {}diag ⋅ stands for the diagonal 

matrix.  Let wR  be the covariance matrix of the corresponding noise vector of [ ]gw n  

in (12), 1k N n k− ≤ < .  The maximum likelihood (ML) estimate of the phasor  

 1[ ][ 1] [ 2][ , ,..., ]j k Nj k j k Te e e θθ θ −− −=e  (16) 

can be obtained by [29] 

 1 1 1
1 1 1 1ˆ ( )H H

w wA R A A R− − −=e z , (17) 

where the superscript ‘H’ stands for Hermitian transpose.  For Gaussian noise, the 

least square estimate, the best linear unbiased estimate, and the ML estimate share 

the same form as in (17).  For white noise, (17) boils down to 1
1 1ˆ A−=e z , which states 

that the ML estimate of the phasor [ ]j ne θ  is [ ]/ [ ]z n a n .  By the “invariant property” of 

the ML estimator [28],  

 |
ˆ arg( [ ]/ )n n nz n aθ =  (18) 

is the ML estimate of the phase [ ]nθ  given the decision na .  Applying (12) into (18) 

and defining [ ][ ] /j n
n g nw n e aθξ −! , |n̂ nθ can be approximated to the first order by: 
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[ ]
|

ˆ arg[ (1 )] [ ] arg[1 ]

Im{ }[ ]
1 Re{ }

[ ] Im[ ](1 Re[ ]),

j n
n n n n

n

n

n n

e n

n arctg

n

θθ ξ θ ξ

ξθ
ξ

θ ξ ξ

= + = + +

 
= +  + 
≈ + −

 (19) 

where 1nξ <<  is assumed.  The assumption 1nξ <<  means high SNR, which is the 

typical condition where PHN is problematic.  For stationary PHN, plugging (1) into 

(13), [ ]nθ  can be expressed as 

 [ ] ( ) [ ]o on sn m T t nφ φθ θ θ= + − +! , (20) 

Accordingly, |n̂ nθ  becomes 

 |
ˆ [ ] Im[ ](1 Re[ ])n n o n nnθ θ φ ξ ξ≈ + + − . (21) 

It can be shown that the zero-mean white noise Im[ ](1 Re[ ])n nξ ξ−  is uncorrelated to 

the stationary PHN [ ]nφ .   

In the one-step prediction, 1N prior values of |n̂ nθ , represented in vector form as 

 
1 11 1| 1 2| 2 |

ˆ ˆ ˆ[ , ,..., ]T
k k k k k N k Nθ θ θ− − − − − −=θ , (22) 

are used to predict the desired phase [ ]kθ .  Since 1θ  and [ ]kθ  are not zero-mean, 

improved estimation can be achieved by employing the affine MMSE (AMMSE) 

estimator instead of the linear MMSE (LMMSE) estimator [21].  Assuming oθ  is 

known, which in practice requires a separate estimation device as described later, the 

AMMSE estimate of [ ]kθ  using 1θ  (i.e., given data decisions of up to symbol 1ka − ) is 

 1
| 1 1 1 1 1

ˆ ( )T
k k o oθ θ θ−

− = − +p R θ e  (23) 
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where 1R is the auto-covariance matrix of 1 1oθ−θ e , 1p  is the cross-covariance vector 

between 1 1oθ−θ e  and [ ] okθ θ− , and 1e  is a vector of length 1N  with all elements 

being ‘1.’  It is easy to show that the estimate | 1k̂ kθ −  is unbiased.  Defining the estima-

tion error as 

 | 1
ˆ[ ] [ ]e k kk kθ θ θ −= − , (24) 

the error variance of the AMMSE estimation using one path is [21]: 

 2 2 2 1
1 1 1 1[ ] T

eE k φσ θ σ − = = −  p R p , (25) 

4.2 Proposed Joint Prediction and Smoothing PHN Estima-

tion Using Both Paths 

Path II provides additional PHN information from the oscillator.  Unlike Path 

I, phase information in Path II does not suffer from data modulation.  Therefore, the 

information in Path II can be used jointly with the PHN information in Path I to 

enhance the PHN estimate.  Comparing (11) and (12), it is clear that signal in Path II 

has a similar form to that of Path I, except that signal in Path II can be viewed as 

being modulated with a data sequence of constant ‘1’s.  Moreover, as pointed in 

Section 3.2, Path II contains information of future PHN.  Thus, unlike the decision-

directed one-step prediction employed in Path I, information from Path II can be 

used in a data-aided smoothing manner.   

The phase of the samples 2[ ]r n  in Path II can be approximated to first order as 

in (19).  Defining ( )2( ) ( )
2[ ] j nT nT t

n w n e θ θ γς − − − +=  and assuming 2[ ] 1w n << , it follows that 
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[ ] ( ) ( )2( ) ( )

2

2

[ ] arg [ ] arg 1

( ) ( ) Im[ ](1 Re[ ]).

j nT nT t
n

n n

n r n e

nT nT t

θ θ γϕ ς

θ θ γ ς ς

− − + = = +  
≈ − − + + −

 (26) 

To estimate PHN [ ]kθ , a smoothing filter is employed in Path II, using both 

past and future values of [ ]nϕ .  The observation vector, which consists of 2N  past 

values and D  future values of [ ]nϕ , can be represented as: 

 2 2[ [ ],..., [ ],..., [ ]]Tk D k k Nϕ ϕ ϕ= + −θ . (27) 

Although it is possible to estimate [ ]kθ  from 2θ , the performance is limited 

noting that the useful PHN information in Path II is the difference 2( ) ( )nT nT tθ θ− −  

instead of the PHN ( )nTθ  itself.  The amplitude of the frequency response of the 

difference operator 21 ( )t tδ− −  is 2sin ftπ , which is 0 at f=k/t2 (k is any integer).  

This suggests that part of the PHN information is lost by this filter, especially those 

in the vicinity of the oscillation frequency.  Therefore, it is more effective to aug-

ment the PHN estimation with Path II rather than to use Path II alone.  It also shows 

that the value of the delay t2 should be set carefully, as seen later in this chapter.   

With the information from both Path I and Path II, we can form a combined 

centralized observation vector: 

 1 1 2 2[( ) ( ) ]T T T
oθ γ= − −θ θ e θ e , (28) 

where 2e  is a vector of the same length as 2θ  and all elements being ‘1.’  AMMSE is 

again employed to estimate [ ]kθ  fromθ : 

 
1

| 1

1 1 1 2 2 2

ˆ

( ) ( ) .

T T
k k o opt o

T T
opt o opt o

θ θ θ

θ γ θ

−
− = + = +

= − + − +

p R θ w θ

w θ e w θ e
 (29) 
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In (29), R  is the covariance matrix of θ , p  is the covariance vector between θ  

and [ ] okθ θ− , and 1T
opt

−=w p R  is divided into two subfilters, 1optw  and 2optw , corre-

sponding to Path I and Path II respectively.  The calculations of 1R , R , 1p , and p  

in (23) and (29) are lengthy but straightforward, as shown in Appendix A. 

Similar to (25), the error variance of the PHN estimate using both paths is  

 2 2 1T
φσ σ −= −p R p  (30) 

Since the joint AMMSE PHN estimation in (29) combines the prediction filter in 

Path I and the smoothing filter in Path II, it improves the estimation error perform-

ance significantly over PHN estimation using only Path I, as will be shown in 

Section 4.3.   

There is a practical difficulty in obtaining |k̂ kθ  through (18) due to the 2π 

boundary problem of the function of arg[ ]⋅ .  To show this problem, the range of 

arg[ ]⋅  is assumed to be (-π,π].  When oθ  is close to π, for example, |k̂ kθ obtained by 

(18) will fluctuate between values close to either π or -π due to PHN [ ]nφ  and 

noise Im[ ](1 Re[ ])n nξ ξ− , making (19) invalid.  Based on the relation between [ ]z k  

and [ ]y k  as shown in (9), the estimate of the estimation error [ ]e kθ  can be obtained 

by  

 

| 1
ˆ

| 1

ˆ [ ] arg( [ ] / ) arg( [ ] / )
ˆ[ ] Im[ ](1 Re[ ])

[ ] Im[ ](1 Re[ ])

k kj
e k k

k k k k

e k k

k y k a z k e a

k
k

θθ

θ θ ξ ξ
θ ξ ξ

−−

−

= =

≈ − + −

= + −

" "

 (31) 
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The operator arg( [ ] / )ky k a"  in (31) serves as the phase detector in Figure 6.  Since 

[ ]e kθ  is a small value around 0, phase detector arg( [ ] / )ky k a"  can circumvent the 2π 

boundary problem that might arise when using (18) directly.  With ˆ [ ]e kθ  available, 

|k̂ kθ  can be found by 

 |k̂ kθ = ˆ [ ]e kθ | 1k̂ kθ −+ , (32) 

which can be confirmed by adding the noise term Im[ ](1 Re[ ])n nξ ξ−  to both sides of 

(24) and plugging the result into (21). 

In practice, oθ  is generally unknown and can be obtained using a phase track-

ing device [10][29].  A moving average (MA) filter operating on |n̂ nθ  can also be 

used to estimate oθ .  Parameter γ  in Path II is obtained in a similar manner using a 

MA filter.  Figure 7 shows the structure of the joint PHN estimation using both Path 

I and Path II, in which the filter with taps 1w  is the Path I prediction filter and the 

filter with taps 2w  is the Path II smoothing filter.   

w2 w1 z-1

| 1n̂ nθ −

|n̂ nθ

Path II 

ê [n]θ  

MA 
− +

MA −
+

oθ̂  

Path I 

(c) 

[ ]n Dϕ +

Figure 7. The PHN estimation block. 
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Although error variance is a direct measure of the PHN estimation, it is helpful 

to know the SNR after the PHN compensation to evaluate the system performance.  

From (9) and (12), the MF output after PHN compensation is 

 
| 1

| 1

ˆ[ ]

ˆ

[ ] [ ]

[ ] [ ]

n ne

n n

jj n
n g

j
n e n g

y n a e w n e

a j n a w n e

θθ

θθ

−

−

−

−

= +

≈ + +
, (33) 

Therefore, the compensated SNR after PHN compensation without and with Path II 

are respectively  

 

| 1

2

1 2 2 2

2 2 2
1

2
1 1

[| | ]
[| | ] [| [ ] | ] [| [ ] | ]

1
[| | ]

1
1/

n n

g

n
j

n e g

w n

in

E aSNR
E a E n E w n e

E a

SNR

θθ

σ σ

σ

−
=

+

=
+

=
+

 (34) 

and 

 
2 2 2

2
1

1
[| | ]

1
1/

gw n

in

SNR
E a

SNR

σ σ

σ

=
+

=
+

, (35) 

where 2
gwσ  is the variance of [ ]gw n  in (12), and 2 2

1 [| | ]
gin n wSNR E a σ=  is the input 

symbol SNR at the MF output in the absence of PHN, representing the signal to 

white Gaussian noise ratio. 

4.3 Improvement in Phase Noise Compensation Capability  

Since Path II provides extra and future information of PHN directly from the 

oscillator, the proposed scheme is expected to provide a better PHN estimate than the 
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conventional estimate based on Path I only.  This advantage can be easily confirmed 

by comparing the variance of the remaining phase error without and with Path II, 

given by (25) and (30), respectively.  For joint PHN estimation in (29), R  can be 

divided into subblocks 

 1 12

12 2
T

 
=  
 

R R
R

R R
, (36) 

in which 1R  is the same as in (23), 12R  is the cross-covariance between 1 1oθ−θ e  and 

2 2γ−θ e , and 2R  is the auto-covariance matrix of 2 2γ−θ e .  p  can also be divided 

into two subvectors, 1p and 2p  , corresponding to Path I and Path II respectively, 

 1 2[ ]T T T=p p p , (37) 

where 1p  is the same as in (23).  Applying the partitioned matrix inverse formula 

[21] to (36), the second term on the right side of (30) becomes 

 ( ) ( )
1 11 1 1 11 12

1 1 1 2 12 1 12 12 1
T T T T T

− −− − − − −
= + − − 

 

R R
p R p p R p p R R R R R R I p

I
. (38) 

The matrix ( )1
2 12 1 12

T −−R R R R  in the second term on the right-hand side of (38) 

is positive-definite, and so is its inverse.  This can be easily shown by recognizing 

that ( )1
2 12 1 12

T −−R R R R  is the error covariance of estimating 2 2γ−θ e  from 1 1oθ−θ e  

using a Wiener filter.  Consequently, 1 1
1 1 1

T T− −>p R p p R p  and  

 2 2 1 2 1 2
1 1 1 1

T T
φ φσ σ σ σ− −= − < − =p R p p R p . (39) 

(39) is consistent with the intuition that the additional information provided by Path 

II should only help if properly used.   
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In practice, the oscillators at the transmitters also contribute to the PHN in the 

received signal.  It should be pointed out that the proposed scheme improves the 

compensation of the PHN introduced at the receiver, while maintaining the same 

compensation capability as conventional schemes for PHN introduced at the trans-

mitters.  For PHN from the transmitters, this can be readily shown from (38): the 

independence of the PHN in the transmitter and receiver causes all components of 2p  

and 12R , corresponding to the covariance between the transmitter and receiver PHN, 

to be zero.  The idea of using an additional signal path to compensate PHN can also 

be extended to the transmitter, as shown in later chapters.   

4.4 Simulation Results 

To illustrate the benefits of Path II, numerical performance results for a 64-

QAM system are presented.  The symbol period T is assumed to be 10-6s, and the 

sampling period Ts=T/2.  AWGN channel is assumed, and the input SNR in Path I 

1inSNR  is set to 29 dB.  29 dB is chosen as a relative high input SNR value at which 

PHN dominates the performance.  In Path II, the major source of noise is the quanti-

zation noise due to the ADC.  The SNR in Path II, which is defined as 

2
2 21/in wSNR σ= , is 37.88 dB, corresponding to an ADC of 6 bits.  The delay associ-

ated with Path I, t1, is set to 0.25T.  There are N1=8 filter taps in Path I prediction 

filter, and 11 taps in Path II smoothing filter, of which N2=8 taps in Path II corre-

spond to the ‘past’ ( 2[ 1],..., [ ]k k Nϕ ϕ− −  in (27)), and D=2 taps in Path II to the 

‘future’ ( [ ],..., [ 1]k D kϕ ϕ+ +  in (27)).   
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The relation between PHN estimation error and the delay in Path II, t2, is de-

picted in Figure 8, in which PHN is stationary with 2 0.0076φσ =  (standard 

deviation 05φσ = ), and the 3 dB bandwidth Bφ =5 kHz.  The horizontal axis is 

normalized by symbol period T, and changes from 0.01T to 20T.  The proposed 

scheme reduces the standard deviation of estimation error from 1.9o to 1o, which 

translates into a 1.7 dB improvement in compensated SNR.  The performance curve 

has several local minima, which occur when 2t  or 2 1t t−  is a multiple of T.   

From Figure 8, it can be observed that the range of the “high” performance re-

gion for 2t   is from approximately T to N1T.  This can be understood heuristically by 

observing the relationship of Path I observation [ ]nθ  and Path II observation [ ]nϕ  in 

Figure 8. Standard deviation of PHN estimation error variance vs. t2. 
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time, as shown in Figure 9.  The observations from Path II provide the increment in 

PHN while those from Path I provide some “starting points” or “base points” for 

estimation.  When 2t  is so large that the starting points of [ ]nϕ  is out of the range of 

the Path I observation vector 1θ , the PHN estimation performance begins to drop.  

Meanwhile, if 2t  is very small, the observation from Path II can not provide enough 

PHN increment information, which again will degrade the PHN estimation perform-

ance.  When 2 1t t−  or 2t  is a multiple of T, the starting point of [ ]nϕ  will align with 

[ ]nθ  or the end point of [ 1]nϕ − , which will provide exact PHN increment informa-

tion and therefore improve PHN estimation. 

Figure 10 plots the standard deviation of the remaining PHN and the SNR after 

compensation as a function of the standard deviation of the PHN.  The delay in Path 

II is fixed at t2=1.25T for high performance as discussed above.  The standard 

(( 1) )n Tθ − ( )nTθ(( 2) )n Tθ −

t2 

[ ]nϕ

[ ]nθ

[ 1]nϕ −  

[ 1]nϕ +

[ 1]nθ −[ 2]nθ −  [ 1]nθ +  

T 

t1 

(( 1) )n Tθ +

Figure 9.  Relationship of Path I observation [ ]nθ  and  

Path II observation [ ]nϕ  in time. 
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(b) 

(a) 

Figure 10. PHN Standard deviation (a) and SNR (b) after PHN compensation  
vs. standard deviation of PHN for stationary PHN. 
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deviation of the PHN changes from 0 to 15o, and the PHN bandwidth is set to 5 kHz, 

10 kHz, and 15 kHz, respectively.  The improvement in SNR after compensation can 

be as high as 5.4 dB at 15o
φσ = .  Figure 10 suggests that the proposed scheme can 

combat heavy phase noise effectively.  Therefore, a less stringent requirement on the 

front-end oscillator design becomes possible. 

 Figure 11 depicts the standard deviation of the remaining PHN and the com-

pensated SNR vs. SNRin1, the input SNR for Path I.  1inSNR  varies from 25 to 35 dB.  

The standard deviation (in degree) and bandwidth of PHN are set to be 2o and 2 kHz, 

5o and 5 kHz, and 10o and 10 kHz, respectively.  Figure 11 also shows that the 

proposed scheme is less sensitive to PHN.  For example, the two path performance at 

5o and 5k Hz is close to the one path performance at 2o and 2k, while the two path 

performance at 10o and 10k Hz is close to the one path performance at 5o and 5k Hz.   

The input SNR in Path II, 2inSNR , also plays a role in the performance by af-

fecting R in (30).  Since the complex uniform distributed quantization noise is the 

dominant noise source in Path II, the choice of the number of bits of Path II ADC, 

NADC, dictates 2inSNR : 

 2 1
2 2

22

1 1 3 22( )
22

12

ADC

ADC

N
in

w
N

SNR
σ

−= = = ⋅  (40) 

Although a large NADC improves 2inSNR , the complexity of Path II increases.  

Figure 12 plots the compensated SNR vs. NADC, where the PHN bandwidth is set to 5 

kHz, and the standard deviation of PHN is set to 5o, 10o, and 15o, respectively.  From  
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(a) 

(b) 

Figure 11. PHN standard deviation (a) and SNR (b) 
after PHN compensation vs. 1inSNR  
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Figure 12, it can be observed that 6 bits ( 2inSNR =37.88 dB) is adequate for Path II 

ADC as the performance saturates for higher bits.  

4.5 Wiener Phase Noise Estimation 

The “2-Paths” structure in Figure 6 can combat Wiener PHN effectively as 

well, although Wiener PHN is nonstationary and its statistical properties are different 

from stationary PHN.  As in the decision-directed estimation of the stationary PHN, 

past data decisions na"  ( n k< ) are assumed to be correct to obtain |n̂ nθ . Past values of 

the filtering PHN estimate |n̂ nθ  from Path I and the Path II observations are then used 

Figure 12 Compensated SNR vs. number of bits in Path II ADC. 
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to estimate | 1k̂ kθ −  jointly.  For Wiener PHN, |k̂ i k iθ − − ( 11 i N≤ ≤ ) is non-stationary and 

the variance goes unbounded when k  becomes large, which is clear from (5).  This 

problem can be overcome by centralizing the past values of the filtering PHN 

estimate |n̂ nθ , i.e. subtracting the mean of past values from |n̂ nθ .   

Define the average of N  prior values of |k̂ i k iθ − −  as 

 |
1

1 ˆ[ ]
N

o k l k l
l

k
N

θ θ − −
=

= ∑ , (41) 

where N is the length of the moving average filter.  The centralized value 

|
ˆ [ ]k i k i o kθ θ− − −  has the same second-order statistical properties for every k .  Repre-

sented in vector form, 1N  prior values of the centralized |k̂ i k iθ − −  form the observation 

in Path I: 

 
1 11 1| 1 2| 2 | 1

ˆ ˆ ˆ[ , ,..., ] [ ]T
k k k k k N k N o kθ θ θ θ− − − − − −= −θ e  (42) 

Note that 1θ  in (22) and (42) are different.  In this section, some terms are redefined 

for Wiener PHN.  Using the properties of Wiener PHN, the ( ,i j )th element of the 

correlation matrix of 1θ  for Wiener PHN can be shown to be 

 

2 2 2
1

2 4
2 4

( , ) [( 1)(2 1) /(6 ) ( ) /(2 ) max( , )]

1 1 1 1 1( ) [ ] [ ]
2 | | 4 | |g gw w

n n

i j N N N i i j j N i j

i j E E
N a a

θσ

δ σ σ

= + + + + + + −

  + − − +  
  

R
. (43) 

To avoid an ill-conditioned 1R , N  is chosen to be slightly larger than 1N .  The ith 

element of the correlation vector between 1θ  and [ ] [ ]ok kθ θ−  for Wiener PHN is 

 2 2
1 ( ) [( 1)(2 1) /(6 ) ( ) /(2 ) ]i N N N i i N iθσ= + + + − −p . (44) 
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It is clear from (43) and (44) that 1R  and 1p  for the centralized Wiener PHN does 

not change over time.  Therefore, Wiener filter can be formed to predict [ ] [ ]ok kθ θ−  

from 1θ , and | 1k̂ kθ −  is given by 

 1
| 1 1 1 1

ˆ [ ]T
k k o kθ θ−

− = +p R θ . (45) 

The variance of the prediction error [ ]e kθ  using (45) is given by 

 
( )22 2 1

1 1 1 1

2 2 4 1
1 1 12 4

[ ] [ ] [ ]

( 1)(2 1) 1 1 1 1 1[ ] [ ]
6 2 | | 4 | |g g

T
e o

T
w w

n n

E k E k k

N N E E
N N a aθ

σ θ θ θ

σ σ σ

−

−

  = = − −   
 + += + + − 
 

p R p

p R p
 (46) 

It is noted that the Kalman filter can also be used to estimate Wiener PHN, 

which is a first-order Gauss-Markov process.  The performance of the Kalman filter, 

however, can be shown to be comparable to that of the Wiener filter.  This proposal 

therefore focuses on the use of the Wiener filter for its simplicity.   

In Path II, the observations [ ]nϕ  has the same form as (26), because, unlike |n̂ nθ  

in Path I, [ ]nϕ  is stationary since 2( ) ( )nT nT tθ θ− −  is zero-mean and stationary.  

Having the mean value removed, Path II observations can be expressed in vector 

form:  

 2 2 2[ [ ],..., [ ],..., [ ]]Tk D k k Nϕ ϕ ϕ γ= + − −θ e  (47) 

The AMMSE estimate of [ ]kθ  based on observations 1 2[ ]T T T=θ θ θ  from both Path 

I and Path II is given by  

 1
| 1 1 1 2 2

ˆ [ ] [ ].T T T
k k o opt opt ok kθ θ θ−

− = + + +p R θ w θ w θ!  (48) 
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In (48), R  is the correlation matrix of θ , p  is the correlation vector between θ  and 

|
ˆ [ ]k i k i o kθ θ− − − .  The calculations of R  and p  can be obtained by making use of the 

properties of Wiener PHN (5), and the calculation details are provided in Appendix 

B, where it is shown that, similar to 1R  and 1p , R  and p  are time-invariant.   

The optimal filter is divided into two subfilters, 1optw  and 2optw , corresponding 

to Path I and Path II respectively, similar to that for stationary PHN.  The structure of 

Wiener PHN estimation is similar to that of stationary PHN estimation shown in 

Figure 7, except that the length of the moving average filter is much shorter than that 

of stationary PHN.  The length of the moving average filter can be left as a parameter 

to choose during implementation.  The error variance of the joint prediction-

smoothing estimate of the Wiener PHN is given by  

 
( )22 1

2 2 4 1
1 12 4

[ ] [ ]

( 1)(2 1) 1 1 1 1 1[ ] [ ]
6 2 | | 4 | |

T
o

T
w w

n n

E k k

N N E E
N N a aθ

σ θ θ

σ σ σ

−

−

 = − − 
 + += + + − 
 

p R p

p R p
 (49) 

With the estimation error variance for Wiener PHN established, the SNR after 

PHN compensation can be evaluated by (34) and (35), respectively.   

To illustrate the effectiveness of employing Path II to compensate Wiener 

PHN, numerical performance results for a 64-QAM system are presented.  The 

system settings are the same as that for stationary PHN except that PHN herein is 

Wiener PHN.  The length of the moving average in Path I is N=20.  Figure 13 

depicts the SNR after compensation vs. the standard deviation of the Wiener PHN 

increment θσ , from which significant improvement can be observed. 
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(a) 

(b) 

Figure 13. Remaining PHN standard deviation and SNR  

after PHN compensation vs. standard deviation  
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Chapter 5 

Adaptive Algorithms and Lab Testing Results 

 

5.1 Adaptive PHN Estimation 

The phase noise needs to be adaptively estimated for several reasons.  Most of-

ten, the statistical properties needed to calculate the optimum weights, as shown in 

Chapter 4, are not available or hard to obtain.  In addition, those phase noise proper-

ties may change due to variations in the operating conditions.  To adaptively adjust 

the weights to the optimal values and track the time variations, adaptive algorithms 

can be employed, such as the least-mean-square (LMS) algorithm or the recursive-

least-square (RLS) algorithm [20]. 

The LMS algorithm adapts the weights by: 

 1 | 1
ˆ[ ] ( [ ] ),k k k e k k k kk kµ θ µ θ θ+ −= + = + −w w θ w θ  (50) 

where the subscript k denotes the kth step, and µ is the step size parameter.  The step 

sizes for filters in Path I and Path II can be made different to accommodate the 

different filter input power.   

The RLS algorithm adapts the weights by  

 1 | 1
ˆ( [ ] )k k k k k kkθ θ− −= + −w w P θ   

 
1

1 1 1
1 1

11

T
k k k k

k k T
k k k

λλ
λ

−
− − −

− −
−

 
= − + 

P θ θ PP P
θ P θ

 (51) 
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with initial condition 1
0 ε −=P I , where ε  is a small positive number, and I  is an 

identity matrix.  In (51), parameter λ  is set to 1 for both stationary and Wiener PHN, 

since R  and p  are time-invariant for both cases. 

In practice, [ ]kθ  in (50) and (51) is unknown.  Instead, ˆ [ ]e kθ  in (31), the esti-

mate of the PHN estimation error, is used to replace the actual error | 1
ˆ[ ] k kkθ θ −−  and 

drive the adaptive filter.  Since Im[ ](1 Re[ ])n nξ ξ− , the noise in ˆ [ ]e kθ , is white and 

uncorrelated to the signal in Path II, the substitution of |k̂ kθ  for [ ]kθ  does not affect 

the convergence to the optimum weights.   

Figure 14 presents the convergence performance of the proposed adaptive 

scheme for stationary PHN.  The signal pulse is root raised cosine with a roll-off 

factor of 0.3.  The PHN bandwidth is set to 10 kHz and the PHN standard deviation 

is 5o.  The initial filter weights for Path I and Path II are set to 1/N1 and 0, respec-

tively.  The values of all other parameters remain the same as those in Chapter 4.  It 

is well known that the LMS algorithm is computationally simpler than the RLS 

algorithm, although longer time is required for LMS algorithm to converge.  This is 

clearly observed in Figure 14.  It takes about 400 iterations for the estimation error to 

converge using LMS algorithm; while it takes about 1000 iterations using RLS 

algorithm.  It is noted that the convergence speed of the filter weights are different 

from that of the estimation error.  Approximately 500 training symbols are required 

for the weights to converge in LMS algorithm while about 2000-3000 training 
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symbols are required for the RLS algorithm, although the plots of the weights 

convergence are not shown.   

Figure 15 presents the simulation results of the standard deviation of the noisy 

estimation error ˆ [ ]e kθ  using the RLS and LMS algorithms and the corresponding 

theoretical values derived earlier.  The PHN standard deviation changes from 0 to 

15o.  The performance is evaluated after convergence.  Figure 15 shows a close 

match between simulation and analysis, and thus confirms the theoretical analysis in 

previous Chapter and the effectiveness of the employment of Path II.  It can also be 

observed that the performance of the RLS and LMS algorithms are very close.  

Figure 14. Simulation results on the convergence speed of estimation 
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Therefore, only simulation results using RLS algorithm are shown subsequently, 

since those for LMS algorithm are similar.  Although not shown, similar results are 

obtained for the Wiener PHN. 

To further appreciate the significant improvement achieved by employing Path 

II, Figure 16 depicts the constellations of the received signal without PHN in Figure 

16(a), the received signal contaminated by a stationary PHN of 5o
φσ =  in Figure 

16(b), the signal after RLS adaptive compensation using Path I only in Figure 16(c), 

Figure 15. Simulation and theoretical results on standard deviation of  

estimation error ˆ [ ]e kθ  for stationary PHN. 
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and the signal after RLS adaptive compensation using both Path I and Path II in 

Figure 16(d).   

Figure 17 depicts the RLS simulation results on the symbol error rate (SER) 

vs. the input channel 1inSNR  in Path I.  Stationary PHN is applied with the standard 

 

 
 

Figure 16. Constellation of the 64 QAM signal: (a) Without PHN  

(b) With stationary PHN, before compensation (c) After compensation using Path I

(d) After compensation using both Path I and Path II 
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Figure 17. Simulation results on SER vs. 1inSNR  for 64 

QAM systems with stationary PHN. 
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Figure 18. Simulation results on SER vs. 1inSNR  of  

64 QAM systems with Wiener PHN. 
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 deviation and bandwidth being 5o and 5 kHz, respectively.  The values of all other 

parameters remain the same as those set for Figure 15.  The performance is evaluated 

after convergence.  Both data-aided (DA, assuming all data are known and correct) 

and decision directed (DD, data are available from decision, and possibly include 

wrong decisions) [29] are simulated.  DD mode is subject to decision error propaga-

tion and DA mode provides a lower bound for the performance.  For 1-Path scheme, 

DD mode is at least 1 dB inferior to DA mode, while for 2-path scheme, perform-

ance of DD mode is close to that of DA mode.  Performance of the 64 QAM system 

without PHN is also included.  To reach SER=10-3, the 1inSNR  required for 2-Path 

scheme is only about 1dB higher than that required when there is no PHN, while the 

extra 1inSNR  required for 1-Path scheme is about 4dB for DA mode (that for DD 

mode is even higher).  For both 1-Path and 2-Path schemes, the extra 1inSNR  be-

comes higher or lower when the PHN becomes heavier or lighter.   

The performance in the presence of Wiener PHN is plotted in Figure 18, where 

the standard deviation per symbol θσ =2o.  Since the performance of the 1-Path 

scheme with DD mode is seriously degraded by error propagation, only DA mode is 

plotted for 1-Path case.  Again, significant improvement of 2-Path scheme over 1-

Path scheme can be observed. 
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5.2 Heterodyne Receivers and Lab Testing Results 

Note that the proposed two-paths architecture, plotted in Figure 5(b) and re-

drawn in Figure 19 (a) by taking out the conceptual delay in Path I, has an overhead 

of a delay element, a complex mixer, and an ADC.  This structure is suitable for 

direct conversion receivers, also known as homodyne receivers, which have no 

intermediate frequency (IF) between the RF and the baseband.  For heterodyne 

receivers where an IF is present in the receiver, the ADC can be replaced by an 

adder, as shown in Figure 19 (b).  The carrier in Path I is 1 0 1IFω ω ω= + , where 1IFω  is 

the IF.  In this architecture, Path I data is carried at the IF 1IFω  and the Path II data at 

the baseband in the analogue domain.  The two paths can be separated in the digital 

domain by filtering and the rest of the signal processing remains unchanged.  This 

structure can be simplified by removing the Path II mixer and adding the delayed and 

conjugated replica of the LO signal to the incoming signal before the Path I mixer, as 

shown in Figure 19 (c).   

To further verify the proposed method against the real-life PHN data, a test bed 

using discrete components is established.  A signal generator functions as the trans-

mitter where data are generated, modulated, and then up-converted to the carrier 

frequency.  A ring oscillator with heavy phase noise downconverts the signal to the 

IF.  The down-converted and low-pass filtered data are then sampled by an oscillator 

and processed by MATLAB.  Although the real-data version structure (slightly 

different from the complex data version shown before) depicted in Figure 20(a) is  
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Figure 20 (a) Block diagram (real-valued version).  (b) Block diagram 

for the test bed.  (c) Component level schematic for the test bed 



 

                                                                                                                                      
52

close to the proposed structure, it has some difficulties with the equipments available 

and the discrete components: 1) the baseband PHN signal is hard to be sampled by 

the oscilloscope due to the ambient noise; 2) It does not have the flexibility to change 

the delay in the self-downconversion structure.   

Since the main purpose of this experiment is to test the proposed method on 

real PHN data, a simplified structure is employed, with the block diagram and the 

component level schematic shown in Figure 20 (b) and Figure 20 (c), respectively.  

In this setup, a second signal generator is used to bring the LO output to another IF 

2IFω .  Since the PHN of the signal generator is much weaker than the LO, the com-

bined Path II PHN comes mainly from the LO.  The complete PHN instead of the 

difference of the PHN is sampled and available.  The self-downconversion is per-

formed in MATLAB, thus provides more flexibility in changing the delay and the 

goal of obtaining real-life PHN data is easily met.   

Another difference from the previous simulations is the modulation scheme.  

In the lab experiment, BPSK is employed instead of 64QAM in that it is easier to 

process and can equivalently demonstrate the effect of PHN compensation.  The 

blocking capacitor added in Figure 20 (c) is to filter out the DC component from the 

actual LO output.   

Since the ring oscillator employed in the test is a free-running oscillator, the 

frequency keeps changing over time.  The PHN here is the Wiener PHN with the 

symbol increment θσ =4o. The frequency of the LO is around 1.5 GHz.  The IF for 

Path I is 50 MHz.  The IF for Path II is 75 MHz.  The LPF has a 3 dB bandwidth at 
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 Figure 21. Sampled data in time domain 

 

100 MHz.  The sampling frequency at the oscilloscope is 250 MHz.  Approximately 

100k data can be sampled by the oscilloscope each time.  The BPSK data has a 

symbol rate of 5 MHz.  The root raised cosine pulse shaping filter has a roll-off 

factor of 0.3.  Figure 21 shows a segment of the sampled data at the LPF output.    

Without PHN tracking, the constellation is a circle due to the Wiener PHN as 

shown in Figure 22(a).  The recovered constellation using the proposed two-paths 

method and the conventional one-path method are show in Figure 22(b)(c).  The 

SNR after compensation for the proposed method and the conventional method is 

25.9 dB and 22.9 dB, respectively, which is a 3 dB improvement.  For comparison 

purpose, a second order digital PLL (DPLL) is also tried and results in an SNR of 

22.7 dB as shown in Figure 22 (d).  The proposed method demonstrates significant 

improvement over conventional PHN compensation and phase tracking schemes.   
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   (a)     (b) 

   (c)     (d) 
 

Figure 22. Constellation for Lab test BPSK signal:  

(a) Without PHN compensation.  (b) After compensation using Path I.   

(c) After compensation using both Path I and Path II.   

 (d) After compensation using DPLL 
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Chapter 6 

Transmitter Phase Noise Compensation 

 

6.1 Self-downconversion structure for transmitter 

The idea of self-downconversion can be applied to compensate the transmitter 

PHN as well.  Figure 23 shows an overview of a general digital communication 

transmitter equipped with the proposed PHN compensation scheme.  The mapped 

data na  with symbol period T  is fed into the digital pulse shaping filter (DPSF).  

The DPSF first upsamples the data to the sampling rate 1/ sT  and then passes them 

through a pulse shaping filtering.  The DPSF output is denoted as mb .  Recall that 

index n  is used to represent the discrete-time index at the symbol rate, while index 

m  is used for those at the sampling rate.  PHN compensation follows the DPSF: 

 ˆ[ ]j m
m mp b e θ−=  (52) 

where mp  denotes the compensated sample and ˆ[ ]mθ  is the PHN estimate.  After 

D/A conversion, the continuous-time signal ( )p t  is upconverted to the carrier 

frequency: 

 ( ( ))( ) ( ) oj t ts t p t e ω θ+= . (53) 
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Notice that in (53), the LO output   has the PHN  .  As a result of PHN compensation,  

transmitted signal exhibits some remaining PHN as a result of the PHN estimation 

error.  At the transmitter, the goal of PHN compensation is not to minimize the 

estimation error, but to keep it constant, since the constant phase difference can be 

removed at the receiver during phase recovery.   

In the proposed PHN compensation scheme, two additional paths are added for 

PHN estimation as shown in Figure 23.  They are called LO Path and TX Path, 

respectively.  They downconvert the signals at passband to baseband by self-

downconversion, i.e., mixing themselves with a delayed and conjugated replica.  The 

corresponding hardware overhead should be modest, especially in integrated circuits.  

Although the passband signal or the LO signal can be directly sampled at a fraction 

of the carrier frequency, such subsampling scheme would be overly sensitive to 

sampling jitter because of the high carrier frequency.   

DPSF D/A 

( )je− i  ( )LOt dδ −

LO 

( )TXt dδ −

*( )i
PHN estimate 

Phase 
Detection 

*( )i

na  mb  mp ( )p t

( )TXr t  

ˆ[ ]j me θ− ( ( ))oj t te ω θ+

( ( ) ( ))o LO LOj t d t de ω θ+ + +  

( )s t

( )LOr t

Figure 23. The self-downconversion transmitter architecture.

TX Path

LO Path

smT

smT

smT

delay δ
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The motivation for adding the LO path is to have access to future PHN infor-

mation.  Ideally, if the delay added by the delay element in the LO Path LO sd T= , the 

LO Path can provide perfect PHN estimate by adding the new PHN difference from 

LO Path to the previous estimate.  However, such an accurate delay block is difficult 

to implement and therefore not practical.  The TX Path is added to provide an error 

signal that can be used to adapt the estimation filter. In summary, the LO Path, which 

provides future PHN information, serves as the input of the PHN estimation filter, 

while the TX Path provides the estimation error information to adaptively update the 

estimation filter. 

6.2 Transmitter PHN Estimation: LO Path  

When modulating the signal ( )p t , the delayed version of the LO signal is used.  

This enables access to future PHN information, which can be used to improve the 

PHN estimation.  The output of the self-downconversion mixer in the LO Path is  

 ( ( ) ( ) ) ( ( ) ( ) )( ) LO o LO LO LOj t d t d j t d t
LOr t e eθ θ ω θ θ γ+ − + + − += ! , (54) 

where LOd  is the delay added by the delay element as shown in Figure 23, and the 

constant o LOdω  is denoted by LOγ .  Although the exact LOd is unknown, we assume 

that it is designed to be larger than sT . Sampling the LO Path output at 1/ sT : 

 ( ( ) ( ) )[ ] ( ) s LO s LOj mT d mT
LO LO sr m r mT e θ θ γ+ − += = . (55) 

The phase of [ ]LOr m , 

 [ ] arg( [ ]) ( ) ( )LO LO s LO s LOm r m mT d mTϕ θ θ γ= = + − + , (56) 
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provides the input of the PHN estimation filter, where arg( )⋅  stands for “the argu-

ment of”.  Note that [ ]LO mϕ  has future PHN information ( )s LOmT dθ + , which can be 

used to improve the estimation of the PHN.  The phase difference in (56) is station-

ary, regardless of whether PHN is a stationary or a Wiener process.  To improve the 

estimation accuracy, the constant LOγ  in (56), which can be obtained (e.g. by a 

moving average filter), is subtracted from [ ]LO mϕ .  In case LOγ  is close to π  and 

[ ]LO mϕ  appears to be around π  or π− , [ ]LOr m  can be pre-multiplied by -1 and then 

the arg( )i can be applied without the π  boundary problems.  Therefore, we obtain 

( LOγ  is subsequently ignored): 

 [ ] arg( [ ]) ( ) ( )LO LO s LO sm r m mT d mTϕ θ θ= = + − . (57) 

6.3 Transmitter PHN Estimation: TX Path  

Similar to what happens in the LO Path, the transmitted signal is downcon-

verted to the baseband in the TX Path. The resulting  output is 

 
*

( ( ) ( ) )*

( ) ( ) ( )

( ) ( ) ,TX TX

TX TX
j t t d

TX

r t s t s t d
p t p t d e θ δ θ δ γ

δ δ
δ δ − − − − +

= − − −

= − − −
 (58) 

where δ  is the delay introduced by the circuits (see Figure 23), TXd  is the delay 

added by the self-downconversion in the TX Path, and TX o TXdγ ω! .  Sampling ( )TXr t  

at rate1/ sT  yields: 

 ( ( ) ( ) )*

[ ] ( )

( ) ( ) .s s TX TX

TX TX s
j mT mT d

s s TX

r m r mT

p mT p mT d e θ δ θ δ γδ δ − − − − +

=

= − − −
 (59) 
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Assuming sTδ < , ( )sp mT δ−  and ( )s TXp mT dδ− −  in (59) can be linearly approxi-

mated as   

 1 1
ˆ ˆ( [ ] [ 1])

1 1 1( ) ( ) j x m y m
s m mp mT x b y b e θ θδ − + −

−− ≈ +  (60) 

 2 1 2 2

1 2

ˆ ˆ( [ ] [ ])
2 2( ) ( ) j x m d y m d

s TX m d m dp mT d x b y b e θ θδ − − + −
− −− − ≈ +  (61) 

where 1 TXd dδ= +   , 2 1 1d d= + , 1 / sy Tδ= , 1 11x y= − , 2 1( )/TX sy d d Tδ= + − , 2 21x y= −  and   i  

stands for “the integer part of”.  Applying (60) and (61) into (59), the signal in TX 

Path becomes 

 1 2

1 1 2 1 2 2

* *
1 1 1 2 2

ˆ ˆ ˆ ˆ( ( ) [ ] [ 1] ( ) [ ] [ ] )

[ ] ( )( )

.s s TX TX

TX m m m d m d

j mT x m y m mT d x m d y m d

r m x b y b x b y b

e θ δ θ θ θ δ θ θ γ

− − −

− − − − − − − + − + − +

≈ + + ⋅
 (62) 

Since the data mb  are available at the transmitter, the phase term in (62) can be 

obtained by 

 1 2

* *
1 1 1 2 2

1 1 2 1 2 2

[ ] arg(( )( ) [ ])
ˆ ˆ ˆ ˆ( ) [ ] [ 1] ( ) [ ] [ ].

TX m m m d m d TX

s s TX

m x b y b x b y b r m

mT x m y m mT d x m d y m d

ϕ

θ δ θ θ θ δ θ θ
− − −= + +

≈ − − − − − − − + − + −
(63) 

The constant TXγ  is ignored in (63) since it can be removed, similar to LOγ .  The 

quantities 1x and 2x  in (63), and therefore 1y  and 2y , can be readily obtained by 

maximizing the correlation between 
1 2

* *
1 1 1 2 2( )( )m m m d m dx b y b x b y b− − −+ + and [ ]TXr m .  Note 

that 
1 2

* *
1 1 1 2 2( )( )m m m d m dx b y b x b y b− − −+ +  needs to be normalized before correlation. 

Let ( )e tθ  be the continuous time PHN estimation error with 

 ˆ( ) [ ] ( ) [ ]e s e smT m mT mθ θ θ θ= = − . (64) 

Then (63) can be approximately expressed as 
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 [ ] ( ) ( )TX e s e s TXm mT mT dϕ θ δ θ δ≈ − − − − . (65) 

From (65), [ ]TX mϕ  is the difference of the PHN estimation error at two differ-

ent time instances.  Recall that the objective of transmitter PHN compensation is to 

keep ( )e tθ  constant. However, since ( )e tθ  is not directly accessible, [ ]TX mϕ is used 

instead to provide an error signal to adapt the PHN estimation.   

Define 

 [ ] ( ) ( )s s TXm mT mT dθ δ θ δ∆ − − − −!  (66) 

as the change in PHN from time s TXmT d−  to smT .  Similar to [ ]LO mϕ  in (56), [ ]m∆  

is stationary for both stationary and Wiener PHN.  Equation (63) now becomes 

 1 1 2 1 2 2
ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ 1] [ ] [ ]TX m m x m y m x m d y m dϕ θ θ θ θ= ∆ − − − + − + − . (67) 

6.4 Transmitter PHN Estimation 

Suppose we want to estimate [̂ 1]mθ +  with information up to time m , (67) pro-

vides a guideline to minimize [ ]TX mϕ : 

 1 2 1 2 2 1
ˆ ˆ ˆ ˆ[ 1] ( [ 1] [ ] [ 1] [ 1])/m m y m x m d y m d xθ θ θ θ+ = ∆ + − + − + + − +  (68) 

Note that at time m , only [m+1]∆  is unavailable on the right side of (68).  However, 

[m+1]∆ can be estimated from [ ]LO m iϕ − , 0i ≥ , which is available at this time.  The 

relationship between [ ]LO mϕ , [ ]TX mϕ , [m]∆  and [ ]mθ  is illustrated in Figure 24.  The 

value of [m+1]∆ can be estimated from the observation: 

 [ [ ] [ 1] [ 1]]T
m LO LO LOm m m Nϕ ϕ ϕ= − − +θ %  (69) 

by a finite-response-filter (FIR) filter: 
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 ˆ [m] T
m∆ = w θ , (70) 

where N  is the length of the estimation filter and w is the vector of the filter 

weights.  Since both  [m+1]∆  and mθ  are stationary, the optimal weight vector 

ow can be decided by Wiener filtering: 

 1( [ ]) [ [m+1] ]T
o m m mE E−= ∆w θ θ θ . (71) 

Therefore, ˆ[ 1]mθ + can be obtained by 

 1 2 1 2 2 1

1 2 1 2 2 1

ˆ ˆ ˆ ˆˆ[ 1] ( [m 1] [ ] [ 1] [ 1])/
ˆ ˆ ˆ( [ ] [ 1] [ 1])/ .T

m

m y m x m d y m d x

y m x m d y m d x

θ θ θ θ

θ θ θ

+ = ∆ + − + − + + − +

= − + − + + − +w θ
 (72) 

The Wiener filtering in (71) requires a priori statistical information that is often not 

available or keeps changing during the PHN estimation operation.  The TX Path 

[ 1]mθ − [ ]mθ[ 2]mθ −

Ts dLO 

dTX 

[ ]m∆

[ 1]LO mϕ −
[ 2]LO mϕ −

δ  

Figure 24.  Relationship of [ 1]LO mϕ −  and ( , )TXm dθ∆  in time. 
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signal [ ]TX mϕ  provides an estimation error and makes adaptive adjustment of the 

weights possible, which can be seen by substituting the estimate ˆ[ ]mθ  according to 

(72) into (67): 

 ˆ[ ] [m] [m]TX mϕ = ∆ − ∆ . (73) 

It is clear that the output [ ]TX mϕ  from the TX Path provides the estimation error of 

ˆ [m]∆ .  With the future PHN information provided in the LO Path and the estimation 

error supplied by the TX Path, various adaptive algorithms can be devised [20].  In 

this work, only the well-known least-mean-square (LMS) is shown for its simplicity.  

The LMS PHN estimation procedure is: 

 ( )1 2

* *
1 1 1 2 2[ ] arg ( )( ) [ ]TX m m m d m d TXm x b y b x b y b r mϕ − − −= + +  (74) 

 1 1[ ]m m TX mmµϕ− −= +w w θ  (75) 

 1 2 1 2 2 1
ˆ ˆ ˆ ˆ[ 1] ( [ ] [ 1] [ 1])/T

m mm y m x m d y m d xθ θ θ θ+ = − + − + + − +w θ  (76) 

where µ  is the step size. 

It is important to mention that the proposed PHN compensation scheme works 

for both Wiener PHN and stationary PHN, as the type of the PHN is not assumed in 

the derivation of the PHN estimation.   
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Chapter 7 

Performance of Transmitter PHN Compensation 

 

7.1 Simulation Results 

To illustrate the effectiveness of the proposed transmitter PHN compensation 

scheme, numerical simulation results of PHN estimation are presented.  The symbol 

period T  is assumed to be 10-6 s and the sampling period / 4sT T= .  Without loss of 

generality, the delays of LO Path and TX Path are set to be equal 1.2LO TX sd d T= =  and 

δ  is set to zero for simplicity.  Although the proposed method works effectively for 

both Wiener PHN and stationary PHN, only results for Wiener PHN are presented.  

The θσ  for the PHN is 1o.  There are 4 taps in the PHN estimation filter.  The initial 

weights for the LMS filter are set to be [0.5 0.5 0 0].  The step size is 25 in the initial 

stage and 10 thereafter.  A total of 20000 symbols are simulated. 

Figure 25 depicts the time domain PHN at the sampling rate and the PHN es-

timate.  The remaining PHN (estimation error) is also shown in Figure 25.  It can be 

observed that the PHN is greatly reduced.  The improvement is further demonstrated 

in the frequency domain as shown in Figure 26, where the PSD of the PHN before 

and after compensation is plotted.  It can be observed that the proposed PHN com-

pensation scheme results in an improvement of about 8-10 dB in the PSD.  Figure 27 

depicts the weights adaptation of the LMS filter.  It took about 1500 samples for the  
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Figure 25. Time domain Wiener PHN:   The PHN, the PHN estimate, and the 

remaining PHN.  

 

Figure 26. Power Spectrum Density of Wiener PHN:  

Before and after compensation 
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weights to converge.  Although not shown, similar plots can be obtained for the 

stationary PHN.   

7.2 Estimation Error Analysis 

The error [ ]TX mϕ  in estimating [ ]m∆  is minimized in the MMSE sense.  It is 

Gaussian with zero mean and variance 

 1[ [ ]] [ [ ]] [ [ ] ]T
TX m oVar m Var m E mϕ −= ∆ − ∆ θ w  (77) 

The spectrum of [ ]TX mϕ  is derived in Section 7.3.  Note that in this section, the 

physical delay from circuits δ , which is small compared to Ts, is assumed to be zero 

 

Figure 27. Tap weights of the LMS PHN estimation filter. 
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for simplicity and its effects can be readily added to the analysis presented.  Conse-

quently, 1x  and 1y becomes 1 and 0 respectively. 

The filter described in (70) and (71) estimates [ ]m∆ , which is an intermediate 

step to obtain the desired PHN estimate ˆ[ ]mθ  as is shown in (72).  Therefore, it is the 

estimation error [ ]e mθ  in estimating [ ]mθ  that is affecting the transmitted signal.  

From (64) and (72), [ ]e mθ  can be expressed as 

 

2 1 2 2

2 1 2 2

2 1 2 2

2 1 2 2

ˆ ˆˆ[ ] ( ) ( ( , ) [ ] [ ])
ˆ ˆ( ) ( , ) [ ] [ ] [ ]

ˆ ˆ( ) [ ] [ ] [ ]
[ ] [ ] [ ]

e s TX

s TX TX

s TX TX

e e TX

m mT m d x m d y m d

mT m d m x m d y m d

mT d x m d y m d m
x m d y m d m

θ

θ

θ θ θ θ

θ ϕ θ θ

θ θ θ ϕ
θ θ ϕ

= − ∆ + − + −

= − ∆ + − − − −

= − − − − − +
≈ − + − +

 (78) 

The last line of (78) is obtained by approximating ( )s TXmT dθ −  by  

 2 1 2 2( ) [ ] [ ]s TXmT d x m d y m dθ θ θ− ≈ − + − . (79) 

From (78), it is clear that [ ]e mθ  is an auto-regression (AR) process with [ ]TX mϕ  as 

the input.  The PHN estimation error [ ]e mθ  is a zero-mean Gaussian process.  Since 

2 2 1x y+ = , the system function for (78) 

 
1 2

2 2

1( )
1 d dH z

x z y z− −=
− −

 (80) 

has a root at 1z =   Therefore, the residue PHN [ ]e mθ  is non-stationary.  This nonsta-

tionarity is reflected at the infinite frequency response at frequency 0f = .  Similar 

to the case in Wiener PHN, the phasor [ ]ej me θ  can be approximately assumed station-

ary.  Although the rigid method to calculate PSD of [ ]ej me θ  is possible, similar to that 

of Wiener PHN, it is much more complicated and a simple heuristic method is 
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employed to understand the factors that affect the residue PHN.  Although [ ]e mθ  is 

non-stationary, its PSD is very close to the PSD of [ ]ej me θ  except at 0f =  because the 

value of [ ]e mθ  is small.  The spectrum of [ ]e mθ , ignoring the zero frequency, would 

be decided both by the spectrum of [ ]TX mϕ  and by the frequency response of ( )H z .  

The former is derived in Section 7.3, and the latter is approximately decided by the 

delay in TX Path TXd , which manifests itself as 2x , 2y , 1d  and 2d  (80).  In such 

cases, the spectrum will have small sidelobes due to the frequency response of (80).  

Figure 28 and Figure 29 demonstrate the role of TXd  in determine the shape of the 

residue PHN spectrum.  Attention should be paid in determining TXd  to avoid 

sidelobes.   

7.3 The spectrum of [ ]mϕ  

The spectrum of the estimation error in (70) and (73) is derived in this section.  

From (73), [ ]TX mϕ , the error in estimating [ ]m∆  and its autocorrelation are 

 
2

1
[ ] [ ] ( )

d

TX i LO
i

m m w m iϕ ϕ
=

= ∆ − −∑  (81) 

 

2 2

2 2

2 2

1 1

1 1

1 1

1

[ ] [ [ ] [ ]]

[[ [ ] ( )][ [ ] ( )]]

[ [ ] [ ]] [ ( ) ( )]

[ [ ] ( )]] [ [ ] ( )]

[ ] [ ] [ ]

TX TX

d d

i LO i LO
i i

d d

i LO i LO
i i

d d

i LO i LO
i i

w

R l E m m l

E m w m i m l w m l i

E m m l E w m i w m l i

w E m l m i w E m m l i

R l R l R l

ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

= =

= =

= =

∆

−

= ∆ − − ∆ − − − −

= ∆ ∆ − + − − −

− ∆ − − − ∆ − −

+ −

∑ ∑

∑ ∑

∑ ∑

!

! 2 [ ]R l−

 (82) 
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(a) 

 

Figure 28.  (a) Spectrum of remaining PHN when 3.2TX sd T=  and 1.2LO sd T=  

(b) the corresponding frequency response of filter in (80) 
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Figure 29.  (a) Spectrum of remaining PHN when 1.8TX sd T=  and 1.2LO sd T=  

(b) the corresponding frequency response of filter in (80) 
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For Wiener PHN, [ ]R l∆ , the first term in (82), can be readily obtained by refer-

ring to Figure 24 

 
2 | | ,[ ]

0,

TX s
TX TX

d m T l m lR m T
otherwise

θσ
∆

 − − ≤ ≤= 


 (83) 

where /TX TX sl d T  ! .  By defining the auto-correlation of the estimation filter input 

[ ]LO mϕ :  

 [ ] [ [ ] [ ]]LO LO LOR l E m m lϕ ϕ −! , (84) 

the second term in (82) can be obtained by 

 [ ] [ ]* [ ]* [ ]w LOR l R l w l w l= − , (85) 

where  

 2, 1
[ ]

0,
lw m d

w l
otherwise
≤ ≤

= 


 (86) 

are the extended filter weights.  Similar to [ ]R l∆ , [ ]LOR l  also has a triangular shape: 

 
2 | | ,[ ]

0,

LO s
LO LO

LO

d m T l m lR m T
otherwise

θσ − − ≤ ≤= 


 (87) 

where /LO LO sl d T  ! .   

Define ( ) [ [ ] [ ]]LOu i E m m iϕ∆ −! .  It can be shown that  
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2

2

2

2

[min( ,( ) ) max( ,( ) )], 1( )
0,

[min(0, ) max( , )], 1

0,

s
s s LO s TX s

s
LO TX s

mT m i T d mT d m i T i du i T
otherwise

d iT d iT i d
T

otherwise

θ

θ

σ

σ


− + − − − ≤ ≤= 




− − ≤ ≤= 


 (88) 

Therefore, the third and the fourth terms in (82) becomes:  

 
2

1
1

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]* [ ]
d

i i i
R l w i u l i w i u l i w i u l i w l u l

∞ ∞

= =−∞ =−∞

= + = + = − − = −∑ ∑ ∑  (89) 

 
2

2 1
1

[ ] [ ] [ ] [ ] [ ]* [ ]
d

i
R l w i u i l R l w l u l

=

= − = − = −∑  (90) 

Taking the discrete-time Fourier transform of [ ]R lϕ  and applying (83)(85)(89)(90) 

yield the spectrum of the estimation error [ ]TX mϕ : 

 2[ ] [ ] [ ] ( ) ( ) ( ) ( ) ( )LO w u w u wS f S f S f S f S f S f S f S fϕ ∆= + − − − −  (91) 

where [ ]S f∆ , [ ]LOS f , ( )uS f  and ( )wS f  are the discrete-time Fourier transform of 

[ ]R l∆ , [ ]LOR l , ( )u l , and [ ]w l , respectively.   
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Chapter 8 

Conclusion 

 

The focus of this work is to minimize the effects of the phase noise, which is 

one of the primary factors that limits the performance in many communication 

systems.  The existing work in this area has been carried out separately in the circuit 

community and the communication and signal processing community.  A novel 

adaptive phase noise compensation scheme, using signal processing techniques 

together with circuit modifications, is presented for communication transmitters and 

receivers in this proposal.  With the phase noise compensation capabilities provided 

by the signal processing techniques in the digital backend, the typical high require-

ment for the oscillator design in the front-end can be relaxed.  Satisfactory 

performance can be achieved by employing a noisier oscillator with the proposed 

PHN compensation schemes. 

For receivers, the proposed phase noise compensation is achieved by using the 

information provided by an additional signal path that is added to better observe the 

phase noise.  An adaptive decision-directed one-step prediction approach is also 

introduced.  The effectiveness of the proposed scheme is confirmed by analysis and 

simulation results for a 64-QAM receiver.  Lab testing results for a BPSK receiver is 
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also provided which suggests that the proposed scheme outperforms the conventional 

schemes. 

For communication transmitters, two additional signal paths are added to im-

prove the PHN estimation.  The signal from LO Path that has access to the future 

PHN information is applied as the input of the PHN estimation filter.  The TX Path 

provides the error signal to keep track of the changes in the estimation error.  Both 

paths are downconverted to baseband by self-downconversion, i.e., mixing them-

selves with the delayed and conjugated replica.  The PHN estimation algorithm is 

derived and adaptive PHN estimation are also devised for transmitter PHN compen-

sation.   

Both stationary and Wiener PHN can be compensated effectively by adding the 

additional paths.  The proposed self-down-conversion approach is simple and 

broadly applicable to various communication systems.   
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Appendix A 

 

The (i,j)th element of 1R  for 1, [1, ]i j N∈  in (23) is 
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. (92) 

where ( )Rφ τ  is the correlation for stationary PHN ( )tφ .  The last term in (92) comes 

from the variance of the noise term Im[ ](1 Re[ ])n nξ ξ−  in (19): 
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The ith element in 1p  for 1[1, ]i N∈  is 

 ( ) ( )
1 |

0 1 0 1

0 1 0 1

ˆ( ) [( )( [ ] )]

( ( ) ) Im[ ](1 Re[ ) ( )

[ ( ( ) ) ( )] ( )

k i k i o o

s k i k i s

s s

i E k

E m T k i T t m T kT t

E m T k i T t m T kT t R iTφ

θ θ θ θ

φ ξ ξ φ

φ φ

− −

− −

= − −

 = + − − + − ⋅ + − 
= + − − + − =

p

. (94) 

Noticing that the additive noise in Path I and Path II are independent, and that the 

PHN is independent to the additive noise, the (i,j)th element of 12R  for 1[1, ]i N∈  and 

2[1, 1]j N D∈ + +  is 
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The (i,j)th element of 2R  for 2 3, [1, 1]i j N N∈ + +  is given by 
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where the last term is the variance of the noise present in Path II similar to (27). 

The ith element in 2p  for i ∈  2[1, 1]N D+ +  is 
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Appendix B 

 

The PHN component in the (i,j)th element of 1R  for 1, [1, ]i j N∈  in (43) is 
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Accounting for the noise term (Im[ ](1 Re[ ]))n narctg ξ ξ−  in |n̂ nθ , (98) becomes (43).  

The ith element in 1p  for 1[1, ]i N∈  is 
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Similar to (36), R can be divided into blocks, where 1R  has been calculated in (98).  

The (i,j)th element of 12R , 1[1, ]i N∈  and 2[1, 1]j N D∈ + + , is 
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The PHN component in (i,j)th element of 2R , 2[1, 1]i N D∈ + +  and 2[1, 1]j N D∈ + + , 

is: 
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Accounting for the noise term (Im[ ](1 Re[ ]))n narctg ξ ξ− , (101) becomes 
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p is also expressed in blocks as in (37), where 1p  has been calculated in (99). 

Noticing the independence between the noise terms in Path I and Path II, 2p can be 

obtained by 
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 (103) 

For 12R  and 2p , the values of the summation depend on the relation between 1t  

and 2t .  Although close form expression can be obtained, it is too complex and not 

worth pursuing, since it can be computed numerically easily.   

 


