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Cofired Gold Conductor

Substrate & 

Metallization

Structures

Identify influences on high-frequency characteristics

Gold Surface

Porosified
Substrate
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Evaluation and meshing of pointwise surface data for CST
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1) Measured data (CSV-type):
62.067, 62.069, 62.070, 62.072, 62.074, 62.076  
62.079, 62.082, 62.085, 62.088, 62.092, 62.094  
62.097, 62.100, 62.104, 62.107, 62.111, 62.114  
62.118, 62.121, 62.124, 62.133, 62.143, 62.152  
62.161, 62.170, 62.178, 62.186, 62.193, 62.200  
62.207, 62.216, 62.224, 62.232, 62.240, 62.246  

62.067, 62.069, 62.070, 62.072, 62.074, 62.076  
62.079, 62.082, 62.085, 62.088, 62.092, 62.094  
62.097, 62.100, 62.104, 62.107, 62.111, 62.114  
62.118, 62.121, 62.124, 62.133, 62.143, 62.152  
62.161, 62.170, 62.178, 62.186, 62.193, 62.200  
62.207, 62.216, 62.224, 62.232, 62.240, 62.246  

2) Extract roughness parameters: 
(by a python script)

3) Conversion to a surface (STL): 

Rebuilding Measured Surfaces
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Modeling porosified structures by a time-dependent PDE
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• Diffusion equation:

• Approximation by a finite element discretization

• Postprocessing the data for CST using Paraview

Generation of Random Structures
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Illustration of different time-steps for 
a porosified substrate
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Generation of Random Structures
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Generation of Random Structures

Illustration of different time-steps for 
a fringed microstrip line
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Modeling surface geometries 
by Karhunen-Loève (KL) expansion
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• Computation of variations in the surface by a truncated 
KL expansion:

• Advantage: Specific variation of roughness parameters 
enabling a correlative study on RF properties

Generation of Random Structures
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• STL coordinate accuracy

Closed surface mesh

• Geometry discretization

Limited by computational ressources

• Required geometry resolution (e.g. by skin-effect)

Essential for accurate simulation
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Basic Conditions for subseqent Simulations

Trade-off
Required Resolution – Available Hardware 

e.g.: ≈ 50 Mio. 
Hexahedrons on 
6 GB Nvidia Tesla 

𝛿𝐶𝑢 ≈ 200 𝑛𝑚
@77 𝐺𝐻𝑧
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Simulated E-Fields – Rectangular
MSL on Porosified LTCC

Maximum E-Field strength
at lower conductor edge

Gain insights on influence of
edge shape on RF properties

SEM micrograph of thick film (Au)

Printed thick film metallizations
on LTCC comprise randomly
fringed edges

Fringed Microstrip Lines
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Measurement of Edge Sharpness
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Fringing factor of postfired
conductors is ≈4 times larger

Fringed Microstrip Lines
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Simulation Model dense LTCC
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Dense LTCC, frayed conductor (2χ) E-Field distribution at 77 GHz (log. scale)

• 3D CAD Model in CST Microwave Studio
• Total length 1mm
• Gold track 110µm wide & 5µm high
• Substrate 100µm DuPont 951; 𝜖𝑟=7.8
• Scalable fraying factor χ;   1χ corresponds to cofired tracks

Fringed Microstrip Lines
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Porosified LTCC, frayed conductor (1χ) E-Field distribution at 77 GHz (log. scale)

• Cofired track on porosified DuPont 951
• Modeled Porosification gradient satisfies measurement
• Model created with diffusion equation

Fringed Microstrip Lines
Simulation Model porous LTCC
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Conductor Loss (length 1mm)
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Simulated power loss of frayed gold conductors (10-110GHz)

• Rectangular shaped reference on dense LTCC (-19dB at 77GHz)
• Conductor loss grows with frequency (Skin-Effect)
• Higher χ exhibit increasing losses (effective length grows)
• Loss at porosified LTCC lower (decreased energy density at edges)
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Simulation Results
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• Rectangular conductor: lowest reflection (homogeneous structure)
• S11 grows with fringing (several dB per χ)
• S11 on porous substrate much higher (local changes of 𝜖𝑟)

Simulation Results
Scattering parameter S11
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• Inverse behavior to S11

• Stronger Fringing higher losses and reflections

• Porosified LTCC shows approx. 0.1 dB/mm lower transmission at 

77 GHz than the cofired dense case

Simulation Results
Scattering parameter S21
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Resulting Effective Permittivities
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𝛜𝐫,𝐞𝐟𝐟 determination by Probes:

:d

:Δ Simulated phase difference

Physical length of Δ𝜑 (500µm) 

Two Field-Probes placed laterally over the conductor track

• Extracting effective permittivities of simulated field distributions
• Two E-Field Probes record local phases
• 𝜖𝑟,𝑒𝑓𝑓 can be calculated by phase difference

• Qualitative comparision of influence by fringed conductor edges
possible

Simulation Results
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Frayed conductors: Two different modes of action visible

< 50 GHz:
- Fringing lowers local field strengths
- Increased amount of E-Field in air

> 50 GHz:
- E-Field concentrates below

lower conductor edge
- Physically longer distance

due fringing increases 𝜖𝑟,𝑒𝑓𝑓

Porosified LTCC 
decreases 𝜖𝑟,𝑒𝑓𝑓 with

an strongly increasing
effect at higher
frequencies! 

Simulation Results
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Simulation of rough

conductor tracks
Pointwise surface data
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Outlook

Correlation: 

Roughness parameter

RF properties

by KL-expansion
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• 3D Modeling approaches
• Diffusion Equation

• Pointwise surface data

• KL-expansion

• Rebuilding of porous and rough structures

• Import to CST MWS

• Electromagnetic field simulations of fringed conductors

• New insights between degree of fraying and field-related
variables (S-Parameter, losses, 𝜖𝑟,𝑒𝑓𝑓)
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Conclusion


