
Chapter 3

Synchronization

3.1 Introduction

The word Synchronization comes fromChronos, the Greek god of time.Synis a prefix meaning

with, along with, together, or at the same time. “To synchronize” thus means to cause one thing

to occur or operate with exact coincidence in time or rate as another thing. As applied to digital

communications, it usually means the process of causing one oscillator to oscillate with the same

frequency and phase as another oscillator.

In the previous chapters, the effects of carrier phase offset and symbol timing offset have been

shown. Conceptually, carrier phase synchronization is the process of forcing the local oscillators

in the detector to oscillate in phase and frequency with the carrier oscillator used at the transmitter.

Symbol timing synchronization is the process of forcing the symbol clock in the receiver to oscil-

late with the same phase and frequency as the symbol clock used at the transmitter. In either case,

the detector must determine the phase and frequency of the oscillator embedded in the received,

noisy modulated waveform.

The synchronizers presented in this chapter are all based on the phase-locked loop, or PLL.

The fundamentals of PLL operation and analysis are reviewed, in detail, in the Appendix. The

results are repeated here for continuity for those already familiar with PLLs.
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3.2 Phase-Locked Loops

3.2.1 Continuous-Time Phase Locked Loops

All continuous-time phase-locked loops are characterized by three components: the phase detector,

the loop filter, and the voltage controlled oscillator (VCO) arranged as shown in Figure 3.1 (a). PLL

performance is usually characterized by how well the PLL tracks the phase of a sinuosoid. In this

case, the input to the PLL is a sinusoid with radian frequencyω0 rads/sec and time-varying phase

θ(t). The output of the VCO is a sinusoid with radian frequencyω0 rads/sec and time-varying phase

θ̂(t) which is an estimate of the input phaseθ(t). The phase detector produces some functiong(·)
of the phase errorθe(t) = θ(t)− θ̂(t). The phase detector characteristic is usually non-linear and is

characterized by a plot ofg(θe) vs. θe
1. The loop filter, characterized by the transfer functionF (s),

filters the phase detector output and controls the nature of the loop response. The most commonly

used loop filter is the “proportional-plus-integrator” filter with transfer function

F (s) = k1 +
k2

s
. (3.1)

The proportional-plus-integrator filter has a pole at the origin of thes-plane. This pole is required

for the loop to track out any frequency offset with zero steady state phase error. The final ele-

ment in the loop is the voltage controlled oscillator or VCO. The instantaneous VCO frequency is

proportional to the input voltagev(t) so that the instantaneous phase is

θ̂(t) = k0

∫ t

−∞
v(x)dx (3.2)

wherek0 is the constant of proportionality with units radians/volt. This constant is often called the

VCO gainor VCO sensitivity. When placed in the feedback portion of the loop, the instantaneous

frequency of the VCO is adjusted to align the phase of the VCO output with the phase of the PLL

input.

The block diagram shown in Figure 3.1 (b) is the “phase equivalent” PLL. The phase equivalent

PLL is derived from the PLL by replacing the sinusoids in Figure 3.1 (a) by their phases and char-

acterizing each block in terms of its operation on the phase. The phase equivalent PLL is usually

what is analyzed when characterizing loop performance. When the phase detector characteristic

is a non-linear function ofθe, the resulting phase equivalent PLL is a non-linear feedback control

system. Most non-linear phase detector characteristics are well approximated byg(θe) ≈ kpθe

1The plot of the phase detector characteristic is often called an “S-curve” since the phase detector characteristic of

many commonly used phase detectors resembles an “S” rotated clockwise by 90 degrees.
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for θe ≈ 0 where the constant of proportionality is the slope of the S-curve about the origin. Lin-

earizing the non-linear phase equivalent PLL about the desired operating pointθe ≈ 0 produces the

linear feedback control system shown in Figure 3.2. Since this system is a linear system, frequency

domain techniques can be used to analyze the loop responses. The most important loop responses

are the phase error responseθe(t) and the phase estimate responseθ̂(t). The frequency domain

transfer functions are

Ga(s) =
Θe(s)

Θ(s)
=

s2

s2 + kpk0k1s + kpk0k2

(3.3)

Ha(s) =
Θ̂(s)

Θ(s)
=

kpk0k1s + kpk0k2

s2 + kpk0k1s + kpk0k2

. (3.4)

The loop transfer function (3.4) is that of a second-order system and is of the form

Ha(s) =
2ζωns + ω2

n

s2 + 2ζωns + ω2
n

(3.5)

whereωn is the natural frequency andζ is the damping factor2. Equating the denominators of (3.4)

and (3.5) gives the following relationships for the loop constants:

kpk0k1 = 2ζωn

kpk0k2 = ω2
n.

(3.6)

Given a desired loop response characterized byζ andωn, the loop constantskp, k0, k1, andk2 are

selected to satisfy the relationships (3.6). In practice, PLL responses are characterized byζ and the

equivalent noise bandwidthBn. The equivalent noise bandwidth of a linear system is defined as the

bandwidth of an ideal low-pass filter whose output power due to a white noise input is equal to the

output power of the linear system due to the same white noise input. Expressed mathematically,

this relationship is

Bn =
|Ha(0)|2

2

∫ ∞

−∞
|Ha(j2πf)|2 df. (3.7)

Using the transfer function (3.4) based on the proportional-plus-integrator loop filter (3.1), the

equivalent noise bandwidth (3.7) evaluates to

Bn =
ωn

2

(
ζ +

1

4ζ

)
. (3.8)

2The damping factorζ controls the nature of the loop response. Whenζ < 1, the loop response isunderdamped:

the poles are complex conjugates the the time-domain response is an exponentially damped sinusoid. Whenζ = 1, the

loop response incritically damped: the poles are real and repeated. Whenζ > 1, the loop isoverdamped: the poles

are real and distinct and the loop response is the sum of decaying exponentials.
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The relationships (3.6) may be expressed in terms ofBn and the damping factorζ as

kpk0k1 =
4ζBn

ζ +
1

4ζ

kpk0k2 =
4B2

n(
ζ +

1

4ζ

)2

(3.9)

PLL performance is often characterized by theacquisition timeand tracking performance. The

acquisition time is the time required for the PLL to go from an initial frequency and/or phase offset

to phase lock. A PLL requires a non-zero period of time for to reduce the frequency error to zero.

Once frequency lock is achieved, an additional period is required to reduce the loop phase error to

an acceptable level. Thus the acquisition timeTLOCK is the time to achieve frequency lockTFL plus

the time to achieve phase lockTPL. For a second order PLL, these lock times are well approximated

by

TFL ≈ 4
(∆f)2

B3
n

(3.10)

TPL ≈ 1.3

Bn

(3.11)

where∆f is the frequency offset. The frequency offset cannot be arbitrarily large. If∆f is too

big, then the PLL will not be able to lock. As long as the frequency offset satisfies

∆f ≤
(
2π
√

2ζ
)

Bn ≈ 6Bn (3.12)

the PLL will eventually lock. This characteristic places an upper limit on the frequency offset the

PLL is able to handle. This upper limit is called thepull-in range.

Tracking performance is quantified by the variance of the phase error. Conceptually, the phase

error variance,σ2
θe

, is

σ2
θe

= E
{∣∣∣θ − θ̂

∣∣∣
}

. (3.13)

A linear PLL which has a sinusoidal input with powerPin W together with additive white Gaussian

noise with power spectral densityN0/2 W/Hz, the phase error variance is

σ2
θe

=
N0Bn

Pin
. (3.14)

Since the noise power at the PLL input (within the frequency band of interest to the PLL) isN0Bn,

the ratioPin/N0Bn often called the loop signal to noise ratio. Thus, for a linear PLL with additive
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Figure 3.1: Basic PLL configuration: (a) The three basic components of a PLL. (b) The corre-

sponding phase equivalent PLL

white Gaussian noise, the phase error variance is inversely proportional to the loop signal to noise

ratio.

Equations (3.10) and (3.11) indicate that acquisition time is inversely proportional to a power

of Bn. This suggests that the larger equivalent loop bandwidth, the faster the acquisition. Equa-

tion (3.14) shows that the tracking error is proportional toBn. This suggests that the smaller the

equivalent loop bandwidth, the smaller the tracking error. Thus fast acquisition and good tracking

place competing demands on PLL design. Acquisition time can be decreased at the expense of

increased tracking error. Tracking error can be decreased at the expense of increased acquisition

time. A good design balances the two performance criteria. Where that balance is depends on the

application, the signal to noise level, and system-level performance specifications.
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Figure 3.2: Linearized phase equivalent PLL corresponding to the PLL in Figure 3.1 (b).
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3.2.2 Discrete-Time Phase-Locked Loops

A discrete-time phase-locked loop is illustrated in Figure 3.3 (a). Just like the continuous-time PLL

of Figure 3.1 (a), the discrete-time PLL consists of three elements: a discrete-time phase detector,

a discrete-time loop filter, and a direct-digital synthesizer3, or DDS. The DDS plays the same role

in the discrete-time PLL as the VCO did in the continuous-time PLL. The input to the discrete-

time PLL areT -spaced samples of a sinusoid with frequencyΩ0 = ω0T radians/sample and with

time-varying phaseθ(nT ) whereT is the sample time. The output of the DDS is a sinusoid with

frequencyΩ0 radians/sample and time-varying phaseθ̂(nT ). The phase of the DDS output is the

PLL estimate of the phase of the input sinusoid. The phase detector output isg (θe(nT )) where

θe(nT ) = θ(nT ) − θ̂(nT ). The loop filter, characterized by thez-domain transfer functionF (z),

filters the sequence of phase detector outputs and controls the nature of the loop response. A

commonly used loop filter is

F (z) = K1 +
K2

1− z−1
(3.15)

where upper case filter constants have been used to distinguish them from their counterparts in

the continuous-time PLL. The motivation for this filter structure is that it mimics the proportional-

plus-integrator loop filter used in continuous-time PLLs. The instantaneous frequency of the DDS

is proportional to the DDS inputv(nT ). As such the instantaneous phase of the DDS output is

given by

θ̂(nT ) = K0

n−1∑

k=−∞
v(kT ) (3.16)

whereK0 is the constant of proportionality. The phase equivalent discrete-time PLL is shown in

Figure 3.3 (b). Again, if the phase-detector characteristic is non-linear, then the resulting feedback

control system is non-linear. Linearizing about the desired operating pointθe ≈ 0, the phase

detector characteristic is replaced by the linear approximationg(θe) ≈ Kpθe and the resulting

linear phase equivalent discrete-time PLL shown in Figure 3.4 is obtained. Since the feedback

control system of Figure 3.4 is linear, frequency domain techniques can be used to analyze the

performance. Thez-domain transfer function for the phase error and phase estimate are

Gd(z) =
Θe(z)

Θ(z)
(3.17)

Hd(z) =
Θ̂(z)

Θ(z)
=

K0Kp (K1 + K2) z−1 −K0KpK1z
−2

1− 2

(
1− 1

2
K0Kp (K1 + K2)

)
z−1 + (1−K0KpK1) z−2

. (3.18)

3The DDS is sometimes called a numerically controlled oscillator or NCO.
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The loop responses are determined by the loop filter constantsK1 andK2. Of the many ways

the constants could be chosen, one of the most common is to chose the constants to impart on the

discrete-time loop, the operating characteristics of the corresponding continuous-time loop. One

way to accomplish this to to apply Tustin’s Equation (or bilinear transform)

1

s
=

T

2

1 + z−1

1− z−1
(3.19)

to the transfer functionHa(s) of the continuous-time PLL. The result is

Ha

(
2

T

1− z−1

1 + z−1

)
=

(2ζ + θn) θn

1 + 2ζθn + θ2
n

+ 2
(θn − ζ) θn

1 + 2ζθn + θ2
n

z−1 +
θ2

n

1 + 2ζθn + θ2
n

z−2

1 + 2
1− θ2

n

1 + 2ζθn + θ2
n

z−1 +
1− 2ζθn + θ2

n

1 + 2ζθn + θ2
n

z−2

(3.20)

where

θn =
ωnT

2
. (3.21)

Equating the coefficients ofz−1 andz−2 in the denominators ofHd(z) — given by (3.18) — and

Ha

(
2
T

1−z−1

1+z−1

)
— given by (3.20) — gives the relationship between the filter constantsK1 and

K2 of the discrete-time PLL and the damping factor and natural frequency of the corresponding

continuous-time PLL:

K0KpK1 =
4ζθn

1 + 2ζθn + θ2
n

(3.22)

K0KpK2 =
4θ2

n

1 + 2ζθn + θ2
n

. (3.23)

Equations (3.22) and (3.23) express the loop filter constantsK1 andK2 in terms of the desired loop

damping factor and natural frequency. Solving (3.8) forωn and substituting produces the following
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expressions forK1 andK2 in terms of the damping factor and loop bandwidth:

K0KpK1 =

4ζ




BnT

ζ +
1

4ζ




1 + 2ζ




BnT

ζ +
1

4ζ


 +




BnT

ζ +
1

4ζ




2

K0KpK2 =

4




BnT

ζ +
1

4ζ




2

1 + 2ζ




BnT

ζ +
1

4ζ


 +




BnT

ζ +
1

4ζ




2

(3.24)

Note that when the equivalent loop bandwidth is small relative to the sample rate,BnT << 1 so

that equations (3.24) are well approximated by

K0KpK1 ≈ 4ζ

ζ +
1

4ζ

(BnT )

K0KpK2 ≈ 4(
ζ +

1

4ζ

)2 (BnT )2 .
(3.25)

Comparing equations (3.25) with equations (3.9) shows that for the case where the sample rate

is large relative to the loop equivalent bandwidth, the expressions for the loop filter constants for

the discrete-time loop are the same as those for the continuous-time loop except that the loop

bandwidth is normalized by the sample rate.
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3.2.3 Summary

The preceding sections have summarized the key points from the Appendix that will be needed

for the subsequent treatment of carrier phase synchronization and symbol timing synchronization.

Both the continuous-time PLLs and the discrete-time PLLs analyzed above were designed to track

the phase of a sinusoid at the loop input. Unfortunately, for communications synchronization

applications, a sinusoid at the desired phase and frequency is rarely available. For example, in

carrier phase synchronization for QPSK, the received waveform possesses 90-degree phase shifts

due to the data phase shift keying the carrier. These phase shifts are in addition to the unknown

carrier phase. If a QPSK waveform were input directly into a PLL designed to track the phase of

a simple sinusoid, the PLL would try to track the phase shifts due to the data and probably never

lock. Thus the carrier phase synchronization PLL mustremovethe phase shifts due to the data and

track the remaining phase. This task can be accomplished by proper design of the phase detector.

The same idea applies to symbol timing synchronization. Most wireless applications do have

have the luxury of embedding a reference clock signal in the modulated waveform. As a conse-

quence, the symbol timing synchronization PLL must extract the data clock from the modulated

waveform itself. Again, the data must beremovedfrom the modulated waveform thus allowing the

PLL to track the underlying data clock. As is the case with carrier phase synchronization, this task

can be accomplished by proper design of the phase detector.

Since the phase detector will be responsible for removing the effects of the modulation on

the underlying unmodulated carrier and data clock, the focus of the following sections is on the

design and analysis of the phase detector. It will be important to keep in mind that the overall PLL

still has the structure illustrated in Figure 3.1 (a) for continuous-time PLLs or Figure 3.3 (a) for

discrete-time PLLs.
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3.3 Carrier Phase Synchronization

In this section, the traditional order of presenting continuous-time systems followed by the discrete-

time counterpart is reversed. This is done since it is easier to understand the operation of carrier

phase synchronization in terms of a rotation in two-space using discrete-time signal processing.

Referring to Figure 3.5, the received MQASK waveform at IF may be represented as

r(t) =
∑

k

a1(k)p(t− kTs) cos(ω0t + θ)− a2(k)p(t− kTs) sin(ω0t + θ) + w(t) (3.26)

wherea1(k) anda2(k) are the inphase and quadrature components of thek-th symbol,p(t) is the

unit energy pulse shape with support on−LpTs ≤ t ≤ LpTs, Ts is the symbol time,ω0 is the radian

IF frequency,θ is the unknown carrier phase offset, andw(t) is the additive white Gaussian noise.

The IF signal is sampled at a rateFs = 1/T samples/sec. Then-th sample of the received signal is

r(nT ) =
∑

k

a1(k)p(nT −kTs) cos(Ω0n+ θ)−a2(k)p(nT −kTs) sin(Ω0n+ θ)+w(nT ) (3.27)

whereΩ0 = ω0T radians/sample. The received signal is downconverted using quadrature sinusoids

cos(Ω0n+θ̂) and− sin(Ω0n+θ̂) to produce the inphase and quadrature components of the received

signal which, neglecting the double frequency terms, may be expressed as

I(nT ) =
∑

k

a1(k)p(nT − kTs) cos(θ − θ̂)− a2(k)p(nT − kTs) sin(θ − θ̂) + wI(nT )

Q(nT ) =
∑

k

a1(k)p(nT − kTs) sin(θ − θ̂) + a2(k)p(nT − kTs) cos(θ − θ̂) + wQ(nT ).
(3.28)

The inphase and quadrature components are filtered by the matched filter whose impulse response

is p(−nT ) to produce the inphase and quadrature matched filter outputs

x(nT ) =
∑

k

a1(k)Rp(nT − kTs) cos(θ − θ̂)− a2(k)Rp(nT − kTs) sin(θ − θ̂) + vI(nT )

y(nT ) =
∑

k

a1(k)Rp(nT − kTs) sin(θ − θ̂) + a2(k)Rp(nT − kTs) cos(θ − θ̂) + vQ(nT ).

(3.29)

whereRp(u) is the autocorrelation function of the pulse shape given by

Rp(u) =

∫ LpTs

−LpTs

p(t)p(t− u)dt. (3.30)

Assuming perfect timing synchronization,x(nT ) andy(nT ) are sampled atn = kTs/T to produce

the inphase and quadrature matched filter outputs corresponding to thek-th symbol. Assuming
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Rp(0) = 1, Rp(mTs) = 0 for m 6= 0 these outputs may be expressed as

x(kTs) = a1(k) cos(θ − θ̂)− a2(k) sin(θ − θ̂) + vI(kTs)

y(kTs) = a1(k) sin(θ − θ̂) + a2(k) cos(θ − θ̂) + vQ(kTs).
(3.31)

This shows that, for MQASK waveforms, the the effect of uncompensated carrier phase offset

is a rotation in the signal space projections. This is illustrated for the case of QPSK shown in

Figure 3.6. In the absence of noise and assuming perfect timing synchronization,x(kTs) and

y(kTs) form the Cartesian coordinates of a rotated version of the true symbol point(a1(k), a2(k)).

The angle of rotation is the uncompensated phase errorθ − θ̂.

Two approaches to carrier phase synchronization can be envisioned. In the first approach, phase

compensation is performed at the output of the matched filter as illustrated in Figure 3.7. The

quadrature sinusoids used for downconversion arecos Ω0n and− sin Ω0n so that the downsampled

matched filter outputs are special cases of (3.31) withθ̂ = 0:

x(kTs) = a1(k) cos(θ)− a2(k) sin(θ) + vI(kTs)

y(kTs) = a1(k) sin(θ) + a2(k) cos(θ) + vQ(kTs).
(3.32)

The sampled matched filter outputs(x(kTs), y(kTs)) are de-rotated by the estimated carrier phase

offset using a rotation function following the matched filters. Since the sampled matched filter out-

puts form a discrete-time sequence, this approach is a purely discrete-time approach. The second

approach modifies the phases of the quadrature sinusoids used to mix the IF signal to baseband.

This approach is illustrated in Figure 3.8 and is a commonly used architecture for both continuous-

time and discrete-time implementations.

In both figures, the dashed line represents an optional connection between the symbol estimates

â1(k) and â2(k) and the phase error detector represented by the “Compute Phase Error” block.

When the phase error detector uses the symbol estimates to compute the phase error, the resulting

PLL is called adecision-directedloop. Alternatively, the phase error may be computed using

knowledge of the transmitted data symbols. Usually, the known data takes the form of a predefined

data sequence, known as atraining sequence, that is inserted at the beginning of the transmission

for the purposes of phase acquisition. This approach is commonly used for packetized data links

where the training sequence forms part of the packet header or preamble. A carrier phase PLL that

uses known data is often called adata aidedPLL.
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3.3.1 Carrier Phase Synchronization for QPSK

As an example of the carrier phase architecture outlined in Figure 3.7, consider the QPSK carrier

phase synchronizer illustrated in Figure 3.9. The inphase and quadrature matched filter outputs,

x(kTs) andy(kTs), are rotated by−θ̂(k), to align the signal space projection(x′(kTs), y
′(kTs))

with the constellation points. The relationship between the inphase and quadrature matched filter

outputs and the rotated points is given by the matrix equation
[
x′(kTs)

y′(kTs)

]
=

[
cos θ̂(k) sin θ̂(k)

− sin θ̂(k) cos θ̂(k)

][
x(kTs)

y(kTs)

]
. (3.33)

With the switch in the lower position, the phase error is extracted from the point(x′(kTs), y
′(kTs))

by computing the residual phase difference between(x′(kTs), y
′(kTs)) and the transmitted con-

stellation point(a1(k), a2(k)).

Computation of the phase error is easily understood in geometric terms. Consider the scenario

shown in Figure 3.11. The phase angle of the de-rotated matched filter outputs is

θr(k) = tan−1

{
y′(kTs)

x′(kTs)

}
(3.34)

and the phase angle of the transmitted constellation point is

θd(k) = tan−1

{
a2(kTs)

a1(kTs)

}
. (3.35)

The phase error for thek-th symbol is thus

e(k) = θr(k)− θd(k)

= tan−1

{
y′(kTs)

x′(kTs)

}
− tan−1

{
a2(kTs)

a1(kTs)

}
. (3.36)

The S-curve is obtained by writing
[
x′(kTs)

y′(kTs)

]
=

[
cos θe − sin θe

sin θe cos θe

][
a1(k)

a2(k)

]
,

and computinge(k) in terms ofa1(k), a2(k) andθe. The average S-curve, denotedg(θe), is ob-

tained by averaging over the four possible symbols(a1(k), a2(k)) ∈ {±1,±1}. After a little

algebra the result is

g(θe) = θe. (3.37)

The average S-curve (3.37) is plotted in Figure 3.14 (a) where it is seen that this phase detector is

an ideal linear phase detector withKp = 1.
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When the actual transmitted data symbols are unknown (either the training sequence has passed

or there was no training sequence provided) the carrier phase synchronizer can use the data de-

cisions to compute the phase error. This approach is illustrated in Figure 3.10. The phase er-

ror is extracted from the point(x′(kTs), y
′(kTs)) by computing the residual phase difference

between(x′(kTs), y
′(kTs)) and the nearest constellation point(â1(k), â2(k)) where, for QPSK,

â1(k) = sgn{x′(kTs)} and â2(k) = sgn{y′(kTs)}. Thus, thedecision directedcarrier phase

synchronizer replacesa1(k) anda2(k) in (3.36) with the decisionŝa1(k) andâ2(k):

e(k) = tan−1

{
y′(kTs)

x′(kTs)

}
− tan−1

{
â2(k)

â1(k)

}
(3.38)

= tan−1

{
y′(kTs)

x′(kTs)

}
− tan−1

{
sgn{y′(k)}
sgn{x′(k)}

}
. (3.39)

The average S-curve for the phase detector based on (3.39) is computed using the same procedure

used to compute (3.36). The average S-curve for the decision-directed phase detector is

g(θe) =





θ + π −π ≤ θe < −3π

4

θ +
π

2
−3π

4
< θe < −π

4
θ −π

4
< θe <

π

4

θ − π

2

π

4
< θe <

3π

4

θ − π
3π

4
< θe ≤ π

(3.40)

and is plotted in Figure 3.14 (b). Note that the slope of the S-curve atθe = 0 is 1 so thatKp = 1

for this phase detector.

Comparing the S-curves for the data-aided and decision-directed phase detectors in Figure 3.14

reveals some interesting differences. The S-curve for the decision-directed loop crosses zero at

θe = −3π

4
,−π

2
,−π

4
, 0,

π

4
,
π

2
,
3π

4
, π.

Since a phase-locked loop locks atθe = 0, the question arises: which of these zero crossing

represents a stable lock point? As it turns out, only those values ofθe whereg(θe) passes through

zero with a positive slope are stable lock points. Thus the stable lock points are

θe = −π

2
, 0,

π

2
, π.

As a consequence, the QPSK carrier phase PLL could lock in phase with true carrier phase,±90◦

out of phase with the true carrier phase, or180◦ out of phase with the true carrier phase. This PLL



170 3.3 Carrier Phase Synchronization

possesses what is called aπ/2 phase ambiguity4. The phase ambiguity is a byproduct of removing

the data-induced phase shifts from the received signal. Since the QPSK constellation has aπ/2

rotational symmetry, aπ/2 phase ambiguity is to be expected.

The phase detectors based on (3.36) and (3.39) require two four-quadrant arctangent operations

and a subtraction. A reduced complexity phase detector can be obtained by using the sine of

the phase error in place of the phase error. Taking the sine of (3.36) and applying the identity

sin(A−B) = sin A cos B − cos A sin B produces

sin (θr(k)− θd(k)) = sin (θr(k)) cos (θd(k))− cos (θr(k)) sin (θd(k)) (3.41)

=
y′(kTs)a1(k)− x′(kTs)a2(k)√

x′2(kTs) + y′2(kTs)
√

a2
1(k) + a2

2(k)
(3.42)

To avoid the division suggested by (3.42), the numerator alone can be used as the error signal while

the denominator terms are absorbed into the phase detector gainKp. Thus

e(k) = y′(kTs)a1(k)− x′(kTs)a2(k). (3.43)

A block diagram of this approach is illustrated in Figure 3.12. Again, the average S-curve is

obtained by writing [
x′(kTs)

y′(kTs)

]
=

[
cos θe − sin θe

sin θe cos θe

][
a1(k)

a2(k)

]
,

computingg (θe) in terms ofa1(k) and a2(k), and averaging over the four possible symbols

(a1(k), a2(k)) ∈ {±1,±1}. After a little algebra the result is

g(θe) = 2 sin θe. (3.44)

Note that forθe ≈ 0, g(θe) ≈ 2θe from whichKp = 2.

The decision-directed version of the simplified error detector is obtained by replacinga1(k)

anda2(k) in (3.43) with â1(k) and â2(k). The error signal for the simplified decision-directed

phase detector is

e(k) = y′(kTs)sgn{x′(kTs)} − x′(kTs)sgn{y′(kTs)} . (3.45)

A block diagram of a QPSK carrier phase PLL using the simplified error detector (3.45) is shown

4An S-curve withL stable lock points produces a phase-locked loop with a2π/L phase ambiguity.
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in Figure 3.13. The average S-curve for (3.45) is

g (θe) =





−2 sin θe −π ≤ θe < −3π

4

2 cos θe −3π

4
< θe < −π

4
2 sin θe −π

4
< θe <

π

4

−2 cos θe
π

4
< θe <

2π

4

−2 sin θe
3π

4
< θe ≤ π

. (3.46)

Again, note that forθe ≈ 0, g(θe) ≈ 2θe from whichKp = 2.

The average S-curves for the simplified data-aided phase detector (3.44) and the simplified

decision-directed phase detector (3.46) are plotted in Figure 3.15 (a) and (b), respectively. The two

S-curves for the simplified error detector differ from each other in the same way the two S-curves

for the arctangent-based error detector differed. The S-curve for the data-aided error detector is

non-linear, but possesses only one stable lock point. The S-curve for the decision-directed error

detector crosses zero with a positive slope at

θe = −π

2
, 0,

π

2
, π

and thus has four stable lock points resulting in aπ/2 phase ambiguity.

As an example of loop design using the simplified decision-directed error detector, suppose

system requirements call for a critically damped QPSK carrier phase synchronizer PLL with an

equivalent loop bandwidth of 2% of the symbol rate. Using a discrete-time proportional-plus-

integrator loop filter,ζ = 1/
√

2 andBnTs = BnT = 0.02 together withKp = 2 andK0 = 1 in

(3.24), the loop filter constants are

K1 = 2.6× 10−2 (3.47)

K2 = 6.9× 10−4 (3.48)

The phase estimatêθ(k) and phase errore(k) for a sequence of 250 randomly generated QPSK

symbols is illustrated in Figure 3.16. The carrier phase offset is aπ/4 step. Observe that̂θ(k)

settles toπ/4 after about 200 symbols and that the phase error settles to zero at the same time.

The nature of the transient response is controlled by the loop filter constants which are determined

by the damping factor and loop bandwidth. This loop is slightly underdamped and exhibits an

overshoot in response to the phase step input in the carrier.

Another popular architecture for QPSK carrier phase synchronization is based on the general

architecture illustrated in Figure 3.8. In this system, the DDS is designed to operate at the IF fre-

quencyΩ0 radians/sample. Carrier phase compensation is incorporated into DDS used to generate
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the quadrature sinusoids used for the down-conversion from IF. As such, there is no need for the

phase rotation block. Any of the four phase error detectors (3.36), (3.39), (3.43), and (3.45) de-

scribed above can be used in the “Compute Phase Error” block where the sampled matched filter

outputsx(kTs) andy(kTs) are used in place ofx′(kTs) andy′(kTs). Note that the DDS operates at

N samples/symbol while the phase error estimate is updated once per symbol. As a consequence,

a rate conversion is required. As an example, consider the block diagram in Figure 3.17. In this

example, the upsample block is placed in between the phase detector and the loop filter. As a con-

sequence, the phase detector and loop filter operate at one sample/symbol while the rest of the loop

(the DDS, and matched filters) operate atN samples/symbol. The filter constants should be com-

puted assuming operation at one sample/symbol with a DDS constantK0 = N . This is because

from the loop filter point of view, the DDS incrementsN times for each step in the loop filter.

Since the matched filter is included in the closed-loop path, a small equivalent loop bandwidth is

required for stable operation when the loop filter constants are based on a second-order system.

Returning to the design example requiring a QPSK carrier phase PLL with an equivalent loop

bandwidth 2% of the symbol rate, assume the IF sample rate isN = 16 samples/symbol. For the

QPSK carrier phase PLL illustrated in Figure 3.17,Kp = 2 andK0 = 16. Usingζ = 1/
√

2 and

BnTs = 16BnT = 0.02 in (3.24), the loop filter constants are

K1 = 1.7× 10−3 (3.49)

K2 = 2.8× 10−6 (3.50)

The phase error for a sequence of 250 randomly generated QPSK symbols is illustrated in Fig-

ure 3.18. As before, the carrier frequency phase isπ/4 step. Two important observations should be

noted. First, the phase error exhibits discontinuities that are a consequence of the fact that phase

adjustments are being made at the IF frequency rather than at baseband. The interaction between

small phase adjustments and the carrier frequency is more likely to cause180◦ phase jumps in the

error signale(k). Second, the error signal takes a long time to settle to zero. This is a consequence

of the inclusion of the matched filters in the closed loop path.
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Figure 3.11: Geometric representation of the phase error computation in a QPSK carrier phase

PLL.
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Figure 3.14: S-curve for the data-aided phase detector (3.37) (a) and the decision-directed phase

detector (3.40) (b).
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Figure 3.16: Phase estimateθ̂(k) (top) and corresponding phase errore(k) (bottom) for the first

QPSK carrier phase PLL example.
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Figure 3.18: Phase errore(k) for the second QPSK carrier phase PLL example.
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3.3.2 Carrier Phase Synchronization for BPSK

Either of the two general architectures illustrated in Figures 3.7 and 3.8 can be used for BPSK

carrier phase synchronization. Since either of these approaches use the same phase detector, the

focus of this section is on the phase detector. The difference between carrier phase synchronization

for BPSK and QPSK lies in the phase detector. The BPSK phase detector based on the arctangent

uses the error signal

e(k) = tan−1

{
y′(kTs)

x′(kTs)

}
− tan−1

{
0

a1(k)

}
(3.51)

for the data-aided phase detector, and

e(k) = tan−1

{
y′(kTs)

x′(kTs)

}
− tan−1

{
0

sgn{x′(kTs)}
}

(3.52)

for the decision-directed phase detector. The numerator of the second term in (3.51) and (3.52)

is zero since the BPSK constellation is a one-dimensional constellation: there is no data on the

quadrature carrier component when the receiver is operating in phase coherence with the transmit-

ter. Note that the second term on the right hand side of (3.51) and (3.52) is 0 whenx′(kTs) > 0 and

π whenx′(kTs) < 0. It should also be observed that (3.51) follows from (3.36) and (3.52) follows

from (3.39) whena2(k) = 0. When the architecture of Figure 3.8 is used,x(kTs) andy(kTs) are

used in place ofx′(kTs) andy′(kTs) in (3.51) and (3.52).

The S-curve for the phase detector (3.51) is

g (θe) = θe (3.53)

while the S-curve for the phase detector (3.52) is

g (θe) =





θe + π −π < θe < −π

2
θe −π

2
< θe <

π

2
θe − π

π

2
< θe < π

. (3.54)

The S-curves (3.53) and (3.54) are plotted in Figure 3.19 (a) and (b), respectively. Note that the

S-curve for the decision directed phase detector possesses two stable lock points atθe = 0 and

θe = π and therefor has aπ-phase ambiguity which is equal to the rotational symmetry of the

BPSK constellation. Both phase detectors have unity slope atθe = 0. ThusKp = 1.

The simplified phase detectors based onsin θe are

e(k) = y′(kTs)a1(k) (3.55)
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for the data-aided phase detector and

g (θe) = y′(kTs)sgn{x′(kTs)} (3.56)

for the decision-directed phase detector. Note that (3.55) follows from (3.43) and (3.56) follows

from (3.45) whena2(k) = 0. As before, if the architecture of Figure 3.8 is used,x(kTs) andy(kTs)

are used in place ofx′(kTs) andy′(kTs) in (3.55) and (3.56).

The S-curve for the data-aided phase detector (3.55) is

g (θe) = sin θe (3.57)

while the S-curve for the phase detector (3.56) is

g (θe) =





− sin θe −π < θe < −π

2
sin θe −π

2
< θe <

π

2
− sin θe

π

2
< θe < π

. (3.58)

The S-curves (3.57) and (3.58) are plotted in Figure 3.20 (a) and (b), respectively. Observe that

the S-curve for the decision-directed phase detector possesses two stable lock points atθe = 0 and

θe = π and therefor has aπ-phase ambiguity. Both S-curves are approximated bysin θe ≈ θe for

θe ≈ 0 and therefor haveKp = 1.

At first, it may seem odd that a carrier phase synchronizer for BPSK requires the quadrature

matched filter outputs. The quadrature component is needed to compute the phase rotation at the

matched filter outputs. Since there is no information on the quadrature component of the carrier for

BPSK, the BPSK carrier phase PLL locks when the residual quadrature component goes to zero.

Observe that all of the BPSK phase detectors go to zero wheny′(kTs) is zero.
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Figure 3.19: S-curves for the data-aided BPSK phase detector (3.53) (a) and the decision-directed

BPSK phase detector (3.54).
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Figure 3.20: S-curves for the data-aided BPSK phase detector (3.57) (a) and the decision-directed

BPSK phase detector (3.58).
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3.3.3 Carrier Phase Synchronization for MQASK

The carrier phase synchronization for the general case of M-ary QASK can be based on either of

the architectures illustrated in Figures 3.7 and 3.8. Following the same line of reasoning associated

with Equations (3.34) through (3.36), the ideal linear phase detector for the general MQASK case

is (3.36) except thata1(k) anda2(k) are no longer restricted to the set{−1, +1}. In fact, either of

the the carrier phase PLLs illustrated in Figures 3.9 and 3.12 for QPSK can be used for MQASK

in general. The decision block changes as a function of the constellation. The decision-directed

phase detector takes the form (3.38) instead of (3.39) since the data symbols are confined toa1(k) ∈
{−1, +1} anda2(k) ∈ {−1, +1} for the general case.

The reduced complexity phase detector follows from the same line of reasoning applied to

(3.41) – (3.43). The data-aided phase detector is

e(k) = y′(kTs)a1(k)− x′(kTs)a2(k). (3.59)

The decision directed phase detector is obtained by replacinga1(k) anda2(k) in (3.59) with the

decisionŝa1(k) andâ2(k):

e(k) = y′(kTs)â1(k)− x′(kTs)â2(k). (3.60)

Note that in all cases,x′(kTs) andy′(kTs) are used to compute the error signal when the architec-

ture of Figure 3.7 is used whilex(kTs) andy(kTs) are used in place ofx′(kTs) andy′(kTs) when

the architecture of Figure 3.8 is used.

Even though the block diagrams of the MQASK carrier phase PLLs are identical to the QPSK

carrier phase PLLs, the properties of S-curves are strongly dependent on the constellation. For

example, consider the S-curves for the 8-PSK, square 16-QASK, and CCITT V.29 16-QASK con-

stellations using the phase detector (3.60) plotted in Figures 3.21, 3.22, and 3.23, respectively.

Note that while the S-curves are different, they do have a few features in common. First, each

S-curve crosses zero atθe = 0 with a positive slope thereby indicating thatθe = 0 is a stable lock

point for the PLL. Second, each S-curve is approximately linear forθe ≈ 0. Finally, each S-curve

possess multiple stable lock points. The number of stable lock points and the values ofθe where

they occur is determined by the rotational symmetry of the constellation.
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Figure 3.21: S-curve for the square 8-PSK constellation sing the phase detector (3.60).
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Figure 3.22: S-curve for the square 16-QASK constellation sing the phase detector (3.60).
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Figure 3.23: S-curve for the CCITT V.29 16-QASK constellation using the phase detector (3.60).
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3.3.4 Carrier Phase Synchronization for Offset QPSK

Either of the carrier phase PLL basic structures introduced Figures 3.7 and 3.8 may be applied to

to carrier phase synchronization using offset QPSK. The application requires one important mod-

ification: the matched filters are sampled at two samples/symbol since the quadrature component

of the transmitted signal is delayed by half a symbol period.

The offset QPSK carrier phase PLL counterpart to Figure 3.7 is illustrated in Figure 3.24. Sam-

ples of the bandlimited IF signal are downconverted using a free running oscillator. The resulting

inphase and quadrature signals,I(nT ) andQ(nT ), respectively, are filtered by matched filters.

The inphase and quadrature matched filter outputs,x(nT ) andy(nT ), respectively, are sampled at

2 samples/symbol with perfect timing synchronization. For convenience, the samples are indexed

by the symbol indexk. The optimum sampling instants for the inphase component arekTs while

the optimum sampling instants for the quadrature component arekTs + Ts/2 for k = 0, 1, . . .. The

signals. . . , x(kTs), x(kTs +Ts/2), . . . and. . . , y(kTs), y(kTs +Ts/2), . . . , are rotated by an angle

−θ̂(k) to produce. . . , x′(kTs), x
′(kTs + Ts/2), . . . and . . . , y′(kTs), y

′(kTs + Ts/2), . . . ,. Using

the index notation just described,x′(kTs) andy′(kTs + Ts/2) are used for detection. As shown

below,x′(kTs + Ts/2) andy′(kTs) are used to compute the carrier phase error signal.

Let the samples of the IF signal be given by

r(nT ) =
∑
m

a1(m)p(nT −mTs) cos(Ω0n + θ)−
∑
m

a2(m)p(nT −mTs) sin(Ω0n + θ) (3.61)

where1/T is the sample rate,a1(m) ∈ {−1, +1} anda2(m) ∈ {−1, +1} are the information

symbols,p(nT ) is a unit energy pulse shape with support on the interval−LpTs/T < n < LpTs/T ,

Ω0 is the IF frequency in radians/sample, andθ is the unknown carrier phase offset. The matched

filter outputs may be expressed as

x(nT ) =
∑
m

a1(m)Rp (nT −mTs) cos θ −
∑
m

a2(m)Rp (nT −mTs − Ts/2) sin θ (3.62)

y(nT ) =
∑
m

a1(m)Rp (nT −mTs) sin θ +
∑
m

a2(m)Rp (nT −mTs − Ts/2) cos θ (3.63)

whereRp (u) is the autocorrelation function of the pulse shape given by (3.82). After some algebra

and the application of basic trigonometric identities, the rotated matched filter outputs can be
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shown to be

x′(kTs) = a1(k) cos(θ − θ̂(k))−
∑
m

a2(m)Rp ((k −m)Ts − Ts/2) sin(θ − θ̂(k))

(3.64)

y′(kTs) = a1(k) sin(θ − θ̂(k)) +
∑
m

a2(m)Rp ((k −m)Ts − Ts/2) cos(θ − θ̂(k))

(3.65)

x′(kTs + Ts/2) =
∑
m

a2(m)Rp ((k −m)Ts + Ts/2) cos(θ − θ̂(k))− a2(k) sin(θ − θ̂(k))

(3.66)

y′(kTs + Ts/2) =
∑
m

a2(m)Rp ((k −m)Ts + Ts/2) sin(θ − θ̂(k))− a2(k) cos(θ − θ̂(k))

(3.67)

whereRp ((k −m)Ts) = 0 for m 6= k is assumed. The termsy′(kTs) andx′(kTs + Ts/2) contain

the product of a single symbol and the sine of the phase error. Knowledge of the symbol or the

symbol estimate can by used to provide the correct sign to the sine of the phase error. The data-

aided phase error is thus

e(k) = a1(k)y′(kTs)− a2(k)x′(kTs + Ts/2). (3.68)

The decision-directed phase error may be expressed in one of two forms

e(k) = â1(k)y′(kTs)− â2(k)x′(kTs + Ts/2) (3.69)

= sgn{x′(kTs)} y′(kTs)− sgn{y′(kTs + Ts/2)} x′(kTs + Ts/2). (3.70)

The S-curve for the data-aided phase error detector may be computed by substituting (3.65)

and (3.66) fory′(kTs) andx′(kTs + Ts/2), respectively, in (3.68). Usingθe = θ − θ̂, a2
1(k) = 1

anda2
2(k) = 1, the S-curve is

g(θe) = 2 sin θe +
∑
m

[a1(k)a2(m)− a2(k)a1(m)] Rp ((k −m)Ts + Ts/2) cos θe. (3.71)

The S-curve is thus the familiar sine of the phase error plus a second term which represents the self

noise of this phase error detector. The self noise has an average value of zero ifa1(m) anda2(m)

are uncorrelated. The S-curve for both the data-aided error signal (3.68) and the decision-directed

error signal (3.70) are plotted in Figure 3.25. Note that the decision-directed error detector does

not have a stable lock point atθe = ±π/2 as its non-offset counterpart did. Since stable lock points
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are those where the S-curve crosses zero with positive slope, both the data-aided and data-directed

phase error detectors have two stable lock points and hence aπ-phase ambiguity.

Carrier phase synchronization for offset QPSK can also be accomplished using a tunable DDS

at IF as illustrated in Figure 3.26. Using the same notation as before, samples of the inphase and

quadrature matched filter outputs may be expressed as

x(nT ) =
∑
m

a1(m)Rp (nT −mTs) cos(θ − θ̂)−
∑
m

a2(m)Rp (nT −mTs − Ts/2) sin(θ − θ̂)

(3.72)

y(nT ) =
∑
m

a1(m)Rp (nT −mTs) sin(θ − θ̂) +
∑
m

a2(m)Rp (nT −mTs − Ts/2) cos(θ − θ̂)

(3.73)

Sampling the matched filter outputs atn = kTs

T
andn = kTs

T
+ Ts

2T
, produces

x(kTs) = a1(k) cos(θ − θ̂(k))−
∑
m

a2(m)Rp ((k −m)Ts − Ts/2) sin(θ − θ̂(k)) (3.74)

y(kTs) = a1(k) sin(θ − θ̂(k)) +
∑
m

a2(m)Rp ((k −m)Ts − Ts/2) cos(θ − θ̂(k)) (3.75)

x(kTs + Ts/2) =
∑
m

a2(m)Rp ((k −m)Ts + Ts/2) cos(θ − θ̂(k))− a2(k) sin(θ − θ̂(k)) (3.76)

y(kTs + Ts/2) =
∑
m

a2(m)Rp ((k −m)Ts + Ts/2) sin(θ − θ̂(k))− a2(k) cos(θ − θ̂(k)) (3.77)

which are identical to (3.64) – (3.67) except that phase compensation is performed at IF through the

DDS instead of after the matched filters. Using the same line of reasoning as before, the data-aided

error signal is

e(k) = a1(k)y(kTs)− a2(k)x(kTs + Ts/2) (3.78)

and the decision-directed phase error is

e(k) = sgn{x(kTs)} y(kTs)− sgn{y(kTs + Ts/2)} x(kTs + Ts/2). (3.79)
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Figure 3.25: S-curves for the data-aided OQPSK phase error detector (dashed line) and the

decision-directed OQPSK phase error detector (solid line) forEb/N0 = 20 dB.
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3.3.5 Carrier Phase Synchronization for BPSK and QPSK Using Continuous-

Time Techniques

Carrier phase PLLs using continuous-time processing almost always use the architecture illustrated

in Figure 3.8 due to the difficulty of constructing a baseband VCO required by the architecture of

Figure 3.7. Figure 3.27 illustrates a hybrid architecture using both continuous-time and discrete-

time processing for QPSK carrier phase synchronization. The phase detector is a discrete-time

processor that updates the carrier phase offset once per symbol using the sequence of matched

filter outputs. Any of the data-aided or decision-directed phase error signals for QPSK or BPSK

introduced above can be used here. The sequence of phase errors is converted to a continuous-time

signal by the digital-to-analog converter. The converted signal forms the input to the continuous-

time loop filterF (s) which drives a continuous-time VCO. The sinusoidal output of the VCO is

split into quadrature sinusoids using a phase shifter (usually a delay element). The quadrature

sinusoids are used to downconvert the IF signal and to separate the IF signal into its quadrature

components. The quadrature components are matched filtered and sampled to produce the signal

space projection used by the phase detector to update the phase error.

A purely “analog” solution to QPSK carrier phase synchronization is illustrated in Figure 3.28.

This structure is called aCostas loop. The phase error computation involves the difference between

the cross products of the baseband inphase and quadrature signals and their signs. This structure

— which results from a recursive solution to maximum likelihood phase estimation as shown in

Section 3.6 — is reminiscent of the simplified decision directed phase error given by (3.45) and

illustrated in Figure 3.13. (Note that the sign on the error signal is switched in Figures 3.13 and

3.28. This is due to the use of− sin(·) for the quadrature component in Figure 3.13 andsin(·) for

the quadrature component in Figure 3.28.) To see how this works, consider the plot of the baseband

inphase and quadrature components plotted in Figure 3.29. During each symbol interval, the signs

of the baseband inphase and quadrature components could be used as decisions from which the

sine of the phase error can be continuously updated.

The Costas loop for BPSK carrier phase synchronization is illustrated in Figure 3.30. Note that

this structure is reminiscent of the discrete-time BPSK carrier phase PLL based on the phase error

given by (3.56) where the sign of the baseband inphase component plays the role of the decision.

As with QPSK, a sign reversal (not shown) is present due to the use of− sin(·) in discrete-time

carrier phase PLLs using a quadrature DDS andsin(·) in Figure 3.30.
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Figure 3.29: Example of baseband inphase and quadrature signal components,I(t) and Q(t),

respectively, and their signs used by the QPSK Costas loop shown in 3.28.
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3.4 Symbol Timing Synchronization

Symbol timing synchronization is the process of estimating a clock signal that is aligned in phase

and frequency with the clock used to generate the data at the transmitter. Since it is not efficient

to allocate spectrum to transmit a separate clock signal from the transmitter to the receiver for

the purposes of timing synchronization, the data clock must be extracted from the noisy received

waveforms that carry the data. For matched filter detectors, the clock signal is used to identify the

instants when the matched filter should be sampled. The effect of timing errors on matched filter

receivers for MQASK were introduced earlier.

The form of the symbol timing synchronizer is quite different for continuous-time and discrete-

time systems and is perhaps one of the biggest differences between the two implementations.

Continuous-time techniques are reviewed in Section 3.4.1. Discrete-time techniques for symbol

timing synchronization are covered in detail in Section 3.4.3. In both cases, symbol timing syn-

chronization for M-ary PAM are developed. Extensions to MQASK are described in Sections 3.4.2

and 3.4.4

3.4.1 Continuous-Time Techniques for M-ary PAM

Figure 3.31 shows a block diagram of the basic architecture for symbol timing synchronization for

M-ary PAM using continuous-time techniques. Let the received M-ary PAM signal be

r(t) =
∑

k

a(k)p(t− kTs − τ) + w(t) (3.80)

wherea(k) ∈ {−(M−1),−(M−3), . . . ,−1, 1, . . . ,M−3,M−1} is thek-th PAM symbol,Ts is

the symbol time,τ is the unknown timing delay,p(t) is a unit energy pulse shape with support on

the interval−LpTs ≤ t ≤ LpTs, andw(t) is the additive white Gaussian noise. The received signal

is passed through a matched filter whose impulse response isp(−t). The output of the matched

filter x(t) may be expressed as

x(t) =
∑

k

a(k)Rp(t− kTs − τ) + v(t) (3.81)

whereRp(u) is the autocorrelation function of the pulse shape defined by

Rp(u) =

∫ LpTs

−LpTs

p(t)p(t− u)dt (3.82)

andv(t) = w(t)∗p(−t) represents the noise at the output of the matched filter. Ideally, the matched

filter output should be sampled att = kTs + τ for detection. This is easy ifτ is known. Whenτ is

not known, it must be estimated. This is the role of the symbol timing synchronizer.
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Using the estimatêτ provided by symbol timing synchronizer, the matched filter output at

t = kTs + τ̂ is

x(kTs + τ̂) = a(k)Rp(τ̂ − τ) +
∑

m6=k

a(m)Rp ((k −m)Ts + τ̂ − τ) . (3.83)

In the following, it will be convenient to express this output in terms of the timing errorτe = τ− τ̂ :

x(kTs + τ̂) = a(k)Rp(−τe) +
∑

m6=k

a(m)Rp ((k −m)Ts − τe) . (3.84)

Note that when the pulse shape satisfies the Nyquist condition for no ISI, the second term is zero

for τe = 0.

In a continuous-time detector, the goal of the symbol timing is to produce a clock signal aligned

with the data transitions as illustrated in Figure 3.31 for binary PAM. In this example, the rising

edge of the clock is aligned with the symbol transitions and is used to trigger the sample-and-hold

operation at the matched filter output. The symbol timing PLL in Figure 3.31 consists of a timing

error detector, loop filter, and voltage controlled clock (VCC) arranged as shown in Figure 3.32.

The timing error detector computes the phase error between the VCC output and the clock signal

embedded in the matched filter outputs. The loop filter controls the nature of the loop response

and the VCC plays the role of the VCO (i.e. the VCC output is a clock signal whose instantaneous

frequency is proportional to the VCC input).

The operation of the timing error detector is best understood using the eye diagram. Figure 3.33

illustrates this concept for binary PAM. Observe that the optimum sampling instant coincides with

the time instant of maximum average eye opening. The time instant of maximum eye opening

occurs at the time instant where the average slope of the eye diagram is zero. The non-zero slope

at t = τ are points in trajectories corresponding to no data sign transition followed by a data sign

transition or a data sign transition followed by no data sign transition. This feature reinforces the

fact that symbol timing synchronizers rely on data sign transitions to produce a proper timing error

signal.

The forgoing demonstrates that the slope of the eye diagram can be used to generate a timing

error. Figure 3.34 demonstrates that the sign of the slope of the eye must be qualified to provide

the correct timing error. Figure 3.34 (a) illustrates the case where the current sampling instant is

early (i.e.,τ̂(k) < τ which meansτe(k) > 0) and the data symbola(k) = +1. The next sampling

instantτ̂(k + 1) should be greater than̂τ(k). This is accomplished by increasing the period of the

VCC output. The slope of the matched filter output att = τ̂(k) is positive and can be used as the

error signal. Note that this applies only to the part of the eye corresponding to a transition from

a(k− 1) = −1 to a(k) = +1. The approximately horizontal portion of the eye diagram just above
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the end of the arrow corresponds to the case where there is no data transition (i.e.a(k− 1) = +1).

The slope of the eye diagram is very small along this trajectory. As a consequence, little timing

error information is provided in the absence of a data transition. This property will be more obvious

in the examples to come.

Figure 3.34 (b) demonstrates the case where the current sampling instant is late (i.e.,τ̂(k) > τ

or τe < 0) and the data symbola(k) = +1. In this case, the period of the VCC should be decreased

to forceτ̂(k + 1) < τ̂(k). The slope of the eye att = τ̂(k) along the trajectory froma(k) = +1 to

a(k + 1) = −1 is negative and thus indicates the proper adjustment to the VCC period. As before,

the trajectory froma(k) = +1 to a(k + 1) = +1 has a very small slope and thus provides little or

no timing error information.

In the preceding two cases, the data symbola(k) = +1. Figures 3.34 (c) and (d) demonstrate

what happens whena(k) = −1. In Figure 3.34 (c), the current sampling instant is early (i.e.,

τ̂(k) < τ or τe > 0) and the period of the VCC should be increased to forceτ̂(k + 1) > τ̂(k).

Unfortunately, the slope of the eye corresponding to the transition froma(k − 1) = +1 to a(k) =

−1 is negative att = τ̂(k) and therefor does not indicate the proper adjustment to the VCC period.

This is because the data symbola(k) is negative. If the slope of the eyet = τ̂(k) is altered by

the sign of the data symbol, then a signal that provides the proper adjustment to the VCC period is

obtained. Similarly, Figure 3.34 (d) shows the case where the current sampling instant is late (i.e.,

τ̂(k) > τ or τe < 0) which requires thêτ(k + 1) < τ̂(k) and a decrease in the VCC period. Since

the slope of the eye corresponding to the transition froma(k) = −1 to a(k + 1) = +1 at t = τ̂(k)

is positive, the product of the slope and the sign ofa(k) provides the proper signal for adjusting

the VCC period.

The forgoing observations suggest a timing error signal of the form

e(k) = a(k)ẋ (kTs + τ̂(k)) (3.85)

for the data-aided case, and

e(k) = â(k)ẋ (kTs + τ̂(k)) (3.86)

for the decision-directed case whereẋ(t) is the time derivative of the matched filter output. As

is turns out, this error signal follows from the maximum likelihood estimate for timing offset as

outlined in Section 3.6. A block diagram of a symbol timing PLL based on (3.86) is illustrated in

Figure 3.35 for binary PAM. Generation of the error signal requires a differentiator connected to

the matched filter output. The output of the differentiator is sampled att = kTs + τ̂(k) to provide

the slope of the eye at̂τ(k). The sign of this slope is qualified by the sign of the data by multiplying

by the sign of the corresponding sampled matched filter output to form the error signal (3.86).
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Figure 3.35 also plots an example of the received waveformr(t) (neglecting noise), the corre-

sponding matched filter outputx(t), the derivative of the matched filter outputẋ(t), and the product

sgn{x(t)} ẋ(t) whose samples are used as the timing error signal. Observe that the timing error

signal sgn{x(t)} ẋ(t) is zero at the optimum sampling time5. In the absence of data transitions the

timing error signal is zero throughout the entire symbol interval since the derivative of the matched

filter output is zero. This demonstrates that data transitions are necessary to provide sufficient tim-

ing error information to obtain symbol timing synchronization. If too many consecutive symbols

are the same, the symbol timing PLL could drift out of lock since the timing error is zero.

Often, it is desirable reduce the complexity of the timing error detector by approximating the

derivative operation with a difference as illustrated in Figure 3.36 for binary PAM and the case

τ̂(k) < τ anda(k) = 1. Since

ẋ (t0) = lim
∆→0

x(t0 + ∆)− x(t0 −∆)

2∆
, (3.87)

the derivative of the matched filter output may by approximated using the difference as shown.

Qualifying the sign of the difference by the data produces a timing error detector known as an

early-late gate detector. The data-aided version of the early-late gate timing error is

e(k) = a(k) [x (kTs + τ̂(k) + ∆Ts)− x (kTs + τ̂(k)−∆Ts)] (3.88)

and the decision-directed version is

e(k) = â(k) [x (kTs + τ̂(k) + ∆Ts)− x (kTs + τ̂(k)−∆Ts)] . (3.89)

For binary PAM, a popular form of the early-late gate error signal that does not rely directly on the

decisions is

e(k) = |x (kTs + τ̂(k) + ∆Ts)| − |x (kTs + τ̂(k)−∆Ts)| . (3.90)

A block diagram of a binary PAM timing PLL based on the early-late gate (3.90) is illustrated in

Figure 3.37. Also shown are the baseband received signalr(t) (neglecting noise), the correspond-

ing matched filter outputx(t), and the signal|x (t + ∆Ts)| − |x (t−∆Ts)| for ∆ = 1/4. Observe

that the timing error signal|x (t + ∆Ts)| − |x (t−∆Ts)| is zero at the optimum sampling instants

when there is a data transition. When there is no data transition, the timing error signal is not zero

at the optimum sampling instant. This non-zero value is calledself noiseand can limit the accuracy

of the timing PLL if the density of data transitions is not sufficiently high.

5The timing error signal sgn{x(t)} ẋ(t) is also zero half-way between the optimum sampling times. This zero

crossing is not a stable lock point.
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Figure 3.31: Block diagram for a binary PAM detector showing the role of the symbol timing PLL

and the relationship between the matched filter output and the symbol timing PLL output.
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Figure 3.32: The three basic components of an continuous-time symbol timing PLL.
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maximum average eye opening coincide with the instant where the slope of the average eye is 0.
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Figure 3.35: Timing PLL for binary PAM showing the detail of the phase detector based on (3.86).
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Figure 3.36: Illustration of using a difference to approximate the derivative of the eye diagram.
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Figure 3.37: Timing PLL for binary PAM using the early-late gate detector (3.90).
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3.4.2 Continuous-Time Techniques for MQASK

The general form for the non-offset MQASK symbol timing PLL is shown in 3.38 for the case of

QPSK. Assuming perfect carrier phase synchronization and neglecting the double frequency terms

and noise, the inphase and quadrature components are

I(t) =
∑
m

a1(m)p (t−mTs − τ) (3.91)

Q(t) =
∑
m

a2(m)p (t−mTs − τ) (3.92)

whereτ is the unknown delay to be estimated by the symbol timing synchronizer. The matched

filter outputs are

x(t) =
∑
m

a1(m)Rp (t−mTs − τ) (3.93)

y(t) =
∑
m

a2(m)Rp (t−mTs − τ) (3.94)

whereRp(u) is the autocorrelation function of the pulse shape defined by (3.82). Both of these

equations are of the same form as (3.81), the sampled matched filter output for M-ary PAM. Thus,

timing error information can be derived from both the inphase and quadrature components in par-

allel. Extending the notions developed in Section 3.4.1, the data-aided timing error signal is

e(k) = a1(k)ẋ (kTs) + a2(k)ẏ (kTs) (3.95)

and the decision directed timing error signal is

e(k) = â1(k)ẋ (kTs) + â2(k)ẏ (kTs) (3.96)

whereẋ(t) andẏ(t) are the time derivatives of the inphase and quadrature matched filter outputs,

respectively. A popular form for the QPSK decision directed error signal results from a straight

forward extension of (3.86):

e(k) = sgn{a1(k)} ẋ (kTs) + sgn{a2(k)} ẏ (kTs) . (3.97)

The derivative operation can be replaced by an early-late gate structure on both the inphase and

quadrature components

e(k) = |x (kTs + τ̂(k) + ∆Ts)| − |x (kTs + τ̂(k) + ∆Ts)|
+ |y (kTs + τ̂(k) + ∆Ts)| − |y (kTs + τ̂(k) + ∆Ts)| . (3.98)

As an example of the extension of the binary PAM results to QPSK, a QPSK symbol timing

PLL based on (3.97) is shown in Figure 3.39.
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Figure 3.38: Block diagram for a QPSK detector showing the role of the symbol timing PLL and

the relationship between the matched filter output and the symbol timing PLL output.
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3.4.3 Discrete-Time Techniques for M-ary PAM

When the matched filter is implemented as a discrete-time filter, an analog-to-digital converter

(ADC) preceding the matched filter is required. An analog-to-digital converter (ADC) produces

T -spaced samples of (3.80) at a rateN samples/symbol. Then-th sample of this waveform may

be represented by

r(nT ) =
∑
m

a(m)p(nT −mTs − τ) + w(nT ) (3.99)

wherea(k) ∈ {−(M − 1),−(M − 3), . . . ,−1, 1, . . . , M − 3,M − 1} is thek-th symbol;Ts is

the symbol time;τ is the unknown timing delay;p(nT ) are samples ofp(t), the band-limited unit

energy pulse shape with support on the interval−LpTs ≤ t ≤ LpTs; andw(nT ) are samples of the

bandlimited thermal noise. It is assumed the data symbols are uncorrelated:

E{a(k)a(m)} = σ2
aδ(m− k) (3.100)

where

σ2
a = E

{
a2(k)

}
. (3.101)

The received signal is processed by a discrete-time matched filter whose impulse response consists

of samples of the time reversed pulse shape waveform. The matched filter output is

x(nT ) =
∑
m

a(m)Rp (nT −mTs − τ) + v(nT ) (3.102)

whereRp(u) is the autocorrelation function of the pulse shape given by (3.82) andv(nT ) =

p(−nT ) ∗ w(nT ) is the component of the matched filter output due to the noise.

The goal of symbol-timing synchronization is to produceN samples at the matched filter out-

puts during each symbol interval such that one of the samples is aligned with the maximum eye

opening. There are two basic approaches to the problem. The first approach, illustrated in Fig-

ure 3.40, uses timing error to adjust the phase of the voltage controlled clock (VCC) that triggers

the ADC. As a result, the samples ofr(t) are aligned with the symbol boundaries and the optimum

eye opening as shown. This approach has the advantage that it produces samples that are aligned

in both phase and frequency with the data clock (i.e.,T andTs are commensurate). There are four

disadvantages to this approach.

1. First, a feedback path to the continuous-time part of the system is required. The hardware

overhead of transferring from the digital to analog domains via a multi-bit output bus, a data

control line, a multi-bit DAC, and an analog filter to supply the control voltage to the VCC

has the potential to complicate the analog front-end design.
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2. Second, the transport delay of the matched filter now resides in the feedback path of the

timing control loop. This significantly reduces the response time of the timing recovery

loop.

3. Third, higher levels of phase noise (and hence, timing jitter) are contributed by the VCC

relative to the phase noise contributed by fixed-frequency sampling clocks.

4. Fourth, this technique does not allow the ADC to be placed at the IF if the IF signal con-

tains multiplexed signals whose symbol clocks are derived from independent sources. In

software defined radios, the goal is to “push the ADC to the antenna.” To meet this goal,

demultiplexing and channel selection must be performed using digital signal processing on

asynchronous samples ofr(t).

The second approach, illustrated in Figure 3.41 addresses these issues by sampling the received

signalr(t) at a fixed rate1/T that is asynchronous with the symbol rate1/Ts. The time delayτ is

estimated solely from the samplesx(nT ), the asynchronous samples at the output of the matched

filter. This approach produces samples that are not aligned with the symbol boundaries as shown

by the eye diagram at the output of the matched filter. The role of symbol timing synchronization

is to “move” the samples to the desired time instants. Another name for “moving” samples in

time is interpolation. Since the timing synchronizer has to adapt to an unknown time delay, the

interpolator must be adaptive. When working properly, the interpolator produces matched filter

outputs that are aligned with the symbol boundaries and the optimum sampling instant as illustrated

by the eye diagram at the output of the interpolator in Figure 3.41.

The major disadvantage to this approach isinterpolation jitterwhich occurs whenTi 6= NT .

In this case, an interpolant is output everyN samples, on average. But, due to the condition

Ti 6= NT , the fractional timing error accumulates and eventually becomes unity. When this oc-

curs, an interpolant is outputN − 1 samples orN + 1 after the previous interpolant samples to

make up the difference. (Which it is depends on the sign of the accumulating fractional timing

error.) This interpolation jitter is especially problematic if the data bits must be retransmitted over

a synchronous link to some other destination. A more detailed discussion of interpolation jitter and

ways to overcome it are discussed in [1, 2].

The asynchronous sampling approach is the more common approach used for timing synchro-

nization in sampled-data detectors. The three basic components of the PLL, the phase detector,

loop filter, and DDS are present in the timing loop. The interpolator and timing error detector

(TED) combination plays the role of the phase detector while the interpolator control plays the role

of oscillator. Timing error detectors are described in Section 3.4.3, interpolation in Section 3.4.3,

and interpolation control in Section 3.4.3.



Synchronization 217

anti-aliasing
filter

matched
filter

ADC ( )τ̂+skTx

TED

F(z)DACDACVCC

N :1

available  matched filter output samples

N

T
T s=

( )nTr
( )tr

Figure 3.40: A hybrid continuous-time/discrete-time approach to symbol timing synchronization

for sampled data detectors.

anti-aliasing
filter

matched
filter

ADC ( )τ̂+skTx

TEDF(z)
interp.
control

available  samples at matched-filter output

fixed
clock

interpolator

available  samples at interpolator output

N

T
T s=

( )nTr
( )tr

Figure 3.41: A discrete-time approach to symbol timing synchronization for sampled data detec-

tors.
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Timing Error Detectors

In general, the timing error detectors produce an error signal once every symbol based on the

current timing estimate and using matched filter input,r(nT ), and the matched filter outputx(nT ).

In other words, the discrete-time error signal is updated at the symbol rate.

Assume an ideal interpolator is available that computes the interpolantx(kTs + τ̂) using a

timing delay estimatêτ and the outputs of the matched filter. The interpolant may be expressed as

x(kTs + τ̂) =
∑
m

a(m)Rp ((k −m)Ts + τ̂ − τ) + v(kTs + τ̂) (3.103)

=
∑
m

a(m)Rp ((k −m)Ts − τe) + v(kTs + τ̂) (3.104)

whereτe = τ − τ̂ is the timing error. The timing error detector produces a signal that is a function

of the timing errorτe in the same way the phase detector in the carrier phase PLL produced a

signal that was a function of the phase error. The output of the timing error detector,e(kTs), is a

function of the interpolated matched filter outputs and the data symbols (or their estimates). The

characteristics of the timing error detector are described by the S-curve for the timing error detector

denotedg(τe).

Maximum Likelihood Timing Error Detector (MLTED) The maximum likelihood timing er-

ror detector is derived in Section 3.6 and uses the sign-corrected slope of the eye digram for the

error signal as described in Section 3.4.1 for continuous-time timing error detectors and illustrated

in Figure 3.34. The error signal for the data-aided timing error detector is

e(k) = a(k)ẋ(kTs + τ̂) (3.105)

while the error signal for the decision-directed timing error detector is

e(k) = â(k)ẋ(kTs + τ̂) (3.106)

whereẋ(kTs + τ̂) is the time derivative of the matched filter output att = kTs + τ̂ .

The S-curve for the MLTED is obtained by computing the expected value of the error signal

using (3.104) forx(kTs + τ̂) and the property (3.100). The S-curve for the data-aided MLTED is

g(τe) = E

{
a(k)

d

dt
x(kTs + τ)

}

= E

{
a(k)

d

dt

∑
m

a(m)Rp ((k −m)Ts − τe)

}

= σ2
aṘp (−τe) (3.107)
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where the last line follows from (3.100) and (3.101) andṘp(−τe) is the time derivative of the pulse

shape autocorrelation function evaluated at−τe. The S-curve for the decision-directed MLTED is

obtained by assuminĝa(k) = a(k) and proceeding as outlined above. As long as the decisions are

correct, the S-curve for the decision-directed MLTED is identical to the S-curve for the data-aided

MLTED. This is illustrated in Figure 3.42 which is a plot of the S-curve for the square-root raised-

cosine pulse shape with 50% excess bandwidth. The S-curves for both the data-aided detector

and the decision-directed detector are identical for|τe| < 0.35. This is becausêa(k) = a(k).

When|τe| > 0.35 the S-curve for the decision-directed detector departs from the S-curve for the

data-aided detector due to decision errors.

The detector gainKp is the slope ofg(τe) = Ṙp(−τe) at τe = 0. Kp is a function of the

excess bandwidth whenp(t) is the root-raised cosine pulse shape. This dependence is plotted in

Figure 3.43.

Samples of the derivative of the matched filter output may be obtained from samples of the

matched filter output using a filter as outlined in Chapter??. Denoting the impulse response of the

“derivative filter” asd(nT ), samples of the derivative ofx(nT ) may be expressed in one of two

forms as

ẋ(nT ) = x(nT ) ∗ d(nT ) (3.108)

= (r(nT ) ∗ p(−nT )) ∗ d(nT )

= r(nT ) ∗ (p(−nT ) ∗ d(nT ))

= r(nT ) ∗ ṗ(−nT ) (3.109)

where the third line follows from the second line by the associative property of convolution. The

two expressions (3.108) and (3.109) suggest two alternate discrete-time systems for producing the

desired samples. The system in Figure 3.44 (a) illustrates the discrete-time processing defined by

(3.108). The system in Figure 3.44 (b) illustrated the discrete-time processing defined by (3.109)

which uses a filter whose impulse response consists of samples of the time derivative ofp(−t).

A complete detector requires both matched filter outputs and derivative matched filter outputs.

Thus, the use of either approach to compute the derivative matched filter requires two filters. How-

ever, the approach illustrated in Figure 3.44 (a) uses the two filters in series whereas the approach

illustrated in Figure 3.44 (b) uses two filters operating on the same input samples in parallel. This

second approach can be important in a delay-sensitive application such as a phase locked loop.

In either case, the sample rate used to produce the samples ofr(t) or x(t) must satisfy the

Nyquist sampling theorem. Samples of the time derivative of thex(t) cannot be obtained from

undersampled signals that have been distorted by aliasing. Thus the MLTED is, in general, a

multi-rate discrete-time system. The input sample rate isN samples/symbol while the output
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ratio isEb/N0 = 20 dB. The derivative matched filter was obtained by computing the first central

difference of a unit energy matched filter atN = 32 samples/symbol.

sample rate is 1 sample/symbol.
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Figure 3.43: Phase detector gain,Kp, of the maximum likelihood timing error detector as a func-

tion of excess bandwidth for the square-root raised cosine pulse shape and binary PAM with

σ2
a = 1. The derivative ofRp(·) was obtained by computing the first central difference of a unit

amplitude raised cosine response sampled atN = 32 samples/symbol.
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Figure 3.44: Two approaches for computing samples of the derivative of the matched filter output.
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Early-Late Timing Error Detector (ELTED) The early-late timing error detector (ELTED)

uses time differences, as described in Section 3.4.1, to approximate the derivative required by the

MLTED. The data-aided early-late error signal is of the form

e(k) = a(k) [x (kTs + τ̂ + ∆Ts)− x (kTs + τ̂ −∆Ts)]

where∆Ts is usually selected to be a value conveniently supplied by the sample rate. Since a

sample rate of 2 samples/symbol is commonly used,∆ = 1/2 is a popular choice. When sampled

at two samples/symbol, the matched filter outputs may be indexed using the symbol indexk as

. . . , x((k− 1)Ts − τ), x((k− 1/2)Ts − τ), x(kTs − τ), x((k + 1/2)Ts − τ), x((k + 1)Ts − τ), . . .

The early-late timing error for a sample rate of two samples/symbol is

e(k) = a(k) [x ((k + 1/2)Ts + τ̂)− x ((k − 1/2)Ts + τ̂)] (3.110)

for the data-aided detector and

e(k) = â(k) [x ((k + 1/2)Ts + τ̂)− x ((k − 1/2)Ts + τ̂)] (3.111)

for the decision-directed detector.

The S-curve for the ELTED is obtained by computing the expected value of the error signal

using (3.104) forx((k +1/2)Ts + τ̂) andx((k− 1/2)Ts + τ̂) along with the property (3.100). The

S-curve for the data-aided ELTED is

g(τe) = E{a(k) [x((k + 1/2)Ts + τ)− x((k − 1/2)Ts + τ)]}

= E

{
a(k)

∑
m

a(m)Rp ((k −m + 1/2)Ts − τe)−Rp ((k −m− 1/2)Ts − τe)

}

= σ2
a [Rp (Ts/2− τe)−Rp (−Ts/2− τe)] (3.112)

where the last line follows from (3.100) and (3.101). The S-curve is thus an approximation to the

derivative ofRp(t) at t = −τe using values ofRp(t) half a symbol time before and after−τe.

(Compare the S-curve for the ELTED with the S-curve for the MLTED.) SinceRp(−τe) is an

autocorrelation function, it is symmetric and therefor zero atτe = 0. The S-curve for the decision-

directed MLTED is obtained by assuminĝa(k) = a(k) and proceeding as outlined above. As

long as the decisions are correct, the S-curve for the decision-directed MLTED is identical to the

S-curve for the data-aided MLTED as illustrated in Figure 3.45 for the square-root raised cosine

pulse shape with 50% excess bandwidth. Again, the S-curves for both the data-aided detector
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Figure 3.45: S-curves for the data-aided early-late timing error detector (solid line) and the

decision-directed early-late timing error detector (dashed line). These are simulation results for

binary PAM using a square-root raised cosine pulse shape with 50% excess bandwidth andσ2
a = 1.

The signal-to-noise ratio isEb/N0 = 20 dB.

and the decision-directed detector are identical for|τe| < 0.35. This is becausêa(k) = a(k).

When|τe| > 0.35 the S-curve for the decision-directed detector departs from the S-curve for the

data-aided detector due to decision errors.

The ELTED gain,Kp, is the slope ofg(0) which is a function of the excess bandwidth when

p(t) is the root-raised cosine pulse shape. This dependence is plotted in Figure 3.46.
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Figure 3.46: Phase detector gain,Kp, of the early-late timing error detector as a function of excess

bandwidth for the for the square-root raised cosine pulse shape and binary PAM withσ2
a = 1.
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Zero Crossing Detector (ZCTED) The zero crossing detector is intended for use with binary

baseband PAM, BPSK or QPSK and operates at two samples/symbol. For convenience, assume

that the matched filter outputs are available at a rate of two samples per symbol and may be indexed

using the symbol indexk as

. . . , x((k− 1)Ts − τ), x((k− 1/2)Ts − τ), x(kTs − τ), x((k + 1/2)Ts − τ), x((k + 1)Ts − τ), . . .

The timing error signal, using a timing offset estimateτ̂ to perform the interpolations is

e(k) = x((k − 1/2)Ts − τe) [a(k − 1)− a(k)] (3.113)

for the case of data-aided symbol timing synchronization and

e(k) = x((k − 1/2)Ts − τe) [â(k − 1)− â(k)] (3.114)

= x((k − 1/2)Ts − τe) [sgn{x((k − 1)Tk − τe)} − sgn{x(kTs − τe)}] (3.115)

for decision directed symbol timing synchronization.

The error signal is based on finding the zero crossings in the eye diagram as illustrated in

Figure 3.47. The sign of the error is controlled by the differencea(k−1)−a(k) or â(k−1)− â(k).

Figure 3.47 (a) illustrates the case where the timing errorτe is positive and the data transition

is positive-to-negative. The timing error ise(k) = x((k − 1/2)Ts − τe)[a(k − 1) − a(k)] =

2x((k − 1/2)Ts − τe) > 0 and provides an error signal with the correct sign. In Figure 3.47 (b),

the timing errorτe is negative. The error signal ise(k) = x((k− 1/2)Ts − τe)[a(k− 1)− a(k)] =

2x((k − 1/2)Ts − τe) < 0 and provides an error signal with the correct sign. When the data

transition is negative-to-positive, the sign ofx((k − 1/2)Ts − τe) is wrong but is corrected by

a(k − 1) − a(k) = −2. Note that when there is no data transition,a(k − 1) − a(k) = 0 and no

timing error information is provided.

The S-curve for the ZCTED may be obtained by computing the expected value ofe(k) and

using an expression of the form (3.104) forx((k − 1/2)Ts). The S-curve for the data-aided ZCD

is

g(τe) = E{x((k − 1/2)Ts − τe)[a(k − 1)− a(k)]} (3.116)

= E

{∑
m

a(m)Rp ((k −m)Ts − Ts/2− τe)

[
a(k − 1)− a(k)

]}
(3.117)

= σ2
a [Rp (Ts/2− τe)−Rp (−Ts/2− τe)] (3.118)

where the last line follows from (3.100) and (3.101). The S-curve is thus an estimate of the slope

of Rp(−τe) using values ofRp(t) half a symbol time before and after−τe. Since autorcorrelation
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functions are symmetric, the S-curve is zero atτe = 0. The S-curve for the decision-directed

ZCTED is identical when̂a(k− 1) = a(k− 1) andâ(k) = a(k) as illustrated in Figure 3.48. Note

that the S-curve for the ZCTED given by (3.118) is identical to the S-curve for the ELTED given

by (3.112). The ZCTED performance, however, is superior to that of the ELTED since the ELTED

suffers from a higher degree of self noise than the the ZCTED.

The TED detector gain,Kp is a function of the pulse shape which, for the square-root raised

cosine pulse shape, is a function of the excess bandwidth as shown in Figure 3.49.
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Figure 3.47: Example showing the operation of the zero crossing detector for positive-to-negative

data transitions. (a) The timing estimate is early. (b) The timing estimate is late.
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Figure 3.48: S-curves for the data-aided zero crossing detector (solid line) and the decision-

directed zero crossing detector (dashed line). These are simulation results for binary PAM using a

square-root raised cosine pulse shape with 50% excess bandwidth andσ2
a = 1. The signal-to-noise

ratio isEb/N0 = 20 dB.
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Figure 3.49: Phase detector gain,Kp, of the zero crossing detector as a function of excess band-

width for the for the square-root raised cosine pulse shape and binary PAM withσ2
a = 1.
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Mueller and M üller Detector (MMD) The Mueller and M̈uller detector (MMD) operates on

the matched filter outputs sampled at one sample/symbol. The symbol timing error signal is

e(k) = a(k − 1)x(kTs − τe)− a(k)x((k − 1)Ts − τe) (3.119)

for data-aided symbol timing synchronization and

e(k) = â(k − 1)x(kTs − τe)− â(k)x((k − 1)Ts − τe) (3.120)

for decision-directed symbol timing synchronization. An interpretation of MMD operation may be

obtained through the expression for the S-curve. As before, the S-curve is obtained by computing

the expected value ofe(k) using (3.104) forx(kTs − τe) andx((k − 1)Ts − τe). The S-curve for

the data-aided timing error detector is

g(τe) = E{a(k − 1)x(kTs − τe)− a(k)x((k − 1)Ts − τe)}

= E

{
a(k − 1)

∑
m

a(m)Rp ((k −m)Ts − τe)− a(k)
∑
m

a(m)Rp ((k − 1−m)Ts − τe)

}

= σ2
a [Rp (Ts − τe)−Rp (−Ts − τe)] . (3.121)

The S-curve is thus an estimate of the slope ofRp(τe) using values of values a symbol time before

and after−τe. Since autorcorrelation functions are symmetric, the S-curve is zero atτe = 0. The

S-curve for the decision-directed MMD is identical whenâ(k − 1) = a(k − 1) andâ(k) = a(k)

as shown in Figure 3.50 for the square-root raised-cosine pulse shape with 50% excess bandwidth.

When |τe| < 0.35, the symbol decision are correct and the two S-curve are identical. When

|τe| > 0.35, some of the symbol decisions are incorrect and reduce the MMD gain as indicated by

the departure of the S-curve for the decision-directed MMD from the S-curve for the data-aided

MMD. The phase detector gain,Kp is a function of the pulse shape which, for the square-root

raised cosine pulse shape, is a function of the excess bandwidth as shown in Figure 3.51.
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Figure 3.50: S-curves for the data-aided Mueller and Müller detector (solid line) and the decision-

directed Mueller and M̈uller detector (dashed line). These are simulation results for binary PAM

using a square-root raised cosine pulse shape with 50% excess bandwidth andσ2
a = 1. The signal-

to-noise ratio isEb/N0 = 20 dB.
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Figure 3.51: Phase detector gain,Kp, of the Mueller and M̈uller detector as a function of excess

bandwidth for the for the square-root raised cosine pulse shape and binary PAM withσ2
a = 1.
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Interpolation

The commonly used terms to describe interpolation are illustrated by the diagram in Figure 3.52.

T -spaced samples of the bandlimited continuous time signalx(t) are available and denoted

. . . , x((n− 1)T ), x(nT ), x((n + 1)T ), x((n + 2)T ), . . . .

The desired sample is a sample ofx(t) at t = kTi and is called thek-th interpolant. The process

used to computex(kTi) from the available samples is calledinterpolation. When thek-th inter-

polant is between samplesx(nT ) and(x(n+1)T ), the sample indexn is called thek-th basepoint

indexand is denotedm(k). The time instantkTi is some fraction of a sample time greater than

m(k)T . This fraction is called thek-th fractional interval and is denotedµ(k). Thek-th fractional

interval satisfies0 ≤ µ(k) < 1 and is defined byµ(k)T = kTi −m(k)T .

The fundamental equation for interpolation may be derived by considering a fictitious system

involving continuous-time processing illustrated in Figure 3.53. The samplesx(nT ) (n = 0, 1, . . .)

are converted to a weighted impulse train

xa(t) =
∑

n

x(nT )δ(t− nT ) (3.122)

by the digital-to-analog converter (DAC). The impulse train is filtered by an interpolating filter with

impulse responsehI(t) to produce the continuous-time outputx(t). The continuous-time signal

x(t) may be expressed as

x(t) =
∑

n

x(nT )hI(t− nT ). (3.123)

To produce the desired interpolants,x(t) is resampled at intervalskTi (k = 0, 1, . . .)6. Thek-th

interpolant is (3.123) evaluated att = kTi and may be expressed as

x(kTi) =
∑

n

x(nT )hI(kTi − nT ). (3.124)

The indexn indexes the signal samples. The convolution sum (3.124) may be re-expressed using a

filter indexi. Usingm(k) = bkTi/T c andµ(k) = kTi/T −m(k), the filter index isi = m(k)−n.

Using the filter index, equation (3.124) may be expressed as

x(kTi) =
∑

i

x ((m(k)− i) T ) hI ((i + µ(k)) T ) . (3.125)

6If Ti = T then the process produces one interpolant for each sample. This is the strict definition ofinterpolation.

WhenTi 6= T , then the sample rate of the output is different than the sample rate of the input. This process is known

asresamplingor rate conversion. In digital communication applications,Ti > T is the case typically encountered

sinceT is the reciprocal of the sample rate at the input to the matched filter andTi is the reciprocal of the symbol rate.
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Equation (3.125) will serve as the fundamental equation for interpolation and shows that the desired

interpolant can be obtained by computing a weighted sum of the available samples. The optimum

interpolation filter is an ideal low-pass filter whose impulse response is

hI(t) =
sin (πt/T )

πt/T
. (3.126)

Given a fractional intervalµ, the ideal impulse response is sampled att = iT − µT to produce the

filter coefficients required by (3.125).

The role of the interpolation control block in Figure 3.41 is to provide the interpolator with the

basepoint index and fractional interval for each desired interpolant.

For asynchronous sampling, the sample clock is independent of data clock used by the trans-

mitter. As a consequence, the sampling instants are not synchronized to the symbol periods. The

sample rate and symbol rate areincommensurateand the sample times never coincide exactly with

the desired interpolant times. When the symbol timing PLL is in lock and the interpolants are

desired once per symbol,Ti = Ts. The behavior of the fractional intervalµ(k) as a function of

k depends on the relationship between the sample clock periodT and the symbol periodTs as

follows:

• WhenTs is incommensurate withNT , µ(k) is irrational and changes for eachk for infi-

nite precision or progresses through a finite set of values, never repeating exactly for finite

precision.

• WhenTs ≈ NT , µ(k) changes very slowly for infinite precision or remains constant for

manyk, for finite precision.

• WhenTs is commensurate withNT , but not equal:µ(k) cyclically progresses through a

finite set of values.

Since the ideal interpolation filter is IIR, its use poses an often unacceptable computational

burden — especially when the fractional interval changes. For this reason, FIR filters that approx-

imate the ideal interpolation filter are preferred in digital communication applications. A popular

class of FIR interpolating filters are piece-wise polynomial filters discussed below. Another alter-

native is to massively upsample the matched filter input, match filter at the high sample rate, then

downsample the matched filter output with the appropriately chosen sample offset to obtain the

desired interpolant. This approach leads to a polyphase-filterbank interpolator.

Piecewise Polynomial Interpolation The underlying continuous-time waveformx(t) is approx-

imated by a polynomial int of the form

x(t) ≈ cpt
p + cp−1t

p−1 + · · ·+ c1t + c0. (3.127)
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The polynomial coefficients are determined by thep + 1 sample values surrounding the basepoint

index. Once the coefficient values are known, the interpolant att = kTi = (m(k) + µ(k))T is

obtained using

x(kTi) ≈ cp(kTi)
p + cp−1(kTi)

p−1 + · · ·+ c1(kTi) + c0. (3.128)

Three special cases,p = 1, 2, and 3 are of interest and are illustrated in Figure 3.54. When

p = 1, the first degree polynomial

x(t) ≈ c1t + c0 (3.129)

is used to approximate the underlying continuous-time waveform. The desired interpolants are

computed from

x((m(k) + µ(k))T ) = c1((m(k) + µ(k))T ) + c0. (3.130)

The coefficientsc1 andc0 are determined by the available samples and satisfy the equation
[

x(m(k)T )

x((m(k) + 1)T )

]
=

[
m(k)T 1

(m(k) + 1)T 1

][
c1

c0

]
. (3.131)

Solving the above forc1 andc0 and substituting into (3.130) produces

x((m(k) + µ(k))T ) = µ(k)x((m(k) + 1)T ) + (1− µ(k))x(m(k)T ) (3.132)

which is the familiar linear interpolator.

Four observations are important. The first is that the interpolant is a linear combination of the

available samples. As a consequence, the interpolant can be thought of as the output of a filter with

coefficients suggested by (3.132):

x((m(k) + µ(k))T ) =
0∑

i=−1

h1(i)x((m(k)− i)T ) (3.133)

where

h1(−1) = µ(k)

h1(0) = 1− µ(k).
(3.134)

The second important observation is that the equivalent filter coefficients are a function only of the

fractional interval and not a function of the basepoint index. The basepoint index defineswhichset

of samples should be used to compute the interpolant. The third observation is that the interpolating

filter is linear phase FIR filter which is an extremely important property for digital communications.

To see that this filter is linear phase, note that the coefficients are symmetric about the center point

of the filter which is defined byµ(k) = 1/2. In other words,h((m + 1/2)T ) = h((−m + 1/2)T )
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for m = 0, 1, 2, . . .. This is a result of using an even number of samples to compute an interpolant

that is between the middle two. The final observation is that the sum of the coefficients is unity

and is therefor independent ofµ(k). As a consequence, the interpolating filter does not alter the

amplitude of the underlying continuous-time waveform in the process of producing the interpolant.

The second observation is an attractive feature since any finite precision computing device

would eventually overflow asm(k) increased. The third property requires the use of an even

number of samples by the interpolator. Since an even number of samples is needed to define an

odd-degree approximating polynomial, odd degree approximating polynomials are popular. The

next highest odd-degree polynomial isp = 3. In this case

x(t) ≈ c3t
3 + c2t

2 + c1t + c0 (3.135)

is used to approximate the underlying continuous-time waveform. The desired interpolants are

computed from

x((m(k) + µ(k))T ) = c3((m(k) + µ(k))T )3 + c2((m(k) + µ(k))T )2c1((m(k) + µ(k))T ) + c0.

(3.136)

The coefficientsc3, c2, c1 andc0 are defined by




x((m(k)− 1)T )

x(m(k)T )

x((m(k) + 1)T )

x((m(k) + 2)T )


 =




((m(k)− 1)T )3 ((m(k)− 1)T )2 (m(k)− 1)T 1

(m(k)T )3 (m(k)T )2 m(k)T 1

((m(k) + 1)T )3 ((m(k) + 1)T )2 (m(k) + 1)T 1

((m(k) + 2)T )3 ((m(k) + 2)T )2 (m(k) + 2)T 1







c3

c2

c1

c0


 . (3.137)

Solving the above forc3, c2, c1 andc0 and substituting into (3.136) produces

x((m(k) + µ(k))T ) =

(
µ(k)3

6
− µ(k)

6

)
x((m(k) + 2)T )

−
(

µ(k)3

2
− µ(k)2

2
− µ(k)

)
x((m(k) + 1)T )

+

(
µ(k)3

2
− µ(k)2 − µ(k)

2
+ 1

)
x(m(k)T )

−
(

µ(k)3

6
− µ(k)2

2
+

µ(k)

3

)
x((m(k)− 1)T ) (3.138)

which is called a cubic interpolator. When interpreted as a filter, the cubic interpolator output is of

the form

x((m(k) + µ(k))T ) =
1∑

i=−2

h3(i)x((m(k)− i)T ) (3.139)
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where the filter coefficients are

h3(−2) =
µ(k)3

6
− µ(k)

6

h3(−1) = −µ(k)3

2
+

µ(k)2

2
+ µ(k)

h3(0) =
µ(k)3

2
− µ(k)2 − µ(k)

2
+ 1

h3(1) = −µ(k)3

6
+

µ(k)2

2
− µ(k)

3
.

(3.140)

Finally, for the casep = 2, using the approximation

x(t) ≈ c2t
2 + c1t + c0 (3.141)

to approximate the underlying continuous-time waveform and

x((m(k) + µ(k))T ) = c2((m(k) + µ(k))T )2 + c1((m(k) + µ(k))T ) + c0 (3.142)

to compute the desired interpolant requires the use of 3 samples. Since the number of samples is

odd, the desired interpolant is not in between the middle two and the resulting filter will not be

symmetric with respect toµ(k) = 1/2. The desire to use four points introduces a wrinkle that is

explored in the homework where it is shown that the desired interpolant can be thought of as the

output of a filter of the form

x((m(k) + µ(k))T ) =
1∑

i=−2

h2(i)x((m(k)− i)T ) (3.143)

where the filter coefficients are

h2(−2) = αµ(k)2 − αµ(k)

h2(−1) = −αµ(k)2 + (1 + α)µ(k)

h2(0) = −αµ(k)2 − (1− α)µ(k) + 1

h2(1) = αµ(k)2 − αµ(k)

(3.144)

andα is a free parameter required to account for the additional degree of freedom introduced by

using four points. Simulation results have shown thatα = 0.43 is the optimal value for BPSK

using the root raised cosine pulse shape with 100% excess bandwidth. Usingα = 0.5 reduces the

complexity of the hardware somewhat and results in a performance loss less than 0.1 dB [3].

Using a piece-wise polynomial interpolator to produce the desired interpolant results in a com-

putation of the form

x((m(k) + µ(k))T ) =

I2∑
i=−I1

hp(i; µ(k))x((m(k)− i)T ) (3.145)
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where the filter coefficients are given by (3.134), (3.144), (3.140) forp = 1, 2, and 3, respectively.

Comparing (3.145) with the fundamental interpolation equation (3.125) shows that the filter co-

efficientshp(i; µ(k)) play the role of approximating the samples of the ideal interpolation filter

hI((i − µ(k))T ). Plots ofh1(i; µ(k)), h2(i; µ(k)), andh3(i; µ(k)) are shown in Figure 3.55. Ob-

serve that asp increases,hp(i; µ(k)) approximates (3.126) with greater and greater accuracy. In

fact, in the limitp →∞, hp(i; µ(k)) approaches (3.126).

Since the filter coefficients suggested by the filter structure defined by (3.134), (3.140), and

(3.144) are a function of the variableµ(k), a hardware implementation requires two-input multi-

pliers with two variable quantities. The complexity can be reduced by formulating the problem in

terms of two-input multipliers where one of the inputs is fixed. Each filter coefficienthp(i; µ(k))

in (3.145) is a polynomial inµ(k). Let

hp(i; µ(k)) =

p∑

l=0

bl(i)µ(k)l (3.146)

represent the polynomial. Substituting (3.146) into (3.145) and rearranging produces

x((m(k) + µ(k))T ) =

p∑

l=0

µ(k)l

I2∑
i=I1

bl(i)x((m(k)− i)T )

︸ ︷︷ ︸
v(l)

. (3.147)

The inner sum looks like a filter equation where the input data samplesx((m(k)−i)T ) pass through

a filter with impulse responsebl(i). Since thebl(i) are independent ofµ(k), this filter has fixed

coefficients and an efficient implementation. Computing (3.147) by nested evaluation produces in

an expression of the form

x((m(k) + µ(k))T ) = (v(2)µ(k) + v(1)) µ(k) + v(0) (3.148)

for piece-wise parabolic interpolation and

x((m(k) + µ(k))T ) = ((v(3)µ(k) + v(2)) µ(k) + v(1)) µ(k) + v(0) (3.149)

for cubic interpolation. Mapping these expressions to hardware results in an efficient filter structure

called theFarrow Structureillustrated in Figure 3.56. TheFarrow coefficientsfor the Farrow

structure are listed in Tables 3.1 and 3.2. Note that whenα = 1/2 for the piece-wise parabolic

interpolator, all of the filter coefficients but one become 0, 1, or±1/2. The resulting filter structure

is elegantly simple.
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Table 3.1: Farrow coefficientsbl(i) for the piece-wise parabolic interpolator.

i b2(i) b1(i) b0(i)

-2 α −α 0

-1 −α 1 + α 0

0 −α α− 1 1

1 α −α 0

Table 3.2: Farrow coefficientsbl(i) for the cubic interpolator.

i b3(i) b2(i) b1(i) b0(i)

-2 1
6

0 −1
6

0

-1 −1
2

1
2

1 0

0 1
2

-1 −1
2

1

1 −1
6

1
2

−1
3

0

( )tx

(n-5)T (n-4)T (n-3)T (n-2)T (n–1)T nT (n+1)T (n+2)T   (n+3)T (n+4)T (n+5)T (n+6)T

ikT

( )ikTx
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Figure 3.52: Illustration of the relationships between the interpolation intervalTi, the sample time

T , the basepoint indexes, and fractional intervals.
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Figure 3.53: Fictitious system using continuous-time processing for performing interpolation.
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Figure 3.54: Three special cases of polynomial interpolation: linear interpolation (top), quadratic

interpolation (middle), cubic interpolation (bottom).
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Figure 3.55: Plot of the filter impulse responses resulting from piece-wise polynomial interpola-

tion.
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Figure 3.56: Farrow interpolator structures for the piece-wise parabolic withα = 1/2 (top) and

cubic (bottom) interpolators.
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Polyphase Filterbank Interpolation An alternate approach to interpolation is to upsample the

matched filter output by a factorQ then down sample with the appropriate offset to produce a sam-

ple close to the desired interpolant. How close the sample is to the desired interpolant is controlled

by the upsample factorQ. A conceptual block diagram of this process is shown in Figure 3.57

(a) for the case of binary PAM. (Generalizations to M-ary PAM are straight forward.) The input

to the matched filter consists of samples the received signalr(nT ) sampled atN samples/symbol

(i.e.,Ts = NT ). The impulse responseh(nT ) of the matched filter consists ofT -spaced samples

of a time-reversed version of the pulse shapep(t): h(nT ) = p(−nT ). The matched filter output,

x(nT ) is upsampled by insertingQ − 1 zeros between each sample. An interpolating low-pass

filter is used to produce samples of the matched filter output at a rate ofNQ samples/symbol.

This signal is denotedx(nT/Q). The matched filter output with the desired delay is obtained by

downsamplingx(nT/Q) with the proper offset.

The upsample-and-interpolate operation can be applied to the matched filter input instead of the

output as illustrated in Figure 3.57 (b). The inphase component of the received signal is upsampled

by insertingQ−1 zeros between each sample. The upsampled signal is low-pass filtered to produce

r(nT/Q) which consists of samples of the inphase component at the high sample rate. In this case,

the impulse response of the matched filter consists ofT/Q-spaced samples ofp(−t). The desired

matched filter output is obtained by downsampling the matched filter outputs at the high sample

rate,x(nT/Q), with the proper offset.

Since both the interpolating filter and matched filter are low-pass filters, it is not necessary to

filter twice. The low pass interpolating filter may be removed as shown in Figure 3.57 (c). The key

difference here is that the matched filter is performing two functions: interpolation and shaping.

In other words, the matched filter outputs at the high sample rate,x(nT/Q) are not identical to an

upsampled version of the inputr(nT/Q).

The matched filter outputs at the high sample may be expressed as

x

(
n

T

Q

)
=

QNL∑

l=−QNL

r

(
(n− l)

T

Q

)
h

(
l
T

Q

)
. (3.150)

The sequencex(nT/Q) may be downsampled byQ to produce a sequence atN samples/symbol

where everyN -th sample is as close tox(kTs + τ) as the resolution allows. The polyphase decom-

position is due to the fact that not all of the multiplies defined by (3.150) are required. Since

r

(
n

T

Q

)
=





r(nT ) n = 0,±Q,±2Q, . . .

0 otherwise,
(3.151)

only everyQ-th value ofr(nT/M) in the FIR matched filter is non-zero. At a time instant at the
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high sample rate, these non-zero values coincide with the filter coefficients

. . . , h(−2QT ), h(−QT ), h(0), h(QT ), h(2QT ), . . .

and the filter output may be expressed as

NL∑
i=−NL

r((n− i)T )h(iT ) = x(nT ). (3.152)

At the next time instant the non-zero values ofr(nT/Q) coincide with the filter coefficients

. . . , h(−2QT + 1), h(−QT + 1), h(1), h(QT + 1), h(2QT + 1), . . .

so that the filter output may be expressed as

NL∑
i=−NL

r((n− i)T )h

((
i +

1

Q

)
T

)
= x

((
n− 1

Q

)
T

)
. (3.153)

At the q-th time instant, the non-zero values ofr(nT/Q) coincide with the filter coefficients

. . . , h(−2QT + q), h(−QT + q), h(q), h(QT + q), h(2QT + q), . . .

so that the filter output may be expressed as

NL∑
i=−NL

r((n− i)T )h

((
i +

q

Q

)
T

)
= x

((
n− q

Q

)
T

)
. (3.154)

This characteristic is illustrated in Figure 3.58 where a parallel bank ofQ filters, operating at

the low sample rate1/T is shown. Each filter in the filterbank is a downsampled version of the

matched filter, except with a different index offset. The impulse response forhq(nT ) is

hq(nT ) = h

(
nT +

q

Q
T

)
for q = 0, 1, . . . , Q− 1. (3.155)

The data samplesr(nT ) form the input to all the filters in the filterbank simultaneously. The

desired phase shift of the output is selected by connecting the output to the appropriate filter in the

filterbank.

To see that the output of theq-th filter in the polyphase filter bank given by (3.154) does

indeed produce the desired result given by (3.124), assume for the moment thatTi/T in (3.124) is

sufficiently close to one so thatm(k) = n. Then (3.125) becomes

x(kTi) =
∑

i

x ((k − i)T ) hI ((i + µ(k))T ) . (3.156)
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Since the polyphase filterbank implementation uses the matched filter as the interpolation filter, the

input data sequencer(nTs) in (3.154) plays the role of the matched filter outputx(nT ) in (3.125)

and the matched filterh(nT ) in (3.154) plays the role of the interpolation filter in (3.125). The

comparison shows that the ratio of the polyphase filter stage indexq to the number of filterbank

stagesQ plays the same role as the fractional intervalµ(k) in the interpolation filter. In this way, the

polyphase filterbank implements the interpolation defined by (3.125) with a quantized fractional

interval. The degree of quantization is controlled by the number of polyphase filter stages in the

filterbank. The observations regarding the behavior ofµ(k) above apply to the filter stage indexq

for the cases whereT andTs are not commensurate.
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Figure 3.57: An upsample approach to interpolation. (a) Upsample and interpolation applied to the

matched filter output. (b) Upsample and interpolation applied the matched filter input. (c) Using

the matched filter for both interpolation and shaping.
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Figure 3.58: Polyphase matched-filter filterbank outputs illustrating how each filter in the filterbank

produces an output sequence with a different delay.
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Interpolation Control

The purpose of the interpolator control block in Figure 3.41 to provide the interpolator with the

k-th basepoint indexm(k) and thek-th fractional intervalµ(k). The basepoint index is usually not

computed explicitly but rather identified by a signal often called astrobe. Two commonly used

methods for interpolation control are a counter-based method and a recursive method.

Modulo-1 Counter Interpolation Control For the case where interpolants are required every

N samples, interpolation control can be accomplished using a modulo-1 counter designed to un-

derflow everyN samples where where the underflows are aligned with the basepoint indexes. A

block diagram of this approach is shown in Figure 3.59. TheT -spaced samples of the matched

filter input are clocked into the matched filter with the same clock used to update the counter. A

decrementing modulo-1 counter is shown here as it simplifies the computation of the fractional

interval. An incrementing modulo-1 counter could also be used and is explored in a homework

problem.

The counter decrements by1/N on average so that underflows occur everyN samples on

average. The loop filter outputv(n) adjusts the amount by which the counter decrements. This

is done to align the underflows with the sample times of the desired interpolant. When operating

properly, the modulo-1 counter underflows occur a clock period after the desired interpolant as

illustrated in Figure 3.60. The underflow condition is indicated by a strobe and is used to identify

to the interpolator that the previous sample was the basepoint index for the desired interpolant.

The fractional interval may be computed directly from the contents of the modulo-1 counter on

underflow. The counter valueη(n) satisfies the recursion

η(n) = (η(n− 1)−W (n− 1)) mod 1 (3.157)

whereW (n) = 1/N + v(n) is the counter input and is the current estimate of the ratioTi/T . The

counter value immediately precedingkTi (the desired interpolant time) isη(m(k)) and the counter

value immediately following thekTi is 1−η(m(k)+1). Using similar triangles, the counter values

and fractional interval satisfy the relationship

µ(k)T

η(m(k))
=

(1− µ(k))T

1− η(m(k) + 1)
(3.158)

which can be solved forµ(k):

µ(k) =
η(m(k))

1− η(m(k) + 1) + η(m(k))
=

η(m(k))

W (m(k))
. (3.159)
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Figure 3.59: Modulo-1 counter for interpolation control in a baseband PAM system. The basepoint

index is identified by the underflow strobe and the fractional interval updated using the counter

contents on underflow.

The underflow period (in samples) of the NCO is

1

W (n)
=

1
1

N
+ v(n)

(3.160)

=
N

1 + Nv(n)
. (3.161)

When in lock,v(n) is zero on average an the NCO underflow period isN samples on average.

During acquisition,v(n) adjusts the underflow period to align the underflow events with the symbol

boundaries as described above. An important caveat is lurking in the details when using NCO

interpolation control. A positive phase error(τ − τ̂(k) > 0) meanŝτ(k + 1) must be greater than

τ̂(k). This is accomplished by increasing the period of NCO underflows. The underflow period

is increased by forcing1 + Nv(n) < 1 which, in turn, requiresv(n) < 0. In the same way, a

negative phase error(τ − τ̂(k) < 0) meanŝτ(k + 1) must be less than̂τ(k). This is accomplished

by decreasing the period of NCO underflows. The underflow period is decreased by forcing1 +

Nv(n) > 1 which, in turn, requiresv(n) > 0. Thus the sign of the phase error the opposite the

sign of what is required by the NCO controller for proper operation. This characteristic can be

easily accommodated by changing the sign on the TED gain: i.e., using−Kp in stead ofKp.
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Figure 3.60: Illustration of the relationship between the available samples, the desired interpolants,

and the modulo-1 counter contents.
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Recursive Interpolation Control The relationship for recursive interpolation control can be ob-

tained by writing the expressions for two successive interpolation instants as

kTi = (m(k) + µ(k))T

(k + 1)Ti = (mk+1 + µk+1)T
(3.162)

and subtracting the two to obtain the recursion

mk+1 = m(k) +
Ti

T
+ µ(k)− µk+1. (3.163)

Sincemk andmk+1 are integers, the fractional part of the right-hand side of (3.163) must be zero

from which the recursion for the fractional interval is obtained:

µk+1 =

(
µ(k) +

Ti

T

)
mod 1. (3.164)

Since0 ≤ µk+1 < 1, the relationship

mk+1 + µk+1 = mk +
Ti

T
+ µ(k) < mk+2 (3.165)

must hold from which the recursion on the sample count increment is

mk+1 −m(k) =

⌊
Ti

T
+ µ(k)

⌋
. (3.166)

The sample count increment is a more useful quantity than the actual basepoint index because any

finite-precision counter used to compute and/or storem(k) would eventually overflow. As was the

case with the counter-based control, the ratioTi/T required by (3.164) and (3.166) estimated by

W (n) = 1/N + v(n) wherev(n) is the output of the loop filter.
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Examples

Two examples are provided to put all the pieces together. Both examples use binary PAM as

the modulation. The first uses the maximum likelihood timing error detector and operates at 16

samples/symbol. The second uses the zero crossing detector and operates at 2 samples/symbol.

Binary PAM with MLTED This example illustrates the use of the MLTED error detector and

the NCO interpolator control for binary PAM. A block diagram is illustrated in Figure 3.61. The

pulse shape is the square-root raised cosine with 50% excess bandwidth. The received signal is

sampled at a rate equivalent toN = 16 samples/sec. Sincer(t) is 8 times oversampled, a linear

interpolator is adequate. Note that this system is different from the one suggested by the system

in Figures 3.41 and 3.59 in that the interpolator precedes the matched filter. This was done to

illustrate that the interpolator may be placed at either location in the processing chain.

Samples of the received signal are filtered by a discrete-time matched filter and derivative

matched filter in parallel. The outputs are downsampled to 1 sample/symbol as directed by the

NCO controller. The timing error signal is formed as prescribed by the decision directed MLTED

(3.106). In this implementation, the loop filter and NCO operate at the high sample rate of 16

samples/symbol. As a consequence, the error signal, which is updated at 1 sample/symbol, must be

upsampled. The upsampling is performed by inserting zeros in between the error signal updates.

The error signal is filtered by a discrete-time proportional-plus-integrator loop filter. The loop

filter output forms the input to a decrementing modulo-1 register or NCO. The NCO controls

the interpolation process as described in Section 3.4.3. Since the interpolator is not performing

a sample rate change, there is no need to provide basepoint index information. The interpolator

produces one interpolant for each input sample.

The timing synchronization system can also be described as a computer program. The chal-

lenge with this approach is that the timing synchronization system is a parallel system while a

computer program is a sequential representation. This is a common problem in system model-

ing: simulating an inherently parallel system on a sequential processor. A common method for

generating the sequential representation is to write a program loop where each pass through the

loop represents a clock cycle in the digital system. Within the loop, the parallel arithmetic (com-

binatorial) expressions are evaluated in topological order. Next the registered values (memory) are

updated.

The code segment listed below is written using a Matlab-style syntax and consists of afor

loop iterating on the samples of the received signal. The structure of thefor loop follows the

convention of updating the arithmetic (or combinatorial) quantities first and the registered values

(or memory) last. The variable names used in the code segment are the same as those used in
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Figure 3.61 with the following additions:

r prev a scaler holding the previous input value. This value is

needed by the linear interpolator to compute the desired in-

terpolants

rI a scalar representing the interpolantr (nT + τ̂).

mf a row vector consisting of samples of the matched filter im-

pulse response

dmf a row vector consisting of samples of the derivative matched

filter impulse response

rIBuff a column vector of interpolator outputs used by the matched

filter and derivative matched filter

xx a vector holding the matched filter outputsx (kTs + τ̂) for

k = 0, 1, . . ..

The code segment is not written in the most efficient manner, but rather to explain the sequence of
operations for proper PLL operation.

initialize

for n=1:length(r)

% evaluate arithmetic expressions in topological order

if NCO < 0

underflow = 1;

else

underflow = 0;

end

if underflow == 1

mu = mu_temp;

end

rI = mu*r(n) + (1 - mu)*r_prev;

x = mf*[rI; rIBuff];

xdot = dmf*[rI; rIBuff];

if underflow == 1

e = sign(x)*xdot;

else

e = 0;

end
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vp = K1*e; % proportional component of loop filter

vi = vi + K2*e; % integrator component of loop filter

v = vp + vi; % loop filter output

W = 1/N + v; % NCO control word

% update registers

mu_temp = NCO/W;

if underflow == 1

NCO = NCO + 1 - W;

else

NCO = NCO - W;

end

IBuff = r(n);

rIBuff = [rI; rIBuff(1:end-1)];

% update output

if underflow == 1

xx(k) = x;

k = k + 1;

end

end

As an example, consider a symbol timing PLL with performance requirementsBnTs = 0.005

and ζ = 1/
√

2. Figure 3.43 gives the phase detector gainKp = 0.235. As explained in Sec-

tion 3.4.3,Kp = −0.235 should be used when interpolation control is based on a decrementing

NCO. The phase detector gain also needs to be adjusted to account for the fact that the phase de-

tector operates at 1 sample/symbol while the loop filter and NCO operate at 16 samples/symbol.

Since zeros are inserted between the updates of the timing error, the timing error seen by the loop

filter is 1/N what it would be otherwise. HenceKp = −0.235/16 = −0.0147. UsingN = 16, the

loop constants given by (3.24) are

K1KpK0 = 9.9950× 10−4

K2KpK0 = 4.9976× 10−7.
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Finally, solving forK1 andK2 usingKp = −0.0147 andK0 = 1 gives

K1 = −6.8051× 10−2

K2 = −3.4026× 10−5.

A plot of the timing error signale(k) and the fractional intervalµ(k) are illustrated in Figure 3.62

for 600 random symbols. The plot ofµ(k) shows that the loop locks after about 500 symbols at the

steady state valueµ = 0.5. The plot ofµ(k) looks “noisy.” This is due to the self noise produced

by the timing error detector.

While the interpolator does not require basepoint index information from the NCO controller,

the rate change at the matched filter and derivative matched filter outputs does require basepoint

index information. During acquisition, the PLL has to find the right basepoint index for the desired

matched filter output. This search is indicated by the “ramping” effect observed in the plot ofµ

during the first 200 symbols. Each timeµ touches zero, it wraps toµ = 1 and reduces the interval

between the current basepoint index and the next basepoint index by 1.
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Figure 3.62: Timing error signal and fractional interpolation interval for the symbol timing syn-

chronization system illustrated in Figure 3.61.
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A practical variation on this design is illustrated in Figure 3.63. In this example, interpolation

is moved to the output side of the matched filter and derivative matched filter. This placement

requires two interpolators operating in parallel as shown. In this architecture, the two interpolators

are required to perform a sample rate conversion. Hence the underflow strobe from the NCO

controller is required to provide basepoint index information to the interpolators. Relative to the

architecture illustrated in Figure 3.61, this architecture has the disadvantage that two interpolators

are required. But, it has the advantage that the matched filter and derivative matched filters are not

in the closed loop path.

As before, the received signal is sampled at a rate equivalent to 16 samples/symbol to produce

the samplesr(nT ). These samples are filtered by a matched filter and derivative matched filter

operating at 16 samples/symbol to produce the outputsx(nT ) and ẋ(nT ). These outputs form

the inputs to two linear interpolators also operating in parallel. The interpolators produce one

interpolant per symbol as directed by the NCO controller. The NCO controller provides both the

basepoint index (via the underflow strobe) and the fractional interval. The two interpolator outputs

x(kTs + τ) andẋ(kTs + τ) are used to compute the timing error signale(k) given by (3.106). The

error signal is upsampled by 16 to match the operating rate of the loop filter and NCO controller.

An equivalent description using a Matlab style code segment is shown below. The code seg-

ment uses the same variable names as Figure 3.63 with the following additions:

x prev a scaler holding the previous matched filter output. This

value is required by the linear interpolator operating on the

matched filter outputs.

xdot prev a scaler holding the previous derivative matched filter output.

This value is required by the linear interpolator operating on

the derivative matched filter outputs.

xI a scalar representing the interpolantx (kTs + τ̂).

xdotI a scalar representing the interpolantẋ (kTs + τ̂).

xx a vector holding the matched filter outputsx (kTs + τ̂) for

k = 0, 1, . . ..

The code segment consists of afor loop that iterates on the matched filter and derivative matched
filter output samples. The code segment is not written in the most efficient manner, but rather to
explain the sequence of operations for proper PLL operation.

initialize

for n=1:length(x)
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% evaluate arithmetic expressions in topological order

if NCO < 0

underflow = 1;

else

underflow = 0;

end

if underflow == 1

mu = mu_temp;

end

if underflow == 1

xI = mu*x(n) + (1 - mu)*x_prev;

xdotI = mu*xdot(n) + (1 - mu)*xdot_prev;

e = sign(xI)*xdotI;

else

e = 0;

end

vp = K1*e; % proportional component of loop filter

vi = vi + K2*e; % integrator component of loop filter

v = vp + vi; % loop filter output

W = 1/N + v; % NCO control word

% update registers

mu_temp = NCO/W;

if underflow == 1

NCO = NCO + 1 - W;

else

NCO = NCO - W;

end

x_prev = x(n);

xdot_prev = xdot(n);

% update output

if underflow == 1

xx(k) = xI;
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k = k + 1;

end

end

An example of the phase error and fractional interval are plotted in Figure 3.64 for 600 random

symbols. The loop filter constants are identical to those used previously. As before, the timing

PLL locks after about 500 symbols. The shape of the fractional interval plot is quite similar to the

fractional interval plot in Figure 3.62. Differences are due to the placement of the matched filter

and derivative matched filter. In Figure 3.62, the matched filter and derivative matched filters are

in the closed loop path while in Figure 3.64 they are not.
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Figure 3.64: Timing error signal and fractional interpolation interval for the symbol timing syn-

chronization system illustrated in Figure 3.63.
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Binary PAM with ZCTED This example illustrates the use of the ZCTED error detector and

the NCO interpolator control for binary PAM. A block diagram is illustrated in Figure 3.61. The

pulse shape is the square-root raised cosine with 50% excess bandwidth. The received signal is

sampled at a rate equivalent toN = 2 samples/symbol. Samples of the received signal are filtered

by a discrete-time matched filter operating at 2 samples/symbol. The matched filter outputsx(nT )

are used by the piece-wise parabolic interpolator to compute the interpolantsx(nT + τ̂). These

interpolants form the input to the zero crossing detector described in Section 3.4.3 and given by

(3.115). The timing error signal is updated at 1 sample/symbol. Since the loop filter and NCO

control operate atN = 2 samples/symbol, the timing error signal is upsampled by inserting a

zero(s) in between the updates. The upsampled timing error signal is filtered by the proportional-

plus-integrator loop filter. The loop filter output forms the input to a decrementing modulo-1

register or NCO. The NCO controls the interpolation process as described in Section 3.4.3.

A code segment modeling the system is listed below. It is written using a Matlab-style syntax

and consists of afor loop iterating on the samples of the matched filter output. The structure of

the for loop follows the convention of updating the arithmetic (or combinatorial) quantities first

and the registered values (or memory) last. The variable names used in the code segment are the

same as those used in Figure 3.61 with the following additions:

IBuff a 3 × 1 vector holding the previous matched filter values

needed to compute the interpolants

xI a scalar representing the interpolantx (nT + τ̂)

TEDBuff a 2 × 1 column vector of interpolator outputs used by the

timing error detector

xx a vector holding the matched filter outputsx (kTs + τ̂) for

k = 0, 1, . . ..

for n=1:length(x)

% evaluate arithmetic expressions in topological order

if NCO < 0

underflow = 1;

else

underflow = 0;

end

if underflow

mu = mu_temp;
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end

v2 = 1/2*[1, -1, 1, 1]*[x(n); IBuff]; % Farrow structure for the

v1 = 1/2*[-1, 3, 1, -1]*[x(n); IBuff]; % piecewise parabolic

v0 = [0, 0, 1, 0]*[x(n); IBuff]; % interpolator

xI = (mu*v2 + v1)*mu + v0; % interpolator output

if underflow == 1

e = TEDBuff(1) * (sign(TEDBuff(2)) - sign(xI));

else

e = 0;

end

vp = K1*e; % proportional component of loop filter

vi = vi + K2*e; % integrator component of loop filter

v = vp + vi; % loop filter output

W = 1/N + v; % NCO control word

% update registers

mu_temp = NCO/W;

if underflow == 1

NCO = NCO + 1 - W;

else

NCO = NCO - W;

end

IBuff = [x(n); IBuff(1:end-1)];

TEDBuff = [xI; TEDBuff(1)];

% update output

if underflow == 1

xx(k) = xI;

k = k + 1;

end

end

As an example, consider a symbol timing PLL with performance requirementsBnTs = 0.01

andζ = 1/
√

2. Figure 3.49 gives the phase detector gainKp = 2.7. As explained in Section 3.4.3,

Kp = −2.7 should be used when the interpolation control is based on a decrementing NCO. The

phase detector gain also needs to be adjusted to account for the fact that the phase detector operates
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at 1 sample/symbol while the loop filter and NCO operate at 2 samples/symbol. Since zeros are

inserted between the updates of the timing error, the timing error seen by the loop filter is1/N

what it would be otherwise. HenceKp = −2.7/2 = −1.35. UsingN = 2, the loop constants

given by (3.24) are

K1KpK0 = 1.5872× 10−2

K2KpK0 = 1.2698× 10−4.

Finally, solving forK1 andK2 usingKp = −1.35 andK0 = 1 gives

K1 = −1.1757× 10−2

K2 = −9.4061× 10−5.

A plot of the timing error signale(k) and the fractional intervalµ(k) are illustrated in Figure 3.66

for 600 random symbols. The plot ofµ(k) shows that the loop locks after about 300 symbols at

the steady state valueµ = 0.5. Since the ZCTED does not produce any self-noise, the plot ofµ

has a much “cleaner” look than the plot ofµ for the MLTED in Figure 3.62.

The code listing above does not work for the case of sample clock frequency offset. That is,

for the caseT 6= Ts/2, the code must be modified to account for the cases when an interpolant is

required during two consecutive clock cycles (T > Ts/2) or for the case when two clock cycles

occur between consecutive interpolants (T < Ts/2).

The caseT > Ts/2 is illustrated in Figure 3.67. The desired samples appear to “slide to the left”

since the samples are spaced slightly further apart thanTs/2. Most of the time, a desired matched

filter interpolant is produced for every two available matched filter samples. SinceT > Ts/2, a

residual timing error accumulates. As the residual timing error accumulates, the fractional interval

µ(k) decreases with time as shown. Eventually the accumulated residual timing error exceeds

a sample period. This coincides withµ(k) decreasing to 0 and wrapping around to 1. When

this occurs desired matched filter interpolants occur one sample apart instead of the normal two

samples apart. As shown, when this occurs, one of the samples needed by the ZCTED is never

produced. This missing sample must be inserted or “stuffed” into the ZCTED registers to ensure

proper operation after the “wrap around.”

The caseT < Ts/2 is illustrated in Figure 3.68. In this case, the desired samples appear

to “slide to the right” since the samples are spaced slightly closer together thanTs/2. Most of

the time, a desired matched filter interpolant is produced for every two available matched filter

samples. SinceT < Ts/2, a residual timing error accumulates. As the residual timing error

accumulates, the fractional intervalµ(k) increases with time as shown. Eventually the accumulated

residual timing error exceeds a sample period. This coincides withµ(k) exceeding 1 and wrapping
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around to 0. When this occurs, the desired matched filter interpolants are spaced three samples

apart instead of the normal two. As a consequence, the interpolator produces an extra sample that

should be ignored, or “skipped” by the ZCTED. This is accomplished by not shifted the ZCTED

registers after the “wrap around.”

A modified segment of code to account for this condition is shown below. A new variable

old underflow is introduced. This variable, together withunderflow are used to determine

whether normal operation, “stuffing,” or “skipping” should occur. Again, the code is not written

in the most efficient manner, but rather to provide a description of the subtleties associated with

proper operation of the ZCTED.

for n=1:length(x)

% evaluate arithmetic expressions in topological order

if NCO < 0

underflow = 1;

else

underflow = 0;

end

if underflow

mu = mu_temp;

end

v2 = 1/2*[1, -1, 1, 1]*[x(n); IBuff]; % Farrow structure for the

v1 = 1/2*[-1, 3, 1, -1]*[x(n); IBuff]; % piecewise parabolic

v0 = [0, 0, 1, 0]*[x(n); IBuff]; % interpolator

xI = (mu*v2 + v1)*mu + v0; % interpolator output

if underflow == 1 & old_underflow == 0

e = TEDBuff(1) * (sign(TEDBuff(2)) - sign(xI));

else

e = 0;

end

vp = K1*e; % proportional component of loop filter

vi = vi + K2*e; % integrator component of loop filter

v = vp + vi; % loop filter output

W = 1/N + v; % NCO control word

% update registers
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mu_temp = NCO/W;

if underflow == 1

NCO = NCO + 1 - W;

else

NCO = NCO - W;

end

IBuff = [x(n); IBuff(1:end-1)];

if underflow == 0 & old_underflow = 0

TEDBuff = TEDBuff; % skip current sample

elseif underflow == 0 & old_underflow == 1

TEDBuff = [xI; TEDBuff(1)]; % normal operation

elseif underflow == 1 & old_underflow == 0

TEDBuff = [xI; TEDBuff(1)]; % normal operation

elseif underflow == 1 & old_underflow == 1

TEDBuff = [xI; 0; TEDBuff(1)]; % stuff missing sample

end

old_underflow = underflow;

% update output

if underflow == 1

xx(k) = xI;

k = k + 1;

end

end

As this code segment illustrates, the “upsampled by 2” function inserted in between the timing

error detector and the loop filter is only an abstraction. The upsample operation is performed by

inserting zeros in between the timing error updates. Most of the time 1 zero is inserted. But

sometimes no zeros are inserted; sometimes 2 zeros are inserted.

As an example of operation for the case where the sample clock frequency is slightly higher

than 2 samples/symbol (i.e.,T < Ts/2), suppose the samplesr(nT ) were obtained whereT

satisfied

T =
Ts

2 +
1

400
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or, what is equivalent

sample rate=

(
2 +

1

400

)
× symbol rate.

The sampling clock frequency is 1/400 of the symbol rate faster than 2 samples/symbol. The

error signal and fractional interval for the same timing PLL considered previously are plotted in

Figure 3.69. As expected, the fractional interval ramps from 0 to 1 and rolls over every 400 symbol

times. This is because the frequency error in the sample clock is 1/400 of the symbol rate. The

error signal indicates that the timing PLL locks after about 100 symbols. This case is the symbol

timing PLL equivalent of a phase ramp input for the generic PLL reviewed in Section 3.2.1 and

explained in Section A.2.1 in Appendix A.
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Figure 3.66: Timing error signal and fractional interpolation interval for the symbol timing syn-

chronization system illustrated in Figure 3.65.
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Figure 3.69: Timing error signal and fractional interpolation interval for the symbol timing syn-

chronization system illustrated in Figure 3.65 for the case where the sample clock is slightly faster

than 2 samples/symbol.
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3.4.4 Discrete-Time Techniques for MQASK

Let the received IF MQASK signal be

r(t) =
∑

n

a1p (t− nTs − τ) cos(ω0t + θ)− a2p (t− nTs − τ) sin(ω0t + θ) + w(t) (3.167)

wherep(t) is unit energy pulse shape with support on the interval−LpTs ≤ tLpTs, Ts is the symbol

time, τ is the unknown timing delay to be estimated, andw(t) is a random process representing

additive white Gaussian noise. ADC placement is an important system-level consideration that

requires some discussion at this point.

There are two locations where the ADC is commonly placed as illustrated in Figure 3.70.

Figure 3.70 (a) shows a configuration commonly referred to as “IF sampling.” The ADC sam-

ples the bandlimited signalr(t) everyTIF seconds where the sampling rate satisfies the Nyquist

rate condition for the bandpass IF signal. These samples are mixed by quadrature discrete-time

sinusoids to produce samples of the baseband inphase and quadrature componentsI (nTIF) and

Q (nTIF). I (nTIF) andQ (nTIF) are filtered by the discrete-time matched filters with impulse re-

sponseh (nTIF) = p (−nTIF). The desire is produceNIF samples of the inphase and quadrature

matched filter outputs during each symbol such that one of the samples on both the inphase and

quadrature components are aligned with the maximum average eye opening.

The second commonly used option for ADC placement is shown in Figure 3.70 (b). The

bandpass IF signalr(t) is mixed to baseband using continuous-time quadrature sinusoids and low-

pass filtered to produce the inphase and quadrature baseband componentsI(t) andQ(t). I(t) and

Q(t) and sampled by a pair of ADCs (or a dual-channel ADC) to produce samples of the inphase

and quadrature baseband componentsI (nTBB) andQ (nTBB), respectively.I (nTBB) andQ (nTBB)

are filtered by the discrete-time matched filters with impulse responseh (nTBB) = p (−nTBB). As

before, the desire is produceNBB samples of the inphase and quadrature matched filter outputs

during each symbol such that one of the samples on both the inphase and quadrature components

are aligned with the maximum average eye opening.

Which of the two approaches is preferred depends on many factors including the symbol rate

and IF frequency (which determine the required sample rate), cost, performance requirements, the

availability of good analog IF filters for channel selection and/or adjacent channel rejection, etc.

Some generalizations can be made. The two-channel baseband sampling option has the advantage

that it often requires a lower sample rate than that required for IF sampling7 (i.e.,TIF < TBB). This

7The reason this is notalwaystrue is because bandpass sampling can be used for IF sampling. Care must be taken

to ensure that the aliased spectra of the IF signal do not overlap. When this condition can be satisfied, it is often the

case that the IF sampling rate is the same as the baseband sampling rate.
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option is attractive for applications where the symbol rate is one-half to one-quarter the maximum

available clock rate. The IF sampling option has the following advantages:

1. Only one ADC is required instead of two (or a single channel ADC instead of a two-channel

ADC).

2. The down-conversion from IF is true quadrature conversion. The two-channel baseband

sample requires this operation be done with continuous-time processing. A good analog I/Q

mixer requires perfectly balanced inphase and quadrature mixers along with a phase shifter

to produce the quadrature sinusoids. These requirements can be challenging especially in

harsh operating environments.

3. In applications where the IF signal contains closely spaced frequency division multiplexed

signals, channel selection can often be realized with better adjacent channel rejection using

discrete-time processing. Placing the ADC at IF allows this to be done.

In general, the advantages of IF sampling outweigh the disadvantages of the higher clock rate

requirements. For this reason, If sampling is used whenever system constraints allow it.

It is not important which of the two approaches is used for the purposes of describing symbol

timing synchronization using discrete-time techniques. In either case, the matched filter inputs are

the samples ofI(t) andQ(t). These samples are denotedI(nT ) andQ(nT ), respectively; whether

T = Ts/NIF or T = Ts/NBB is not important as long as it is known.I(nT ) andQ(nT ) are of the

same form asr(nT ) in Section 3.4.3. Timing error detectors operate on bothI(nT ) andQ(nT )

in the same way they operated onr(nT ) in Section 3.4.3. The outputs of the two timing error

detectors are summed to form the error signal. The error signal is filtered by the loop filter and

drives the interpolation control. The general structure for MQASK symbol timing synchronization

with IF sampling is illustrated in Figure 3.71.
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3.5 Discrete-Time Techniques for Offset QPSK

Assuming IF sampling and perfect phase synchronization, let the discrete-time IF signal be

r(nT ) =
∑
m

a1(m)p(nT −mTs− τ) cos(Ω0n)−
∑
m

a2(m)p(nT −mTs− τ) sin(Ω0n) (3.168)

where1/T is the sample rate,a1(m) ∈ {−1, +1} anda2(m) ∈ {−1, +1} are the information

symbols,p(nT ) is a unit energy pulse shape with support on the interval−LpTs/T < n < LpTs/T ,

Ω0 is the IF frequency in radians/sample, andτ is the unknown symbol timing offset. The matched

filter outputs may be expressed as

x(nT ) =
∑
m

a1(m)Rp (nT −mTs − τ) (3.169)

y(nT ) =
∑
m

a2(m)Rp (nT −mTs − Ts/2− τ) (3.170)

whereRp (u) is the autocorrelation function of the pulse shape given by (3.82).

The relationship between the two eye patterns formed byx(nT ) andy(nT ) is illustrated in

Figure 3.72. The maximum average eye opening ony(nT ) is delayed from the maximum average

eye opening onx(nT ) by Ts/2. The inphase matched filter outputx(nT ) should be sampled at

n = k
Ts

T
+ τ (3.171)

while the quadrature matched filter outputy(nT ) should be sampled at

n = k
Ts

T
+

Ts

2T
+ τ (3.172)

for k = 0, 1, . . ..

Following the same line of reasoning as before, the slope of eye patterns can be used as a

timing error signal. Since the eye patterns are delayedTs/2 from each other, this method must be

modified. The maximum-likelihood data-aided timing error detector uses the error signal

e(k) = a1(k)ẋ(kTs + τ̂(k)) + a2(k)ẏ(kTs + Ts/2 + τ̂(k)) (3.173)

whereẋ(kTs + τ̂(k)) is the time derivative ofx(t) evaluated att = kTs + τ̂(k) andẏ(kTs +Ts/2+

τ̂(k)) is the time derivative ofy(t) evaluated att = kTs + Ts/2 + τ̂(k). The slopes of the matched

filter outputs at time instants offset by half a symbol period are combined to form the error signal.

The decision-directed maximum likelihood timing error detector uses the error signal

e(k) = sgn{x(kT + s + τ̂(k))} ẋ(kTs+τ̂(k))+sgn{y(kTs + Ts/2 + τ̂(k))} ẏ(kTs+Ts/2+τ̂(k)).

(3.174)
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The time derivative may be computed using the techniques described in Section 3.4.3 and illus-

trated in Figure 3.44. The early-late techniques, described in Section 3.4.3 can be used to approx-

imate the derivatives with the appropriate modifications suggested by (3.173) and (3.174). The

zero-crossing detector can also be applied tox(nT ) andy(nT ) with appropriate delays.
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3.6 Maximum Likelihood Estimation

Maximum likelihood estimation uses conditional probabilities as a measure of “how likely” a

parameter is given noisy observations. This technique was applied in Chapter?? to derive the

optimum (in the maximum likelihood sense) structure for detectors. The problem was cast as

an estimation problem where the information symbols were the unknown quantity. Maximum

likelihood estimation can also be applied to synchronization. In this case, the carrier phase offset

or timing delay offset (or both) are the unknowns that need to be estimated. The technique is

demonstrated for QPSK. Extensions to other 2-dimensional signal sets and otherD-dimensional

signal sets are straightforward.

3.6.1 Preliminaries

Let the observation interval beT0 = L0Ts seconds and let the received IF signal be

r(t) = s(t) + w(t) (3.175)

where

s(t) =

L0∑

k=0

a1(k)p(t− kTs − τ) cos(ω0t + θ)− a2(k)p(t− kTs − τ) sin(ω0t + θ) (3.176)

andw(t) is a zero-mean white Gaussian random process with power spectral densityN0/2 W/Hz.

For QPSK,a1(k) ∈ {−1, +1} anda2(k) ∈ {−1, +1} for k = 0, 1, . . . , L0 − 1. The IF signal is

sampled everyT seconds to produce the sequence

r(nT ) = s(nT ) + w(nT ); n = 0, 1, . . . , NL0 − 1. (3.177)

The sampled signal component may be expressed as

s(nT ) =

L0−1∑

k=0

a1(k)p(nT − kTs − τ) cos(Ω0n + θ)− a2(k)p(nT − kTs − τ) sin(Ω0n + θ) (3.178)

for n = 0, 1, . . . , NL0 − 1. For convenience, the following vectors are defined

r =




r(0)

r(T )
...

r((NL0 − 1)T )




s =




s(0)

s(T )
...

s((NL0 − 1)T )




w =




w(0)

w(T )
...

w((NL0 − 1)T )




. (3.179)



284 3.6 Maximum Likelihood Estimation

The vectorw is a sequence of independent and identically distributed Gaussian random variables

with zero mean and variance

σ2 =
N0

2T
. (3.180)

The probability density function ofw is

p(w) =
1

(2πσ2)L0N/2
exp

{
− 1

2σ2

NL0−1∑
n=0

w2(nT )

}
. (3.181)

For notational convenience, define the symbol vectora as

a =
[
a(0) a(1) · · · a(L0 − 1)

]T

(3.182)

where

a(k) =

[
a1(k)

a2(k)

]
. (3.183)

To emphasize the fact that thes is a function ofa, θ, andτ , s will be expressed ass(a, θ, τ) and

samples of the signal components(nT ) will be expressed ass(nT ; a, θ, τ).

Carrier phase synchronization and symbol timing synchronization can be thought of as esti-

mation problems. The goal is to estimate the parametersθ and τ from the samplesr(nT ) =

s(nT ; a, θ, τ) + w(nT ). The maximum likelihood estimate is the one that maximizes the loga-

rithm of the conditional probabilityp(r|a, θ, τ). Using the probability density function ofw given

by (3.181), the conditional probabilityp(r|a, θ, τ) is

p(r|a, θ, τ) =
1

(2πσ2)L0N/2
exp

{
− 1

2σ2

NL0−1∑
n=0

|r(nT )− s(nT ; a, θ, τ)|2
}

. (3.184)

The log-likelihood functionΛ(a, θ, τ) is the logarithm of (3.184):

Λ(a, θ, τ) = −L0N

2
ln(2πσ2)− 1

2σ2

NL0−1∑
n=0

|r(nT )− s(nT ; a, θ, τ)|2 (3.185)

Later it will be convenient to express the cross product sum as

NL0−1∑
n=0

r(nT )s(nT ; a, θ, τ) =

L0−1∑

k=0

a1(k)

(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)

−
L0−1∑

k=0

a2(k)

(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) sin(Ω0n + θ). (3.186)
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Two approaches will be taken to obtain the maximum likelihood estimators forθ andτ . The

first approach assumesa is known8. In this case the estimators forθ andτ are functions of the data

symbols.

The second approach does not assumea is known. In this case, the dependence ona is removed

by assuming the symbol sequencea is random and using the total probability theorem to obtain

the average conditional probability density functionp(r|θ, τ). The maximum likelihood estimate

maximizes the logarithm ofp(r|θ, τ).

The average conditional probability density functionp(r|θ, τ) is related to the conditional prob-

ability density functionp(r|a, θ, τ) by the total probability theorem:

p(r|θ, τ) =

∫
p(r|a, θ, τ)p(a)da (3.187)

wherep(a) is the probability density function of the symbol sequencea. The most commonly

used probability density function for the data sequence assumes the symbols are independent and

equally likely. Independence implies

p(a) =

L0−1∏

k=0

p(a(k)) (3.188)

while equally likely implies

p(a(k)) =
1

4
δ(a1(k)− 1)δ(a2(k)− 1) +

1

4
δ(a1(k)− 1)δ(a2(k) + 1)

+
1

4
δ(a1(k) + 1)δ(a2(k)− 1) +

1

4
δ(a1(k) + 1)δ(a2(k) + 1). (3.189)

Thus,

p(r|θ, τ) =

∫
p(r|a, θ, τ)p(a)da (3.190)

=

L0−1∏

k=0

∫
p(r|a(k), θ, τ)p(a(k))da(k) (3.191)

=

L0−1∏

k=0

{
1

4
p(r|a(k) = [1, 1], θ, τ) +

1

4
p(r|a(k) = [1,−1], θ, τ)

+
1

4
p(r|a(k) = [−1, 1], θ, τ) +

1

4
p(r|a(k) = [−1,−1], θ, τ)

}
(3.192)

8For packetized burst mode communication systems with a known preamble or header, theL0 data symbols are

known and should be used for synchronization.
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By writing (3.184) as

p(r|a, θ, τ) =

L0−1∏

k=0

1

(2πσ2)N/2
exp



−

1

2σ2

N(k+L)∑

n=N(k−L)

|r(nT )− s(nT ; a, θ, τ)|2


 (3.193)

and using the substitution

s(nT ; a(k), θ, τ) = a1(k)p(nT − kTs − τ) cos(Ω0n + θ)− a2(k)p(nT − kTs − τ) sin(Ω0n + θ)

(3.194)

each term in (3.192) may be expressed as

p(r|a(k) = [1, 1], θ, τ) =

L0−1∏

k=0

1

(2πσ2)N/2
exp



−

1

2σ2

N(k+L)∑

n=N(k−L)

|r(nT )|2 + |p(nT − kTs − τ)|2




× exp





1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)





× exp



−

1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) sin(Ω0n + θ)



 (3.195)

p(r|a(k) = [1,−1], θ, τ) =

L0−1∏

k=0

1

(2πσ2)N/2
exp



−

1

2σ2

N(k+L)∑

n=N(k−L)

|r(nT )|2 + |p(nT − kTs − τ)|2




× exp





1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)





× exp





1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) sin(Ω0n + θ)



 (3.196)

p(r|a(k) = [−1, 1], θ, τ) =

L0−1∏

k=0

1

(2πσ2)N/2
exp



−

1

2σ2

N(k+L)∑

n=N(k−L)

|r(nT )|2 + |p(nT − kTs − τ)|2




× exp



−

1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)





× exp



−

1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) sin(Ω0n + θ)



 (3.197)
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p(r|a(k) = [−1,−1], θ, τ) =

L0−1∏

k=0

1

(2πσ2)N/2
exp



−

1

2σ2

N(k+L)∑

n=N(k−L)

|r(nT )|2 + |p(nT − kTs − τ)|2




× exp



−

1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)





× exp





1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) sin(Ω0n + θ)



 (3.198)

Substituting (3.195) – (3.198) into (3.192) and collecting similar terms produces

p(r|θ, τ) =
1

4

L0−1∏

k=0

1

(2πσ2)N/2
exp



−

1

2σ2

N(k+L)∑

n=N(k−L)

|r(nT )|2 + |p(nT − kTs − τ)|2




×

exp





1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)





+ exp



−

1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)








×

exp





1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) sin(Ω0n + θ)





+ exp



−

1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) sin(Ω0n + θ)






 (3.199)

Applying the identity
ex + e−x

2
= cosh(x) (3.200)

to (3.199) produces

p(r|θ, τ) =

L0−1∏

k=0

1

(2πσ2)N/2
exp



−

1

2σ2

N(k+L)∑

n=N(k−L)

|r(nT )|2 + |p(nT − kTs − τ)|2




× cosh


 1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)




× cosh


 1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) sin(Ω0n + θ)


 (3.201)
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The average log-likelihood function is

Λ(θ, τ) = −NL0

2
ln(2πσ2)− 1

2σ2

L0−1∑

k=0

N(k+L)∑

N(k−L)

|r(nT )|2 + |p(nT − kTs − τ)|2

+

L0−1∑

k=0

ln cosh


 1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)




+

L0−1∑

k=0

ln cosh


 1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) sin(Ω0n + θ)


 (3.202)

3.6.2 Carrier Phase Estimation

Known Symbol Sequence and Known Timing

For the case where the data symbols are known, the maximum likelihood estimateθ̂ is the value

of θ that maximizes the log-likelihood functionΛ(a, θ, τ) given by (3.185). This estimate is the

value ofθ that forces the partial derivative ofΛ(a, θ, τ) with respect toθ to be zero. The partial

derivative ofΛ(a, θ, τ) is

∂

∂θ
Λ(a, θ, τ) = − 1

2σ2

∂

∂θ

NL0−1∑
n=0

|r(nT )− s(nT ; a, θ, τ)|2 (3.203)

= − 1

2σ2

∂

∂θ

NL0−1∑
n=0

[|r(nT )|2 − 2r(nT )s(nT ; a, θ, τ) + |s(nT ; a, θ, τ)|2] . (3.204)

The partial derivatives of the first and third terms are zero since the energy in the received signal

and the energy in a QPSK waveform are the same for all phase rotations. All that remains is the

middle term. Substituting (3.178) fors(nT ; a, θ, τ), interchanging the order of summations, and

computing the derivative yields

∂

∂θ
Λ(a, θ, τ) = − 1

σ2

L0−1∑

k=0

a1(k)

(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) sin(Ω0n + θ)

−
L0−1∑

k=0

a2(k)

(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) cos(Ω0n + θ). (3.205)
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Recall that thek-th matched filter outputs for the inphase and quadrature components using a phase

coherent IF downconversion (see Figure 3.8) are

x(kTs) =

(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) cos(Ω0n + θ̂) (3.206)

y(kTs) = −
(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) sin(Ω0n + θ̂). (3.207)

Note that inner sum in the first term of (3.205) is the quadrature matched filter output and the

inner sum in the second term of (3.205) is the inphase matched filter output. Using the notation

x(kTs; θ) andy(kTs; θ) to emphasize that the matched filter outputs are a function of the phase

estimate, (3.205) can be expressed in the more compact form

∂

∂θ
Λ(a, θ, τ) =

L0−1∑

k=0

a1(k)y(kTs; θ)− a2(k)x(kTs; θ). (3.208)

The maximum likelihood estimatêθ satisfies

0 =

L0−1∑

k=0

a1(k)y(kTs; θ̂)− a2(k)x(kTs; θ̂). (3.209)

This equation may be solved iteratively. A value forθ is chosen and used to compute the right-hand

side of (3.209). The estimate forθ is increased (if the computation is negative) or decreased (if

the computation is positive) untilθ satisfies (3.209). A block diagram of a system which finds the

maximum likelihood estimate iteratively is illustrated in Figure 3.73. Note that it is a PLL structure

that uses the right-hand side of (3.209) as the error signal. The summation block plays the role of

the loop filter (recall that the loop filter contains an integrator). Compare this block diagram with

the QPSK carrier phase PLL shown in Figure 3.17. If the symbol decisions in Figure 3.17 are

replaced by the true symbols in the error detector, then the two systems are equivalent.

Returning to (3.205) and using the identities

cos(A + B) = cos A cos A− sin A sin B

sin(A + B) = sin A cos B + cos A sin B,
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(3.205) may be expressed as

∂

∂θ
Λ(a, θ, τ) = −

L0−1∑

k=0

a1(k)

(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) sin (Ω0n) sin θ

−
L0−1∑

k=0

a1(k)

(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) cos (Ω0n) sin θ

−
L0−1∑

k=0

a2(k)

(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) cos (Ω0n) cos θ

+

L0−1∑

k=0

a2(k)

(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) sin (Ω0n) sin θ. (3.210)

Recall that thek-th matched filter outputs for the inphase and quadrature components using non-

coherent IF conversion (see Figure 3.7) are

x(kTs) =

(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) cos(Ω0n) (3.211)

y(kTs) = −
(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) sin(Ω0n). (3.212)

Using these definitions, (3.210) may be expressed as

∂

∂θ
Λ(a, θ, τ) =

L0−1∑

k=0

a1(k) [y(kTs) cos θ − x(kTs) sin θ]−
L0−1∑

k=0

a2(k) [x(kTs) cos θ + y(kTs) sin θ] . (3.213)

The terms in the square brackets are the equations for the rotation of the point(x(kTs), y(kTs)) by

an angle−θ. Following the notation introduced in Section 3.3, let(x′(kTs; θ), y
′(kTs; θ)) represent

the rotated point (θ is included to emphasize the dependence onθ) so that
[
x′(kTs; θ)

y′(kTs; θ)

]
=

[
cos θ sin θ

− sin θ cos θ

][
x(kTs)

y(kTs)

]
. (3.214)

Thus (3.213) may be expressed as

∂

∂θ
Λ(a, θ, τ) =

L0−1∑

k=0

a1(k)y′(kTs; θ)− a2(k)x′(kTs; θ) (3.215)
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and an alternate expression for the maximum likelihood phase estimate is

0 =

L0−1∑

k=0

a1(k)y′(kTs; θ̂)− a2(k)x′(kTs; θ̂). (3.216)

Note that two forms for the maximum likelihood estimator (3.209) and (3.216) are identical. The

difference is where carrier phase compensation occurs. A block diagram illustrating the iterative

solution to (3.216) is shown in Figure 3.74. This is a PLL structure where the right-hand side of

(3.216) is the error signal. The solution shown in Figure 3.74 is almost identical to that shown in

Figure 3.13.

Setting (3.213) to zero and solving forθ results in a closed form solution for the maximum

likelihood phase estimate. Grouping the terms which have the cosine in common and grouping the

terms that have the sine in common and solving produces

sin θ̂

cos θ̂
=

L0−1∑

k=0

a1(k)y(kTs)− a2(k)x(kTs)

L0−1∑

k=0

a1(k)x(kTs) + a2(k)y(kTs)

(3.217)

from which the maximum likelihood phase estimate is

θ̂ = tan−1





L0−1∑

k=0

a1(k)y(kTs)− a2(k)x(kTs)

L0−1∑

k=0

a1(k)x(kTs) + a2(k)y(kTs)





. (3.218)

This solution is useful for packetized communications links where the carrier phase offsetθ will

remain constant over the duration of the data packet. Such detectors typically use block processing

in place of iterative processing.
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DDS

( )( )nn θ+Ω0cos

( )( )nn θ+Ω− 0sin

Σ
+

−

( )nTr

( )nTp −( )nTp −

( )nTp −( )nTp −

( )θ;skTx

( )θ;skTy

τ+=
T

T
kn s

τ+=
T

T
kn s

( )ka1

( )ka2

Figure 3.73: Block diagram of the maximum-likelihood QPSK phase estimator based on the form

(3.209).
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Unknown Symbol Sequence and Known Timing

When the timing is known, but the symbol sequence is not known, it is possible to use the symbol

decisionsâ1(k) and â2(k) in place of the true symbols. Using the results from the preceding

section, two forms for the decision-directed maximum-likelihood phase estimator result. The first

results from replacinga1(k) anda2(k) in (3.209) with the decisionŝa1(k) andâ2(k):

0 =

L0−1∑

k=0

â1(k)y(kTs; θ̂)− â2(k)x(kTs; θ̂). (3.219)

The second results from replacinga1(k) anda2(k) in (3.216) with the decisionŝa1(k) andâ2(k):

0 =

L0−1∑

k=0

â1(k)y′(kTs; θ̂)− â2(k)x′(kTs; θ̂). (3.220)

Block diagrams for these two forms of the decision-directed maximum-likelihood estimator are

identical to those for the two forms of the data-aided maximum likelihood estimator illustrated in

Figures 3.73 and 3.74 except the symbol decisions are used in place of the true data symbols. Note

that block diagrams for these two forms of the decision-directed maximum-likelihood estimator are

essentially similar to those for the decision-directed QPSK carrier phase PLLs shown in Figures

3.13 (with the switch in the upper position) and 3.17, respectively.

Unknown Symbol Sequence and Unknown Timing

When both the symbol timing and the symbol sequence are unknown, the maximum likelihood

phase estimate is the one that maximizes the average log-likelihood functionΛ(θ, τ) given by

(3.202). The partial derivative ofΛ(θ, τ) is

∂

∂θ
Λ(θ, τ) = −

L0−1∑

k=0

tanh


 1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)




×

 1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) sin(Ω0n + θ)




+

L0−1∑

k=0

tanh


 1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) sin(Ω0n + θ)




×

 1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)


 (3.221)
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Using the relationships (3.206) and (3.207) for the inphase and quadrature matched filter outputs,

respectively, (3.221) may be expressed in the more compact form

∂

∂θ
Λ(θ, τ) =

L0−1∑

k=0

tanh

(
1

σ2
x(kTs; θ)

)
1

σ2
y(kTs; θ)− tanh

(
1

σ2
y(kTs; θ)

)
1

σ2
x(kTs; θ). (3.222)

The maximum-likelihood phase estimate is the value ofθ that forces (3.222) to zero:

0 =

L0−1∑

k=0

tanh

(
1

σ2
x(kTs; θ̂)

)
1

σ2
y(kTs; θ̂)− tanh

(
1

σ2
y(kTs; θ̂)

)
1

σ2
x(kTs; θ̂). (3.223)

A block diagram outlining an iterative approach to findingθ̂ based on (3.223) is shown in

Figure 3.75. This is a PLL structure where the right-hand side of (3.223) is the error signal.

This complexity of this structure is often reduced by replacing the hyperbolic tangent with an

approximation. The plot oftanh(X) vs. X shown in Figure 3.76 shows that the hyperbolic

tangent is well approximated by

tanh(X) ≈




X |X| < 0.3

sgn{X} |X| > 3
(3.224)

Thus, the form of the approximation is determined by the magnitude of the argument. Equa-

tion (3.223) shows that the magnitude of the argument is proportional to the reciprocal of the noise

varianceσ2. The magnitude ofσ2 relative to the magnitudes ofa1(k) anda2(k) is determined

by the signal to noise ratio. For small signal to noise ratios, the hyperbolic tangent block can be

eliminated (i.e., replaced by a wire). For large signal to noise ratios, the hyperbolic tangent block

can be replaced by a sgn{X} block. (Compare the alteration of the block diagram in Figure 3.75

using this approximation with the Costas Loop shown in Figure 3.28.)
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Figure 3.76: Plot oftanh(X) vs. X illustrating the accuracy of the approximation (3.224).
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3.6.3 Symbol Timing Estimation

Known Symbol Sequence and Known Carrier Phase

For the case of known symbols, the maximum likelihood timing estimate is the value ofτ that max-

imizes the log-likelihood functionΛ(a, θ, τ) given by (3.185). The partial derivative ofΛ(a, θ, τ)

is

∂

∂τ
Λ(a, θ, τ) = − 1

2σ2

∂

∂τ

NL0−1∑
n=0

|r(nT )− s(nT ; a, θ, τ)|2 (3.225)

= − 1

2σ2

∂

∂τ

NL0−1∑
n=0

[|r(nT )|2 − 2r(nT )s(nT ; a, θ, τ) + |s(nT ; a, θ, τ)|2] . (3.226)

The partial derivative of the first term is zero since the energy in the received signal does not depend

on the timing offset. The partial derivative of the third term is approximately zero as there is a weak

dependence onτ . For QPSK, this approximation is quite good and shall be carried through with

the remainder of this development. As was the case with carrier phase estimation, all that remains

is the middle term. Substituting (3.178) fors(nT ; a, θ, τ), interchanging the order of summations

produces

∂

∂τ
Λ(a, θ, τ) =

1

σ2

∂

∂τ

L0−1∑

k=0

a1(k)

(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)

− 1

σ2

∂

∂τ

L0−1∑

k=0

a1(k)

(k+L)N∑

n=(k−L)N

r(nT )p(nT − kTs − τ) sin(Ω0n + θ). (3.227)

Recognizing the inner summations as matched filter outputs and using the identities (3.206) and

(3.207), (3.227) may be expressed as

∂

∂τ
Λ(a, θ, τ) =

1

σ2

∂

∂τ

L0−1∑

k=0

a1(k)x(kTs + τ)− a2(k)y(kTs + τ) (3.228)

=
1

σ2

L0−1∑

k=0

a1(k)ẋ(kTs + τ)− a2(k)ẏ(kTs + τ) (3.229)

whereẋ(kTs + τ) andẏ(kTs + τ) are samples of the time derivatives of the inphase and quadrature

matched filter outputs, respectively. These time derivatives may be computed from samples of

the matched filter inputs using a filter whose impulse response consists of samples of the time

derivative of the pulse shape as illustrated in Figure 3.44 in Section 3.4.3.



Synchronization 299

The maximum likelihood timing estimatêτ is the value ofτ that forces (3.229) to zero:

0 =

L0−1∑

k=0

a1(k)ẋ(kTs + τ̂)− a2(k)ẏ(kTs + τ̂). (3.230)

Unlike the maximum likelihood carrier phase estimate, there is no closed form solution forτ̂ . A

block diagram illustrating an iterative method for findingτ̂ is shown in Figure 3.77. The solution

is a PLL structure where the right-hand side of (3.230) is the error signal.

Unknown Symbol Sequence and Known Carrier Phase

When the carrier phaseθ is known and the symbol sequence is unknown, the symbol decisionâ1(k)

andâ2(k) may be used in place of the true data symbols. Applying this concept to the data-aided

maximum likelihood estimate (3.230) results in the condition for the decision-directed maximum

likelihood timing estimate

0 =

L0−1∑

k=0

â1(k)ẋ(kTs + τ̂)− â2(k)ẏ(kTs + τ̂). (3.231)

The block diagram illustrating an iterative method for findingτ̂ is identical to the block diagram

shown in Figure 3.77 where the symbol decisions replace the true data symbols.

Unknown Symbol Sequence and Unknown Carrier Phase

For the case of unknown data symbols, the maximum likelihood timing estimate is the value ofτ

that maximizes the average log-likelihood functionΛ(θ, τ) given by (3.202). The partial derivative

of Λ(θ, τ) is

∂

∂τ
Λ(θ, τ) =

L0−1∑

k=0

tanh


 1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)




× ∂

∂τ


 1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) cos(Ω0n + θ)




+

L0−1∑

k=0

tanh


 1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) sin(Ω0n + θ)




× ∂

∂τ


 1

σ2

N(k+L)∑

n=N(k−L)

r(nT )p(nT − kTs − τ) sin(Ω0n + θ)


 (3.232)
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Using the relationships (3.206) and (3.207), (3.232) can be expressed in the more compact form

∂

∂τ
Λ(θ, τ) =

L0−1∑

k=0

tanh

(
1

σ2
x(kTs + τ)

)
∂

∂τ

[
1

σ2
x(kTs + τ)

]

+

L0−1∑

k=0

tanh

(
1

σ2
y(kTs + τ)

)
∂

∂τ

[
1

σ2
y(kTs + τ)

]
. (3.233)

Denoting the time derivatives of the inphase and quadrature matched filter outputs byẋ(kTs + τ)

andẏ(kTs + τ), respectively, the maximum-likelihood timing estimateτ̂ satisfies

0 =

L0−1∑

k=0

tanh

(
1

σ2
x(kTs + τ̂)

)
1

σ2
ẋ(kTs + τ̂)

+

L0−1∑

k=0

tanh

(
1

σ2
y(kTs + τ̂)

)
1

σ2
ẏ(kTs + τ̂). (3.234)

A block diagram outlining an iterative method for findingτ̂ is shown in Figure 3.78. The basic

structure is that of a PLL that uses the right-hand side of (3.234) as the error signal. Low signal-

to-noise ratio and large signal-to-noise ratio approximations for the hyperbolic tangent based on

(3.224) may be used to reduce the complexity of the system. For example, the high signal-to-noise

ratio approximations replaces the hyperbolic tangent block with a sign block. Compare this block

diagram with the QPSK timing PLL illustrated in Figure 3.39.
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Figure 3.77: Block diagram of the maximum-likelihood QPSK timing estimator based on (3.230).
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3.7 Notes and References

In the early years of digital communications, synchronization subsystems were characterized by

ad-hoc techniques that later were shown to be approximations to maximum likelihood estimation.

There are several aspects of synchronization that were not covered in this chapter. These include

frequency synchronization, non-iterative techniques for carrier phase estimation (this is particu-

larly useful in packetized burst communications), frame synchronization, and carrier phase and

symbol timing synchronization for CPM. Many text books cover synchronization from a more

theoretical point of view [4, 5, 6]. I have been strongly influenced by the wonderful text by Um-

berto Mengala and Aldo D’Andrea [4] which emphasizes discrete-time techniques. For symbol

timing synchronization, the seminal papers by Gardner and his colleagues at the European Space

Agency [1, 3]. I have tried to provide a strong link between discrete-time phase lock loops and

the phase/timing error signals developed in the text as this important topic has not received a lot of

attention in the published work.
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3.8 Exercises

3.1 Derive the expression given by (3.37) for the average S-curve for the linear QPSK data-aided

phase error detector based on the error signal (3.36).

3.2 Derive the expression given by (3.40) for the average S-curve for the linear QPSK decision-

directed phase error detector based on the error signal (3.39).

3.3 Show that the sine of the phase error for the linear QPSK phase error detector is given by

(3.42).

3.4 Derive the expression given by (3.44) for the average S-curve for the simplified QPSK data-

aided phase error detector based on the error signal (3.43).

3.5 Derive the expression given by (3.46) for the average S-curve for the simplified QPSK

decision-directed phase error detector based on the error signal (3.45).

3.6 This problem explores the performance of carrier phase synchronization for QPSK.

(a) Compare the S-curves for the data-aided phase error detector (3.37) and the decision-

directed phase error detector (3.40) for the linear phase error detector. How are they

the same? How are the different?

(b) Compare the S-curves for the data-aided phase error detector (3.44) and the decision-

directed phase error detector (3.46) for the simplified phase error detector. How are

they the same? How are they different?

(c) Compare the S-curves for the linear data-aided phase error detector (3.37) and the sim-

plified data-aided phase error detector (3.44). How are they the same? How are they

different?

(d) Compare the S-curve for the linear decision-directed phase error detector (3.40) and

the simplified decision-directed phase error detector (3.44). How are they the same?

How are they different?

3.7 Derive the expression given by (3.54) for the average S-curve for the linear BPSK data-aided

phase error detector based on the error signal (3.51).

3.8 Derive the expression given by (3.54) for the average S-curve for the linear BPSK decision-

directed phase error detector based on the error signal (3.52).
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3.9 Derive the expression given by (3.57) for the average S-curve for the simplified BPSK data-

aided phase error detector based on the error signal (3.55).

3.10 Derive the expression given by (3.58) for the average S-curve for the simplified BPSK

decision-directed phase error detector based on the error signal (3.56).

3.11 This problem explores the performance of carrier phase synchronization for BPSK.

(a) Compare the S-curves for the data-aided phase error detector (3.53) and the decision-

directed phase error detector (3.54) for the linear phase error detector. How are they

the same? How are the different?

(b) Compare the S-curves for the data-aided phase error detector (3.57) and the decision-

directed phase error detector (3.58) for the simplified phase error detector. How are

they the same? How are they different?

(c) Compare the S-curves for the linear data-aided phase error detector (3.53) and the sim-

plified data-aided phase error detector (3.57). How are they the same? How are they

different?

(d) Compare the S-curve for the linear decision-directed phase error detector (3.54) and

the simplified decision-directed phase error detector (3.57). How are they the same?

How are they different?

3.12 This problem explores S-curves for the Y constellation.

(a) Derive the average S-curve for the Y constellation for a phase error detector based on

an error signal of the form (3.36).

(b) Derive the average S-curve for the Y constellation for a phase error detector based on

an error signal of the form (3.39).

(c) Derive the average S-curve for the Y constellation for a phase error detector based on

an error signal of the form (3.43).

(d) Derive the average S-curve for the Y constellation for a phase error detector based on

an error signal of the form (3.45).

3.13 This problem explores S-curves for the 8-PSK constellation.

(a) Derive the average S-curve for the 8-PSK constellation for a phase error detector based

on an error signal of the form (3.36).
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(b) Derive the average S-curve for the 8-PSK constellation for a phase error detector based

on an error signal of the form (3.39).

(c) Derive the average S-curve for the 8-PSK constellation for a phase error detector based

on an error signal of the form (3.43).

(d) Derive the average S-curve for the 8-PSK constellation for a phase error detector based

on an error signal of the form (3.45).

3.14 This problem explores S-curves for the 16-QASK constellation.

(a) Derive the average S-curve for the 16-QASK constellation for a phase error detector

based on an error signal of the form (3.36).

(b) Derive the average S-curve for the 16-QASK constellation for a phase error detector

based on an error signal of the form (3.39).

(c) Derive the average S-curve for the 16-QASK constellation for a phase error detector

based on an error signal of the form (3.43).

(d) Derive the average S-curve for the 16-QASK constellation for a phase error detector

based on an error signal of the form (3.45).

3.15 Derive the S-curve for the data-aided MLTED given by (3.107) based on the error signal

(3.105).

3.16 Derive the S-curve for the data-aided ELTED given by (3.112) based on the error signal

(3.110).

3.17 Derive the S-curve for the data-aided ZCTED given by (3.118) based on the error signal

(3.113).

3.18 Derive the S-curve for the data-aided MMTED given by (3.121) based on the error signal

(3.119).

3.19 Derive the linear interpolator filter (3.132) from (3.130) and (3.131).

3.20 Derive the cubic interpolator filter (3.138) from (3.136) and (3.137).

3.21 This problem steps through the derivation of the piece-wise parabolic interpolator (3.143).

(a) Using the second order polynomial approximation

x(t) = c2t
2 + c1t + c0
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expressx ((m + µ) T ) as a polynomial inµ. The answer should be of the form

x((m + µ)T ) = b2µ
2 + b1µ + b0

where theb’s are functions of thec’s, m, andT .

(b) Using the boundary conditionsx(mT ) andx((m + 1)T ), solve forb0 andb1 and show

thatx((m + µ)T ) may be expressed as

x((m + µ)T ) = c2T
2
(
µ2 − µ

)
+ µx((m + 1)T ) + (1− µ)x(mT )

This result shows thatx((m+µ)T ) is a linear combination ofx((m+1)T ) andx(mT )

plus another term. Ifc2 is also a linear combination ofx((m + 1)T ) and x(mT ),

thenx((m + µ)T ) can be regarded as the output of a filter with inputsx(mT ) and

x((m + 1)T ). Part (c) shows thatc2 must be a function of more thanx(mT ) and

x((m + 1)T ) in order to produce a piece-wise parabolic interpolator. In part (d), a

piece-wise parabolic interpolator of the form given by (3.143) is derived.

(c) Supposec2 is a linear combinatation ofx((m + 1)T ) andx(mT ). That is

c2 = A−1x((m + 1)T ) + A0x(mT ).

Substitute the above relationship into the expression in part (b) and expressx((m +

µ)T ) as a linear combination ofx(mT ) andx((m + 1)T ):

x((m + µ)T ) = B−1x((m + 1)T ) + B0x(mT ).

There are two unknowns in the resulting equation:A−1 and A0. The linear phase

and unity gain constraints provide two conditions that can be used to solve for the

unknowns. The linear phase constraint means the coefficients are symmetric about

the center of the filter. Since the center of the filter corresponds toµ = 1/2, this

constraint imposes the relationshipB−1 = B0 whenµ = 1/2. The unity gain constraint

meansB−1 + B0 = 1. Show that the application of these two constraints requires

A−1 = A0 = 0 so that a linear interpolator is the only interpolator that satisfies all the

constraints for this case.

(d) Since a even number of filter taps are required, supposec2 is a linear combination of

x((m + 2)T ), x((m + 1)T ), x(mT ) andx((m− 1)T ). That is

c2 = A−2x((m + 2)T ) + A−1x((m + 1)T ) + A0x(mT ) + A1x((m− 1)T ).
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Substitute the above relationship into the expression in part (b) and expressx((m +

µ)T ) as a linear combination ofx((m + 2)T ), x((m + 1)T ), x(mT ) andx((m− 1)T )

of the form

x((m + µ)T ) = B−2x((m + 2)T ) + B−1x((m + 1)T ) + B0x(mT ) + B1x((m− 1)T ).

There are four unknowns in the resulting expression:A−2, A−1, A0, andA1. The

linear phase and unity gain constraints provide three equations the four unknowns must

satisfy. The linear phase constraint imposes the conditionB−1 = B0 andB−2 = B1

whenµ = 1/2. The unity gain constraint imposes the conditionB−2 + B−1 + B0 +

B1 = 1. One more equation is needed to solve for the four unknowns. This remaining

condition is provided by settingA2 = α whereα is a free parameter. Show that using

these conditions to solve forA−2, A−1, A0, andA1, x((m + µ)T ) may be expressed as

x((m + µ)T ) =
[
αµ2 − αµ

]
x((m + 2)T ) +

[−αµ2 + (α + 1)µ
]
x((m + 1)T )

+
[−αµ2 + (α− 1)µ + 1

]
x(mT ) +

[
αµ2 − αµ

]
x((m− 1)T ).

3.22 Derive the Farrow filter structure for the linear interpolator.

(a) Produce a table similar to Table 3.1.

(b) Sketch a block diagram of the resulting Farrow filter similar to those shown in Fig-

ure 3.56.

3.23 Do the following for the piece-wise parabolic interpolator:

(a) Derive the Farrow coefficients for the piece-wise parabolic interpolator listed in Ta-

ble 3.1.

(b) Sketch a block diagram of the Farrow filter similar to that shown in Figure 3.56 for the

general piece-wise parabolic interpolator.

(c) Show that whenα = 1/2, the answer in part (b) reduces to the structure shown in

Figure 3.56.

3.24 Derive the Farrow coefficients for the cubic interpolator listed in Table 3.2.

3.25 Derive the maximum likelihood carrier phase estimator for BPSK assuming a known bit

sequence and known timing.

3.26 Derive the maximum likelihood carrier phase estimator for BPSK assuming an unknown bit

sequence and known timing.
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3.27 Derive the maximum likelihood carrier phase estimator for BPSK assuming and unknown

bit sequence and unknown timing.

3.28 Show that the data-aided carrier phase error signal (3.78) follows from the maximum like-

lihood carrier phase estimator for offset QPSK assuming a known symbol sequence and

known symbol timing.

3.29 Derive the maximum likelihood bit timing estimator for BPSK assuming a known bit se-

quence and known carrier phase.

3.30 Derive the maximum likelihood bit timing estimator for BPSK assuming an unknown bit

sequence and known carrier phase.

3.31 Derive the maximum likelihood bit timing estimator for BPSK assuming an unknown bit

sequence and unknown carrier phase.

3.32 Derive the maximum likelihood symbol timing estimator for offset QPSK assuming a known

symbol sequence and known carrier phase.

3.33 Derive the maximum likelihood symbol timing estimator for offset QPSK assuming an un-

known symbol sequence and known carrier phase.




