Chapter 3

Synchronization

3.1 Introduction

The word Synchronization comes fro@hronos the Greek god of timeSynis a prefix meaning

with, along with, together, or at the same time. “To synchronize” thus means to cause one thing
to occur or operate with exact coincidence in time or rate as another thing. As applied to digital
communications, it usually means the process of causing one oscillator to oscillate with the same
frequency and phase as another oscillator.

In the previous chapters, the effects of carrier phase offset and symbol timing offset have been
shown. Conceptually, carrier phase synchronization is the process of forcing the local oscillators
in the detector to oscillate in phase and frequency with the carrier oscillator used at the transmitter.
Symbol timing synchronization is the process of forcing the symbol clock in the receiver to oscil-
late with the same phase and frequency as the symbol clock used at the transmitter. In either case,
the detector must determine the phase and frequency of the oscillator embedded in the received,
noisy modulated waveform.

The synchronizers presented in this chapter are all based on the phase-locked loop, or PLL.
The fundamentals of PLL operation and analysis are reviewed, in detail, in the Appendix. The
results are repeated here for continuity for those already familiar with PLLs.
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3.2 Phase-Locked Loops

3.2.1 Continuous-Time Phase Locked Loops

All continuous-time phase-locked loops are characterized by three components: the phase detector,
the loop filter, and the voltage controlled oscillator (VCO) arranged as shown in Figure 3.1 (a). PLL
performance is usually characterized by how well the PLL tracks the phase of a sinuosoid. In this
case, the input to the PLL is a sinusoid with radian frequengcsads/sec and time-varying phase

6(t). The output of the VCO is a sinusoid with radian frequengyads/sec and time-varying phase

~

6(t) which is an estimate of the input pha#g). The phase detector produces some funcjieh

of the phase errdt, () = 6(¢) — A(t). The phase detector characteristic is usually non-linear and is
characterized by a plot @f(6,) vs. 8,1. The loop filter, characterized by the transfer functiof),

filters the phase detector output and controls the nature of the loop response. The most commonly
used loop filter is the “proportional-plus-integrator” filter with transfer function

The proportional-plus-integrator filter has a pole at the origin ofstane. This pole is required

for the loop to track out any frequency offset with zero steady state phase error. The final ele-
ment in the loop is the voltage controlled oscillator or VCO. The instantaneous VCO frequency is
proportional to the input voltage(t) so that the instantaneous phase is

t
0(t) = ko / v(z)dx (3.2)
wherek is the constant of proportionality with units radians/volt. This constant is often called the
VCO gainor VCO sensitivity When placed in the feedback portion of the loop, the instantaneous
frequency of the VCO is adjusted to align the phase of the VCO output with the phase of the PLL
input.

The block diagram shown in Figure 3.1 (b) is the “phase equivalent” PLL. The phase equivalent
PLL is derived from the PLL by replacing the sinusoids in Figure 3.1 (a) by their phases and char-
acterizing each block in terms of its operation on the phase. The phase equivalent PLL is usually
what is analyzed when characterizing loop performance. When the phase detector characteristic
is a non-linear function of., the resulting phase equivalent PLL is a non-linear feedback control
system. Most non-linear phase detector characteristics are well approximaigd. by~ k,0.

1The plot of the phase detector characteristic is often called an “S-curve” since the phase detector characteristic of
many commonly used phase detectors resembles an “S” rotated clockwise by 90 degrees.
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for 6. ~ 0 where the constant of proportionality is the slope of the S-curve about the origin. Lin-
earizing the non-linear phase equivalent PLL about the desired operatingpsirit produces the

linear feedback control system shown in Figure 3.2. Since this system is a linear system, frequency
domain techniques can be used to analyze the loop responses. The most important loop responses
are the phase error resportsét) and the phase estimate respo&d. The frequency domain
transfer functions are

Oc(s) 52
L(8) = = 3.3
¢ (S> @(S) 52 + /{?pkokls + k?pkok’g ( )
O(s) kepkok1s + kykoks
H,(s) = = P P . 3.4
()= 8(5) = 57+ kykols + kyhoks (34)
The loop transfer function (3.4) is that of a second-order system and is of the form
2 2
Ho(s) = on® + (3.5)

$2 4 2Cwys + w2

wherew, is the natural frequency argds the damping factér Equating the denominators of (3.4)
and (3.5) gives the following relationships for the loop constants:

kpkokl = QCWn
k’pk’ok’g = W

(3.6)

Given a desired loop response characterized agdw,,, the loop constants,, ky, ki, andk, are
selected to satisfy the relationships (3.6). In practice, PLL responses are charactetjzalitige
equivalent noise bandwidth,,. The equivalent noise bandwidth of a linear system is defined as the
bandwidth of an ideal low-pass filter whose output power due to a white noise input is equal to the
output power of the linear system due to the same white noise input. Expressed mathematically,
this relationship is

| / L2 ) df. (3.7)

Using the transfer function (3.4) based on the proportional-plus-integrator loop filter (3.1), the
equivalent noise bandwidth (3.7) evaluates to

Wn, 1
B, = & (c 4<) (3.8)

2The damping factog¢ controls the nature of the loop response. Whien 1, the loop response isnderdamped
the poles are complex conjugates the the time-domain response is an exponentially damped sinusajd= \Whkea
loop response iwritically damped the poles are real and repeated. Wijen 1, the loop isoverdampedthe poles
are real and distinct and the loop response is the sum of decaying exponentials.
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The relationships (3.6) may be expressed in termB,0&dnd the damping factaras

4(B,,
koky = — .

¢+ E
ok, = n

1 2
<“&)

PLL performance is often characterized by #juisition timeandtracking performance The
acquisition time is the time required for the PLL to go from an initial frequency and/or phase offset
to phase lock. A PLL requires a non-zero period of time for to reduce the frequency error to zero.
Once frequency lock is achieved, an additional period is required to reduce the loop phase error to
an acceptable level. Thus the acquisition tifpgck Is the time to achieve frequency lo@k,_ plus

the time to achieve phase o€k, . For a second order PLL, these lock times are well approximated

by

A 2
1.3
To~ 7 (3.11)

n

whereAf is the frequency offset. The frequency offset cannot be arbitrarily largA.f Ifs too
big, then the PLL will not be able to lock. As long as the frequency offset satisfies

Af < <2m/§g) B, ~ 6B, (3.12)

the PLL will eventually lock. This characteristic places an upper limit on the frequency offset the
PLL is able to handle. This upper limit is called tpell-in range
Tracking performance is quantified by the variance of the phase error. Conceptually, the phase
error varianceg; , is
o2 :E{‘G—é‘}. (3.13)

A linear PLL which has a sinusoidal input with powgy, W together with additive white Gaussian
noise with power spectral density, /2 W/Hz, the phase error variance is

2 NOBn

oy, = P (3.14)

Since the noise power at the PLL input (within the frequency band of interest to the PNLBis
the ratioP,,/ Ny B,, often called the loop signal to noise ratio. Thus, for a linear PLL with additive
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Figure 3.1: Basic PLL configuration: (a) The three basic components of a PLL. (b) The corre-
sponding phase equivalent PLL

white Gaussian noise, the phase error variance is inversely proportional to the loop signal to noise
ratio.

Equations (3.10) and (3.11) indicate that acquisition time is inversely proportional to a power
of B,,. This suggests that the larger equivalent loop bandwidth, the faster the acquisition. Equa-
tion (3.14) shows that the tracking error is proportionaBtg This suggests that the smaller the
equivalent loop bandwidth, the smaller the tracking error. Thus fast acquisition and good tracking
place competing demands on PLL design. Acquisition time can be decreased at the expense of
increased tracking error. Tracking error can be decreased at the expense of increased acquisition
time. A good design balances the two performance criteria. Where that balance is depends on the
application, the signal to noise level, and system-level performance specifications.
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Ko
s

Figure 3.2: Linearized phase equivalent PLL corresponding to the PLL in Figure 3.1 (b).
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3.2.2 Discrete-Time Phase-Locked Loops

A discrete-time phase-locked loop is illustrated in Figure 3.3 (a). Just like the continuous-time PLL
of Figure 3.1 (a), the discrete-time PLL consists of three elements: a discrete-time phase detector,
a discrete-time loop filter, and a direct-digital synthesizer DDS. The DDS plays the same role
in the discrete-time PLL as the VCO did in the continuous-time PLL. The input to the discrete-
time PLL areT-spaced samples of a sinusoid with frequefigy= w7 radians/sample and with
time-varying phasé(n7") whereT is the sample time. The output of the DDS is a sinusoid with
frequency(), radians/sample and time-varying pha%eT). The phase of the DDS output is the
PLL estimate of the phase of the input sinusoid. The phase detector outpift.{®7')) where
0.(nT) = 6(nT) — §(nT). The loop filter, characterized by thedomain transfer functiod'(z),
filters the sequence of phase detector outputs and controls the nature of the loop response. A
commonly used loop filter is

Ko
1— 271
where upper case filter constants have been used to distinguish them from their counterparts in
the continuous-time PLL. The motivation for this filter structure is that it mimics the proportional-
plus-integrator loop filter used in continuous-time PLLs. The instantaneous frequency of the DDS
is proportional to the DDS input(n7’). As such the instantaneous phase of the DDS output is
given by

F(z) =K + (3.15)

n—1
O(nT) = Ko Y v(kT) (3.16)

k=—o00
where K, is the constant of proportionality. The phase equivalent discrete-time PLL is shown in
Figure 3.3 (b). Again, if the phase-detector characteristic is non-linear, then the resulting feedback
control system is non-linear. Linearizing about the desired operating point 0, the phase
detector characteristic is replaced by the linear approximatién ~ K,0. and the resulting
linear phase equivalent discrete-time PLL shown in Figure 3.4 is obtained. Since the feedback
control system of Figure 3.4 is linear, frequency domain techniques can be used to analyze the
performance. The-domain transfer function for the phase error and phase estimate are

Galz) = %((ZZ)) (3.17)
Hi(e) = 921 = Bl t Ry = Molfplfie (3.18)

1
(Z) 1-2 <]_ — §KOKp (Kl + KQ)) Z_l + (]. - KOKpKl) 2_2

3The DDS is sometimes called a numerically controlled oscillator or NCO.
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The loop responses are determined by the loop filter consianssd K,. Of the many ways
the constants could be chosen, one of the most common is to chose the constants to impart on the
discrete-time loop, the operating characteristics of the corresponding continuous-time loop. One
way to accomplish this to to apply Tustin’s Equation (or bilinear transform)

1 T1+z2t
ra e 349
to the transfer functio#/, (s) of the continuous-time PLL. The result is
(24000 o (=0 0, -2
212"\ 14260, +62 14200, 4627 1+ 2¢0, + 02 (3.20)
“NT1+21) o 1= 12640
14 2¢6, + 62 14 2¢6, + 62
where
'
h, = w2 : (3.21)

Equating the coefficients af ' and~~2 in the denominators off,;(z) — given by (3.18) — and
H, (%};Zj) — given by (3.20) — gives the relationship between the filter constantand
K, of the discrete-time PLL and the damping factor and natural frequency of the corresponding

continuous-time PLL:

40,
KoKpKl = m (322)
462

KoK, Ky = —— "
0P T L 206, + 62

(3.23)

Equations (3.22) and (3.23) express the loop filter const@nend K, in terms of the desired loop
damping factor and natural frequency. Solving (3.8)fprand substituting produces the following
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expressions fok; and K5 in terms of the damping factor and loop bandwidth:

A B, T
1
¢+ %
KQKPKI - 2
B, T B, T
1+ 2¢ 1 + T
¢+ E ¢+ E
N (3.24)
4 B, T
1
¢+ E
KoKpKQ — 2
B, T B, T
14+2¢ T |+ i
¢+ E ¢+ E

Note that when the equivalent loop bandwidth is small relative to the sampleggfe<< 1 so
that equations (3.24) are well approximated by
4¢

1
¢+ 4_C

4 2
(C + %)2 (B.T)".

Comparing equations (3.25) with equations (3.9) shows that for the case where the sample rate
is large relative to the loop equivalent bandwidth, the expressions for the loop filter constants for
the discrete-time loop are the same as those for the continuous-time loop except that the loop
bandwidth is normalized by the sample rate.

KOKpKl ~

(BnT)

(3.25)
KoKpKQ ~
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Figure 3.3: Basic discrete-time PLL configuration: (a) the three basic discrete-time components of
the discrete-time PLL. (b) The corresponding phase equivalent PLL.

Figure 3.4: Linearized phase equivalent discrete-time PLL corresponding to the PLL in Figure 3.3

(b).
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3.2.3 Summary

The preceding sections have summarized the key points from the Appendix that will be needed
for the subsequent treatment of carrier phase synchronization and symbol timing synchronization.
Both the continuous-time PLLs and the discrete-time PLLs analyzed above were designed to track
the phase of a sinusoid at the loop input. Unfortunately, for communications synchronization
applications, a sinusoid at the desired phase and frequency is rarely available. For example, in
carrier phase synchronization for QPSK, the received waveform possesses 90-degree phase shifts
due to the data phase shift keying the carrier. These phase shifts are in addition to the unknown
carrier phase. If a QPSK waveform were input directly into a PLL designed to track the phase of
a simple sinusoid, the PLL would try to track the phase shifts due to the data and probably never
lock. Thus the carrier phase synchronization PLL mestovethe phase shifts due to the data and
track the remaining phase. This task can be accomplished by proper design of the phase detector.

The same idea applies to symbol timing synchronization. Most wireless applications do have
have the luxury of embedding a reference clock signal in the modulated waveform. As a conse-
guence, the symbol timing synchronization PLL must extract the data clock from the modulated
waveform itself. Again, the data must lemovedrom the modulated waveform thus allowing the
PLL to track the underlying data clock. As is the case with carrier phase synchronization, this task
can be accomplished by proper design of the phase detector.

Since the phase detector will be responsible for removing the effects of the modulation on
the underlying unmodulated carrier and data clock, the focus of the following sections is on the
design and analysis of the phase detector. It will be important to keep in mind that the overall PLL
still has the structure illustrated in Figure 3.1 (a) for continuous-time PLLs or Figure 3.3 (a) for
discrete-time PLLs.
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3.3 Carrier Phase Synchronization

In this section, the traditional order of presenting continuous-time systems followed by the discrete-

time counterpart is reversed. This is done since it is easier to understand the operation of carrier

phase synchronization in terms of a rotation in two-space using discrete-time signal processing.
Referring to Figure 3.5, the received MQASK waveform at IF may be represented as

r(t) = Z ar(k)p(t — kTy) cos(wot + 0) — as(k)p(t — kT) sin(wot + 6) + w(t) (3.26)
k
wherea, (k) andas (k) are the inphase and quadrature components of-tiesymbol,p(¢) is the
unit energy pulse shape with supporten, T, <t < L,T;, T; is the symbol timey, is the radian
IF frequencyy is the unknown carrier phase offset, anft) is the additive white Gaussian noise.
The IF signal is sampled at a rate = 1/7 samples/sec. The-th sample of the received signal is

r(nT) = Z ay(k)p(nT — kTs) cos(Qon +0) — as(k)p(nT — kT) sin(Qon +6) + w(nT) (3.27)

where(2, = wyT radians/sample. The received signal is downconverted using quadrature sinusoids
cos(Qyn+60) and— sin(Qyn+6) to produce the inphase and quadrature components of the received
signal which, neglecting the double frequency terms, may be expressed as

I(nT) = ay(k)p(nT — kT,) cos(f — ) — az(k)p(nT — kT.) sin(6 — 6) + wr(nT)

. A (3.28)
Q(nT) = a(k)p(nT — kT,)sin(6 — 0) + as(k)p(nT — kT) cos(0 — 0) + wq(nT).
k

The inphase and quadrature components are filtered by the matched filter whose impulse response
is p(—nT) to produce the inphase and quadrature matched filter outputs

2(nT) =Y ai(k)Ry(nT — kT,) cos(6 — 0) — az(k)Ry(nT — kT,) sin(6 — ) + v, (nT)

y(nT) = Z a1 (k)R,(nT — kT,) sin(6 — 0) + aq(k)Ry(nT — kT,) cos(6 — 6) + vg(nT).
k

(3.29)
whereR,(u) is the autocorrelation function of the pulse shape given by
LpTs
R,(u) = / p(t)p(t — u)dt. (3.30)
_Lst

Assuming perfect timing synchronization(n7") andy(n1') are sampled at = k7 /T to produce
the inphase and quadrature matched filter outputs corresponding tetlthgymbol. Assuming
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R,(0) =1, R,(mT) = 0 for m # 0 these outputs may be expressed as

0) — as(k) sin(0 — 0) + v, (kT))

x(kTy) = a1(k) cos(d (3.31)
sin 0) + as(k) cos( — 0) + vg(kTy). .

y(kT;) = a1 (k) sin(6 —
This shows that, for MQASK waveforms, the the effect of uncompensated carrier phase offset
is a rotation in the signal space projections. This is illustrated for the case of QPSK shown in
Figure 3.6. In the absence of noise and assuming perfect timing synchronizetidn) and

y(kT;) form the Cartesian coordinates of a rotated version of the true symbol(peihd, as(k)).

The angle of rotation is the uncompensated phase @rrof.

Two approaches to carrier phase synchronization can be envisioned. In the first approach, phase
compensation is performed at the output of the matched filter as illustrated in Figure 3.7. The
guadrature sinusoids used for downconversiorna€,n and— sin Qyn so that the downsampled
matched filter outputs are special cases of (3.31) ditho:

x(kT)
y(kT)

a1 (k) cos(8) — ag(k) sin(0) 4+ vy (kTs)

(3.32)
a1 (k) sin(6) + az(k) cos(0) + vo(kT5).

The sampled matched filter outpyts(k7%), y(kT;)) are de-rotated by the estimated carrier phase
offset using a rotation function following the matched filters. Since the sampled matched filter out-
puts form a discrete-time sequence, this approach is a purely discrete-time approach. The second
approach modifies the phases of the quadrature sinusoids used to mix the IF signal to baseband.
This approach is illustrated in Figure 3.8 and is a commonly used architecture for both continuous-
time and discrete-time implementations.

In both figures, the dashed line represents an optional connection between the symbol estimates
ai(k) andas(k) and the phase error detector represented by the “Compute Phase Error” block.
When the phase error detector uses the symbol estimates to compute the phase error, the resulting
PLL is called adecision-directedoop. Alternatively, the phase error may be computed using
knowledge of the transmitted data symbols. Usually, the known data takes the form of a predefined
data sequence, known asraining sequencethat is inserted at the beginning of the transmission
for the purposes of phase acquisition. This approach is commonly used for packetized data links
where the training sequence forms part of the packet header or preamble. A carrier phase PLL that
uses known data is often callediata aidedPLL.



164 3.3 Carrier Phase Synchronization
| (nT) matched x(nT) x(kT )
filter T :
n=k=
T
r(nT) COS(Qon+é)
r(t) ADC
—sin(QOn + 67)
T T
Q(n ) matched y(n ) y(kT )
filter T s
n=k=
T

r(t)= > a(k)p(t - KT, )codat +6) -, (k)p(t ~KT,)sin(et +6)

k

Figure 3.5: Block diagram of a discrete-time MQASK receiver using IF sampling. The phase
offset between the received signal and the local oscillators is shown.
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3.3.1 Carrier Phase Synchronization for QPSK

As an example of the carrier phase architecture outlined in Figure 3.7, consider the QPSK carrier
phase synchronizer illustrated in Figure 3.9. The inphase and quadrature matched filter outputs,
z(kT,) andy(kT,), are rotated by-(k), to align the signal space projecti¢® (kT}), v/ (kT))

with the constellation points. The relationship between the inphase and quadrature matched filter
outputs and the rotated points is given by the matrix equation

B [ cos O(k) siné(k)]

o' (kT) _ (A )
—sind(k) cosO(k)

y'(kT)

z(kTy)
y(kT5)

With the switch in the lower position, the phase error is extracted from the E8{Atl; ), v/ (kT5))
by computing the residual phase difference betweékTy),y' (k7s)) and the transmitted con-
stellation point(a; (k), as(k)).

Computation of the phase error is easily understood in geometric terms. Consider the scenario
shown in Figure 3.11. The phase angle of the de-rotated matched filter outputs is

. (3.33)

_1 Y (KT
0, (k) = tan~ {ZEKT;} (3.34)
and the phase angle of the transmitted constellation point is
. _1 CZQ(kTS)
04(k) = tan {al(kTs) : (3.35)

The phase error for thieth symbol is thus

e(k) = 0.(k) — Oa(k)

- ey}~ L 639

The S-curve is obtained by writing

~ |cosfO, —sinf.| |ai(k)

~Isinf,  cosb. | |ao(k)|’

and computing:(k) in terms ofa, (k), az(k) andf.. The average S-curve, denotg@. ), is ob-

tained by averaging over the four possible symbalgk), ax(k)) € {£1,+1}. After a little
algebra the result is

o' (kT)
y' (kT)

q(0.) = 0.. (3.37)

The average S-curve (3.37) is plotted in Figure 3.14 (a) where it is seen that this phase detector is
an ideal linear phase detector wif), = 1.
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When the actual transmitted data symbols are unknown (either the training sequence has passed
or there was no training sequence provided) the carrier phase synchronizer can use the data de-
cisions to compute the phase error. This approach is illustrated in Figure 3.10. The phase er-
ror is extracted from the pointz’(kT%),y'(kTs)) by computing the residual phase difference
between(z'(kTy), y' (kTs)) and the nearest constellation poiat (k), a.(k)) where, for QPSK,

a(k) = sgn{z'(kTs)} andas(k) = sgn{y/'(kTs)}. Thus, thedecision directectarrier phase
synchronizer replaces (k) andas (k) in (3.36) with the decisiong,; (k) andas(k):

e(k) = tan™! {ZE%; } _ tan~! {%} (3.38)
— tan"! {zggg } — tan~! {%} . (3.39)

The average S-curve for the phase detector based on (3.39) is computed using the same procedure
used to compute (3.36). The average S-curve for the decision-directed phase detector is

(Q—I—TF —7r§9€<—£%7r
0+ = —3—7T<He<—Z
2 7?1 - 4
g(0.) =16 _Z<96<Z (3.40)
b-= Ty <3—7T
2 c T4
0—m £<96§7r

\

and is plotted in Figure 3.14 (b). Note that the slope of the S-curée at0 is 1 so thati, = 1
for this phase detector.

Comparing the S-curves for the data-aided and decision-directed phase detectors in Figure 3.14
reveals some interesting differences. The S-curve for the decision-directed loop crosses zero at

0 _ 3= w7 0 T T 3r

e 47 27 4774727477T'
Since a phase-locked loop locks @t = 0, the question arises: which of these zero crossing
represents a stable lock point? As it turns out, only those valuéswifiereg(d.) passes through

zero with a positive slope are stable lock points. Thus the stable lock points are

0, = —

b | 3

7O7g7ﬂ-'

As a consequence, the QPSK carrier phase PLL could lock in phase with true carrier{pbi&se,
out of phase with the true carrier phase180° out of phase with the true carrier phase. This PLL
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possesses what is called 2 phase ambiguity The phase ambiguity is a byproduct of removing
the data-induced phase shifts from the received signal. Since the QPSK constellation/Ras a
rotational symmetry, a/2 phase ambiguity is to be expected.

The phase detectors based on (3.36) and (3.39) require two four-quadrant arctangent operations
and a subtraction. A reduced complexity phase detector can be obtained by using the sine of
the phase error in place of the phase error. Taking the sine of (3.36) and applying the identity
sin(A — B) = sin A cos B — cos Asin B produces

sin (0, (k) — 64(k)) = sin (0,(k)) cos (04(k)) — cos (0,.(k)) sin (04(k)) (3.41)
Y (kTs)ay (k) — o' (kTs)aqz (k)

— 3.42
R RT) g2 (R ) (k) + A8 (3.42)

To avoid the division suggested by (3.42), the numerator alone can be used as the error signal while
the denominator terms are absorbed into the phase detectakgairhus

e(k) =y (kTy)ar (k) — o' (kT,)az (k). (3.43)
A block diagram of this approach is illustrated in Figure 3.12. Again, the average S-curve is
obtained by writing
~ |cosf, —sinf.| |ai(k)
~ |sinfd, cosb, az(k)|’

computingg (6.) in terms ofa,(k) and as(k), and averaging over the four possible symbols
(a1(k),as(k)) € {£1,£1}. After a little algebra the result is

' (kTy)
y'(KT5)

g(6.) = 2sind.. (3.44)

Note that ford, ~ 0, g(6.) ~ 26, from which K, = 2.

The decision-directed version of the simplified error detector is obtained by replaging
andas(k) in (3.43) witha, (k) andas(k). The error signal for the simplified decision-directed
phase detector is

e(k) =y (KT.)sgn{a' (KT,)} — ' (KT.)sgn{y/ (KT.)} . (3.45)

A block diagram of a QPSK carrier phase PLL using the simplified error detector (3.45) is shown

4An S-curve withL stable lock points produces a phase-locked loop with & phase ambiguity.
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in Figure 3.13. The average S-curve for (3.45) is

(—QSiIlQe —WSQe<—%
3 T
2 cos 0, —— <, < ——
cos # i 1
5(93) = 2sin 96 —Z < 06 < Z . (346)
2
—2cos0, Z<96<£
—2sinf, <@ <n
\ 4

Again, note that fop, ~ 0, g(¢.) ~ 26. from which K, = 2.

The average S-curves for the simplified data-aided phase detector (3.44) and the simplified
decision-directed phase detector (3.46) are plotted in Figure 3.15 (a) and (b), respectively. The two
S-curves for the simplified error detector differ from each other in the same way the two S-curves
for the arctangent-based error detector differed. The S-curve for the data-aided error detector is
non-linear, but possesses only one stable lock point. The S-curve for the decision-directed error
detector crosses zero with a positive slope at

T n
06 - __707_7
2 "

and thus has four stable lock points resulting in/a phase ambiguity.

As an example of loop design using the simplified decision-directed error detector, suppose
system requirements call for a critically damped QPSK carrier phase synchronizer PLL with an
equivalent loop bandwidth of 2% of the symbol rate. Using a discrete-time proportional-plus-
integrator loop filter{ = 1/v/2 and B, T, = B, T = 0.02 together withK,, = 2 and K, = 1 in
(3.24), the loop filter constants are

K1 =26x10"2 (3.47)
Ky, =69x10"* (3.48)

The phase estimaé{k) and phase errar(k) for a sequence of 250 randomly generated QPSK
symbols is illustrated in Figure 3.16. The carrier phase offsetrigdastep. Observe th&?t(k)
settles tor/4 after about 200 symbols and that the phase error settles to zero at the same time.
The nature of the transient response is controlled by the loop filter constants which are determined
by the damping factor and loop bandwidth. This loop is slightly underdamped and exhibits an
overshoot in response to the phase step input in the carrier.

Another popular architecture for QPSK carrier phase synchronization is based on the general
architecture illustrated in Figure 3.8. In this system, the DDS is designed to operate at the IF fre-
guencys?, radians/sample. Carrier phase compensation is incorporated into DDS used to generate
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the quadrature sinusoids used for the down-conversion from IF. As such, there is no need for the

phase rotation block. Any of the four phase error detectors (3.36), (3.39), (3.43), and (3.45) de-

scribed above can be used in the “Compute Phase Error” block where the sampled matched filter

outputsz(kT,) andy(kTs) are used in place af (kT;) andy’ (k7). Note that the DDS operates at

N samples/symbol while the phase error estimate is updated once per symbol. As a consequence,

a rate conversion is required. As an example, consider the block diagram in Figure 3.17. In this

example, the upsample block is placed in between the phase detector and the loop filter. As a con-

sequence, the phase detector and loop filter operate at one sample/symbol while the rest of the loop

(the DDS, and matched filters) operateNasamples/symbol. The filter constants should be com-

puted assuming operation at one sample/symbol with a DDS corfstant N. This is because

from the loop filter point of view, the DDS incremenié times for each step in the loop filter.

Since the matched filter is included in the closed-loop path, a small equivalent loop bandwidth is

required for stable operation when the loop filter constants are based on a second-order system.
Returning to the design example requiring a QPSK carrier phase PLL with an equivalent loop

bandwidth 2% of the symbol rate, assume the IF sample rate-s 16 samples/symbol. For the

QPSK carrier phase PLL illustrated in Figure 3.7, = 2 and K, = 16. Using¢ = 1/4/2 and

B, T, =16B,T = 0.02 in (3.24), the loop filter constants are

Ki=17x1073 (3.49)
K, =28x107" (3.50)

The phase error for a sequence of 250 randomly generated QPSK symbols is illustrated in Fig-
ure 3.18. As before, the carrier frequency phase/isstep. Two important observations should be
noted. First, the phase error exhibits discontinuities that are a consequence of the fact that phase
adjustments are being made at the IF frequency rather than at baseband. The interaction between
small phase adjustments and the carrier frequency is more likely to t&usphase jumps in the

error signak(k). Second, the error signal takes a long time to settle to zero. This is a consequence
of the inclusion of the matched filters in the closed loop path.
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Block diagram of the QPSK carrier phase PLL using an error signal based on (3.39).
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Figure 3.11: Geometric representation of the phase error computation in a QPSK carrier phase
PLL.
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Figure 3.12: Block diagram of the QPSK carrier phase PLL using an error signal based on (3.43).
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g(e.)
T |
“ : | > 6,
| -7
@
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4! 2 4 4 2 4
i E T | E I
4
(b)

Figure 3.14: S-curve for the data-aided phase detector (3.37) (a) and the decision-directed phase
detector (3.40) (b).
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Figure 3.15: S-curve for the data-aided phase detector (3.44) (a) and the decision-directed phase
detector (3.46) (b).
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Figure 3.16: Phase estimaték) (top) and corresponding phase eredk) (bottom) for the first
QPSK carrier phase PLL example.
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Figure 3.18: Phase erre(k) for the second QPSK carrier phase PLL example.
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3.3.2 Carrier Phase Synchronization for BPSK

Either of the two general architectures illustrated in Figures 3.7 and 3.8 can be used for BPSK
carrier phase synchronization. Since either of these approaches use the same phase detector, the
focus of this section is on the phase detector. The difference between carrier phase synchronization
for BPSK and QPSK lies in the phase detector. The BPSK phase detector based on the arctangent
uses the error signal

o 1 y/(kTS) -1 0
e(k) = tan {I’(kTS) } — tan {m} (351)
for the data-aided phase detector, and
_ oy Y (KT) -1 0
= (e} ) 552

for the decision-directed phase detector. The numerator of the second term in (3.51) and (3.52)
is zero since the BPSK constellation is a one-dimensional constellation: there is no data on the
guadrature carrier component when the receiver is operating in phase coherence with the transmit-
ter. Note that the second term on the right hand side of (3.51) and (3.52) is Quiyh&r) > 0 and
m whenz'(kT;) < 0. It should also be observed that (3.51) follows from (3.36) and (3.52) follows
from (3.39) whemu, (k) = 0. When the architecture of Figure 3.8 is usetk7,) andy(kT;) are
used in place of'(kT,) andy’(kT) in (3.51) and (3.52).

The S-curve for the phase detector (3.51) is

g(0e) = 0e (3.53)

7(0.) =146, e < (3.54)

The S-curves (3.53) and (3.54) are plotted in Figure 3.19 (a) and (b), respectively. Note that the
S-curve for the decision directed phase detector possesses two stable lock p@ints @tand
0. = m and therefor has a-phase ambiguity which is equal to the rotational symmetry of the
BPSK constellation. Both phase detectors have unity slofie-at0. Thusk, = 1.

The simplified phase detectors basedsory, are

e(k) = o/ (KT.)as (k) (3.55)
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for the data-aided phase detector and

g (0.) = ' (KT)sgn{='(KT})} (3.56)

for the decision-directed phase detector. Note that (3.55) follows from (3.43) and (3.56) follows
from (3.45) wheru, (k) = 0. As before, if the architecture of Figure 3.8 is used;7) andy(kT5)
are used in place af (kT;) andy/(kT5) in (3.55) and (3.56).

The S-curve for the data-aided phase detector (3.55) is

g (0.) = sind, (3.57)
while the S-curve for the phase detector (3.56) is

. T
—ginf, —-w<6,< —5

G(0.) = { sin6, —g <0, < g . (3.58)

. T
—sinf, 5 <O, <m

The S-curves (3.57) and (3.58) are plotted in Figure 3.20 (a) and (b), respectively. Observe that
the S-curve for the decision-directed phase detector possesses two stable lock fpiat$ aind

0. = 7 and therefor has a-phase ambiguity. Both S-curves are approximatediby,. ~ 6. for

6. ~ 0 and therefor havél, = 1.

At first, it may seem odd that a carrier phase synchronizer for BPSK requires the quadrature
matched filter outputs. The quadrature component is needed to compute the phase rotation at the
matched filter outputs. Since there is no information on the quadrature component of the carrier for
BPSK, the BPSK carrier phase PLL locks when the residual quadrature component goes to zero.
Observe that all of the BPSK phase detectors go to zero whgfy) is zero.
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Figure 3.19: S-curves for the data-aided BPSK phase detector (3.53) (a) and the decision-directed
BPSK phase detector (3.54).
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Figure 3.20: S-curves for the data-aided BPSK phase detector (3.57) (a) and the decision-directed
BPSK phase detector (3.58).
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3.3.3 Carrier Phase Synchronization for MQASK

The carrier phase synchronization for the general case of M-ary QASK can be based on either of
the architectures illustrated in Figures 3.7 and 3.8. Following the same line of reasoning associated
with Equations (3.34) through (3.36), the ideal linear phase detector for the general MQASK case
is (3.36) except that; (k) andas (k) are no longer restricted to the det1, +1}. In fact, either of
the the carrier phase PLLs illustrated in Figures 3.9 and 3.12 for QPSK can be used for MQASK
in general. The decision block changes as a function of the constellation. The decision-directed
phase detector takes the form (3.38) instead of (3.39) since the data symbols are confiffeddo
{=1,+1} anday(k) € {—1,+1} for the general case.

The reduced complexity phase detector follows from the same line of reasoning applied to
(3.41) — (3.43). The data-aided phase detector is

e(k) = y (KT, )as (k) — 2’ (KT, )as (k). (3.59)

The decision directed phase detector is obtained by replagifig anday (k) in (3.59) with the
decisionsi; (k) andas(k):

(k) = ¥/ (KTL)an (k) — o/ (KT, o (k). (3.60)

Note that in all cases; (kT) andy’(kT) are used to compute the error signal when the architec-
ture of Figure 3.7 is used while(kT;) andy(kT) are used in place of (kT;) andy’(kT;) when
the architecture of Figure 3.8 is used.

Even though the block diagrams of the MQASK carrier phase PLLs are identical to the QPSK
carrier phase PLLs, the properties of S-curves are strongly dependent on the constellation. For
example, consider the S-curves for the 8-PSK, square 16-QASK, and CCITT V.29 16-QASK con-
stellations using the phase detector (3.60) plotted in Figures 3.21, 3.22, and 3.23, respectively.
Note that while the S-curves are different, they do have a few features in common. First, each
S-curve crosses zero @t = 0 with a positive slope thereby indicating thitat= 0 is a stable lock
point for the PLL. Second, each S-curve is approximately lineaf feg 0. Finally, each S-curve
possess multiple stable lock points. The number of stable lock points and the valiiesiadre
they occur is determined by the rotational symmetry of the constellation.
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Figure 3.21: S-curve for the square 8-PSK constellation sing the phase detector (3.60).
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Figure 3.22: S-curve for the square 16-QASK constellation sing the phase detector (3.60).
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Figure 3.23: S-curve for the CCITT V.29 16-QASK constellation using the phase detector (3.60).



Synchronization 191

3.3.4 Carrier Phase Synchronization for Offset QPSK

Either of the carrier phase PLL basic structures introduced Figures 3.7 and 3.8 may be applied to
to carrier phase synchronization using offset QPSK. The application requires one important mod-

ification: the matched filters are sampled at two samples/symbol since the quadrature component
of the transmitted signal is delayed by half a symbol period.

The offset QPSK carrier phase PLL counterpart to Figure 3.7 is illustrated in Figure 3.24. Sam-
ples of the bandlimited IF signal are downconverted using a free running oscillator. The resulting
inphase and quadrature signal$pT’) and Q(nT), respectively, are filtered by matched filters.
The inphase and quadrature matched filter outpufts]’) andy(nT"), respectively, are sampled at
2 samples/symbol with perfect timing synchronization. For convenience, the samples are indexed
by the symbol index. The optimum sampling instants for the inphase component’&revhile
the optimum sampling instants for the quadrature componeriti@gre 7 /2 for k = 0,1,.... The
signals. .., z(kTy), x(kTs+Ts/2),...and. .. y(kT,),y(kTs+Ts/2), ..., are rotated by an angle
—0(k) to produce. . ., 2/ (KT,), ' (kT, + T,/2), ... and. ..,y (kT,),y'(kT, + T,/2),...,. Using
the index notation just described,k7;) andy’(kTs + Ts/2) are used for detection. As shown
below, 2’ (kT + T,/2) andy’(kT,) are used to compute the carrier phase error signal.

Let the samples of the IF signal be given by

Z a1 (m)p(nT — mTy) cos(Qon + 6) — Z as(m)p(nT — mTy) sin(Qon + 0) (3.61)

m

wherel/T is the sample rate;; (m) € {—1,+1} anday(m) € {—1,+1} are the information
symbolsp(nT) is a unit energy pulse shape with support on the inteng)7; /7" < n < L,T5/T,

Qg is the IF frequency in radians/sample, ahid the unknown carrier phase offset. The matched
filter outputs may be expressed as

Zal » (N — mT) cos — Z(Iz R,(nT —mTs —Ts/2)sinf  (3.62)

Z ar(m)R, (nT —mT)sinf + Z as(m)R, (nT —mTs —Ts/2)cosf  (3.63)

whereR, (u) is the autocorrelation function of the pulse shape given by (3.82). After some algebra
and the application of basic trigopnometric identities, the rotated matched filter outputs can be
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shown to be

o' (kT,) = a1 (k) cos(0 ) =Y ax(m)R, ((k —m)T, — T,/2)sin(0 — 0(k))
: (3.64)

y' (kT,) = ay (k) sin(6 )+ ax(m)R, ((k —m)T, — T,/2) cos(6 — O(k))
: (3.65)

o' (KT, + Ty /2) = Z as(m)R, ((k — m)T, + T,/2) cos(6 — O(k)) — ax(k) sin(0 — O(k))
(3.66)

Y (kT + T,/2) = Z as(m)R, ((k —m)T, 4+ T,/2)sin(6 — O(k)) — as(k) cos(0 — 0(k))
(3.67)

whereR, ((k — m)Ts) = 0 for m # k is assumed. The termg(k7) andz'(kT; + T/2) contain

the product of a single symbol and the sine of the phase error. Knowledge of the symbol or the
symbol estimate can by used to provide the correct sign to the sine of the phase error. The data-
aided phase error is thus

e(k) = ay(k)y (kTy) — ao(k)2' (KT, + Ty /2). (3.68)
The decision-directed phase error may be expressed in one of two forms

e(k) = a1 (k)y (KT,) — ao (k)2 (KT, + T,/2) (3.69)
= sgn{z' (k1) } y' (kTs) — sgn{y (KT + T /2) } ' (KT + T;/2). (3.70)

The S-curve for the data-aided phase error detector may be computed by substituting (3.65)
and (3.66) fory/(kT,) andz'(kT, + T,/2), respectively, in (3.68). Using. = 6 — 0, a2(k) = 1
anda(k) = 1, the S-curve is

9(0c) = 2sin b, + Y _ [a1(k)az(m) — as(k)ar(m)] Ry, ((k — m)T, + T./2) cosb.  (3.71)

The S-curve is thus the familiar sine of the phase error plus a second term which represents the self
noise of this phase error detector. The self noise has an average value of@ére)iindas(m)

are uncorrelated. The S-curve for both the data-aided error signal (3.68) and the decision-directed
error signal (3.70) are plotted in Figure 3.25. Note that the decision-directed error detector does
not have a stable lock point&t = +7/2 as its non-offset counterpart did. Since stable lock points
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are those where the S-curve crosses zero with positive slope, both the data-aided and data-directed
phase error detectors have two stable lock points and hengehase ambiguity.

Carrier phase synchronization for offset QPSK can also be accomplished using a tunable DDS
at IF as illustrated in Figure 3.26. Using the same notation as before, samples of the inphase and
guadrature matched filter outputs may be expressed as

Zal , (nT — mT,) cos(6 — 0) — Zag L (nT —mT, — T,/2)sin(6 — 6)

(3.72)
y(nT) = Z ay(m)R, (nT — mT,)sin(f — ) + Z as(m)R, (nT — mT, — T,/2) cos(6 — 6)

m

(3.73)
Sampling the matched filter outputsrat= £ andn = L= + Z= produces
2(kT,) = ay (k) cos( ZaQ ((k —m)T, — T,/2) sin(6 — (k) (3.74)
y(kT,) = a1 (k) sin(0 Z@ ((k —m)T, — T,/2) cos(0 — 0(k)) (3.75)
x(kTy + Ty/2) = Zaz (k= m)T, + T,/2) cos( — O(k)) — as(k) sin(@ — 0(k)) (3.76)

y(kT, 4+ T,/2) = Z as(m)R, (k — m)T, + T, /2) sin(6 — 6(k)) — az(k) cos(d — O(k)) (3.77)

m

which are identical to (3.64) — (3.67) except that phase compensation is performed at IF through the
DDS instead of after the matched filters. Using the same line of reasoning as before, the data-aided
error signal is

e(k) = ar(k)y(kTs) — az(k)x (KT, + T/2) (3.78)

and the decision-directed phase error is

e(k) = sgn{z(kT.)} y(KT:) — sgn{y (kT + T./2) } 2 (KT, + T:/2). (3.79)
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Figure 3.24: Carrier phase synchronization PLL for offset QPSK based on a free-running quadrature LO and a phase rotation.
Compare with the carrier phase synchronization system for non-offset MQASK illustrated in Figure 3.7.
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Figure 3.25: S-curves for the data-aided OQPSK phase error detector (dashed line) and the
decision-directed OQPSK phase error detector (solid lineffgiV, = 20 dB.
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Figure 3.26: Carrier phase synchronization PLL for offset QPSK based on an IF DDS. Compare with the carrier phase synchro-
nization system for non-offset MQASK illustrated in Figure 3.8.
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3.3.5 Carrier Phase Synchronization for BPSK and QPSK Using Continuous-
Time Techniques

Carrier phase PLLs using continuous-time processing almost always use the architecture illustrated
in Figure 3.8 due to the difficulty of constructing a baseband VCO required by the architecture of
Figure 3.7. Figure 3.27 illustrates a hybrid architecture using both continuous-time and discrete-
time processing for QPSK carrier phase synchronization. The phase detector is a discrete-time
processor that updates the carrier phase offset once per symbol using the sequence of matched
filter outputs. Any of the data-aided or decision-directed phase error signals for QPSK or BPSK
introduced above can be used here. The sequence of phase errors is converted to a continuous-time
signal by the digital-to-analog converter. The converted signal forms the input to the continuous-
time loop filter F'(s) which drives a continuous-time VCO. The sinusoidal output of the VCO is

split into quadrature sinusoids using a phase shifter (usually a delay element). The quadrature
sinusoids are used to downconvert the IF signal and to separate the IF signal into its quadrature
components. The quadrature components are matched filtered and sampled to produce the signal
space projection used by the phase detector to update the phase error.

A purely “analog” solution to QPSK carrier phase synchronization is illustrated in Figure 3.28.
This structure is called @ostas loop The phase error computation involves the difference between
the cross products of the baseband inphase and quadrature signals and their signs. This structure
— which results from a recursive solution to maximum likelihood phase estimation as shown in
Section 3.6 — is reminiscent of the simplified decision directed phase error given by (3.45) and
illustrated in Figure 3.13. (Note that the sign on the error signal is switched in Figures 3.13 and
3.28. This is due to the use efsin(-) for the quadrature component in Figure 3.13 aind-) for
the quadrature component in Figure 3.28.) To see how this works, consider the plot of the baseband
inphase and quadrature components plotted in Figure 3.29. During each symbol interval, the signs
of the baseband inphase and quadrature components could be used as decisions from which the
sine of the phase error can be continuously updated.

The Costas loop for BPSK carrier phase synchronization is illustrated in Figure 3.30. Note that
this structure is reminiscent of the discrete-time BPSK carrier phase PLL based on the phase error
given by (3.56) where the sign of the baseband inphase component plays the role of the decision.
As with QPSK, a sign reversal (not shown) is present due to the usesiof(-) in discrete-time
carrier phase PLLs using a quadrature DDS sin¢) in Figure 3.30.
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Figure 3.27: A hybrid continuous-time/discrete-time carrier phase PLL for QPSK.
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son{l (1)}

Figure 3.29: Example of baseband inphase and quadrature signal compdignend Q(t),

respectively, and their signs used by the QPSK Costas loop shown in 3.28.
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3.4 Symbol Timing Synchronization

Symbol timing synchronization is the process of estimating a clock signal that is aligned in phase
and frequency with the clock used to generate the data at the transmitter. Since it is not efficient
to allocate spectrum to transmit a separate clock signal from the transmitter to the receiver for
the purposes of timing synchronization, the data clock must be extracted from the noisy received
waveforms that carry the data. For matched filter detectors, the clock signal is used to identify the
instants when the matched filter should be sampled. The effect of timing errors on matched filter
receivers for MQASK were introduced earlier.

The form of the symbol timing synchronizer is quite different for continuous-time and discrete-
time systems and is perhaps one of the biggest differences between the two implementations.
Continuous-time techniques are reviewed in Section 3.4.1. Discrete-time techniques for symbol
timing synchronization are covered in detail in Section 3.4.3. In both cases, symbol timing syn-
chronization for M-ary PAM are developed. Extensions to MQASK are described in Sections 3.4.2
and 3.4.4

3.4.1 Continuous-Time Techniques for M-ary PAM

Figure 3.31 shows a block diagram of the basic architecture for symbol timing synchronization for
M-ary PAM using continuous-time techniques. Let the received M-ary PAM signal be

r(t) =Y _a(k)p(t — kT, — 7) + w(t) (3.80)

k
wherea(k) € {—(M —-1),—(M-3),...,—1,1,..., M —3, M —1} is thek-th PAM symbol,T} is
the symbol timey is the unknown timing delay(t) is a unit energy pulse shape with support on
the interval- L, T; <t < L,T;, andw(t) is the additive white Gaussian noise. The received signal
is passed through a matched filter whose impulse responge-i. The output of the matched
filter z(¢) may be expressed as

w(t) = a(k)Ry(t — kT, — 7) + v(t) (3.81)
k

whereR,(u) is the autocorrelation function of the pulse shape defined by

Ry(w) = [ ot — wi (3.82)

L,Ts
andu(t) = w(t)*p(—t) represents the noise at the output of the matched filter. Ideally, the matched
filter output should be samplediat kT, + 7 for detection. This is easy if is known. Whenr is
not known, it must be estimated. This is the role of the symbol timing synchronizer.
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Using the estimate provided by symbol timing synchronizer, the matched filter output at
t=kT,+TIs

w(kTy +7) = a(k)Ry(F —7) + > a(m)R, (k —m)T, +7 — 7). (3.83)
m#k

In the following, it will be convenient to express this output in terms of the timing etrer 7 — 7

p(kT + 7) = a(k)Ry(=7.) + > _ a(m)R, (k = m)T, — 7). (3.84)
m#k
Note that when the pulse shape satisfies the Nyquist condition for no ISI, the second term is zero
for . = 0.

In a continuous-time detector, the goal of the symbol timing is to produce a clock signal aligned
with the data transitions as illustrated in Figure 3.31 for binary PAM. In this example, the rising
edge of the clock is aligned with the symbol transitions and is used to trigger the sample-and-hold
operation at the matched filter output. The symbol timing PLL in Figure 3.31 consists of a timing
error detector, loop filter, and voltage controlled clock (VCC) arranged as shown in Figure 3.32.
The timing error detector computes the phase error between the VCC output and the clock signal
embedded in the matched filter outputs. The loop filter controls the nature of the loop response
and the VCC plays the role of the VCO (i.e. the VCC output is a clock signal whose instantaneous
frequency is proportional to the VCC input).

The operation of the timing error detector is best understood using the eye diagram. Figure 3.33
illustrates this concept for binary PAM. Observe that the optimum sampling instant coincides with
the time instant of maximum average eye opening. The time instant of maximum eye opening
occurs at the time instant where the average slope of the eye diagram is zero. The non-zero slope
att = 7 are points in trajectories corresponding to no data sign transition followed by a data sign
transition or a data sign transition followed by no data sign transition. This feature reinforces the
fact that symbol timing synchronizers rely on data sign transitions to produce a proper timing error
signal.

The forgoing demonstrates that the slope of the eye diagram can be used to generate a timing
error. Figure 3.34 demonstrates that the sign of the slope of the eye must be qualified to provide
the correct timing error. Figure 3.34 (a) illustrates the case where the current sampling instant is
early (i.e.,7(k) < 7 which means. (k) > 0) and the data symbal(k) = +1. The next sampling
instant7(k + 1) should be greater thai{k). This is accomplished by increasing the period of the
VCC output. The slope of the matched filter output at 7(k) is positive and can be used as the
error signal. Note that this applies only to the part of the eye corresponding to a transition from
a(k—1) = —1toa(k) = +1. The approximately horizontal portion of the eye diagram just above
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the end of the arrow corresponds to the case where there is no data transitiefk(i-el.) = +1).

The slope of the eye diagram is very small along this trajectory. As a consequence, little timing
error information is provided in the absence of a data transition. This property will be more obvious
in the examples to come.

Figure 3.34 (b) demonstrates the case where the current sampling instant is laté().e.,r
or 7. < 0) and the data symbal k) = +1. In this case, the period of the VCC should be decreased
to force7(k + 1) < 7(k). The slope of the eye at= 7(k) along the trajectory from(k) = +1 to
a(k + 1) = —1is negative and thus indicates the proper adjustment to the VCC period. As before,
the trajectory fromu(k) = +1to a(k + 1) = +1 has a very small slope and thus provides little or
no timing error information.

In the preceding two cases, the data symhél) = +1. Figures 3.34 (c) and (d) demonstrate
what happens whea(k) = —1. In Figure 3.34 (c), the current sampling instant is early (i.e.,
7(k) < 7 ort, > 0) and the period of the VCC should be increased to forde+ 1) > 7(k).
Unfortunately, the slope of the eye corresponding to the transition dfédm- 1) = +1toa(k) =
—1is negative at = 7(k) and therefor does not indicate the proper adjustment to the VCC period.
This is because the data symhdk) is negative. If the slope of the eye= 7(k) is altered by
the sign of the data symbol, then a signal that provides the proper adjustment to the VCC period is
obtained. Similarly, Figure 3.34 (d) shows the case where the current sampling instant is late (i.e.,
7(k) > 7 or 7. < 0) which requires thé(k + 1) < 7(k) and a decrease in the VCC period. Since
the slope of the eye corresponding to the transition fudk) = —1toa(k + 1) = +1 att = 7(k)
is positive, the product of the slope and the sigru@f) provides the proper signal for adjusting
the VCC period.

The forgoing observations suggest a timing error signal of the form

e(k) = a(k)z (kT + 7(k)) (3.85)
for the data-aided case, and
e(k) = a(k)z (KT, + 7(k)) (3.86)

for the decision-directed case whei§) is the time derivative of the matched filter output. As

is turns out, this error signal follows from the maximum likelihood estimate for timing offset as
outlined in Section 3.6. A block diagram of a symbol timing PLL based on (3.86) is illustrated in
Figure 3.35 for binary PAM. Generation of the error signal requires a differentiator connected to
the matched filter output. The output of the differentiator is sampled-ak 7 + 7(k) to provide

the slope of the eye at k). The sign of this slope is qualified by the sign of the data by multiplying
by the sign of the corresponding sampled matched filter output to form the error signal (3.86).
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Figure 3.35 also plots an example of the received wavefdtin(neglecting noise), the corre-
sponding matched filter outputt), the derivative of the matched filter outpi(t), and the product
sgn{x(t)} z(t) whose samples are used as the timing error signal. Observe that the timing error
signal sgn{z(t)} i(¢) is zero at the optimum sampling tifen the absence of data transitions the
timing error signal is zero throughout the entire symbol interval since the derivative of the matched
filter output is zero. This demonstrates that data transitions are necessary to provide sufficient tim-
ing error information to obtain symbol timing synchronization. If too many consecutive symbols
are the same, the symbol timing PLL could drift out of lock since the timing error is zero.

Often, it is desirable reduce the complexity of the timing error detector by approximating the
derivative operation with a difference as illustrated in Figure 3.36 for binary PAM and the case
7(k) < 7 anda(k) = 1. Since

- z(to + A) — z(tg — A)

= lim A , (3.87)

i (to)

the derivative of the matched filter output may by approximated using the difference as shown.
Qualifying the sign of the difference by the data produces a timing error detector known as an
early-late gate detectofThe data-aided version of the early-late gate timing error is

e(k) = a(k) [z (kKTs + 7(k) + ATs) — x (kTs + 7(k) — ATy)] (3.88)
and the decision-directed version is
e(k) = a(k) [z (KT, + 7(k) + AT,) — x (KT, + 7(k) — AT,)]. (3.89)

For binary PAM, a popular form of the early-late gate error signal that does not rely directly on the
decisions is
e(k) = |z (kTs + 7(k) + ATy)| — | (kTs + 7(k) — ATy)|. (3.90)

A block diagram of a binary PAM timing PLL based on the early-late gate (3.90) is illustrated in
Figure 3.37. Also shown are the baseband received sigtia{neglecting noise), the correspond-

ing matched filter output(t), and the signale (t + AT)| — |z (t — AT})| for A = 1/4. Observe

that the timing error signdk (t + ATy)| — |z (t — ATy)| is zero at the optimum sampling instants
when there is a data transition. When there is no data transition, the timing error signal is not zero
at the optimum sampling instant. This non-zero value is calithoiseand can limit the accuracy

of the timing PLL if the density of data transitions is not sufficiently high.

>The timing error signal sgf(t)} () is also zero half-way between the optimum sampling times. This zero
crossing is not a stable lock point.
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Figure 3.31: Block diagram for a binary PAM detector showing the role of the symbol timing PLL
and the relationship between the matched filter output and the symbol timing PLL output.
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Figure 3.32: The three basic components of an continuous-time symbol timing PLL.
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3.4.2 Continuous-Time Techniques for MQASK

The general form for the non-offset MQASK symbol timing PLL is shown in 3.38 for the case of
QPSK. Assuming perfect carrier phase synchronization and neglecting the double frequency terms
and noise, the inphase and quadrature components are

Z ai(m)p(t —mTs — ) (3.91)
Z ay(m)p (t —mT, — 1) (3.92)

wherer is the unknown delay to be estimated by the symbol timing synchronizer. The matched
filter outputs are

Z ar(m)R, (t —mT, — 1) (3.93)
y(t) = Z as(m)R, (t —mTs — 1) (3.94)

where R, (u) is the autocorrelation function of the pulse shape defined by (3.82). Both of these
equations are of the same form as (3.81), the sampled matched filter output for M-ary PAM. Thus,
timing error information can be derived from both the inphase and quadrature components in par-
allel. Extending the notions developed in Section 3.4.1, the data-aided timing error signal is

and the decision directed timing error signal is
wherez(t) andy(t) are the time derivatives of the inphase and quadrature matched filter outputs,
respectively. A popular form for the QPSK decision directed error signal results from a straight
forward extension of (3.86):

e(k) = sgn{ai(k)} & (kTs) + sgn{aq (k) } g (KT%) . (3.97)

The derivative operation can be replaced by an early-late gate structure on both the inphase and
quadrature components
e(k) = |x (kTs + 7(k) + ATy)| — | (kTs + 7(k) + ATy)|
+ |y (KTs + 7(k) + AT)| — |y (KTs + 7(k) + ATy)|. (3.98)

As an example of the extension of the binary PAM results to QPSK, a QPSK symbol timing
PLL based on (3.97) is shown in Figure 3.39.
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3.4.3 Discrete-Time Techniques for M-ary PAM

When the matched filter is implemented as a discrete-time filter, an analog-to-digital converter
(ADC) preceding the matched filter is required. An analog-to-digital converter (ADC) produces
T-spaced samples of (3.80) at a rafesamples/symbol. The-th sample of this waveform may
be represented by

r(nT) = Z a(m)p(nT —mTs — 1) + w(nT) (3.99)

wherea(k) € {—(M —1),—(M = 3),...,—1,1,...,M — 3, M — 1} is thek-th symbol; T} is
the symbol timey is the unknown timing delay(n7") are samples gj(¢), the band-limited unit
energy pulse shape with support on the interval, 7, < t < L,T;; andw(nT") are samples of the
bandlimited thermal noise. It is assumed the data symbols are uncorrelated:

E{a(k)a(m)} = o26(m — k) (3.100)
where
o) =E{a’*(k)}. (3.101)

The received signal is processed by a discrete-time matched filter whose impulse response consists
of samples of the time reversed pulse shape waveform. The matched filter output is

z(nT) = Z a(m)R, (nT —mT; — 1)+ v(nT) (3.102)

where R,(u) is the autocorrelation function of the pulse shape given by (3.82)vand) =
p(—nT) * w(nT) is the component of the matched filter output due to the noise.

The goal of symbol-timing synchronization is to produéesamples at the matched filter out-
puts during each symbol interval such that one of the samples is aligned with the maximum eye
opening. There are two basic approaches to the problem. The first approach, illustrated in Fig-
ure 3.40, uses timing error to adjust the phase of the voltage controlled clock (VCC) that triggers
the ADC. As a result, the samplesidt) are aligned with the symbol boundaries and the optimum
eye opening as shown. This approach has the advantage that it produces samples that are aligned
in both phase and frequency with the data clock (LeandT, are commensurate). There are four
disadvantages to this approach.

1. First, a feedback path to the continuous-time part of the system is required. The hardware
overhead of transferring from the digital to analog domains via a multi-bit output bus, a data
control line, a multi-bit DAC, and an analog filter to supply the control voltage to the VCC
has the potential to complicate the analog front-end design.
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2. Second, the transport delay of the matched filter now resides in the feedback path of the
timing control loop. This significantly reduces the response time of the timing recovery
loop.

3. Third, higher levels of phase noise (and hence, timing jitter) are contributed by the VCC
relative to the phase noise contributed by fixed-frequency sampling clocks.

4. Fourth, this technique does not allow the ADC to be placed at the IF if the IF signal con-
tains multiplexed signals whose symbol clocks are derived from independent sources. In
software defined radios, the goal is to “push the ADC to the antenna.” To meet this goal,
demultiplexing and channel selection must be performed using digital signal processing on
asynchronous samples«ft).

The second approach, illustrated in Figure 3.41 addresses these issues by sampling the received
signalr(t) at a fixed ratd /T that is asynchronous with the symbol rat&’;. The time delayr is
estimated solely from the sample&:.T"), the asynchronous samples at the output of the matched
filter. This approach produces samples that are not aligned with the symbol boundaries as shown
by the eye diagram at the output of the matched filter. The role of symbol timing synchronization
is to “move” the samples to the desired time instants. Another name for “moving” samples in
time isinterpolation Since the timing synchronizer has to adapt to an unknown time delay, the
interpolator must be adaptive. When working properly, the interpolator produces matched filter
outputs that are aligned with the symbol boundaries and the optimum sampling instant as illustrated
by the eye diagram at the output of the interpolator in Figure 3.41.

The major disadvantage to this approacimigerpolation jitterwhich occurs whefdl’; # NT.

In this case, an interpolant is output eve¥y samples, on average. But, due to the condition

T, # NT, the fractional timing error accumulates and eventually becomes unity. When this oc-
curs, an interpolant is output — 1 samples orV + 1 after the previous interpolant samples to
make up the difference. (Which it is depends on the sign of the accumulating fractional timing
error.) This interpolation jitter is especially problematic if the data bits must be retransmitted over
a synchronous link to some other destination. A more detailed discussion of interpolation jitter and
ways to overcome it are discussed in [1, 2].

The asynchronous sampling approach is the more common approach used for timing synchro-
nization in sampled-data detectors. The three basic components of the PLL, the phase detector,
loop filter, and DDS are present in the timing loop. The interpolator and timing error detector
(TED) combination plays the role of the phase detector while the interpolator control plays the role
of oscillator. Timing error detectors are described in Section 3.4.3, interpolation in Section 3.4.3,
and interpolation control in Section 3.4.3.
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Timing Error Detectors

In general, the timing error detectors produce an error signal once every symbol based on the
current timing estimate and using matched filter input,"), and the matched filter outputnT’).
In other words, the discrete-time error signal is updated at the symbol rate.
Assume an ideal interpolator is available that computes the interpolafit + 7) using a
timing delay estimaté and the outputs of the matched filter. The interpolant may be expressed as

o(bT+7) =Y alm)R, (k= m)T + 7 — 7) + v(kT, + 7) (3.103)
=Y " a(m)R, ((k—m)T, — 7.) + v(kT, + 7) (3.104)

wherer, = 7 — 7 is the timing error. The timing error detector produces a signal that is a function
of the timing errorr, in the same way the phase detector in the carrier phase PLL produced a
signal that was a function of the phase error. The output of the timing error det€étdy), is a
function of the interpolated matched filter outputs and the data symbols (or their estimates). The
characteristics of the timing error detector are described by the S-curve for the timing error detector
denotedy(r,).

Maximum Likelihood Timing Error Detector (MLTED) The maximum likelihood timing er-

ror detector is derived in Section 3.6 and uses the sign-corrected slope of the eye digram for the
error signal as described in Section 3.4.1 for continuous-time timing error detectors and illustrated
in Figure 3.34. The error signal for the data-aided timing error detector is

e(k) = a(k)z(kTs + 7) (3.105)
while the error signal for the decision-directed timing error detector is
e(k) = a(k)z(kTs + 7) (3.106)

wherei (kT + 7) is the time derivative of the matched filter output at kT + 7.
The S-curve for the MLTED is obtained by computing the expected value of the error signal
using (3.104) forr(kT, + 7) and the property (3.100). The S-curve for the data-aided MLTED is

g(r.) =E {a(k)%x(lﬂTs + 7)}

= 0’R, (—7.) (3.107)
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where the last line follows from (3.100) and (3.101) @d—.) is the time derivative of the pulse
shape autocorrelation function evaluated-at. The S-curve for the decision-directed MLTED is
obtained by assuming k) = a(k) and proceeding as outlined above. As long as the decisions are
correct, the S-curve for the decision-directed MLTED is identical to the S-curve for the data-aided
MLTED. This is illustrated in Figure 3.42 which is a plot of the S-curve for the square-root raised-
cosine pulse shape with 50% excess bandwidth. The S-curves for both the data-aided detector
and the decision-directed detector are identical|fgr < 0.35. This is becausé (k) = a(k).
When|7.| > 0.35 the S-curve for the decision-directed detector departs from the S-curve for the
data-aided detector due to decision errors.

The detector gairk, is the slope ofy(7,) = R,(—7.) at7, = 0. K, is a function of the
excess bandwidth wher(t) is the root-raised cosine pulse shape. This dependence is plotted in
Figure 3.43.

Samples of the derivative of the matched filter output may be obtained from samples of the
matched filter output using a filter as outlined in Cha@®rDenoting the impulse response of the
“derivative filter” asd(nT'), samples of the derivative of(nT’) may be expressed in one of two
forms as

#(nT) = z(nT) x d(nT) (3.108)
= (r(nT) * p(—nT)) * d(nT")
=r(nT) * (p(—nT) * d(nT))
=r(nT) x p(—nT) (3.109)

where the third line follows from the second line by the associative property of convolution. The
two expressions (3.108) and (3.109) suggest two alternate discrete-time systems for producing the
desired samples. The system in Figure 3.44 (a) illustrates the discrete-time processing defined by
(3.108). The system in Figure 3.44 (b) illustrated the discrete-time processing defined by (3.109)
which uses a filter whose impulse response consists of samples of the time derivative )of

A complete detector requires both matched filter outputs and derivative matched filter outputs.
Thus, the use of either approach to compute the derivative matched filter requires two filters. How-
ever, the approach illustrated in Figure 3.44 (a) uses the two filters in series whereas the approach
illustrated in Figure 3.44 (b) uses two filters operating on the same input samples in parallel. This
second approach can be important in a delay-sensitive application such as a phase locked loop.

In either case, the sample rate used to produce the sampiés) afr =(¢) must satisfy the
Nyquist sampling theorem. Samples of the time derivative of:ft¢ cannot be obtained from
undersampled signals that have been distorted by aliasing. Thus the MLTED is, in general, a
multi-rate discrete-time system. The input sample rat&/ isamples/symbol while the output
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Figure 3.42: S-curves for the data-aided zero crossing detector (solid line) and the decision-
directed zero crossing detector (dashed line). These are simulation results for binary PAM using a
square-root raised cosine pulse shape with 50% excess bandwidtf antl The signal-to-noise

ratio is £,/ Ny = 20 dB. The derivative matched filter was obtained by computing the first central
difference of a unit energy matched filter/dit= 32 samples/symbol.

sample rate is 1 sample/symbol.
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Figure 3.43: Phase detector gait,, of the maximum likelihood timing error detector as a func-
tion of excess bandwidth for the square-root raised cosine pulse shape and binary PAM with
o2 = 1. The derivative ofR,(-) was obtained by computing the first central difference of a unit
amplitude raised cosine response sampled at 32 samples/symbol.
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x(nT) x(nT)
r(nT) = p(-nT) ———> d(n) z<_>)‘<(kTs+r)

—~
p(-nT)0d(n) = p(-nT)

(b)

Figure 3.44: Two approaches for computing samples of the derivative of the matched filter output.
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Early-Late Timing Error Detector (ELTED) The early-late timing error detector (ELTED)
uses time differences, as described in Section 3.4.1, to approximate the derivative required by the
MLTED. The data-aided early-late error signal is of the form

e(k) = a(k) [z (KTs + 7+ ATy) — x (kTs + 7 — ATy)]

where AT, is usually selected to be a value conveniently supplied by the sample rate. Since a
sample rate of 2 samples/symbol is commonly uged; 1/2 is a popular choice. When sampled
at two samples/symbol, the matched filter outputs may be indexed using the symbal iaslex

cnx((k=DTs—71),2((k—1/2)Ts — 1), x(kTs — 1), x(k + 1/2)Ts — 1), 2(k+ D\)Ts — 7), . ..
The early-late timing error for a sample rate of two samples/symbol is
e(k)=a(k)[z((k+1/2)Ts+7) —x ((k—1/2)Ts + 7)] (3.110)
for the data-aided detector and
e(k) = a(k) [z ((k+1/2)Ty + 7) — x ((k — 1/2)T, + 7)] (3.111)

for the decision-directed detector.

The S-curve for the ELTED is obtained by computing the expected value of the error signal
using (3.104) fore((k+1/2)Ts + 7) andz((k — 1/2)T, + 7) along with the property (3.100). The
S-curve for the data-aided ELTED is

9(7e) = E{a(k) [2((k + 1/2)Ts + 1) — 2((k = 1/2)Ts + 7)]}

= E{a(kz) Za(m)Rp (k=m+1/2)Ty —71.) — R, (k—m —1/2)T; — Te)}

m

= 0-2 [Rp (Ts/2 - Te) - RP (_Ts/2 - Te)] (3112)

where the last line follows from (3.100) and (3.101). The S-curve is thus an approximation to the
derivative of R,,(t) att = —r7. using values ofR,(¢) half a symbol time before and afterr..
(Compare the S-curve for the ELTED with the S-curve for the MLTED.) SiRgé—7.) is an
autocorrelation function, it is symmetric and therefor zerg.at 0. The S-curve for the decision-
directed MLTED is obtained by assumirgk) = a(k) and proceeding as outlined above. As
long as the decisions are correct, the S-curve for the decision-directed MLTED is identical to the
S-curve for the data-aided MLTED as illustrated in Figure 3.45 for the square-root raised cosine
pulse shape with 50% excess bandwidth. Again, the S-curves for both the data-aided detector
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Figure 3.45: S-curves for the data-aided early-late timing error detector (solid line) and the
decision-directed early-late timing error detector (dashed line). These are simulation results for
binary PAM using a square-root raised cosine pulse shape with 50% excess bandwigth-ahd

The signal-to-noise ratio i&} /N, = 20 dB.

and the decision-directed detector are identical|for < 0.35. This is becausé (k) = a(k).
When|r.| > 0.35 the S-curve for the decision-directed detector departs from the S-curve for the
data-aided detector due to decision errors.

The ELTED gain,K,, is the slope of;(0) which is a function of the excess bandwidth when
p(t) is the root-raised cosine pulse shape. This dependence is plotted in Figure 3.46.
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Figure 3.46: Phase detector galt,, of the early-late timing error detector as a function of excess
bandwidth for the for the square-root raised cosine pulse shape and binary PAMPwith.
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Zero Crossing Detector (ZCTED) The zero crossing detector is intended for use with binary
baseband PAM, BPSK or QPSK and operates at two samples/symbol. For convenience, assume
that the matched filter outputs are available at a rate of two samples per symbol and may be indexed
using the symbol indek as

ca((k=DTs—71),2((k—1/2)T, — 1), 2 (kT — 1), 2(k + 1/2)Ts — 1), 2(k+ D)Ts — 1), . ..
The timing error signal, using a timing offset estimat® perform the interpolations is
e(k) = o((k — 1/2)T, — 7.) [a(k — 1) — a(k)] (3.113)
for the case of data-aided symbol timing synchronization and

e(k) = ((k — 1/2)T, — 7.) [a(k — 1) — a(k)] (3.114)
=z((k = 1/2)T, — ) [sgn{z((k — 1)1} — 7) } — sg{@(kT; — 7)}] (3.115)

for decision directed symbol timing synchronization.

The error signal is based on finding the zero crossings in the eye diagram as illustrated in
Figure 3.47. The sign of the error is controlled by the differen@e- 1) —a(k) ora(k—1)—a(k).
Figure 3.47 (a) illustrates the case where the timing erras positive and the data transition
is positive-to-negative. The timing error isk) = z((k — 1/2)Ts — 7.)[a(k — 1) — a(k)] =
2z((k — 1/2)T; — 7.) > 0 and provides an error signal with the correct sign. In Figure 3.47 (b),
the timing errorr, is negative. The error signaligk) = z((k — 1/2)Ts — 7e)[a(k — 1) — a(k)] =
2z((k — 1/2)Ts, — 7.) < 0 and provides an error signal with the correct sign. When the data
transition is negative-to-positive, the sign of(k — 1/2)T, — 7.) is wrong but is corrected by
a(k — 1) — a(k) = —2. Note that when there is no data transitiaf — 1) — a(k) = 0 and no
timing error information is provided.

The S-curve for the ZCTED may be obtained by computing the expected vak(é)o&nd
using an expression of the form (3.104) fai(k — 1/2)T;). The S-curve for the data-aided ZCD
is

9(7e) = E{z((k — 1/2)T; — 7.)[a(k — 1) — a(k)]} (3.116)
—E {Z a(m)R, (k —m)T, — Ty/2 — 7.) [a(k —1)— a(k)] } (3.117)
=0, [Ry (T5/2 = 7.) = Ry (—Ts/2 = 7.)] (3.118)

where the last line follows from (3.100) and (3.101). The S-curve is thus an estimate of the slope
of R,(—7.) using values of?,(¢) half a symbol time before and afterr.. Since autorcorrelation
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functions are symmetric, the S-curve is zerorat= 0. The S-curve for the decision-directed
ZCTED is identical whefi(k — 1) = a(k — 1) anda(k) = a(k) as illustrated in Figure 3.48. Note
that the S-curve for the ZCTED given by (3.118) is identical to the S-curve for the ELTED given
by (3.112). The ZCTED performance, however, is superior to that of the ELTED since the ELTED
suffers from a higher degree of self noise than the the ZCTED.

The TED detector gaini, is a function of the pulse shape which, for the square-root raised
cosine pulse shape, is a function of the excess bandwidth as shown in Figure 3.49.
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Figure 3.47: Example showing the operation of the zero crossing detector for positive-to-negative
data transitions. (a) The timing estimate is early. (b) The timing estimate is late.
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Figure 3.48: S-curves for the data-aided zero crossing detector (solid line) and the decision-
directed zero crossing detector (dashed line). These are simulation results for binary PAM using a
square-root raised cosine pulse shape with 50% excess bandwidtf antl The signal-to-noise

ratio is 5,/ Ny = 20 dB.
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Figure 3.49: Phase detector gaiti,, of the zero crossing detector as a function of excess band-
width for the for the square-root raised cosine pulse shape and binary PAM{nithl .
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Mueller and M Uller Detector (MMD) The Mueller and Miller detector (MMD) operates on
the matched filter outputs sampled at one sample/symbol. The symbol timing error signal is

e(k) = a(k — Da(kTs — 7.) — a(k)z((k — 1)T; — 7) (3.119)
for data-aided symbol timing synchronization and
e(k) = a(k — Da(kT, — 7.) — a(k)z((k — DT, — 72) (3.120)

for decision-directed symbol timing synchronization. An interpretation of MMD operation may be
obtained through the expression for the S-curve. As before, the S-curve is obtained by computing
the expected value ef k) using (3.104) forz (kT — 7.) andz((k — 1)Ts — 7.). The S-curve for

the data-aided timing error detector is

g(1e) = E{a(k — V)x(kTs — 7o) — a(k)x((k — )Ty — 1) }

- E{a(k ~1) Y alm)B, (k= m)T, — 7.) — a(k) S a(m)R, ((k — 1 — m)T. - n)}

m

=02 [R,(Ty —7.) — R, (=Ts — 7.)]. (3.121)

The S-curve is thus an estimate of the slopégfr.) using values of values a symbol time before

and after—7,. Since autorcorrelation functions are symmetric, the S-curve is zetoc=at). The

S-curve for the decision-directed MMD is identical wheit — 1) = a(k — 1) anda(k) = a(k)

as shown in Figure 3.50 for the square-root raised-cosine pulse shape with 50% excess bandwidth.
When |7.| < 0.35, the symbol decision are correct and the two S-curve are identical. When
|7.| > 0.35, some of the symbol decisions are incorrect and reduce the MMD gain as indicated by
the departure of the S-curve for the decision-directed MMD from the S-curve for the data-aided
MMD. The phase detector gaitds, is a function of the pulse shape which, for the square-root
raised cosine pulse shape, is a function of the excess bandwidth as shown in Figure 3.51.
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Figure 3.50: S-curves for the data-aided Mueller aridI&t detector (solid line) and the decision-
directed Mueller and Mller detector (dashed line). These are simulation results for binary PAM
using a square-root raised cosine pulse shape with 50% excess bandwidth-and The signal-
to-noise ratio is, /Ny = 20 dB.
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Figure 3.51: Phase detector gait,, of the Mueller and Niller detector as a function of excess
bandwidth for the for the square-root raised cosine pulse shape and binary PAMPwith.
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Interpolation

The commonly used terms to describe interpolation are illustrated by the diagram in Figure 3.52.
T-spaced samples of the bandlimited continuous time sigftalare available and denoted

cnx((n—=10T),x(nT),z((n+ 1)T),z((n+2)T),....

The desired sample is a samplexdt) at¢ = £7; and is called thé-th interpolant The process
used to compute(k7;) from the available samples is callederpolation When thek-th inter-
polant is between sample$n1’) and(x(n + 1)T"), the sample index is called thek-th basepoint
indexand is denotedn (k). The time instankT; is some fraction of a sample time greater than
m(k)T. This fraction is called thé-th fractional interval and is denotedk). Thek-th fractional
interval satisfie® < (k) < 1 and is defined by.(k)T" = kT; — m(k)T.

The fundamental equation for interpolation may be derived by considering a fictitious system
involving continuous-time processing illustrated in Figure 3.53. The samptés) (n = 0,1,...)
are converted to a weighted impulse train

zo(t) =Y x(nT)6(t — nT) (3.122)
by the digital-to-analog converter (DAC). The impulse train is filtered by an interpolating filter with
impulse responsg;(t) to produce the continuous-time outpt(tt). The continuous-time signal
x(t) may be expressed as

w(t) = a(nT)h(t —nT). (3.123)

To produce the desired interpolantst) is resampled at intervalsl; (k = 0,1,...)%. Thek-th
interpolant is (3.123) evaluatediat £7T; and may be expressed as

2(kTy) = a(nT)h(kT; — nT). (3.124)

n

The indexn indexes the signal samples. The convolution sum (3.124) may be re-expressed using a
filter indexi. Usingm(k) = |kT;/T| andu(k) = kT;/T — m(k), the filter index is = m(k) — n.
Using the filter index, equation (3.124) may be expressed as

p(kT) =Y w((m(k) =) T) by ((i + (k) T) . (3.125)

7

8If T; = T then the process produces one interpolant for each sample. This is the strict definitiempaflation
WhenT; # T, then the sample rate of the output is different than the sample rate of the input. This process is known
asresamplingor rate conversion In digital communication application§; > T is the case typically encountered
sinceT is the reciprocal of the sample rate at the input to the matched filteFaisdhe reciprocal of the symbol rate.
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Equation (3.125) will serve as the fundamental equation for interpolation and shows that the desired

interpolant can be obtained by computing a weighted sum of the available samples. The optimum

interpolation filter is an ideal low-pass filter whose impulse response is
ha(t) = Sln;;Z{T)-

Given a fractional interval, the ideal impulse response is sampletlatiT — ;T to produce the

filter coefficients required by (3.125).

The role of the interpolation control block in Figure 3.41 is to provide the interpolator with the
basepoint index and fractional interval for each desired interpolant.

For asynchronous sampling, the sample clock is independent of data clock used by the trans-
mitter. As a consequence, the sampling instants are not synchronized to the symbol periods. The
sample rate and symbol rate ameommensuratand the sample times never coincide exactly with
the desired interpolant times. When the symbol timing PLL is in lock and the interpolants are
desired once per symbdl; = T,. The behavior of the fractional intervalk) as a function of
k depends on the relationship between the sample clock p&riadd the symbol period} as
follows:

(3.126)

e WhenT; is incommensurate wittN7", 1.(k) is irrational and changes for eaghfor infi-
nite precision or progresses through a finite set of values, never repeating exactly for finite
precision.

e WhenT, ~ NT, u(k) changes very slowly for infinite precision or remains constant for
manyk, for finite precision.

e WhenT; is commensurate wititv7", but not equal:i.(k) cyclically progresses through a
finite set of values.

Since the ideal interpolation filter is IIR, its use poses an often unacceptable computational
burden — especially when the fractional interval changes. For this reason, FIR filters that approx-
imate the ideal interpolation filter are preferred in digital communication applications. A popular
class of FIR interpolating filters are piece-wise polynomial filters discussed below. Another alter-
native is to massively upsample the matched filter input, match filter at the high sample rate, then
downsample the matched filter output with the appropriately chosen sample offset to obtain the
desired interpolant. This approach leads to a polyphase-filterbank interpolator.

Piecewise Polynomial Interpolation The underlying continuous-time wavefornx) is approx-
imated by a polynomial im of the form

;E(t) = Cptp + Cpfltpil + -+ Clt + Cp. (3127)
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The polynomial coefficients are determined by the 1 sample values surrounding the basepoint
index. Once the coefficient values are known, the interpolant=atkT; = (m(k) + u(k))T is
obtained using

e(kT}) ~ ¢y (KT + cpr (KT~ + - + 1 (KT}) + co. (3.128)

Three special caseg,= 1,2, and 3 are of interest and are illustrated in Figure 3.54. When
p = 1, the first degree polynomial
x(t) = 1t + ¢ (3.129)

is used to approximate the underlying continuous-time waveform. The desired interpolants are
computed from

((m(k) + p(k))T) = e ((m(k) + p(k))T) + co. (3.130)

The coefficients; andc, are determined by the available samples and satisfy the equation
[ w(m()T) | _ [ mk)T 1 H | (3.131)
z((m(k) + 1)T) (m(k)+1)T 1| |co

Solving the above for; andc, and substituting into (3.130) produces
z((m(k) + p(k))T) = p(k)z((m(k) + 1)T) + (1 — p(k))z(m(k)T) (3.132)

which is the familiar linear interpolator.

Four observations are important. The first is that the interpolant is a linear combination of the
available samples. As a consequence, the interpolant can be thought of as the output of a filter with
coefficients suggested by (3.132):

w((m(k) + p()T) = 3 ha(@)a((m(k) = )T) (3.133)
where

(3.134)

The second important observation is that the equivalent filter coefficients are a function only of the
fractional interval and not a function of the basepoint index. The basepoint index defircbset

of samples should be used to compute the interpolant. The third observation is that the interpolating
filter is linear phase FIR filter which is an extremely important property for digital communications.
To see that this filter is linear phase, note that the coefficients are symmetric about the center point
of the filter which is defined by.(k) = 1/2. In other wordsh((m + 1/2)T) = h((—m + 1/2)T)
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form =0,1,2,.... Thisis a result of using an even number of samples to compute an interpolant
that is between the middle two. The final observation is that the sum of the coefficients is unity
and is therefor independent pfk). As a consequence, the interpolating filter does not alter the
amplitude of the underlying continuous-time waveform in the process of producing the interpolant.

The second observation is an attractive feature since any finite precision computing device
would eventually overflow as:(k) increased. The third property requires the use of an even
number of samples by the interpolator. Since an even number of samples is needed to define an
odd-degree approximating polynomial, odd degree approximating polynomials are popular. The
next highest odd-degree polynomiapis= 3. In this case

x(t) & c3t® + cot® + 1t + ¢ (3.135)

is used to approximate the underlying continuous-time waveform. The desired interpolants are
computed from

((m(k) + u(k))T) = es((m(k) + p(k))T)* + ca((m(k) + p(k))T) er((m(k) + p(k))T) + co.

(3.136)
The coefficients:;, ¢z, ¢; andce, are defined by
w((mk) = DT)]  [(m(k) = DT ((m(k) = DT)? (m(k) = DT 1] [es
z(m(k)T) _ (m(k)T)? (m(k)T)? m(k)T 1| |e . (3.137)
x((m(k) + 1)T) ((m(k) + )T) m(k)+1)T)* (m(k)+ 1T 1| |
z((m(k) +2)T) ((m(k) +2)T)° ((m(k)+2)T)* (m(k) +2)T 1] |
Solving the above fors, c3, ¢; andcy and substituting into (3.136) produces
a((m(h) + u)T) = (M55 = ) oty + 217
- (M55 - R ) ety + 17
# (P85 e = 2 1) atmiio)
_ (“(g) _ ”<§) + “é’”) +((m(k) - )T) (3.138)

which is called a cubic interpolator. When interpreted as a filter, the cubic interpolator output is of
the form

w((m(k) + p(k)T) = > hy(i)a((m(k) —i)T) (3.139)

i=—2
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where the filter coefficients are

6 6
ha(—1) = _u(;f)?’ N u(;f)z k)
oy ) (3.140)
ha(0) = 5= — p(k)? = 52 +1
ha(1) = _u(éf)?’ N u(g)z B u(gk)

Finally, for the case = 2, using the approximation
z(t) ~ cot® + ert + ¢ (3.141)
to approximate the underlying continuous-time waveform and
w((m(k) + p(k))T) = ca((m(k) + u(k))T)* + er((m(k) + u(k))T) + co (3.142)

to compute the desired interpolant requires the use of 3 samples. Since the number of samples is
odd, the desired interpolant is not in between the middle two and the resulting filter will not be
symmetric with respect tp(k) = 1/2. The desire to use four points introduces a wrinkle that is
explored in the homework where it is shown that the desired interpolant can be thought of as the
output of a filter of the form

z((m(k) + u(k)T) = Z ha()a((m(k) —i)T) (3.143)

where the filter coefficients are

ho(—2) = ap(k)? — ap(k)
hao(—1) = —ap(k)® + (1 + a)u(k) (3.144)
ha(0) = —apu(k)? — (1 — a)u(k) + 1

ha(1) = ap(k)? — au(k)
anda is a free parameter required to account for the additional degree of freedom introduced by
using four points. Simulation results have shown that 0.43 is the optimal value for BPSK
using the root raised cosine pulse shape with 100% excess bandwidth.dJsiigh reduces the
complexity of the hardware somewhat and results in a performance loss less than 0.1 dB [3].
Using a piece-wise polynomial interpolator to produce the desired interpolant results in a com-
putation of the form

e((mk) + p(k)T) = Y hy(is p(k))x((m(k) = )T) (3.145)

i=—1I
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where the filter coefficients are given by (3.134), (3.144), (3.140) fer1, 2, and 3, respectively.
Comparing (3.145) with the fundamental interpolation equation (3.125) shows that the filter co-
efficientsh, (i; u(k)) play the role of approximating the samples of the ideal interpolation filter
hi((i — u(k))T). Plots ofhy(i; u(k)), ho(i; u(k)), andhs(i; u(k)) are shown in Figure 3.55. Ob-
serve that ap increasesh,(i; u(k)) approximates (3.126) with greater and greater accuracy. In
fact, in the limitp — oo, h,(i; (k) approaches (3.126).

Since the filter coefficients suggested by the filter structure defined by (3.134), (3.140), and
(3.144) are a function of the variablék), a hardware implementation requires two-input multi-
pliers with two variable quantities. The complexity can be reduced by formulating the problem in
terms of two-input multipliers where one of the inputs is fixed. Each filter coeffidigfit 1.(k))
in (3.145) is a polynomial in(k). Let

p

hy (i (k) = > bi(i) (k) (3.146)

=0

represent the polynomial. Substituting (3.146) into (3.145) and rearranging produces

((m(k) + u(k)T) = Y p(k)’ Z bi(t)x((m(k) —)T). (3.147)

J/

o)

The inner sum looks like a filter equation where the input data samples(k)—i)7") pass through

a filter with impulse responsig(i). Since theb,(i) are independent gi(k), this filter has fixed
coefficients and an efficient implementation. Computing (3.147) by nested evaluation produces in
an expression of the form

z((m(k) + p(k))T) = (v(2)u(k) + v(1)) p(k) + 0(0) (3.148)
for piece-wise parabolic interpolation and

z((m(k) + p(k)T) = ((v3)u(k) +v(2)) p(k) + v(1) u(k) + 0(0) (3.149)

for cubic interpolation. Mapping these expressions to hardware results in an efficient filter structure
called theFarrow Structureillustrated in Figure 3.56. Th&arrow coefficientdor the Farrow
structure are listed in Tables 3.1 and 3.2. Note that when 1/2 for the piece-wise parabolic
interpolator, all of the filter coefficients but one become 0, H-by2. The resulting filter structure

is elegantly simple.
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Table 3.1: Farrow coefficients(:) for the piece-wise parabolic interpolator.

7 ba(1) by () bo(1)
-2 « —Q 0
-1 —« 1+a 0
0 —« a—1 1
1 Q@ —a 0

Table 3.2: Farrow coefficients(:) for the cubic interpolator.

7 b3(l) bg(l) b1<Z> bo(Z)
-2 1 0 —1 0
1 1
-1 -1 1 1 0
0 : -1 -1 1
I S B
x(kT)
((c-2) om0 (1)
x((k 1T, (-7~ e / x\(k +1T;
\ A ? x((n+2)T) /
. X((n+6)T)
x«n-sﬂ;ﬁ\ "g;;(n-zm <L l O_
@3 ]/ Snesm
x(-HT) T x((n-3)T) x(n+HT)
(k-1)T, kT (k +2)T,

% | IIU(kL| J/e | | ﬂk+l 9|J/e |

(n- 5)T (n AT (n-3)T (n-2)T (n-1)T nT (n+1)T (n+2)T (n+3)T (n+4)T (n+5)T (n+6)T

m(k -1) m(k) m(k +1)

Figure 3.52: Illustration of the relationships between the interpolation intérytie sample time
T, the basepoint indexes, and fractional intervals.
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desired sample

Figure 3.53: Fictitious system using continuous-time processing for performing interpolation.
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I

(n—l)T nTT (n+1)T (n+2)T

x(kT,)

T){x((n+l)'l') «(t)

\

\

(n-1)T nTT (n+1)T (n+2)T

KT,

Figure 3.54: Three special cases of polynomial interpolation: linear interpolation (top), quadratic

x(t)=ct+c,
x(kT)= ¢, (kT) +c,

x(t)=c,t> +ct+c,
x(kT)= ¢, (kT ) + ¢, (kT)) + ¢

X(t)=ct® +ct? +ct+c,
X(kT) = e, (KT + ¢, (kT )" + ¢, (kT) +,

interpolation (middle), cubic interpolation (bottom).
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h(+1)

T

Figure 3.55: Plot of the filter impulse responses resulting from piece-wise polynomial interpola-
tion.
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Figure 3.56: Farrow interpolator structures for the piece-wise paraboliccwith1/2 (top) and
cubic (bottom) interpolators.
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Polyphase Filterbank Interpolation An alternate approach to interpolation is to upsample the
matched filter output by a fact¢y then down sample with the appropriate offset to produce a sam-
ple close to the desired interpolant. How close the sample is to the desired interpolant is controlled
by the upsample factap). A conceptual block diagram of this process is shown in Figure 3.57
(a) for the case of binary PAM. (Generalizations to M-ary PAM are straight forward.) The input
to the matched filter consists of samples the received signdl) sampled atV samples/symbol
(i.e., Ty = NT). The impulse respongegnT’) of the matched filter consists @f-spaced samples

of a time-reversed version of the pulse shapg: h(nT) = p(—nT'). The matched filter output,
x(nT) is upsampled by insertin@ — 1 zeros between each sample. An interpolating low-pass
filter is used to produce samples of the matched filter output at a radébamples/symbol.
This signal is denoted(n7'/Q). The matched filter output with the desired delay is obtained by
downsamplings(n1'/@Q) with the proper offset.

The upsample-and-interpolate operation can be applied to the matched filter input instead of the
output as illustrated in Figure 3.57 (b). The inphase component of the received signal is upsampled
by insertingl)— 1 zeros between each sample. The upsampled signal is low-pass filtered to produce
r(nT/Q) which consists of samples of the inphase component at the high sample rate. In this case,
the impulse response of the matched filter consists/@j-spaced samples of —¢). The desired
matched filter output is obtained by downsampling the matched filter outputs at the high sample
rate,x(nT'/Q), with the proper offset.

Since both the interpolating filter and matched filter are low-pass filters, it is not necessary to
filter twice. The low pass interpolating filter may be removed as shown in Figure 3.57 (c). The key
difference here is that the matched filter is performing two functions: interpolation and shaping.
In other words, the matched filter outputs at the high samplexétd, /() are not identical to an
upsampled version of the inputn7/Q).

The matched filter outputs at the high sample may be expressed as

+(o2) :lgﬂr(m_wg)h@g). (3.150)

The sequence(nT'/@)) may be downsampled by to produce a sequence &tsamples/symbol
where everyV-th sample is as close tq kT + 7) as the resolution allows. The polyphase decom-
position is due to the fact that not all of the multiplies defined by (3.150) are required. Since

. (nz> _ {r(nT) n=0,+0Q,£20,... (3.151)

Q@ 0 otherwise,

only every@-th value ofr(nT /M) in the FIR matched filter is non-zero. At a time instant at the
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high sample rate, these non-zero values coincide with the filter coefficients

oo h(=2QT), l(—QT), h(0), (QT), h(2QT), . ..

and the filter output may be expressed as

> r((n—i)T)A(T) = x(nT). (3.152)

i=—NL
At the next time instant the non-zero values-6i7'/(Q)) coincide with the filter coefficients
L h(=2QT + 1), h(—QT + 1), h(1), M(QT + 1), h(2QT + 1), . ..

so that the filter output may be expressed as

ig:wr((n —i)T)h ((z + %) T) = ((n - %) T> : (3.153)

At the ¢-th time instant, the non-zero valuesdh7'/Q)) coincide with the filter coefficients

so that the filter output may be expressed as

3 a8 ) e ((p-8)7). e

This characteristic is illustrated in Figure 3.58 where a parallel bank @ifters, operating at
the low sample raté /7" is shown. Each filter in the filterbank is a downsampled version of the
matched filter, except with a different index offset. The impulse responsg, fof’) is

hq(nT):h(nT+%T> forg=0,1,...,Q — 1. (3.155)

The data samples(n1) form the input to all the filters in the filterbank simultaneously. The
desired phase shift of the output is selected by connecting the output to the appropriate filter in the
filterbank.

To see that the output of theth filter in the polyphase filter bank given by (3.154) does
indeed produce the desired result given by (3.124), assume for the moméhy/that (3.124) is
sufficiently close to one so that(k) = n. Then (3.125) becomes

2(kT) = ((k = )T) hy (i + p(k))T) . (3.156)

i
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Since the polyphase filterbank implementation uses the matched filter as the interpolation filter, the
input data sequencénTy) in (3.154) plays the role of the matched filter outp(tT") in (3.125)

and the matched filtei(nT) in (3.154) plays the role of the interpolation filter in (3.125). The
comparison shows that the ratio of the polyphase filter stage inpdexhe number of filterbank
stages) plays the same role as the fractional intepv@!) in the interpolation filter. In this way, the
polyphase filterbank implements the interpolation defined by (3.125) with a quantized fractional
interval. The degree of quantization is controlled by the number of polyphase filter stages in the
filterbank. The observations regarding the behavigi(@f) above apply to the filter stage index

for the cases wherg andT, are not commensurate.
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<> < >

available samples at matched -filter output available samples at filter output

i —/gi—y X(KT, +7
filter Q PR NQ:1 ( ° )
h(nT)= p(-nT)

, /
r(n ) matched MY

(a)
T 2\ )
RGN Q¥ LPF | mf‘i:z:'ed Mo x(kT, +7)
T T
hnt|=p-nt
[”QJ p[ ”QJ
(b)

r(nT) 10 ) mqtched f ; x(kTs+f)

filter NQ 1

Figure 3.57: An upsample approach to interpolation. (a) Upsample and interpolation applied to the
matched filter output. (b) Upsample and interpolation applied the matched filter input. (c) Using
the matched filter for both interpolation and shaping.
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—» h(nT) |—e

< available samples
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A
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available samples

T

— hQ—l(nT) —e

o
i

| | | | < available samples

Figure 3.58: Polyphase matched-filter filterbank outputs illustrating how each filter in the filterbank
produces an output sequence with a different delay.
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Interpolation Control

The purpose of the interpolator control block in Figure 3.41 to provide the interpolator with the
k-th basepoint index: (k) and thek-th fractional interval.(k). The basepoint index is usually not
computed explicitly but rather identified by a signal often callestrabe Two commonly used
methods for interpolation control are a counter-based method and a recursive method.

Modulo-1 Counter Interpolation Control  For the case where interpolants are required every
N samples, interpolation control can be accomplished using a modulo-1 counter designed to un-
derflow everyN samples where where the underflows are aligned with the basepoint indexes. A
block diagram of this approach is shown in Figure 3.59. Thepaced samples of the matched
filter input are clocked into the matched filter with the same clock used to update the counter. A
decrementing modulo-1 counter is shown here as it simplifies the computation of the fractional
interval. An incrementing modulo-1 counter could also be used and is explored in a homework
problem.

The counter decrements dy N on average so that underflows occur evéirysamples on
average. The loop filter outputn) adjusts the amount by which the counter decrements. This
is done to align the underflows with the sample times of the desired interpolant. When operating
properly, the modulo-1 counter underflows occur a clock period after the desired interpolant as
illustrated in Figure 3.60. The underflow condition is indicated by a strobe and is used to identify
to the interpolator that the previous sample was the basepoint index for the desired interpolant.

The fractional interval may be computed directly from the contents of the modulo-1 counter on
underflow. The counter valugn) satisfies the recursion

nn)=mn—-1)—-W(n-1)) mod 1 (3.157)

wherelV (n) = 1/N + v(n) is the counter input and is the current estimate of the B{i@". The
counter value immediately precedih@; (the desired interpolant time)igm(k)) and the counter
value immediately following théT; is 1 —n(m(k)+1). Using similar triangles, the counter values
and fractional interval satisfy the relationship

WW)T (L p()T
n(m(B) ~ 1—nm(k) + 1)

(3.158)

which can be solved fau(k):

) nm (k)  pm(k)
HE) = Tt &) + 1) + n(m(®) ~ Wm(k) (3.159)
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T A
r(nT) —» mf‘mce:'Ed —» interpolator AnT) {Nil_’ x(kT, +7)
- :
underflow (k)
A
compute
u(k) 1 TED
* N
W (n) v(n)
n z! <
,7( ) r (modulo-1 register) - F@ |«
+

Figure 3.59: Modulo-1 counter for interpolation control in a baseband PAM system. The basepoint
index is identified by the underflow strobe and the fractional interval updated using the counter
contents on underflow.

The underflow period (in samples) of the NCO is

1 1

= (3.160)
Wn) L
N +v(n)
N

When in lock,v(n) is zero on average an the NCO underflow periodisamples on average.
During acquisitionp(n) adjusts the underflow period to align the underflow events with the symbol
boundaries as described above. An important caveat is lurking in the details when using NCO
interpolation control. A positive phase error— 7(k) > 0) meansr(k + 1) must be greater than
7(k). This is accomplished by increasing the period of NCO underflows. The underflow period
is increased by forcing + Nv(n) < 1 which, in turn, requires(n) < 0. In the same way, a
negative phase errgr — 7(k) < 0) meansr(k + 1) must be less thafi(k). This is accomplished

by decreasing the period of NCO underflows. The underflow period is decreased by foreing
Nuv(n) > 1 which, in turn, requires(n) > 0. Thus the sign of the phase error the opposite the
sign of what is required by the NCO controller for proper operation. This characteristic can be
easily accommodated by changing the sign on the TED gain: i.e., ugif)gn stead ofK,,.
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Figure 3.60: lllustration of the relationship between the available samples, the desired interpolants,
and the modulo-1 counter contents.
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Recursive Interpolation Control The relationship for recursive interpolation control can be ob-
tained by writing the expressions for two successive interpolation instants as

KT, = (m(k) + (k)T

(3.162)
(k+ )T = (mgyr + pra)T
and subtracting the two to obtain the recursion
T;
Mpy1 = m(k) + =+ ,U(]C) — Mk+1- (3163)

T

Sincem,;, andm,; are integers, the fractional part of the right-hand side of (3.163) must be zero
from which the recursion for the fractional interval is obtained:

T;
Pit1 = (,u(k‘) + T) mod 1. (3.164)

Sincel < ug.1 < 1, the relationship

T;
M1 + g1 = My + T + (k) < My (3.165)

must hold from which the recursion on the sample count increment is

1;

Mgt — m(k) = b + u(k:)J . (3.166)

The sample count increment is a more useful quantity than the actual basepoint index because any
finite-precision counter used to compute and/or stefg) would eventually overflow. As was the

case with the counter-based control, the r&ti6I" required by (3.164) and (3.166) estimated by
W(n) =1/N +v(n) wherev(n) is the output of the loop filter.
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Examples

Two examples are provided to put all the pieces together. Both examples use binary PAM as
the modulation. The first uses the maximum likelihood timing error detector and operates at 16
samples/symbol. The second uses the zero crossing detector and operates at 2 samples/symbol.

Binary PAM with MLTED  This example illustrates the use of the MLTED error detector and

the NCO interpolator control for binary PAM. A block diagram is illustrated in Figure 3.61. The
pulse shape is the square-root raised cosine with 50% excess bandwidth. The received signal is
sampled at a rate equivalentd = 16 samples/sec. Sincdt) is 8 times oversampled, a linear
interpolator is adequate. Note that this system is different from the one suggested by the system
in Figures 3.41 and 3.59 in that the interpolator precedes the matched filter. This was done to
illustrate that the interpolator may be placed at either location in the processing chain.

Samples of the received signal are filtered by a discrete-time matched filter and derivative
matched filter in parallel. The outputs are downsampled to 1 sample/symbol as directed by the
NCO controller. The timing error signal is formed as prescribed by the decision directed MLTED
(3.106). In this implementation, the loop filter and NCO operate at the high sample rate of 16
samples/symbol. As a consequence, the error signal, which is updated at 1 sample/symbol, must be
upsampled. The upsampling is performed by inserting zeros in between the error signal updates.
The error signal is filtered by a discrete-time proportional-plus-integrator loop filter. The loop
filter output forms the input to a decrementing modulo-1 register or NCO. The NCO controls
the interpolation process as described in Section 3.4.3. Since the interpolator is not performing
a sample rate change, there is no need to provide basepoint index information. The interpolator
produces one interpolant for each input sample.

The timing synchronization system can also be described as a computer program. The chal-
lenge with this approach is that the timing synchronization system is a parallel system while a
computer program is a sequential representation. This is a common problem in system model-
ing: simulating an inherently parallel system on a sequential processor. A common method for
generating the sequential representation is to write a program loop where each pass through the
loop represents a clock cycle in the digital system. Within the loop, the parallel arithmetic (com-
binatorial) expressions are evaluated in topological order. Next the registered values (memory) are
updated.

The code segment listed below is written using a Matlab-style syntax and consisterof a
loop iterating on the samples of the received signal. The structure dbthdoop follows the
convention of updating the arithmetic (or combinatorial) quantities first and the registered values
(or memory) last. The variable names used in the code segment are the same as those used in
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Figure 3.61 with the following additions:

r _prev a scaler holding the previous input value. This value is
needed by the linear interpolator to compute the desired in-
terpolants

rl a scalar representing the interpolarit7" + 7).

mf a row vector consisting of samples of the matched filter im-
pulse response

dmf a row vector consisting of samples of the derivative matched
filter impulse response

riIBuff a column vector of interpolator outputs used by the matched
filter and derivative matched filter

XX a vector holding the matched filter output$kT + 7) for
kE=0,1,....

The code segment is not written in the most efficient manner, but rather to explain the sequence of
operations for proper PLL operation.

initialize
for n=1:length(r)

% evaluate arithmetic expressions in topological order

if NCO < O
underflow = 1;
else
underflow = 0;
end
if underflow ==
mu = mu_temp;
end

rl = mu*r(n) + (1 - mu)*r_prev;
X = mf*[rl; riBuff];
xdot = dmf*[rl; rIBuff];
if underflow ==
e = sign(x)*xdot;
else
e = 0;
end
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vp = Kl*e; % proportional component of loop filter
Vi = vi + K2*e; % integrator component of loop filter

vV = vp + Vi % loop filter output

W = 1/N + v; % NCO control word

% update registers

mu_temp = NCO/W,;
if underflow ==
NCO = NCO + 1 - W;

else

NCO = NCO - W,
end
IBuff = r(n);

riBuff = [rl; rIBuff(1:end-1)];
% update output

if underflow == 1
xx(k) = X;
k = k + 1;
end
end

As an example, consider a symbol timing PLL with performance requirenigsfts = 0.005
and( = 1/4/2. Figure 3.43 gives the phase detector 0Ain = 0.235. As explained in Sec-
tion 3.4.3,K, = —0.235 should be used when interpolation control is based on a decrementing
NCO. The phase detector gain also needs to be adjusted to account for the fact that the phase de-
tector operates at 1 sample/symbol while the loop filter and NCO operate at 16 samples/symbol.
Since zeros are inserted between the updates of the timing error, the timing error seen by the loop
filter is 1/N what it would be otherwise. Hendé, = —0.235/16 = —0.0147. Using N = 16, the
loop constants given by (3.24) are

K K,K;=9.9950 x 107*
Ky K, Ky = 4.9976 x 107",
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Finally, solving forK; and K, using K, = —0.0147 and K, = 1 gives

K, = —6.8051 x 1072
Ky = —3.4026 x 107°.

A plot of the timing error signa¢(k) and the fractional interval(k) are illustrated in Figure 3.62
for 600 random symbols. The plot pf%) shows that the loop locks after about 500 symbols at the
steady state value = 0.5. The plot ofu(k) looks “noisy.” This is due to the self noise produced
by the timing error detector.

While the interpolator does not require basepoint index information from the NCO controller,
the rate change at the matched filter and derivative matched filter outputs does require basepoint
index information. During acquisition, the PLL has to find the right basepoint index for the desired
matched filter output. This search is indicated by the “ramping” effect observed in the plot of
during the first 200 symbols. Each timeouches zero, it wraps @ = 1 and reduces the interval
between the current basepoint index and the next basepoint index by 1.
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Figure 3.61: Binary PAM symbol timing synchronization system based on the
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Figure 3.62: Timing error signal and fractional interpolation interval for the symbol timing syn-
chronization system illustrated in Figure 3.61.
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A practical variation on this design is illustrated in Figure 3.63. In this example, interpolation
is moved to the output side of the matched filter and derivative matched filter. This placement
requires two interpolators operating in parallel as shown. In this architecture, the two interpolators
are required to perform a sample rate conversion. Hence the underflow strobe from the NCO
controller is required to provide basepoint index information to the interpolators. Relative to the
architecture illustrated in Figure 3.61, this architecture has the disadvantage that two interpolators
are required. But, it has the advantage that the matched filter and derivative matched filters are not
in the closed loop path.

As before, the received signal is sampled at a rate equivalent to 16 samples/symbol to produce
the samples(nT"). These samples are filtered by a matched filter and derivative matched filter
operating at 16 samples/symbol to produce the outp(t§’) andi(nT"). These outputs form
the inputs to two linear interpolators also operating in parallel. The interpolators produce one
interpolant per symbol as directed by the NCO controller. The NCO controller provides both the
basepoint index (via the underflow strobe) and the fractional interval. The two interpolator outputs
x(kTs + ) andz (kT + 7) are used to compute the timing error siga@l) given by (3.106). The
error signal is upsampled by 16 to match the operating rate of the loop filter and NCO controller.

An equivalent description using a Matlab style code segment is shown below. The code seg-
ment uses the same variable names as Figure 3.63 with the following additions:

X_prev a scaler holding the previous matched filter output. This
value is required by the linear interpolator operating on the
matched filter outputs.

xdot _prev  ascaler holding the previous derivative matched filter output.
This value is required by the linear interpolator operating on
the derivative matched filter outputs.

Xl a scalar representing the interpolan&7 + 7).

xdotl a scalar representing the interpolan&7; + 7).

XX a vector holding the matched filter output$i7; + 7) for
k=0,1,....

The code segment consists dba loop that iterates on the matched filter and derivative matched
filter output samples. The code segment is not written in the most efficient manner, but rather to
explain the sequence of operations for proper PLL operation.

initialize
for n=1:length(x)
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% evaluate arithmetic expressions in topological order

if NCO < 0
underflow = 1;
else
underflow = 0O;
end
if underflow ==
mu = mu_temp;
end
if underflow ==

xI = mu*x(n) + (1 - mu)*x_prev;
xdotl = mu*xdot(n) + (1 - mu)*xdot_prev;

e = sign(xl)*xdotl;
else
e = 0;
end
vp = Kl*e; % proportional component of loop filter
vi = vi + K2*g; % integrator component of loop filter
V = vp + Vi % loop filter output
W = 1/N + v; % NCO control word

% update registers

mu_temp = NCO/W,;

if underflow ==

NCO = NCO + 1 - W,
else

NCO = NCO - W,
end

X_prev = x(n);
xdot_prev = xdot(n);

% update output

if underflow ==
xx(k) = xI;
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end

An example of the phase error and fractional interval are plotted in Figure 3.64 for 600 random
symbols. The loop filter constants are identical to those used previously. As before, the timing
PLL locks after about 500 symbols. The shape of the fractional interval plot is quite similar to the
fractional interval plot in Figure 3.62. Differences are due to the placement of the matched filter
and derivative matched filter. In Figure 3.62, the matched filter and derivative matched filters are
in the closed loop path while in Figure 3.64 they are not.
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Figure 3.64: Timing error signal and fractional interpolation interval for the symbol timing syn-
chronization system illustrated in Figure 3.63.



Synchronization 265

Binary PAM with ZCTED  This example illustrates the use of the ZCTED error detector and
the NCO interpolator control for binary PAM. A block diagram is illustrated in Figure 3.61. The
pulse shape is the square-root raised cosine with 50% excess bandwidth. The received signal is
sampled at a rate equivalentdd= 2 samples/symbol. Samples of the received signal are filtered
by a discrete-time matched filter operating at 2 samples/symbol. The matched filter a(tgtits

are used by the piece-wise parabolic interpolator to compute the interpolarfs+ 7). These
interpolants form the input to the zero crossing detector described in Section 3.4.3 and given by
(3.115). The timing error signal is updated at 1 sample/symbol. Since the loop filter and NCO
control operate atv = 2 samples/symbol, the timing error signal is upsampled by inserting a
zero(s) in between the updates. The upsampled timing error signal is filtered by the proportional-
plus-integrator loop filter. The loop filter output forms the input to a decrementing modulo-1
register or NCO. The NCO controls the interpolation process as described in Section 3.4.3.

A code segment modeling the system is listed below. It is written using a Matlab-style syntax
and consists of &or loop iterating on the samples of the matched filter output. The structure of
thefor loop follows the convention of updating the arithmetic (or combinatorial) quantities first
and the registered values (or memory) last. The variable names used in the code segment are the
same as those used in Figure 3.61 with the following additions:

IBuff a 3 x 1 vector holding the previous matched filter values
needed to compute the interpolants
Xl a scalar representing the interpolarin" + 7)

TEDBuUff a2 x 1 column vector of interpolator outputs used by the
timing error detector
XX a vector holding the matched filter output$kT, + 7) for
=0,1,....

for n=1:length(x)

% evaluate arithmetic expressions in topological order

if NCO < 0
underflow = 1;
else
underflow = 0;
end
if underflow

mu = mu_temp;
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end
v2 = 1/2*[1, -1, 1, 1]*[x(n); IBuff], % Farrow structure for the
vl = 1/2*-1, 3, 1, -1]*[x(n); IBuff]; % piecewise parabolic
vO = [0, 0, 1, OJ*[x(n); IBuff]; % interpolator
xI = (mu*v2 + vi)*mu + vO; % interpolator output
if underflow ==
e = TEDBuff(1) * (sign(TEDBuff(2)) - sign(xl));
else
e =0
end
vp = Kl*e; % proportional component of loop filter
Vi = vi + K2*%e; % integrator component of loop filter
vV = vp + Vi % loop filter output
W = 1/N + v; % NCO control word

% update registers

mu_temp = NCO/W;

if underflow ==

NCO = NCO + 1 - W,
else

NCO = NCO - W,
end

IBuff = [x(n); IBuff(1:end-1)];
TEDBuff = [xI; TEDBuff(1)];

% update output

if underflow ==
xx(k) = xl;
k = k + 1;
end
end

As an example, consider a symbol timing PLL with performance requirenigyits = 0.01
and¢ = 1/+/2. Figure 3.49 gives the phase detector gajn= 2.7. As explained in Section 3.4.3,
K, = —2.7 should be used when the interpolation control is based on a decrementing NCO. The

phase detector gain also needs to be adjusted to account for the fact that the phase detector operates
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at 1 sample/symbol while the loop filter and NCO operate at 2 samples/symbol. Since zeros are
inserted between the updates of the timing error, the timing error seen by the loop filféy¥ is

what it would be otherwise. Hendg€, = —2.7/2 = —1.35. Using N = 2, the loop constants
given by (3.24) are

K K,Ky=1.5872 x 1072
Ky K, Ky =1.2698 x 107,

Finally, solving forK; and K, usingK,, = —1.35 and K, = 1 gives

Ky = —1.1757 x 1072
Ky = —9.4061 x 107°.

A plot of the timing error signat(k) and the fractional interval(k) are illustrated in Figure 3.66
for 600 random symbols. The plot pf k) shows that the loop locks after about 300 symbols at
the steady state valye = 0.5. Since the ZCTED does not produce any self-noise, the plgt of
has a much “cleaner” look than the plotofor the MLTED in Figure 3.62.

The code listing above does not work for the case of sample clock frequency offset. That is,
for the casel” # T, /2, the code must be modified to account for the cases when an interpolant is
required during two consecutive clock cyclds ¢ T;/2) or for the case when two clock cycles
occur between consecutive interpolarits< 7;/2).

The casd’ > T, /2isillustrated in Figure 3.67. The desired samples appear to “slide to the left”
since the samples are spaced slightly further apartthgh Most of the time, a desired matched
filter interpolant is produced for every two available matched filter samples. SingeT;/2, a
residual timing error accumulates. As the residual timing error accumulates, the fractional interval
u(k) decreases with time as shown. Eventually the accumulated residual timing error exceeds
a sample period. This coincides witl{k) decreasing to 0 and wrapping around to 1. When
this occurs desired matched filter interpolants occur one sample apart instead of the normal two
samples apart. As shown, when this occurs, one of the samples needed by the ZCTED is never
produced. This missing sample must be inserted or “stuffed” into the ZCTED registers to ensure
proper operation after the “wrap around.”

The casel’ < T,/2 is illustrated in Figure 3.68. In this case, the desired samples appear
to “slide to the right” since the samples are spaced slightly closer togethef/tjian Most of
the time, a desired matched filter interpolant is produced for every two available matched filter
samples. Sincd’ < T,/2, a residual timing error accumulates. As the residual timing error
accumulates, the fractional interyalk) increases with time as shown. Eventually the accumulated
residual timing error exceeds a sample period. This coincidesMithexceeding 1 and wrapping
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around to 0. When this occurs, the desired matched filter interpolants are spaced three samples
apart instead of the normal two. As a consequence, the interpolator produces an extra sample that
should be ignored, or “skipped” by the ZCTED. This is accomplished by not shifted the ZCTED
registers after the “wrap around.”

A modified segment of code to account for this condition is shown below. A new variable
old _underflow isintroduced. This variable, together withderflow are used to determine
whether normal operation, “stuffing,” or “skipping” should occur. Again, the code is not written
in the most efficient manner, but rather to provide a description of the subtleties associated with
proper operation of the ZCTED.

for n=1:length(x)

% evaluate arithmetic expressions in topological order

if NCO < 0
underflow = 1;
else
underflow = O;
end
if underflow
mu = mu_temp;
end
v2 = 1/2*[1, -1, 1, 1]*[x(n); IBuff]; % Farrow structure for the
vl = 1/2*[-1, 3, 1, -1]*[x(n); IBuff]; % piecewise parabolic
vO = [0, O, 1, OJ*[x(n); IBuff]; % interpolator
xI = (mu*v2 + vl1)*mu + vO; % interpolator output
if underflow == 1 & old_underflow ==
e = TEDBuff(1) * (sign(TEDBuff(2)) - sign(xl));
else
e = 0;
end
vp = Kl*e; % proportional component of loop filter
vi = vi + K2*g; % integrator component of loop filter
V = vp + Vi % loop filter output
W = 1/N + v; % NCO control word

% update registers
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mu_temp = NCO/W,;

if underflow ==

NCO = NCO + 1 - W;
else

NCO = NCO - W;
end
IBuff = [x(n); IBuff(1.end-1)];
if underflow == 0 & old_underflow = 0

TEDBuff = TEDBuUff; % skip current sample
elseif underflow == 0 & old_underflow ==

TEDBuff = [xI; TEDBuff(1)]; % normal operation
elseif underflow == 1 & old_underflow ==

TEDBuff = [xI; TEDBuff(1)]; % normal operation
elseif underflow == 1 & old_underflow ==

TEDBuff = [xI; 0; TEDBuff(1)]; % stuff missing sample
end

old_underflow = underflow;
% update output

if underflow ==
xx(k) = xlI;
k = k + 1;
end
end

As this code segment illustrates, the “upsampled by 2” function inserted in between the timing
error detector and the loop filter is only an abstraction. The upsample operation is performed by
inserting zeros in between the timing error updates. Most of the time 1 zero is inserted. But
sometimes no zeros are inserted; sometimes 2 zeros are inserted.

As an example of operation for the case where the sample clock frequency is slightly higher
than 2 samples/symbol (i.€l; < T;/2), suppose the sample$n1’) were obtained wher&
satisfied
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or, what is equivalent

1
sample rate= (2 + @> x symbol rate

The sampling clock frequency is 1/400 of the symbol rate faster than 2 samples/symbol. The
error signal and fractional interval for the same timing PLL considered previously are plotted in
Figure 3.69. As expected, the fractional interval ramps from 0 to 1 and rolls over every 400 symbol
times. This is because the frequency error in the sample clock is 1/400 of the symbol rate. The
error signal indicates that the timing PLL locks after about 100 symbols. This case is the symbol
timing PLL equivalent of a phase ramp input for the generic PLL reviewed in Section 3.2.1 and
explained in Section A.2.1 in Appendix A.
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Figure 3.66: Timing error signal and fractional interpolation interval for the symbol timing syn-
chronization system illustrated in Figure 3.65.
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Figure 3.68: An illustration of the relationship between the available matched filter output samples, the desired interpolants, the
underflow from the NCO interpolation controller, and the fractional interval for the case where the sample clock frequency is

slightly faster than 2 samples/symbol (i.€.< T/2).



Synchronization 275

timing error e(t)
o

_2_ N
_4 1 1 1 1
0 200 400 600 800 1000
/T _(sec)
S
l T T T T
S 08 ]
<
S
o 06 i
£
< 0.4
5]
g 0.2 -
O 1 1 1 1
0 200 400 600 800 1000
t/TS (sec)

Figure 3.69: Timing error signal and fractional interpolation interval for the symbol timing syn-
chronization system illustrated in Figure 3.65 for the case where the sample clock is slightly faster
than 2 samples/symbol.
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3.4.4 Discrete-Time Techniques for MQASK

Let the received IF MQASK signal be

r(t) = Z a1p (t = nTs — 7) cos(wot + 6) — agp (t — nTs — 7) sin(wot + 0) + w(t) (3.167)
wherep(t) is unit energy pulse shape with support on the inter) T, < tL,, T, T is the symbol
time, 7 is the unknown timing delay to be estimated, and) is a random process representing
additive white Gaussian noise. ADC placement is an important system-level consideration that
requires some discussion at this point.

There are two locations where the ADC is commonly placed as illustrated in Figure 3.70.
Figure 3.70 (a) shows a configuration commonly referred to as “IF sampling.” The ADC sam-
ples the bandlimited signalt) everyTir seconds where the sampling rate satisfies the Nyquist
rate condition for the bandpass IF signal. These samples are mixed by quadrature discrete-time
sinusoids to produce samples of the baseband inphase and quadrature compgriBpisand
Q (nTie). I (nTie) andQ (nTi) are filtered by the discrete-time matched filters with impulse re-
sponseh (nTig) = p(—nTie). The desire is produc#r samples of the inphase and quadrature
matched filter outputs during each symbol such that one of the samples on both the inphase and
guadrature components are aligned with the maximum average eye opening.

The second commonly used option for ADC placement is shown in Figure 3.70 (b). The
bandpass IF signal¢) is mixed to baseband using continuous-time quadrature sinusoids and low-
pass filtered to produce the inphase and quadrature baseband comg¢neams Q) (¢). I(¢) and
Q(t) and sampled by a pair of ADCs (or a dual-channel ADC) to produce samples of the inphase
and quadrature baseband componérits/zg ) and( (nTgg), respectively (nTgg) andQ (n1gg)
are filtered by the discrete-time matched filters with impulse respbfs&gg) = p (—nTgg). AS
before, the desire is producézg samples of the inphase and quadrature matched filter outputs
during each symbol such that one of the samples on both the inphase and quadrature components
are aligned with the maximum average eye opening.

Which of the two approaches is preferred depends on many factors including the symbol rate
and IF frequency (which determine the required sample rate), cost, performance requirements, the
availability of good analog IF filters for channel selection and/or adjacent channel rejection, etc.
Some generalizations can be made. The two-channel baseband sampling option has the advantage
that it often requires a lower sample rate than that required for IF samgliag 7ir < Tgg). This

'The reason this is natlwaystrue is because bandpass sampling can be used for IF sampling. Care must be taken
to ensure that the aliased spectra of the IF signal do not overlap. When this condition can be satisfied, it is often the
case that the IF sampling rate is the same as the baseband sampling rate.
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option is attractive for applications where the symbol rate is one-half to one-quarter the maximum
available clock rate. The IF sampling option has the following advantages:

1. Only one ADC is required instead of two (or a single channel ADC instead of a two-channel
ADC).

2. The down-conversion from IF is true quadrature conversion. The two-channel baseband
sample requires this operation be done with continuous-time processing. A good analog 1/Q
mixer requires perfectly balanced inphase and quadrature mixers along with a phase shifter
to produce the quadrature sinusoids. These requirements can be challenging especially in
harsh operating environments.

3. In applications where the IF signal contains closely spaced frequency division multiplexed
signals, channel selection can often be realized with better adjacent channel rejection using
discrete-time processing. Placing the ADC at IF allows this to be done.

In general, the advantages of IF sampling outweigh the disadvantages of the higher clock rate
requirements. For this reason, If sampling is used whenever system constraints allow it.

It is not important which of the two approaches is used for the purposes of describing symbol
timing synchronization using discrete-time techniques. In either case, the matched filter inputs are
the samples of (1) andQ(¢). These samples are denot&a7’) andQ(n1"), respectively; whether
T =Ts/Ng orT = T,/Ngg is not important as long as it is knowh(n7") andQ(nT") are of the
same form ag(n7") in Section 3.4.3. Timing error detectors operate on H@iti") andQ(nT)
in the same way they operated ofnT') in Section 3.4.3. The outputs of the two timing error
detectors are summed to form the error signal. The error signal is filtered by the loop filter and
drives the interpolation control. The general structure for MQASK symbol timing synchronization
with IF sampling is illustrated in Figure 3.71.
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Figure 3.70: Two commonly used options for ADC placement: (a) IF sampling (b) dual-channel baseband sampling.
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3.5 Discrete-Time Techniques for Offset QPSK

Assuming IF sampling and perfect phase synchronization, let the discrete-time IF signal be

r(nT) = Z ay(m)p(nT —mTy — 1) cos(Qon) — Z as(m)p(nT —mTs — 7)sin(Qon) (3.168)
wherel/T is the sample rate;; (m) € {—1,+1} anday(m) € {—1,+1} are the information
symbolsp(nT') is a unit energy pulse shape with support on the intena) 7 /7" < n < L,T5/T,

Qo is the IF frequency in radians/sample, anid the unknown symbol timing offset. The matched
filter outputs may be expressed as

x(nT) = Z ai(m)R, (nT —mT, — 1) (3.169)

y(nT) = Z as(m)R, (T —mTs —T5/2 — ) (3.170)
whereR, (u) is the autocorrelation function of the pulse shape given by (3.82).
The relationship between the two eye patterns formed (oyi") andy(nT) is illustrated in
Figure 3.72. The maximum average eye opening@7") is delayed from the maximum average
eye opening o (n1') by T, /2. The inphase matched filter output7") should be sampled at

T
n=kz 47 (3.171)

while the quadrature matched filter outpt7") should be sampled at

TI:/{Z%—F;—;—FT (3.172)
fork=0,1,....
Following the same line of reasoning as before, the slope of eye patterns can be used as a
timing error signal. Since the eye patterns are deldy¢gd from each other, this method must be

modified. The maximum-likelihood data-aided timing error detector uses the error signal
e(k) = a1 (k)2 (kTs + 7(k)) + ax(k)y(kTs + Ts/2 + 7(k)) (3.173)

wherez (kT, + 7(k)) is the time derivative of (¢) evaluated at = kT, +7(k) andy(kT, +T,/2 +

7(k)) is the time derivative ofi(t) evaluated at = k7T, + T/2 + 7(k). The slopes of the matched
filter outputs at time instants offset by half a symbol period are combined to form the error signal.
The decision-directed maximum likelihood timing error detector uses the error signal

e(k) = sgn{z(kT + s + #(k))} & (kTs+7(k))+sgn{y (KT, + Ty /2 + #(k))} §(kT,+T, /2+7(k)).
(3.174)
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The time derivative may be computed using the techniques described in Section 3.4.3 and illus-

trated in Figure 3.44. The early-late techniques, described in Section 3.4.3 can be used to approx-
imate the derivatives with the appropriate modifications suggested by (3.173) and (3.174). The

zero-crossing detector can also be applied(tdl’) andy(nT') with appropriate delays.
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Figure 3.72: Eye diagrams of the inphase and quadrature matched filter outputs for offset QPSK showing the relationship between
the maximum average eye openings.
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3.6 Maximum Likelihood Estimation

Maximum likelihood estimation uses conditional probabilities as a measure of “how likely” a
parameter is given noisy observations. This technique was applied in Cir&pierderive the
optimum (in the maximum likelihood sense) structure for detectors. The problem was cast as
an estimation problem where the information symbols were the unknown quantity. Maximum
likelihood estimation can also be applied to synchronization. In this case, the carrier phase offset
or timing delay offset (or both) are the unknowns that need to be estimated. The technique is
demonstrated for QPSK. Extensions to other 2-dimensional signal sets andetherensional

signal sets are straightforward.

3.6.1 Preliminaries

Let the observation interval b& = LT, seconds and let the received IF signal be
r(t) = s(t) + w(t) (3.175)

where
Lo
s(t) = Z ar(k)p(t — kTs — 7) cos(wot + 0) — az(k)p(t — kTs — 7)sin(wet +60)  (3.176)
k=0

andw(t) is a zero-mean white Gaussian random process with power spectral dgnsityV/Hz.
For QPSK,a; (k) € {—1,+1} andas(k) € {—1,+1} for k = 0,1,...,Ly — 1. The IF signal is
sampled every{’ seconds to produce the sequence

r(nT) = s(nT) + w(nT); n=0,1,...,NLy— 1. (3.177)

The sampled signal component may be expressed as

s(nT) =
Lo—1
Z ar(k)p(nT — kTs — 1) cos(Qon + 0) — as(k)p(nT — kTs — 7) sin(Qon + 0) (3.178)
k=0
forn=0,1,..., NLy— 1. For convenience, the following vectors are defined
r(0) s(0) w(0)
T T T
r= T(_ ) s = 8(_ ) W = w(. ) . (3.179)

H(NLo - )T) S(N Lo - )T) w((NLo — 1)T)
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The vectorw is a sequence of independent and identically distributed Gaussian random variables
with zero mean and variance

N,
2 _ 0
0" = o (3.180)
The probability density function of is
1 1 NLo—1
. o 2
p(w) = e exp{ 52 nZ:O w (nT)} : (3.181)
For notational convenience, define the symbol veatas
T
a=la0) a(l) - a(lo—1)| (3.182)
where
alk) = || (3.183)
az (k)

To emphasize the fact that tkas a function ofa, ¢, andr, s will be expressed as(a, §, 7) and
samples of the signal componet.7") will be expressed agnT’; a, 0, 7).

Carrier phase synchronization and symbol timing synchronization can be thought of as esti-
mation problems. The goal is to estimate the paramétexsd = from the samples(nT) =
s(nT;a,0,7) + w(nT). The maximum likelihood estimate is the one that maximizes the loga-
rithm of the conditional probability(r|a, 0, 7). Using the probability density function &f given
by (3.181), the conditional probability(r|a, 0, 7) is

NLo—-1
1 1
p(r|a, 9, 7') = W exp {—r‘z Z |7"(7’LT) - S(TLT, a, 9,’7’)|2} . (3184)
n=0

The log-likelihood functiom\(a, 6, 7) is the logarithm of (3.184):

NLg—1

> Ir(nT) - s(nT;a,60,7) (3.185)

LoN
A(a,Q,T) = — 02 111(27'['0'2) — ﬁ

Later it will be convenient to express the cross product sum as

NLo—1 Lo—1 (k+L)N
Z r(nT)s(nT;a,0,7) = Z ay (k) Z r(nT)p(nT — kTs — 7) cos(Qon + 0)
n=0 k=0 n=(k—L)N
Lo—1 (k+L)N

- Z as (k) Z r(nT)p(nT — kT — 1) sin(Qon + 0). (3.186)
k=0 n=(k—L)N
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Two approaches will be taken to obtain the maximum likelihood estimator® dmd . The
first approach assumass knowr?. In this case the estimators fdandr are functions of the data
symbols.

The second approach does not assansknown. In this case, the dependencedsiremoved
by assuming the symbol sequencés random and using the total probability theorem to obtain
the average conditional probability density functigir|6, 7). The maximum likelihood estimate
maximizes the logarithm qf(r|6, 7).

The average conditional probability density functjgi|é, 7) is related to the conditional prob-
ability density functiorp(r|a, 8, 7) by the total probability theorem:

p(r|0, 1) = /p(r\a,H,T)p(a)da (3.187)

wherep(a) is the probability density function of the symbol sequeaceThe most commonly
used probability density function for the data sequence assumes the symbols are independent and
equally likely. Independence implies

Lo—1

p(a) = ][ »la(k) (3.188)
k=0
while equally likely implies

p(alk)) = §(an(k) — 1)3{as(k) — 1)+ 3(an(k) — 1)d{ar(k) +1)
+ iaml(k) +1)8(as(k) — 1) + }La(al(k) +1)8(as(k) +1). (3.189)

Thus,

p(rld, 1) = /p(r|a, 0,7)p(a)da (3.190)

= 1/ ptelath). 0. 7)ot dack) (3.191)
k=0

Lo—1 1

=TT {iptlath) = [1,1),6,7) + Sp(rla(k) = [1,—1],6,7)
4 4

k=0

+}1p(r|a(k:) =[-1,1],0,7) + ip(r|a(k:) = [-1, —1],9,7)} (3.192)

8For packetized burst mode communication systems with a known preamble or headey,ddi& symbols are
known and should be used for synchronization.
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By writing (3.184) as

- 1 N(k+L)
plrla,6,7) = H 27r02 2rot)vz PP o2 > |r(nT) = s(nT;a,6,7)° (3.193)

n=N(k—L)

and using the substitution

s(nTsa(k),0,7) = a1(k)p(nT — kT — 7) cos(Qon + 0) — as(k)p(nT — kTs — 7) sin(Qon + 0)

(3.194)
each termin (3.192) may be expressed as
Lo—1 1 1 N(k+L)
. - - 2 o - 2
p(rla(k) =[1,1],0,7) = H 2roD) e eXp 4 ~5 Z lr(nT)|” + |p(nT — kT — 7)|
= n=N(k—L)
N(k+L)
1
X exp {; Z r(nT)p(nT — kTs — 1) cos(Qon + 6)}
n=N(k—L)
1 N(k+L)
xexpq —— > r(nT)p(nT — kT, — 7)sin(Qn + 6) » (3.195)
g n=N(k—L)
Lo—1 1 1 (k+L

=N(k

(k+L)
X exp = Z r(nT)p(nT — kTs — 1) cos(Qn + 0)
n=N(k—L)

N(k+L)
xexpq — > r(T)p(nT — kT, — 7)sin(Qn + 6) »  (3.196)

n=N(k—L)

Lo—1 (k+L

1 1
= =N(k
| NG+D)
X exp 4 —— Z r(nT)p(nT — kTs — 1) cos(Qon + 0)
o
n=N(k—L)

| NG+

X exp {; Z r(nT)p(nT — kTs — ) sin(Qon + 9)} (3.197)

n=N(k—L)
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N(k+L)

1 1
p(rla(k) = [-1, H 27“72 o Nz © ~552 Z ir(nT))* + |p(nT — kT, — 7)|?
k=0 n=N(k—L)
N(k+L)
1
xexpq —— Y r(nD)p(nT — kT, — ) cos(Qn + 0)
n=N(k—L)
| NG
X exp o _NZ(,; , r(nT)p(nT — kTs — 7) sin(Qon + 0) (3.198)

Substituting (3.195) — (3.198) into (3.192) and collecting similar terms produces

N(k+L)

1 1 1 2 2
k=0 n=N(k—L)
N(k+L)
1
x | expq — Z r(nT)p(nT — kT, — 7) cos(Qon + 6)
T =N(-L)
N(k+L)
1
+exp{ —— Z r(nT)p(nT — kTs — 1) cos(Qon + 0)
n=N(k—L)
N(k+L)
1 .
X lexpq — Z r(nT)p(nT — kT — 7) sin(Qon + 60)
o
n=N(k—L)

| NHD)
+exp {; Z r(nT)p(nT — kTs — 1) sin(Qon + 0) }) (3.199)

n=N(k—L)

Applying the identity

‘ *26 — cosh(z) (3.200)
to (3.199) produces
Lo—1 | | VD)
- - - 2 o o 2
p(r’97 T) - H (27T0'2)N/2 exp 20_2 Z ‘T(nT>| + ’p(nT kTS T)’
- n=N(k—L)
N(k+L)
x cosh [ — Z r(nT)p(nT — kT, — 7) cos(Qon + 6)
o
n=N(k—L)

N(k+L)
X cosh s Z r(nT)p(nT — kTs — 1) sin(Qon + 60) | (3.201)

n=N(k—L)
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The average log-likelihood function is

Lo—1N(k+L)

Z Z r(nT)* + |p(nT — kT, — 7)|°

k=0 N(k—L)

Lo-1 | VD)
+ kZ:O In cosh = Z r(nT)p(nT — kTs — 1) cos(Qon + 0)

n=N(k—L)

n=N(k—L)

Lo—1 | NG+
+ Z In cosh s Z r(nT)p(nT — kTs — 1) sin(Qon + 0) | (3.202)

3.6.2 Carrier Phase Estimation
Known Symbol Sequence and Known Timing

For the case where the data symbols are known, the maximum likelihood estifisatee value
of § that maximizes the log-likelihood functiaf(a, ¢, 7) given by (3.185). This estimate is the
value off that forces the partial derivative df(a, 6, 7) with respect ta@ to be zero. The partial
derivative ofA(a, 0, 7) is

9 L g Nt
%A(a,Q,T) =~53%0 Z lr(nT) — s(nT;a,0,7)| (3.203)
L g Nt
= "5,250 [|7“(nT)|2 —2r(nT)s(nT;a,0,7)+ |s(nT;a,0, T)|2] . (3.204)
o
n=0

The partial derivatives of the first and third terms are zero since the energy in the received signal
and the energy in a QPSK waveform are the same for all phase rotations. All that remains is the
middle term. Substituting (3.178) fa(nT’; a, §, 7), interchanging the order of summations, and
computing the derivative yields

5 Lo—1 (k+L)N
%A( =—— Z ay(k Z r(nT)p(nT — kTs — 7) sin(Qon + 6)
n=(k—L)N
Lo—1 (k+L)N

— as (k) Z r(nT)p(nT — kT, — 7) cos(Qon + 6). (3.205)
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Recall that thé:-th matched filter outputs for the inphase and quadrature components using a phase
coherent IF downconversion (see Figure 3.8) are

(k+L)N
x(kTs) = Z r(nT)p(nT — kT, — 7) cos(Qn + 0) (3.206)
n=(k—L)N
(k+L)N
y(kTy) = — Z r(nT)p(nT — kT, — 7) sin(Qon + 6). (3.207)
n=(k—L)N

Note that inner sum in the first term of (3.205) is the quadrature matched filter output and the
inner sum in the second term of (3.205) is the inphase matched filter output. Using the notation
x(kTs; 0) andy(kTs; 0) to emphasize that the matched filter outputs are a function of the phase

estimate, (3.205) can be expressed in the more compact form

a Lo—1
Sph(@.0.7) = ; a1 (k)y(KTy; 0) — as(k)z(KT; 0). (3.208)

The maximum likelihood estimatesatisfies

Lo—1
0=">" a(k)y(kT;0) — az(k)x(kT.; 0). (3.209)

k=0

This equation may be solved iteratively. A value fias chosen and used to compute the right-hand
side of (3.209). The estimate féris increased (if the computation is negative) or decreased (if
the computation is positive) until satisfies (3.209). A block diagram of a system which finds the
maximum likelihood estimate iteratively is illustrated in Figure 3.73. Note that itis a PLL structure
that uses the right-hand side of (3.209) as the error signal. The summation block plays the role of
the loop filter (recall that the loop filter contains an integrator). Compare this block diagram with
the QPSK carrier phase PLL shown in Figure 3.17. If the symbol decisions in Figure 3.17 are
replaced by the true symbols in the error detector, then the two systems are equivalent.

Returning to (3.205) and using the identities

cos(A+ B) = cos Acos A — sin Asin B
sin(A + B) = sin A cos B + cos Asin B,
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(3.205) may be expressed as

9 Lo—1 (k+L)N
%A(a, 0,7)=— Z ai (k) Z r(nT)p(nT — kTs — ) sin (Qn) sin 0
k=0 n=(k—L)N
Lo—1 (k+L)N
- Z ap (k) Z r(nT)p(nT — kTs — ) cos (Qon) sin @
k=0 n=(k—L)N
Lo-1 (k+L)N
— Z as (k) Z r(nT)p(nT — kTs — 7) cos (Qon) cos 0
k=0 n=(k—L)N
Lo—1 (k+L)N
+ as (k) Z r(nT)p(nT — kTs — 7) sin (Qn) sinfd. (3.210)
k=0 n=(k—L)N

Recall that thek-th matched filter outputs for the inphase and quadrature components using non-
coherent IF conversion (see Figure 3.7) are

(k+L)N

x(kTy) = Z r(nT)p(nT — kTs — 1) cos(Qon) (3.211)
n=(k—L)N
(k+L)N
y(kTs) = — Z r(nT)p(nT — kTs — 7) sin(Qon). (3.212)
n=(k—L)N

Using these definitions, (3.210) may be expressed as

0
%A(a, 9, 7—) ==

z_: ay (k) [y(kTs) cos 0 — x(kT) sin 0] — - as (k) [z(kTy) cos O + y(kT)sinf] . (3.213)

k=0 k=0

~

The terms in the square brackets are the equations for the rotation of théxgéint), y(k7T5)) by
an angle-6. Following the notation introduced in Section 3.3,(lefkT; 0), v/ (kTs; 6)) represent
the rotated pointdis included to emphasize the dependencé)mso that

"(KTs; i T,
x' (kTs; 0) _ co§9 sinf | |x(kTs) | (3.214)
y'(kTs; 0) —sinf® cosf| |y(kTs)
Thus (3.213) may be expressed as
5 Lo—1
SM@,0,7) = 37 ar(b)y (KT 60) — ax (k) (KT3;6) (3.215)

k=0
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and an alternate expression for the maximum likelihood phase estimate is
0=">" a(k)y (kTs; ) — as(k)a'(kT.; ). (3.216)

Note that two forms for the maximum likelihood estimator (3.209) and (3.216) are identical. The
difference is where carrier phase compensation occurs. A block diagram illustrating the iterative
solution to (3.216) is shown in Figure 3.74. This is a PLL structure where the right-hand side of
(3.216) is the error signal. The solution shown in Figure 3.74 is almost identical to that shown in
Figure 3.13.

Setting (3.213) to zero and solving férresults in a closed form solution for the maximum
likelihood phase estimate. Grouping the terms which have the cosine in common and grouping the
terms that have the sine in common and solving produces

Lo—1

ay (k)y(kTs) — as(k)x(kTs)

i\

sin 0

- (3.217)
cosf Lol
a1 (k)z(kT;) + az(k)y(KT)
k=0
from which the maximum likelihood phase estimate is
Lo—1 )
> ar(k)y(kTy) — as(k)z(kT)
0 = tan ' { 2= (3.218)

S}
|
—

ai (k)x(kTs) + aQ(k)y(kTs)

\ k=0 J

This solution is useful for packetized communications links where the carrier phasetoffget
remain constant over the duration of the data packet. Such detectors typically use block processing
in place of iterative processing.
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4'@)_' p(=nT) N X(kTs;e)’é

cos(Q,n +8(n))

r(nT) — DDS |[¢&— > <—<—E

-sin (Qon + H(n))

oG] e ()’@?

Figure 3.73: Block diagram of the maximum-likelihood QPSK phase estimator based on the form
(3.209).
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Unknown Symbol Sequence and Known Timing

When the timing is known, but the symbol sequence is not known, it is possible to use the symbol
decisionsa, (k) and ax(k) in place of the true symbols. Using the results from the preceding
section, two forms for the decision-directed maximum-likelihood phase estimator result. The first
results from replacing; (k) anday (k) in (3.209) with the decisiong, (k) andas(k):
Lo—1
0= ay(k)y(kT;0) — ao(k)z(kT,; 0). (3.219)
k=0

The second results from replacing k) andas (k) in (3.216) with the decisiong, (k) andas(k):
0= ay(k)y (kT;0) — as(k)a’(KT.;0). (3.220)

Block diagrams for these two forms of the decision-directed maximum-likelihood estimator are
identical to those for the two forms of the data-aided maximum likelihood estimator illustrated in
Figures 3.73 and 3.74 except the symbol decisions are used in place of the true data symbols. Note
that block diagrams for these two forms of the decision-directed maximum-likelihood estimator are
essentially similar to those for the decision-directed QPSK carrier phase PLLs shown in Figures
3.13 (with the switch in the upper position) and 3.17, respectively.

Unknown Symbol Sequence and Unknown Timing

When both the symbol timing and the symbol sequence are unknown, the maximum likelihood
phase estimate is the one that maximizes the average log-likelihood furigtion) given by
(3.202). The partial derivative o¥(6, ) is

a Lo—1 1 N(k+L)
%A 0,71) Z tanh = Z r(nT)p(nT — kTs — 1) cos(Qyn + 0)
n=N(k—L)
| NG+D)
<1 Z r(nT)p(nT — kTs — 7) sin(Qon + 0)
n=N(k—L)
Lo—1 | NG+D)
+ Z tanh [ — Z r(nT)p(nT — kTs — 7) sin(Qon + 0)
k=0 T n=N(k-1L)

| NG
X | = Z r(nT)p(nT — kTs — 1) cos(Qon + 0) | (3.221)

2
n=N(k—L)
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Using the relationships (3.206) and (3.207) for the inphase and quadrature matched filter outputs,
respectively, (3.221) may be expressed in the more compact form

0 —

—A

50 0,7)=

Lo—1

Z tanh (ix(kTs,Q)) ! y(kTs; 0) — tanh ( 12y(k:T5,9)) i:U(k:TS,Q) (3.222)

The maximum-likelihood phase estimate is the valué tifat forces (3.222) to zero:
A 1 . 1 N\ 1 .
0= Z tanh (—:v kT,; 9)) —y(kTy; ) — tanh (—Qy(kTs;9)> —a(kTy;0).  (3.223)
o o g

A block diagram outlining an iterative approach to findifigpased on (3.223) is shown in
Figure 3.75. This is a PLL structure where the right-hand side of (3.223) is the error signal.
This complexity of this structure is often reduced by replacing the hyperbolic tangent with an
approximation. The plot ofanh(X) vs. X shown in Figure 3.76 shows that the hyperbolic
tangent is well approximated by

) )x 1X] <0.3
anh(X) ~ (3.224)
sgn{X} |X]|>3

Thus, the form of the approximation is determined by the magnitude of the argument. Equa-
tion (3.223) shows that the magnitude of the argument is proportional to the reciprocal of the noise
variances?. The magnitude of? relative to the magnitudes of, (k) anda, (k) is determined

by the signal to noise ratio. For small signal to noise ratios, the hyperbolic tangent block can be
eliminated (i.e., replaced by a wire). For large signal to noise ratios, the hyperbolic tangent block
can be replaced by a sgX'} block. (Compare the alteration of the block diagram in Figure 3.75
using this approximation with the Costas Loop shown in Figure 3.28.)
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Figure 3.75: Block diagram of the maximum-likelihood QPSK phase estimator based on the form (3.223).
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s S

Figure 3.76: Plot ofanh(X) vs. X illustrating the accuracy of the approximation (3.224).
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3.6.3 Symbol Timing Estimation
Known Symbol Sequence and Known Carrier Phase

For the case of known symbols, the maximum likelihood timing estimate is the vatuiaaf max-
imizes the log-likelihood functiork (a, 8, 7) given by (3.185). The partial derivative &f(a, 0, )

8 1 NLp—1

N - . 2
Aa,0,7) = — ; Ir(nT) — s(nT;a,0,7)] (3.225)
NLp—1

The partial derivative of the first term is zero since the energy in the received signal does not depend
on the timing offset. The partial derivative of the third term is approximately zero as there is a weak
dependence on. For QPSK, this approximation is quite good and shall be carried through with
the remainder of this development. As was the case with carrier phase estimation, all that remains
is the middle term. Substituting (3.178) fe1; a, d, 7), interchanging the order of summations
produces

9 | ol (k+L)N
EA(a, 0,7)= ol Z ay (k) Z r(nT)p(nT — kTs — 1) cos(Qyn + 0)
k=0 n=(k—L)N
1 g ol (k+L)N
— - > mlk) > r(nT)p(nT — kT, — ) sin(Qon + ). (3.227)
k=0 n=(k—L)N

Recognizing the inner summations as matched filter outputs and using the identities (3.206) and
(3.207), (3.227) may be expressed as

0 1 0=
5@, 0,7) = — - kz; ar(K)a(kT, + 1) — ag(k)y (KT, + 7) (3.228)
1 Lo—1
= 2 ak)i(kT +7) = ax(k)y(kT; + 7) (3.229)
k=0

wherei (kT + 7) andy (kT + 7) are samples of the time derivatives of the inphase and quadrature
matched filter outputs, respectively. These time derivatives may be computed from samples of
the matched filter inputs using a filter whose impulse response consists of samples of the time
derivative of the pulse shape as illustrated in Figure 3.44 in Section 3.4.3.
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The maximum likelihood timing estimateis the value ofr that forces (3.229) to zero:

Lo—1
0=">" a(k)&(kT, +7) — as(k)y(kT, + 7). (3.230)
k=0
Unlike the maximum likelihood carrier phase estimate, there is no closed form solutién for
block diagram illustrating an iterative method for findifigs shown in Figure 3.77. The solution
is a PLL structure where the right-hand side of (3.230) is the error signal.

Unknown Symbol Sequence and Known Carrier Phase

When the carrier phages known and the symbol sequence is unknown, the symbol dedisiéh
andas (k) may be used in place of the true data symbols. Applying this concept to the data-aided
maximum likelihood estimate (3.230) results in the condition for the decision-directed maximum
likelihood timing estimate

Lo—1

0= ay(k)&(kT, +7) — as(k)y(kT, + 7). (3.231)

k=0
The block diagram illustrating an iterative method for findihgs identical to the block diagram
shown in Figure 3.77 where the symbol decisions replace the true data symbols.

Unknown Symbol Sequence and Unknown Carrier Phase

For the case of unknown data symbols, the maximum likelihood timing estimate is the value of
that maximizes the average log-likelihood functid(®, 7) given by (3.202). The partial derivative
of A(6,7)is

5 Lo—1 | NGD)
a—K(G, T) = Z tanh [ — Z r(nT)p(nT — kTs — ) cos(Qon + 0)
T k=0 7 n=N(k-L)
o [1 N+
X5 |52 Z r(nT)p(nT — kTs — 1) cos(Qon + 0)
T 17 w=NG-1)
Lo—1 N(k+L)
+ Z tanh [ — Z r(nT)p(nT — kTs — 7) sin(Qon + 0)
k=0 T n=N(k-1L)

9 1 N(k+L)
x— = > r(D)p(nT — kT, —7)sin(Qn +6) | (3.232)

or | o2
n=N(k—L)
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Using the relationships (3.206) and (3.207), (3.232) can be expressed in the more compact form

a%x( LOZI tanh (—x(k;T + T)> a% [%x(m + T)]

k=0

= 1 a1
+ Z tanh (;y(k‘Ts + T)) B {;y(k‘Ts + T):| . (3.233)

Denoting the time derivatives of the inphase and quadrature matched filter outp(tsZy+- 7)
andy (kT + 1), respectively, the maximum-likelihood timing estimateatisfies

Lo—1

1 .
0= tanh (02 (kT, + T)) —5# (KT, +7)

k=0

1, .
+ Z tanh ( —y(kT, —f-T)) V(KT + 7). (3.234)

A block diagram outlining an iterative method for findifigs shown in Figure 3.78. The basic
structure is that of a PLL that uses the right-hand side of (3.234) as the error signal. Low signal-
to-noise ratio and large signal-to-noise ratio approximations for the hyperbolic tangent based on
(3.224) may be used to reduce the complexity of the system. For example, the high signal-to-noise
ratio approximations replaces the hyperbolic tangent block with a sign block. Compare this block
diagram with the QPSK timing PLL illustrated in Figure 3.39.
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al(k)
— % > p(-nT) AN X(kTS”)’é
n= kL +7
T
cos(Q,n+6)
update +
r(nT) — I «— >
: ) (DDS) +
-sin(Qyn+6
(kT +7)
a@éﬂ o) |\ 2
n=k-=2+r1
az(k)

Figure 3.77: Block diagram of the maximume-likelihood QPSK timing estimator based on (3.230).

4@» p(-nT)

codQ,n+6)

-sin(Q,n+6)

aé—» p(-nT)

Figure 3.78: Block diagram of the maximume-likelihood QPSK timing estimator based on (3.234).
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3.7 Notes and References

In the early years of digital communications, synchronization subsystems were characterized by
ad-hoc techniques that later were shown to be approximations to maximum likelihood estimation.
There are several aspects of synchronization that were not covered in this chapter. These include
frequency synchronization, non-iterative techniques for carrier phase estimation (this is particu-
larly useful in packetized burst communications), frame synchronization, and carrier phase and
symbol timing synchronization for CPM. Many text books cover synchronization from a more
theoretical point of view [4, 5, 6]. | have been strongly influenced by the wonderful text by Um-
berto Mengala and Aldo D’Andrea [4] which emphasizes discrete-time techniques. For symbol
timing synchronization, the seminal papers by Gardner and his colleagues at the European Space
Agency [1, 3]. | have tried to provide a strong link between discrete-time phase lock loops and
the phase/timing error signals developed in the text as this important topic has not received a lot of
attention in the published work.
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3.8 Exercises

3.1 Derive the expression given by (3.37) for the average S-curve for the linear QPSK data-aided
phase error detector based on the error signal (3.36).

3.2 Derive the expression given by (3.40) for the average S-curve for the linear QPSK decision-
directed phase error detector based on the error signal (3.39).

3.3 Show that the sine of the phase error for the linear QPSK phase error detector is given by
(3.42).

3.4 Derive the expression given by (3.44) for the average S-curve for the simplified QPSK data-
aided phase error detector based on the error signal (3.43).

3.5 Derive the expression given by (3.46) for the average S-curve for the simplified QPSK
decision-directed phase error detector based on the error signal (3.45).

3.6 This problem explores the performance of carrier phase synchronization for QPSK.

(&) Compare the S-curves for the data-aided phase error detector (3.37) and the decision-
directed phase error detector (3.40) for the linear phase error detector. How are they
the same? How are the different?

(b) Compare the S-curves for the data-aided phase error detector (3.44) and the decision-
directed phase error detector (3.46) for the simplified phase error detector. How are
they the same? How are they different?

(c) Compare the S-curves for the linear data-aided phase error detector (3.37) and the sim-
plified data-aided phase error detector (3.44). How are they the same? How are they
different?

(d) Compare the S-curve for the linear decision-directed phase error detector (3.40) and
the simplified decision-directed phase error detector (3.44). How are they the same?
How are they different?

3.7 Derive the expression given by (3.54) for the average S-curve for the linear BPSK data-aided
phase error detector based on the error signal (3.51).

3.8 Derive the expression given by (3.54) for the average S-curve for the linear BPSK decision-
directed phase error detector based on the error signal (3.52).
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3.9 Derive the expression given by (3.57) for the average S-curve for the simplified BPSK data-
aided phase error detector based on the error signal (3.55).

3.10 Derive the expression given by (3.58) for the average S-curve for the simplified BPSK
decision-directed phase error detector based on the error signal (3.56).

3.11 This problem explores the performance of carrier phase synchronization for BPSK.

(a) Compare the S-curves for the data-aided phase error detector (3.53) and the decision-
directed phase error detector (3.54) for the linear phase error detector. How are they
the same? How are the different?

(b) Compare the S-curves for the data-aided phase error detector (3.57) and the decision-
directed phase error detector (3.58) for the simplified phase error detector. How are
they the same? How are they different?

(c) Compare the S-curves for the linear data-aided phase error detector (3.53) and the sim-
plified data-aided phase error detector (3.57). How are they the same? How are they
different?

(d) Compare the S-curve for the linear decision-directed phase error detector (3.54) and
the simplified decision-directed phase error detector (3.57). How are they the same?
How are they different?

3.12 This problem explores S-curves for the Y constellation.
(a) Derive the average S-curve for the Y constellation for a phase error detector based on

an error signal of the form (3.36).

(b) Derive the average S-curve for the Y constellation for a phase error detector based on
an error signal of the form (3.39).

(c) Derive the average S-curve for the Y constellation for a phase error detector based on
an error signal of the form (3.43).

(d) Derive the average S-curve for the Y constellation for a phase error detector based on
an error signal of the form (3.45).

3.13 This problem explores S-curves for the 8-PSK constellation.

(a) Derive the average S-curve for the 8-PSK constellation for a phase error detector based
on an error signal of the form (3.36).



306 3.8 Exercises

(b) Derive the average S-curve for the 8-PSK constellation for a phase error detector based
on an error signal of the form (3.39).

(c) Derive the average S-curve for the 8-PSK constellation for a phase error detector based
on an error signal of the form (3.43).

(d) Derive the average S-curve for the 8-PSK constellation for a phase error detector based
on an error signal of the form (3.45).
3.14 This problem explores S-curves for the 16-QASK constellation.
(a) Derive the average S-curve for the 16-QASK constellation for a phase error detector
based on an error signal of the form (3.36).

(b) Derive the average S-curve for the 16-QASK constellation for a phase error detector
based on an error signal of the form (3.39).

(c) Derive the average S-curve for the 16-QASK constellation for a phase error detector
based on an error signal of the form (3.43).

(d) Derive the average S-curve for the 16-QASK constellation for a phase error detector
based on an error signal of the form (3.45).

3.15 Derive the S-curve for the data-aided MLTED given by (3.107) based on the error signal
(3.105).

3.16 Derive the S-curve for the data-aided ELTED given by (3.112) based on the error signal
(3.110).

3.17 Derive the S-curve for the data-aided ZCTED given by (3.118) based on the error signal
(3.113).

3.18 Derive the S-curve for the data-aided MMTED given by (3.121) based on the error signal
(3.119).

3.19 Derive the linear interpolator filter (3.132) from (3.130) and (3.131).
3.20 Derive the cubic interpolator filter (3.138) from (3.136) and (3.137).
3.21 This problem steps through the derivation of the piece-wise parabolic interpolator (3.143).

(a) Using the second order polynomial approximation

CL’(t) = 02t2 + Clt + ¢
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(b)

(€)

(d)

express: ((m + ) T') as a polynomial inu. The answer should be of the form
2((m + p)T) = bopi® + byt + by

where thé’s are functions of the’s, m, andT'.

Using the boundary conditiongm1") andxz((m + 1)T"), solve forb, andb, and show
thatz((m + u)T) may be expressed as

a((m+pw)T) = eoT? (p* — p) + p((m + 1)T) + (1 — p)a(mT)

This result shows that((m + u)T) is a linear combination of ((m+1)7") andz(mT)

plus another term. I, is also a linear combination af((m + 1)7") and z(mT),
thenz((m + u)T') can be regarded as the output of a filter with inputs.7’) and
z((m + 1)T). Part (c) shows that, must be a function of more than(m7") and
z((m + 1)T") in order to produce a piece-wise parabolic interpolator. In part (d), a
piece-wise parabolic interpolator of the form given by (3.143) is derived.

Suppose:; is a linear combinatation of((m + 1)7") andz(mT'). That is
co =A12((m+1)T) + Agx(mT).

Substitute the above relationship into the expression in part (b) and exgesst
w)T') as a linear combination of(m1") andz((m + 1)T):

z((m+ p)T) = B_yz((m+ 1)T) + Box(mT).

There are two unknowns in the resulting equatioh:; and A;. The linear phase

and unity gain constraints provide two conditions that can be used to solve for the
unknowns. The linear phase constraint means the coefficients are symmetric about
the center of the filter. Since the center of the filter corresponds te 1/2, this
constraint imposes the relationshir; = By, whenu = 1/2. The unity gain constraint
meansB_; + By = 1. Show that the application of these two constraints requires
A_1 = Ay = 0 so that a linear interpolator is the only interpolator that satisfies all the
constraints for this case.

Since a even number of filter taps are required, suppoiea linear combination of
z((m+2)T), z((m+ 1)T), z(mT) andx((m — 1)T). That is

o =Asx(m+2)T)+ A jxz((m+ 1)T) + Agx(mT) + Ayx((m — 1)T).
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Substitute the above relationship into the expression in part (b) and exgifesst
w)T') as alinear combination af((m + 2)T), x((m + 1)T"), z(mT) andz((m — 1)T")
of the form

z((m+u)T) = B_ox((m+2)T)+ B_1z((m+1)T) + Box(mT) + Byz((m —1)T).

There are four unknowns in the resulting expressign;,, A_;, Ay, and A;. The

linear phase and unity gain constraints provide three equations the four unknowns must
satisfy. The linear phase constraint imposes the condifion= By andB_, = B;

wheny = 1/2. The unity gain constraint imposes the conditiBn, + B_; + By +

B; = 1. One more equation is needed to solve for the four unknowns. This remaining
condition is provided by setting, = o wherea is a free parameter. Show that using
these conditions to solve fot_,, A_;, Ay, andA;, z((m + p)T) may be expressed as

z((m+ )T = [ap® — ap] z((m +2)T) + [~ap® + (@ + D] z((m + 1)T)
+ [—ap® + (0 = Dp+ 1) 2(mT) + [ap® — ap] z((m — 1)T).

3.22 Derive the Farrow filter structure for the linear interpolator.

(a) Produce atable similar to Table 3.1.
(b) Sketch a block diagram of the resulting Farrow filter similar to those shown in Fig-
ure 3.56.
3.23 Do the following for the piece-wise parabolic interpolator:
(a) Derive the Farrow coefficients for the piece-wise parabolic interpolator listed in Ta-
ble 3.1.

(b) Sketch a block diagram of the Farrow filter similar to that shown in Figure 3.56 for the
general piece-wise parabolic interpolator.

(c) Show that wheny = 1/2, the answer in part (b) reduces to the structure shown in
Figure 3.56.

3.24 Derive the Farrow coefficients for the cubic interpolator listed in Table 3.2.

3.25 Derive the maximum likelihood carrier phase estimator for BPSK assuming a known bit
sequence and known timing.

3.26 Derive the maximum likelihood carrier phase estimator for BPSK assuming an unknown bit
sequence and known timing.
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3.27 Derive the maximum likelihood carrier phase estimator for BPSK assuming and unknown
bit sequence and unknown timing.

3.28 Show that the data-aided carrier phase error signal (3.78) follows from the maximum like-
lihood carrier phase estimator for offset QPSK assuming a known symbol sequence and
known symbol timing.

3.29 Derive the maximum likelihood bit timing estimator for BPSK assuming a known bit se-
guence and known carrier phase.

3.30 Derive the maximum likelihood bit timing estimator for BPSK assuming an unknown bit
sequence and known carrier phase.

3.31 Derive the maximum likelihood bit timing estimator for BPSK assuming an unknown bit
sequence and unknown carrier phase.

3.32 Derive the maximum likelihood symbol timing estimator for offset QPSK assuming a known
symbol sequence and known carrier phase.

3.33 Derive the maximum likelihood symbol timing estimator for offset QPSK assuming an un-
known symbol sequence and known carrier phase.





