

 SW Version

GC Family (Compact)

10.00.xx7

GC864-QUAD

GC864-QUAD V2

GC864-DUAL V2

GE/GL Family (Embedded)

GE864-QUAD

GE864-QUAD V2

GE864-QUAD Automotive V2

GE864-QUAD ATEX

GE864-DUAL V2

GE864-GPS

GE865-QUAD

GL865-DUAL

GL865-QUAD

GL868-DUAL

GE910-QUAD 13.00.xx3

GL865-DUAL V3
16.00.xx2

GL868-DUAL V3

GT Family (Terminal)

10.00.xx7
GT863-PY

GT864-QUAD

GT864-PY

GT864-3G
08.01.xx8

GT863-3GG

HE910 Family

12.00.xx4

HE910
1

HE910-GA

HE910-D

HE910-EUR / HE910-EUD

HE910-EUG / HE910-NAG

HE910-NAR / HE910-NAD

UC864 Family (Compact)

08.01.xx8

UC864-G

UC864-E

UC864-E-DUAL

UC864-E-AUTO

Note: the present document covers the SW versions shown in the Applicability Table and may

mention features which are not present or behave differently in previous SW versions.

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Notice

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes

no liability resulting from any inaccuracies or omissions in this document, or from use of the

information obtained herein. The information in this document has been carefully checked and is

believed to be entirely reliable. However, no responsibility is assumed for inaccuracies or

omissions. Telit reserves the right to make changes to any products described herein and

reserves the right to revise this document and to make changes from time to time in content

hereof with no obligation to notify any person of revisions or changes. Telit does not assume

any liability arising out of the application or use of any product, software, or circuit described

herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products

(machines and programs), programming, or services that are not announced in your country.

Such references or information must not be construed to mean that Telit intends to announce

such Telit products, programming, or services in your country.

Copyrights

This instruction manual and the Telit products described in this instruction manual may be,

include or describe copyrighted Telit material, such as computer programs stored in

semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit

and its licensors certain exclusive rights for copyrighted material, including the exclusive right

to copy, reproduce in any form, distribute and make derivative works of the copyrighted

material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in

the Telit products described in this instruction manual may not be copied, reproduced,

distributed, merged or modified in any manner without the express written permission of Telit.

Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by

implication, estoppel, or otherwise, any license under the copyrights, patents or patent

applications of Telit, as arises by operation of law in the sale of a product.

Computer Software Copyrights

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual

may include copyrighted Telit and other 3rd Party supplied computer programs stored in

semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit

and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs,

including the exclusive right to copy or reproduce in any form the copyrighted computer

program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs

contained in the Telit products described in this instruction manual may not be copied (reverse

engineered) or reproduced in any manner without the express written permission of Telit or the

3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant

either directly or by implication, estoppel, or otherwise, any license under the copyrights,

patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal

non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.

Usage and Disclosure Restrictions

License Agreements

The software described in this document is the property of Telit and its licensors. It is furnished

by express license agreement only and may be used only in accordance with the terms of such

an agreement.

Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is

prohibited by law. No part of the software or documentation may be reproduced, transmitted,

transcribed, stored in a retrieval system, or translated into any language or computer language,

in any form or by any means, without prior written permission of Telit

High Risk Materials

Components, units, or third-party products used in the product described herein are NOT fault-

tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment

in the following hazardous environments requiring fail-safe controls: the operation of Nuclear

Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life

Support, or Weapons Systems (High Risk Activities"). Telit and its supplier(s) specifically

disclaim any expressed or implied warranty of fitness for such High Risk Activities.

Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service

names are the property of their respective owners.

Copyright © Telit Communications S.p.A.

Contents

1. INTRODUCTION ... 7

1.1. SCOPE ... 7
1.2. AUDIENCE ... 7
1.3. CONTACT INFORMATION, SUPPORT ... 7
1.4. DOCUMENT ORGANIZATION ... 7
1.5. TEXT CONVENTIONS ... 8
1.6. RELATED DOCUMENTS ... 8

2. IP EASY OPERATIONS .. 10

2.1. PRELIMINARY CONTEXT PARAMETERS SETTING .. 10
2.1.1. Context parameter setting ... 10
2.1.2. Minimum Quality of the Service Requested ... 12
2.1.3. Requested Quality of the Service ... 14
2.1.4. 3G Minimum Quality of the Service Requested ... 15
2.1.5. 3G Requested Quality of the Service ... 17

2.2. CONTEXT ACTIVATION AND DATA STATE ENTERING ... 20
2.3. DATA STATE EXIT ... 22

3. IP EASY EXTENSION .. 23

3.1. OVERVIEW .. 23
3.2. COMMANDS OVERVIEW .. 24

3.2.1. IP Easy Outgoing Connection ... 25
3.2.2. IP Easy Incoming Connection ... 34
3.2.3. Known limitations .. 40

3.3. FTP OPERATIONS ... 40
3.3.1. Opening and Closing an FTP Connection ... 41
3.3.2. Setting the FTP Transfer Type ... 41
3.3.3. FTP File transfer to the server .. 42
3.3.4. FTP File download from the server... 44
3.3.5. FTP File download restart .. 48
3.3.6. FTP File upload restart ... 48

3.4. AT COMMANDS COMPATIBILITY TABLE ... 49
3.5. EXAMPLES .. 49

3.5.1. IP Easy- HTTP client application.. 49
3.5.2. IP Easy - EMAIL sending application ... 51
3.5.3. IP Easy -EMAIL receiving application .. 57
3.5.4. Remote connection between two modules .. 58

4. EASY GSM .. 60

4.1. OVERVIEW .. 60
4.2. COMMANDS OVERVIEW ... 60

4.2.1. Configuring GSM access ... 61
4.2.2. Configuring the embedded TCP/IP stack .. 61
4.2.3. Request GSM context to be activated .. 61
4.2.4. IP address information .. 62
4.2.5. Limitations and connections with other AT commands ... 62

4.3. EXAMPLES .. 63
4.3.1. Easy GSM - HTTP client application .. 63
4.3.2. FTP file transfer .. 65

4.3.3. Remote connection between two modules .. 66

5. COMMAND MODE CONNECTIONS .. 68

5.1. OVERVIEW .. 68
5.2. COMMANDS OVERVIEW .. 68

5.2.1. Opening a socket connection in command mode ... 69
5.2.2. Configuring extended socket parameters .. 70
5.2.3. Send data in command mode connections ... 72
5.2.4. Receive data in command mode connections .. 73
5.2.5. Socket Information command .. 73

5.3. EXAMPLES .. 74
5.3.1. Open a command mode connection with Classic SRING .. 74
5.3.2. Open a command mode connection with Data amount SRING ... 74
5.3.3. Open a command mode connection with Data view SRING .. 75
5.3.4. Open a command mode UDP connection with Data view UDP SRING ... 76
5.3.5. Open a command mode connection with AT#SA ... 77
5.3.6. Passing from command mode to online mode interface .. 78
5.3.7. ICMP / PING handling .. 78

6. NOTES CONCERNING IPV6 IMPLEMENTATION .. 80

7. LIST OF ACRONYMS .. 83

8. DOCUMENT HISTORY ... 84

1. Introduction

The information presented in this document is believed to be accurate and reliable. However, no

responsibility is assumed by Telit Communications S.p.A. for its use, nor any infringement of

patents or other rights of third parties which may result from its use. No license is granted by

implication or otherwise under any patent rights of Telit Communications S.p.A. other than for

circuitry embodied in Telit products. This document is subject to change without notice.

To get more details on which commands and relative parameters are available on different SW

versions, please consult the AT Commands Reference Guides [1], [2], and [3].

1.1. Scope

Scope of this document is to provide a broad description of the new IP Easy feature

functionalities and details.

1.2. Audience

The reader is expected to have gained sound experience in GPRS/UMTS/HSPA technologies as

well as in Telit’s AT Commands interface.

1.3. Contact Information, Support

For general contact, technical support, to report documentation errors and to order manuals,

contact Telit’s Technical Support Center (TTSC) at:

TS-EMEA@telit.com

TS-NORTHAMERICA@telit.com

TS-LATINAMERICA@telit.com

TS-APAC@telit.com

Alternatively, use:

3TUhttp://www.telit.com/en/products/technical-support-center/contact.phpU3T

For detailed information about where you can buy the Telit modules or for recommendations on

accessories and components visit:

3TUhttp://www.telit.com

To register for product news and announcements or for product questions contact Telit's

Technical Support Center (TTSC).

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and

suggestions for improvements.

Telit appreciates feedback from the users of our information.

1.4. Document Organization

This document contains the following chapters:

mailto:TS-EMEA@telit.com
mailto:TS-NORTHAMERICA@telit.com
mailto:TS-LATINAMERICA@telit.com
mailto:TS-APAC@telit.com
http://www.telit.com/en/products/technical-support-center/contact.phpU3T
http://www.telit.com/

U“Chapter 1: “Introduction”U provides a scope for this document, target audience, contact and

support information, and text conventions.

U“Chapter 2: “IP Easy Operation”U is about context setting, activation and data states.

U“Chapter 3: “IP Easy Extention”U provides a broad description of The IP Easy feature, which

allows the Telit module users to contact a device on internet and establish with it a raw data flow

over the Internet networks.

“Chapter 4: “Easy GSM” This new feature allows the Telit module users to connect to an

Internet Service Provider through a GSM CSD call and to use the embedded TCP/IP stack, such

as in IP Easy, to contact a device in Internet and establish with it a raw data flow over the

Internet networks.

U“Chapter 5: “Command mode connections”U is about the ability for Telit’s modules to establish a

socket connection in command mode.

"Chapter 6: "Notes concerning IPV6 Implementation": notes about the IPV6 implementation

provided by the GE910 Modules Family

“Chapter 7: “List of Acronyms”

"Chapter 8: "Document History"

1.5. Text Conventions

UDanger – This information MUST be followed or catastrophic equipment failure or bodily

injury may occur.

Caution or Warning – Alerts the user to important points about integrating the module, if

these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating

the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

1.6. Related Documents

The following is a list of applicable documents downloadable from the Download Zone section

of Telit’s website http://www.telit.com

[1] AT Command Reference Guide, 80000ST10025a

[2] UC864 AT Command Reference Guide, 80304ST10041a

http://www.telit.com/

[3] HE910 AT Command Reference Guide, 80378ST10091A

[4] Telit GSM/GPRS SW User Guide, 1vv0300784

2. IP Easy Operations

2.1. Preliminary context parameters setting

2.1.1. Context parameter setting

The context parameters consist in a set of information identifying the internet entry point

interface provided by the ISP. Using these parameters, the network identifies the ISP to be used

to gain access to the internet, and defines the value of the IP address for the GPRS device, once

connected.

 Send command

AT+CGDCONT[=[<cid>[,<PDP_type>[,<APN>[,<PDP_addr>[,<d_comp>[,<h_co

mp>[,<pd1>[,…[,pdN]]]]]]]]]]<cr>

where:

<cid> - (PDP Context Identifier) numeric parameter which specifies a particular PDP context

definition.

Values:
 1..max - where the value of max is returned by the Test command

<PDP_type> - (Packet Data Protocol type) a string parameter which specifies the type of packet

data protocol

Values:
 "IP" Internet Protocol IPV4

 "IPV6" Internet Protocol IPV6, refer to chapter 6.

 "PPP" Point to Point Protocol

<APN> - (Access Point Name) a string parameter that represents logical name used to select

GGSN or external packet data network. If the value is null or omitted, then the subscription

value will be requested.

<PDP_addr> - a string parameter that identifies the terminal in the address space applicable to

the PDP. The allocated address may be read using the +CGPADDR command.

<d_comp> - numeric parameter that controls PDP data compression

Values:
 0 - off (default if value is omitted)

 1 - on

<h_comp> - numeric parameter that controls PDP header compression

Values:

 0 - off (default if value is omitted)

 1 - on

<pd1>, …, <pdN> - zero to N string parameters whose meanings are specific to the

<PDP_type>

NOTE:

A special form of the Set command, +CGDCONT=<cid>, causes the values for context number

<cid> to become undefined.

NOTE:

Issuing AT+CGDCONT<CR> is the same as issuing the Read command.

NOTE:

Issuing AT+CGDCONT=<CR> returns the OK result code.

 Wait for response:

Response Reason Action

OK context parameters have been

successfully stored

proceed ahead

ERROR some error occurred check parameters and retry

For example:

1- Let's assume you want to set-up the context number 1(cid) with your GPRS connection

parameters:

APN: ibox.tim.it

IP address: dynamically assigned by the ISP

Packet Data Protocol type: Internet Protocol (IP)

Data compression: OFF

Header compression: OFF

command:

AT+CGDCONT= 1,"IP","ibox.tim.it","0.0.0.0",0,0 <cr>

response
OK

2.1.2. Minimum Quality of the Service Requested

The minimum quality of service requested parameters represent the boundary under which the

connection quality is not anymore acceptable and will be terminated.

 send command

AT+CGQMIN=<cid>,<precedence>,<delay>,<reliability>,<peak>,<mean><cr>

where:

<cid> - is the index number of the desired context to be written (up to 5 different context).

<precedence> - is the precedence class. It is applied when the network has a heavy duty and

user precedence must be followed to ensure operations, the higher the priority the better the

service.

Values:

 0 - subscribed (default)

 1 - High priority

 2 - Normal priority

 3 - Low priority

<delay> - is the delay class. It represents the maximum allowable time delay class between the

sending and the reception of a packet.

Values:

 0 - subscribed (default)

 1 - delay class 1

 2 - delay class 2

 3 - delay class 3

 4 - delay class 4 (best effort)

<reliability> - is the connection reliability class. It represents the connection reliability

requested, the higher is the number the less reliable is the data exchanged.

Values:

 0 - subscribed (default)

 1 - reliability class 1 (acknowledged GTP,LLC and RLC; protected data)

 2 - reliability class 2 (unacknowledged GTP, acknowledged LLC and RLC; protected data)

 3 - reliability class 3 (unacknowledged GTP and LLC, acknowledged RLC; protected data)

 4 - reliability class 4 (unacknowledged GTP,LLC and RLC; protected data)

 5 - reliability class 5 (unacknowledged GTP,LLC and RLC; unprotected data)

<peak> - is the peak data transfer throughput

Values:

0 - subscribed (default)

1 - up to 7,8 kbps

2 - up to 15,6 kbps

3 - up to 31,3 kbps

4 - up to 62,5 kbps

5 - up to 125 kbps

6 - up to 250 kbps

7 - up to 500 kbps

8 - up to 1000 kbps

9 - up to 2000 kbps

<mean> - is the mean data transfer throughput

Values:

0 - subscribed (default)

1 - up to 0,8 kbps

2 - up to 1,6 kbps

3 - up to 3,9 kbps

4 - up to 7,8 kbps

5 - up to 15,6 kbps

6 - up to 39 kbps

7 - up to 78 kbps

8 - up to 156 kbps

9 - up to 390 kbps

10 - up to 7,6 Mbps

11 - up to 15.2 Mbps

12 - up to 38.2 Mbps

13 - up to 76.3 Mbps

14 - up to 152 Mbps

15 - up to 381 Mbps

16 - up to 762 Mbps

17 - up to 1525 Mbps

18 - up to 3815 Mbps

31 - Best Effort

 wait for response:

Response Reason Action

OK context parameters have been successfully

stored

proceed ahead

ERROR some error occurred check parameters and retry.

NOTE:

Set command can modify the 3G QoS according to 3GPP 23.107.

NOTE:

If your minimum requirements are too high, then it can happen that it is impossible to establish a

connection, because the network has not enough resources to guarantee that quality of service. If

does this happen, then you shall try reducing your minimum quality requirements.

For example:

1- Let's assume you want to set-up the GPRS context number 1(cid) written before with your

GPRS min QoS parameters:

Precedence class: Normal priority

Delay class: subscribed

Reliability class: subscribed

Peak throughput: not less than 15,6 kbps

Mean throughput: not less than 7,8 kbps

command:
AT+CGQMIN= 1,2,0,0,5,4 <cr>

response
OK

NOTE:

Telit suggests to setup AT+CGQMIN=1,0,0,0,0,0

2.1.3. Requested Quality of the Service

The requested quality of service parameters represents the connection quality that is requested to

the network on context activation.

 send command

AT+CGQREQ=<cid>,<precedence>,<delay>,<reliability>,<peak>,<mean><cr>

where:

<cid> - is the index number of the desired context to be written (up to 5 different context).

<precedence> - is the precedence class

<delay> - is the delay class

<reliability> - is the connection reliability class

<peak> - is the peak data transfer throughput

<mean> - is the mean data transfer throughput

Parameters assume the same values as in the previous section.

 wait for response:

Response Reason Action

OK context parameters have been

successfully stored

proceed ahead

ERROR some error occurred check parameters and retry

For example:

1- Let's assume you want to set-up the context number 1(cid) written before with your GPRS

requested QoS parameters:

Precedence class: High priority

Delay class: subscribed

Reliability class: subscribed

Peak throughput: subscribed

Mean throughput: best effort

command:
AT+CGQREQ= 1,1,0,0,0,31 <cr>

response
OK

NOTE:

Telit suggests to setup AT+CGQREQ=1,0,0,3,0,0

NOTE:

Set command can modify the 3G QoS according to 3GPP 23.107.

2.1.4. 3G Minimum Quality of the Service Requested
2

The 3G minimum quality of service requested parameters represent the boundary under which

the 3G connection quality is not anymore acceptable and will be terminated.

 send command

AT+CGEQMIN=[<cid>[,<traffic class>[,<maximum bitrate UL>[,<maximum

bitrate DL>[,<guaranteed bitrate UL>[,<guaranteed bitrate DL>[,<delivery

order>[,<maximum SDU size>[,<SDU error ratio>[,<residual bit error

ratio>[,<delivery of erroneous SDUs>[,<transfer delay>[,<traffic handling

priority>[,<source statistics descriptor>[,<signalling indication>]]]]]]]]]]]]]]]<cr>

where:

<cid> - the index number of the desired context to be written (up to 16 different context).

<traffic class> - a numeric parameter that indicates the type of application for which the UMTS

bearer service is optimised.

<maximum bitrate UL> - a numeric parameter that indicates the maximum number of kbits/s

delivered to UMTS (up-link traffic) at a SAP. As an example a bitrate of 32kbit/s would be

specified as ‘32’(e.g. AT+CGEQMIN=…,32,…)(refer TS24.008 [8] subclause 10.5.6.5).

<maximum bitrate DL> - a numeric parameter that indicates the maximum number of kbits/s

delivered by UMTS (down-link traffic) at a SAP. As an example a bitrate of 32kbit/s would be

specified as ‘32’(e.g. AT+CGEQMIN=…,32,…)(refer TS 24.008 [8] subclause 10.5.6.5).

<guaranteed bitrate UL> - a numeric parameter that indicates the guaranteed number of kbits/s

delivered by UMTS (up-link traffic) at a SAP(provided that there is data to deliver). As an

example a bitrate of 32kbit/s would be specified as ‘32’(e.g. AT+CGEQMIN=…,32,…)(refer

TS 24.008 [8] subclause 10.5.6.5).

<guaranteed bitrate DL> - a numeric parameter that indicates the guaranteed number of kbits/s

delivered by UMTS (down-link traffic) at a SAP (provided that there is data to deliver). As an

example a bitrate of 32kbit/s would be specified as ‘32’(e.g. AT+CGEQMIN=…,32,…) (refer

TS 24.008 [8] subclause 10.5.6.5).

<delivery order> - a numeric parameter that indicates whether the UMTS bearer shall provide

in-sequence SDU deliver or not.

<maximum SDU size> - a numeric parameter(1,2,3,…) that indicates the maximum allowed

SDU size in octets(refer TS 24.008 [8] subclause 10.5.6.5).

<SDU error ratio> - a string parameter that indicates the target value for the fraction of SDUs

lost or detected as erroneous. SDU error ratio is defined only for conforming traffic. The value is

specified as ‘mEe’. As an example a target SDU error ration of 5*10
-3

 would be specified as

‘5E3’ (e.g. AT+CGEQMIN=…”5E3”,…)(refer TS 24.008 [8] subclause 10.5.6.5).

<residual bit error ratio> - a string parameter that indicates the target value for the undetected

bit error ratio in the delivered SDUs. If no error detection is requested, Residual bit error ratio

indicates the bit error ratio in the delivered SDUs. The value is specified as ‘mEe’. As an

example a tartet residual bit error ration of 5*10
-3

 would be specified as ‘5E3’(e.g.

AT+CGEQMIN=…,”5E3”,…)(refer TS 24.008 [8] subclause 10.5.6.5).

<delivery of erroneous SDUs> - a numeric parameter that indicates whether SDUs detected as

erroneous shall be delivered or not.

<transfer delay> - a numeric parameter (0,1,2,…) that indicates the targeted time between

request to transfer an SDU at on SAP to its delivery at the other SAP, in milliseconds (refer TS

24.008 [8] subclause 10.5.6.5).

<traffic handling priority> - a numeric parameter(1,2,3,…) that specifies the relative

importance for handling of all SDUs belonging to the UMTS bearer compared to the SUDs of

other bearers (refer TS 24.008 [8] subclause 10.5.6.5).

<source statistics description>
3
 - Characteristics of the source of the submitted SDUs for a

PDP context. This parameter should be provided if the <Traffic class> is specified as

conversational or streaming.

<signalling indication> - Signalling content of submitted SDUs for a PDP context. This

parameter should be provided if the <Traffic class> is specified as interactive.

Parameters assume the range of values defined in [3].

 wait for response:

Response Reason Action

OK context parameters have been successfully

stored

proceed ahead

ERROR some error occurred check parameters and retry.

NOTE:

Set command can modify the 2G QoS according to 3GPP 23.107.

NOTE:

If your minimum requirements are too high, then it can happen that it is impossible to establish a

PDP activation, because the network has not enough resources to guarantee that quality of

service. If does this happen, then you shall try reducing your minimum quality requirements.

2.1.5. 3G Requested Quality of the Service
4

The 3G requested quality of service parameters represents the connection quality that is

requested to the UMTS network on PDP context activation.

 send command

AT+CGEQREQ=[<cid>[,<traffic class>[,<maximum bitrate UL>[,<maximum

bitrate DL>[,<guaranteed bitrate UL>[,<guaranteed bitrate DL>[,<delivery

order>[,<maximum SDU size>[,<SDU error ratio>[,<residual bit error

ratio>[,<delivery of erroneous SDUs>[,<transfer delay>[,<traffic handling

priority>[,<source statistics descriptor>[,<signalling indication>]]]]]]]]]]]]]]]<cr>

where:

<cid> - is the index number of the desired context to be written (up to 16 different context).

<traffic class>

<maximum bitrate UL>

<maximum bitrate DL>

<guaranteed bitrate UL>

<guaranteed bitrate DL>

<delivery order>

<maximum SDU size>

<SDU error ratio>

<residual bit error ratio>

<delivery of erroneous SDUs>

<transfer delay>

<traffic handling priority>

<source statistics descriptor>
5

<signalling indication>

Parameters assume the range of values defined in [3].

 wait for response:

Response Reason Action

OK context parameters have been

successfully stored

proceed ahead

ERROR some error occurred check parameters and retry

NOTE:

Set command can modify the 2G QoS according to 3GPP 23.107.

NOTE:
Telit suggests to setup AT+CGEQREQ=1,4,0,0,0,0,2,0,”0E0”,”0E0”,3,0,0(default setting value)

2.2. Context activation and data state entering

This operation corresponds to the dial and connect of a CSD GSM data call issued to an internet

service provider.

 send command

ATD*99***<cid>#<cr>

where:

<cid> - is the index number of the desired context to be used (up to 5 different context)

 wait for response:

Response Reason Action

CONNECT connection is being processed proceed ahead with the

authentication & Packed data

protocol

ERROR some error occurred check context parameters and

retry. See par.2.2.1, 2.2.2, 2.2.3

check also Network registration

status.

+CME ERROR: <error code>

some error occurred

check context parameters and

retry. See par.2.2.1, 2.2.2, 2.2.3

check also Network registration

status.

For example:

1- Let's assume you want to activate and enter the data state with context number 1(cid) written

before with your requested QoS parameters:

command:
ATD*99***1# <cr>

response
CONNECT

At this point, your application should start the PPP protocol with the LCP Exchange phase:

 LCP Configure Request

 LCP Configure Acknowledge

 PAP Authentication

 PAP-Ack

 NCP (IP) Configure Request

 NCP (IP) Configure Acknowledge

At this point the TCP/IP - PPP protocol stack is up and data packets can be exchanged.

NOTE:

Explanation of TCP/IP and PPP protocol stack is beyond the scope of this document. Further

information on the LCP protocol and PPP protocol definition can be found in the RFC1661.

Further information on the PAP protocol definition can be found in the RFC1334. Further

information on the IPCP protocol definition can be found in the RFC1332.

NOTE:

The CONNECT result code is raised before complete connection establishment.

2.3. Data state exit

 LCP Terminate Request

 LCP Terminate Acknowledge

 Wait for NO CARRIER response.

or in alternative:

 send escape sequence:

+++

 wait for 2s (default silence time)

 wait for response:

Response Reason Action

OK Telit module is in command mode

now

proceed ahead

ERROR some error occurred check command syntax and timing

and retry

NO CARRIER connection has been closed proceed ahead

 send command

ATH<cr>

 wait for response:

Response Reason Action

OK connection has been closed

ERROR some error occurred check command syntax and retry

3. IP Easy Extension

3.1. Overview

The IP Easy feature allows the Telit module users to contact a device on internet and establish

with it a raw data flow over the GPRS/UMTS/HSPA and Internet networks.

This feature can be seen as a way to obtain a "virtual" serial connection between the Application

Software on the Internet machine involved and the controller of the Telit module, regardless of

all the software stacks underlying.

An example of the protocol stack involved in the devices is reported:

This specific implementation allows the devices to interface to the Telit module via

GPRS/UMTS/HSPA and Internet packets without the need of an internal TCP/IP stack since this

function is already embedded inside the module.

As a new functionality of Telit modules, multisocket is an extension of the Telit IP Easy feature,

which allows the user to have two activated contexts (this means two different IP address), more

than one socket connection -- with a maximum of 6 connections -- and simultaneous FTP client

and EMAIL client services.

The basic idea behind multisocket is the possibility of suspend a socket connection with the

escape sequence +++.

With the #SKTD command it is possible to open a socket connection and get online. When the

online activities are concluded, the +++ sequence is used to close the connection (see the figure

below).

The green part represents the module command mode while the red part is the online mode.

Now, the online mode can be suspended with the escape sequence +++ by using the multisocket

feature. During suspend mode the data received by the socket will be buffered, which data will

be displayed after socket resumption, as shown in the figure below:

This new feature allows users to switch between online mode and command mode without

closing the connection or even opening another socket (or resuming the suspended one), FTP or

EMAIL connection.

Another new feature is the possibility to associate any socket connection to a specific context.

This means that we can use different IP addresses for connections (max 2). The Socket Identifier

is called Connection Id -- selects which socket we want to use from 1 up to 6 -- and every

Connection Id is associated to a context.

3.2. Commands Overview

What follows are new AT command sequences that activate context, sets and opens the socket

connection. There will be explained a new listen command and how to use FTP and Easy GPRS

at the same time.

NOTE:

For more detailed AT commands and parameters definitions please consult the AT Commands

Reference Guides [1], [2], and [3].

3.2.1. IP Easy Outgoing Connection

The IP Easy feature provides a way to place outgoing TCP/UDP connections and keep the same

IP address after a connection is made, leaving the context active.

The steps required to open a socket and close it without closing the GRPS context are:

 configuring the GPRS/UMTS/HSPA Access

 configuring the embedded TCP/IP stack behavior

 defining the Internet Peer to be contacted

 request the context to be activated

 request the socket connection to be opened

 exchange data

 close the TCP connection while keeping the context active

All these steps are achieved through AT commands. As far as the common modem interface,

two logical statuses are involved: command mode and data traffic mode.

 In Command Mode (CM), some AT commands are provided to configure the Data

Module Internet stack and to start up the data traffic.

 In data traffic mode (Socket Mode, SKTM), the client can send/receive a raw data

stream which will be encapsulated in the previously configured TCP / IP packets which

will be sent to the other side of the network and vice versa. Control plane of ongoing socket

connection is deployed internally to the module.

3.2.1.1. Configuring the GPRS/UMTS/HSPA access

The access configuration is done by setting:

 the context number 1 parameters (see +CGDCONT command)

 the Authentication parameters: User Name and Password (see command #SGACT)

3.2.1.2. Configuring the embedded TCP/IP stack

The TCP/IP stack behavior must be configured by setting:

 the packet default size

 the data sending timeout

 the socket inactivity timeout

Before opening a connection we have to set the socket parameters with the new #SCFG

command. It is possible to set all the timeout values and packet size for each socket connection

with a single AT command. The command syntax is:

AT#SCFG = <Conn Id>, <Cntx Id>, <Pkt sz>, <Global To>, <Conn To>, <Tx To>

Where:

 Conn Id -the connection identifier

 Cntx Id -the context identifier

 Pkt sz -the minimum data packet sent to the net

 (default 300 bytes)

 Global To -inactivity timeout (default 90 sec.)

 Conn To -connection timeout (default 60 sec, expressed in

 tenths of second)

 Tx To -data sending timeout (default 5 sec, expressed in

 tenths of second)

The first two parameters are new and they represent the association between the socket

connection and the context set with +CGDCONT. It means that we can have socket connection

working on different IP addresses.

The other parameters replace the old IP Easy commands #DSTO, #SKTTO, #SKTCT and

#PKTSZ.

If we try to modify the socket configuration of an online connection, an error will appear. So it’s

recommended to set the socket configuration at the beginning. It is strongly recommended to

leave the first Connection Id associated to context one to allow simultaneous FTP, SMTP and IP

Easy services.

The values set with this command are saved in NVM.

Example:

We want to associate the Connection Id number 2 to the context number 3 with a minimum

packet size of 512 bytes, global timeout of 30 sec, connection timeout of 30 sec and

transmission timeout of 10 sec.

Command:

AT#SCFG = 2, 3, 512, 30, 300,100

Answer:

OK if command execution is correct

ERROR if a parameter is wrong or the connection Id is working online

3.2.1.3. Request the context to be activated

This command allows activation of one of the contexts defined with AT command +CGDCONT.

With multisocket it is possible to activate simultaneously two contexts of the five that have been

set. We can write username and password directly from command line (if required). At least one

Connection Id must be associated to the context we want to activate; otherwise an error will be

appear.

The command syntax is:

#SGACT= <Cntx Id>,<Status>, [<Username>],[<Password>]

Where:

 Cntx Id is the context that we want to activate/deactivate.

 Status is the context status (0 means deactivation, 1 activation).

Example:

We want to activate context number two defined with +CGDCONT.

Command:

AT#SGACT = 2,1

Answer:
#SGACT: “212.195.45.65”

OK if activation success.

ERROR if activation fails.

The response code to the AT#SGACT=1 command reports the IP address obtained from the

network, allowing the user to report it to his server or application.

Deactivating the context implies freeing the network resources previously allocated to the device.

NOTE:

Also the command AT+CGACT activates a context, but in this case the context cannot be used

for IP Easy.

It’s also possible to set authentication type through the command AT#SGACTAUTH.

The command syntax is:

AT#SGACTAUTH=<type>

 0 – no authentication

 1 – PAP authentication(factory default)

 2 - CHAP authentication

It’s also possible to enable automatic activation/reactivation of a specified PDP context in case

of switching off/on, in case of deactivation from Network and in case of SIM removal.

NOTE: at least one IPEasy socket has to be previously associated to this context by command

AT#SCFG. The command syntax is:

AT#SGACTCFG=<Cntx Id>,<retry>[,<delay>[,<urcmode>]]

Where:

 <Cntx Id>(1-5) is the context that we want to automatic activate/reactivate

 <retry>(0-15) is the number of activation/reactivation attempts(if it fails)

 <delay>(180-3600) is the delay(sec) between two successive attempts

 <urcmode>(0-1) enable unsolicited result code of the local IP address obtained from the

network

Example:

AT#SGACTCFG=1,3 - activation/reactivation set on context 1 with 3 attempts.

No previous setting through #SCFG is needed in this case, because socket connection identifiers

<Conn Id> 1,2,3 are already associated to <Cntx Id> 1 by default.

Furthermore it is possible to abort a context activation attempt, while waiting for AT response,

by sending a char on the serial port.

To enable this feature on a <cid> new #SGACTCFGEXT command has been implemented.

The command syntax is:

AT#SGACTCFGEXT=<cid>,<abortAttemptEnable>

By setting <abortAttemptEnable> on <cid>, attempt pre-emption

is allowed.

For more details, please refer to refer to the AT Commands Reference Guides [1], [2], and [3].

 Open the connection with the internet host

With the AT command #SD (socket Dial) the TCP/UDP request to connect with the internet

host starts:

 DNS query is done to resolve the IP address of the host name internet peer if required

 Telit module establishes a TCP/UDP (depending on the parameter request) connection with

the given internet host

 Once the connection is up the module reports the code: CONNECT

The command syntax is:

AT#SD = <Conn Id>,<Protocol>, <Remote Port>, <IP address> [, <Closure Type> [,

<Local Port>]]

Where:

 Conn Id is the connection identifier.

 Protocol is 0 for TCP and 1 for UDP.

 Remote Port is the port of the remote machine.

 IP address is the remote address.

To open the remote connection the context to which the Connection Id is associated must be

active, otherwise an error will appear.

For example, if we want to connect to a web server with Connection Id number 3 the command

is:

AT#SD = 3 , 0 , 80 , “www.telit.com”

If the command is successful we’ll have a CONNECT message, and the socket number 3 will be

connected to the Telit webserver.

From this moment the data incoming in the serial port is packet and sent to the Internet host,

while the data received from the host is serialised and flushed to the Terminal Equipment.

The +++ sequence does not close the socket, but only suspends it.

NOTE:

Check guard time/S12 parameter before and after escape sequence.

We can suspend the connection and open another one with a different Connection Id.

A typical command sequence is:

AT#SD = 3 , 0 , 80 , “www.telit.com”

CONNECT

(send, receive data….)

(+++)
OK

OK is returned after the escape sequence, it means that the socket has been suspended correctly.

Now the connection number 3 is suspended and the module is in command mode so we can give

another #SD command.

AT#SD = 2 , 0 , 80 , “www.google.com”

CONNECT

(send, receive data….)

(+++)
OK

If we try to open a connection while the ConnId is in suspended state or online an error will be

occur.

If a suspended connection receives some data the user will receive an unsolicited SRING

indication from the module. In case we receive some data from the suspended connection with

Telit server we’ll receive this unsolicited message:

SRING: 3

where 3 is the number of the ConnId with data pending.

NOTE:

The unsolicited SRING indication appears only in command mode.

New commands #PADFWD and #PADCMD have been implemented
6
:

with #PADFWD it is possible to choose a char that, if received from serial port and if

#PADCMD is set, enables flushing of pending data on the socket.

Example:

AT#PADFWD=65

OK

AT#PADCMD=1

OK

AT#SD = 3 , 0 , 80 , “www.telit.com”

CONNECT

// data are not sent on the socket till <Pkt sz>

// is reached or <Tx To> is expired….

………………….

reserved char(65) set through #PADFWD is sent =>

flushing of all data on the socket follows

(including reserved char)

3.2.1.4. Resuming a suspended connection with #SO

This is the new command to resume a suspended connection, the command syntax is:

AT#SO = <Conn Id>

Example:

AT#SD = 2 , 0 , 80 , “www.google.com”

CONNECT

data sending

(+++)

OK

SRING: 2

AT#SO = 2

CONNECT

data sending

(+++)

In case there is data pending on this socket -- you can know this the unsolicited message SRING

has appeared before--, issuing command AT#SO these pending data will be displayed after the

CONNECT string.

It is possible to resume a suspended socket without waiting for SRING message or data pending

on that connection.

Using AT#SO on a Connection Id in idle state (no socket open or suspended) we obtain a NO

CARRIER message.

3.2.1.5. Close the Socket without deactivating the context

The connection can be closed for the following reasons:

 remote host TCP connection close

 socket inactivity timeout

 Terminal Equipment by issuing the escape sequence "+++" and AT#SH that

specifies the Connection Id

 Network deactivation

It is possible to get socket disconnection cause with AT command AT#SLASTCLOSURE.

The AT command syntax to use is:

AT#SLASTCLOSURE=[<connId>]

The response format is:

#SLASTCLOSURE: <connId>,<cause>

For details, please consult the AT Commands Reference Guides [1], [2], and [3]. With the new

management of the escape sequence we need a command to close the socket connection. The

AT command syntax to use is:

AT#SH = <conn Id>

Example:

AT#SD = 2 , 0 , 80 , “www.google.com”

CONNECT

data sending

(+++)

OK

AT#SH = 2

OK

Now the connection is closed. If we send this command with an idle Connection Id we obtain in

any case an OK message.

NOTE:

If there is an escape sequence in the raw data to be sent, then the TE must work it out and sent it

in a different fashion to guarantee that the connection is not closed.

The pause time is defined in the parameter S12. To avoid sending of the escape sequence a

command AT#SKIPESC should be set at the beginning.

3.2.1.6. Specific settings for TCP/IP options

If needed, it’s possible to have direct control on particular TCP/IP settings:

 Enabling of TCP reassembly feature.

 The command syntax is:

 AT#TCPREASS=<n>

 0 – disable TCP reassembly feature(default)

 1 – enable TCP reassembly feature

 Maximum TCP/IP payload size accepted in one single TCP/IP datagram.

 The command syntax is:

 AT#TCPMAXDAT=<size>(bytes) –

maximum TCP payload size accepted in one single TCP/IP datagram received from the peer

<size> will be sent by the module(TCP stack) to the peer when the socket connection will be

opened.

Example:

AT#TCPMAXDAT=1000 – maximum TCP payload size accepted from peer set to 1000 bytes

Then, if we open a TCP socket connection we will advice the peer that we will not accept

TCP/IP datagrams with a payload bigger than 1000 bytes.

3.2.1.7. Sending and receiving base64 encoded data
7

Through new #BASE64 command is possible to enable base64 encoding/decoding of data

sent/received on a socket.

The command syntax is: AT#BASE64=<connId>,<enc>,<dec>

 where <enc> and <dec> enable respectively encoding and/or

 decoding on <connId> socket.

<enc> and <dec> can be set to 1 or 2 depending on MIME line feeds setting required(please

refer to the AT Commands Reference Guides [1],[2], and [3])

Encoding: if enabled, all data are encoded base64 while

they are received from serial port, before to be sent on

<connId> socket.

Decoding: if enabled, all data are decoded base64 while

they are received from <connId> socket, before to be sent

on the serial port.

Example:

at#skipesc=1

OK

AT#SD=1,0,<port>,"IP"

CONNECT

// Data received from serial port are sent

// directly on the socket

+++ (suspension)

at#base64=1,1,0

OK

AT#SO=1

CONNECT

// Data received from serial port are encoded

// base64 before to be sent on the socket

+++ (suspension)

at#base64=1,0,1

OK

AT#SO=1

CONNECT

// Data received from socket are decoded

// base64 before to be sent on the serial port

+++ (suspension)

…………………

NOTE:

It is also possible to use new feature in command mode

(please refer to AT Commands Reference Guides [1], [2], and [3]).

3.2.2. IP Easy Incoming Connection

The IP Easy feature provides a way to accept incoming TCP/UDP connections and keep the

same IP address after a connection, leaving the context active.

The steps that will be required to open a socket in listen, waiting for connection requests from

remote hosts and accept these request connections only from a selected set of hosts, then close it

without closing the context are:

 configuring the GPRS/UMTS/HSPA Access

 configuring the embedded TCP/IP stack behavior (see par. 3.2.1.2)

 defining the Internet Peer that can contact this device (firewall settings) (see par.3.2.2.1)

 request the context to be activated (see par.3.2.1.3)

 request the socket connection to be opened in listen (see par. 3.2.2.2)

 receive connection requests (see par.3.2.2.3)

 exchange data

 close the TCP connection while keeping the context active (see par.3.2.1.6)

All these steps are achieved through AT commands. As for common modem interface, two

logical statuses are involved: command mode and data traffic mode.

 In Command Mode (CM), some AT commands are provided to configure the Data

Module Internet stack and to start up the data traffic.

 In data traffic mode (Socket Mode, SKTM), the client can send/receive a raw data stream

which will be encapsulated in the previously configured TCP / IP packets which will be

sent to the other side of the network and vice versa. Control plane of ongoing socket

connection is deployed internally to the module.

3.2.2.1. Defining the Internet Peer that can contact this device (firewall settings)

The Telit module has an internal Firewall that controls the behavior of the incoming connections

to the module. The firewall applies for INCOMING (listening) connections; OUTGOING

connections will be always done regardless of the firewall settings.

Firewall General policy is DROP, therefore all packets that are not included into an ACCEPT

chain rule will be silently discarded.

When packet incomes from the IP address <incoming IP>, the firewall chain rules will be

scanned for matching with the following criteria:

<incoming IP> & <net mask> = <ip_address> ?

if the result is yes, then the packet is accepted and the rule scan is finished, otherwise the next

chain is taken into account until the end of the rules when the packet is silently dropped if no

matching was found.

For example, let’s assume we want to accept connections only from our devices which are on

the IP addresses ranging from 197.158.1.1 to 197.158.255.255

We need to add the following chain to the firewall:

AT#FRWL=1,"197.158.1.1","255.255.0.0"

3.2.2.2. Request the socket connection to be opened in listen

The new listen command is now extended to 6 connections; it’s possible to set from 1 to 6

socket listening on a specific port for the incoming connections. Another difference with the old

IP Easy is that now we receive an unsolicited indication when someone tries to connect, so we

can decide to accept (AT#SA) or refuse (AT#SH) the incoming connection.

NOTE:

In case you decide to reject an incoming connection request the listening socket will be closed

and if you want to re-open it the AT command AT#SL needs to be re-issued.

The command syntax is:

AT#SL = <Conn Id>, <Listen state>, <Listen port>[, <Closure Type>]

It’s not possible to have two ConnId listening on the same port.

Example:

Suppose that we want to listen on port 6543 Connection Id number 2

AT#SL = 2, 1, 6543

OK

Now the module is listening for incoming connection on port 6543 with Connection Id number 2,

if a remote host is trying to connect we’ll receive a SRING unsolicited indication with the

listening Connection Id:

SRING: 2

3.2.2.3. Accept an incoming connection with #SA

After receiving the SRING indication for an incoming connection we can decide to refuse the

remote host connection with #SH command or accept the connection with #SA command.

The command syntax is:

AT#SA = <conn Id>

Example:

We are listening on Connection Id 3 and port 6543

AT#SL = 3, 1, 6543

OK

A remote host is trying to connect, we receive the unsolicited indication.

SRING: 3

Now we accept the connection

AT#SA = 3

CONNECT

We pass in online mode and the connection is established. With the escape sequence we suspend

the socket and the module is back to command mode. To resume the suspended connection we

can use the #SO command described above.

NOTE
8
:

It’s also possible to accept automatically the incoming connection if the <ListenAutoRsp>

parameter has been set through the command AT#SCFGEXT(for the specific connId);

see also par. 5.2.2.

In this case no unsolicited indication is received, but the connection is automatically accepted:

the CONNECT indication is given and the modem goes into online data mode
5
.

It’s also possible to open a socket listening for an incoming UDP connection on a specified port.

The command syntax is:

AT#SLUDP=<connId>, <listenState>, <listenPort>

Also in this case it’s possible to receive SRING unsolicited and decide to accept (AT#SA) or

refuse (AT#SH).

It is also possible to accept automatically incoming connection depending on <ListenAutoRsp>

settings
5
.

3.2.2.4. Checking the socket status with #SS

With the old IP Easy socket connection the possible states were: online state or closed, while

with multi-socket suspension we have other socket states. With the new command AT#SS we

can see the status of all the six sockets.

The command syntax is:

AT#SS

[=<connId>]

Suppose that we have suspended some sockets and we are in command mode, in order to verify

which Connection Id has been opened, we can use AT#SS command to have a snapshot of

sockets status.

The command result is:

#SS: <ConnId>,<Status>,<Local IP>,<Local Port>,<Remote IP>,<Remote Port>

For every Connection Id with have the information about our local IP address, local port, remote

IP and port if we are connected.

The Status field represents the socket status:

0 – Socket Closed.

1 – Socket with an active data transfer connection.

2 – Socket suspended.

3 – Socket suspended with pending data.

4 – Socket listening.

5 – Socket with an incoming connection. Waiting for the user accept or shutdown command.

Example:

AT#SS

#SS: 1,4,217.201.131.110,21

#SS: 2,2,217.201.131.110,1033,194.185.15.73,10510

#SS: 3,3,217.201.131.110,1034,194.185.15.73,10510

#SS: 4,1,217.201.131.110,1035,194.185.15.73,10510

#SS: 5,0

#SS: 6,0

OK

In this case we can see Connection Id 1 in listen mode on port 21, number 2 suspended with no

data pending, number 3 suspended with pending data and number 1 is online. The last two

connections are closed

By issuing AT#SS=<connId> it’s possible to get status only of the corresponding socket.

3.2.2.5. Using FTP and IP Easy together

Another new functionality of multi-socket is the simultaneous FTP client service with socket

connections. We can use socket suspension mode to give FTP commands as in the old IP Easy,

keeping socket alive and eventually resuming socket connections when we need to.

NOTE:

It is recommended to leave Connection Id 1 associated to context 1 for using this functionality.

(for more explanation see also paragraph 3.2.1.2)

3.2.2.6. Using CMUX and Multi-socket

Using CMUX we can have up to three virtual port to execute normal AT commands; if we join

CMUX with multi-socket we can share the six connections on the three ports (six is the total

number in any case) and we can have up to three sockets active (online) at the same time
9
.

FTP with CMUX is locked on the opening port. So if we try to open an FTP client connection

on another virtual port the FTP commands will show an error message until the first connection

with FTP server is not closed. When the connection is closed we can open another FTP session

on another virtual port. In any case we can always have only one FTP session opened at the time.

3.2.2.7. Using old interface command on Multi-socket

The old commands like #SKTD or #SKTL are available also on multi-socket platform and they

work like in the old IP Easy platform. If we open a connection with #SKTD we can’t suspend

the connection, and the +++ sequence will close definitively the connection.

In particular with #SKTD command we have the possibility to open three simultaneous

connections using CMUX virtual ports. They are closed using the +++ sequence
10

.

NOTE:

#SKTOP has some limitations. It is available only on the first virtual port of CMUX and it is

recommended not to use it with the new multi-socket commands because #SKTOP deactivates

the context when the connection is closed. This can generate the closure of suspended sockets.

It’s strongly recommended in any case to avoid using old IP Easy command with new multi-

socket commands.

3.2.2.8. Dial Up with Multisocket

With multi-socket we recommend you to use the first context for a dialup connection and use the

other available context for IP Easy socket connection.

The first context must be deactivated to make dialup connection work correctly, if we activate IP

Easy and dialup at the same time the performance get worse. It is possible to make web

browsing and IP Easy socket connection at the same time.

3.2.3. Known limitations

The implementation of the IP EASY feature has the following known limitations:

 #SKTOP is available only on the first virtual port of CMUX
11

 PPP and IP Easy functionalities not on the same IP Address (PPP uses always the first

Cntx Id)

 Multi listen only on different IP ports

 It’s not allows to use two Data Traffic mode on CMUX or Multiple channels at the same

time
12

.

3.3. FTP OPERATIONS

A set of AT commands is available to support the FTP activities. The first command is called

#FTPTO (FTP Time-Out) which defines the time-out for FTP operations. The module has

already a factory default time defined that is 10 s.

If it is needed to be modified, the syntax is:

AT#FTPTO[=<tout>]

Parameter:

<tout> - time-out in 100 ms units

Values:

100..5000 - hundreds of ms (factory default is 100)

NOTE:

The parameter is not saved in NVM.

NOTE:

 if parameter <tout> is omitted the behavior of Set command is the same as Read command.

Example:

AT#FTPTO=1000<cr> (set the timeout to 100sec)
OK

3.3.1. Opening and Closing an FTP Connection

With the command AT#FTPOPEN=<server:port>,<username>,<password>,<mode> is

possible to open the FTP connection.

The parameters are:

<server:port> - string type, address and port of FTP server (factory default port 21).

<username> - string type, authentication user identification string for FTP.

<password> - string type, authentication password for FTP.

<mode>

Values :

 0 - active mode (default)

 1 - passive mode

In order to close the FTP connection the AT command AT#FTPCLOSE should be used.

3.3.2. Setting the FTP Transfer Type

With the command AT#FTPTYPE[=<type>] is possible to configure the file transfer type. The

command must be provided during an FTP connection.

Parameter:

<type> - file transfer type:

Values:

 0 - binary

 1 - ASCII

NOTE:

The command causes an ERROR result code to be returned if no FTP connection has been

opened yet.

NOTE:

If the parameter is omitted then the behavior of Set command is the same of Read command.

3.3.3. FTP File transfer to the server

With the command AT#FTPPUT=<filename> , to issued during an FTP connection, is possible

to open a data connection and starts sending <filename> file to the FTP server.

If the data connection succeeds, a CONNECT indication is sent, otherwise a NO CARRIER

indication is sent.

Parameter:

<filename> - string type, name under which you choose to save the file on the server (must have

the right extension: es. if the file you’re sending is .txt then the <filename> can be test.txt)

NOTE:

Use the escape sequence +++ to close the data connection.

NOTE:

Check the guard time/S12 parameter before and after escape sequence.

NOTE:

The command causes an ERROR result code to be returned if no FTP connection has been

opened yet.

Example:

Define PDP context:
AT+CGDCONT=1,”IP”, "internet.wind.biz"<cr>

OK

Context Activation, as response gives IP of the module:
AT#SGACT=1,1 <cr>

#SGACT: 193.199.234.255

OK

Opening of FTP connection:
AT#FTPTO=1000<cr> (FTP settings of time-out)

OK

AT#FTPOPEN=”199.188.25.77”,”user”,”pass”,0<cr>

OK

In this case port of FTP server is not specified, which means that it has the default value: 21

AT#FTPTYPE=0<cr> (FTP settings of file type)
OK

FTP file transfer to the server in the file named “file.txt”:
AT#FTPPUT="file.txt"<cr>

CONNECT

(send the file)

+++ (escape sequence +++ to close the data connection)
NOCARRIER

AT#FTPCLOSE<cr> (closing FTP connection)
OK

Deactivation of context if required:
AT#SGACT=1,0<cr>

OK

 It is also possible to open FTP data port to send(put) data in command mode as follows.

AT#FTPOPEN=”IP”,username,password

OK

AT#FTPPUT=<filename>,1 -> the new param 1 means that we open the data port in cmd mode
OK

... here data port is opened and we remain in command mode ...

AT#FTPAPPEXT=Size

>Write here the binary data. As soon size byte are written, data are sent on the data port

and OK is returned

#FTPAPPEXT: <SentBytes>

OK

...to send new data on the data port #FTPAPPEXT has to be used again...

AT#FTPAPPEXT=Size

>Write new data chunk. As soon size byte are written, data are sent and OK is returned

 #FTPAPPEXT: <SentBytes>

OK

To close data port at the end, second parameter has to be set as follows:

AT#FTPAPPEXT=Size,1

>Write here the binary data. As soon Size byte are written, data are send and OK is returned

#FTPAPPEXT: <SentBytes>

OK

If a new file has to be sent, same sequence from beginning has to be considered.

If the file has to appended, FTPAPP(with second parameter set) instead of FTPPUT

has to be used.

Note: if while sending the chunks the data port is closed from remote, user will be aware of it

because #FTPAPPEXT will indicate ERROR and cause(CMEE 2) will indicate that socket

 has been closed.

Also in this case obviously, data port will have to be reopened with FTPPUT and so on…

(same sequence)

3.3.4. FTP File download from the server

3.3.4.1. FTP download / online mode

The command AT#FTPGET=<filename> , issued during an FTP connection, opens a data

connection and starts getting a file <filename> from the FTP server.

If the data connection succeeds, a CONNECT indication is sent, otherwise a NO CARRIER

indication is sent. The file is received on the serial port.

Parameter:

<filename> - file name, string type.

NOTE:

The command causes an ERROR result code to be returned if no FTP connection has been

opened yet.

Example:

Define PDP context:
AT+CGDCONT=1,”IP”, "internet.wind.biz"<cr>

OK

Context Activation, as response it gives the IP of the module:
AT#SGACT=1,1 <cr>

#SGACT: 193.199.234.255

OK

Open the FTP connection:

AT#FTPTO=1000<cr> (FTP settings of time-out)
OK

AT#FTPOPEN=”199.188.25.77”,”user”,”pass”,0<cr>

OK

In this case the port of FTP server is not specified, which means that it has the default value of

21

AT#FTPTYPE=0<cr> (FTP settings of file type)
OK

AT#FTPCWD="incoming" (change working directory if required)
OK

In order to get the list of files on the working directory from the server AT command

AT#FTPLIST should be used.

Download the FTP file “file.txt” from the server:

AT#FTPGET="file.txt"<cr>

CONNECT

(receive the file)

Data connection will be closed automatically when the file sending is terminated:

NO CARRIER

AT#FTPCLOSE<cr> (closing FTP connection)
OK

Deactivation of context if required:
AT#SGACT=0<cr>

OK

TIP:

The #SGACT command activates the context and it is necessary to start the FTP connection.

3.3.4.2. FTP download / command mode
13

It’s possible to start an FTP download while remaining in command mode, buffering data in the

module, by issuing #FTPGETPKT command during an FTP connection.

Successive transfer of required data onto the serial port is possible by issuing #FTPRECV

command.

The command syntax of #FTPGETPKT is:

AT#FTPGETPKT=<filename>[,<viewMode>]

where the optional parameter <viewMode> permit to choose view mode (text format or

Hexadecimal).

If the data connection succeeds, and we get an OK indication, it’s possible to check how many

buffered bytes are currently available, by issuing #FTPRECV? read command.

Then, with the command AT#FTPRECV=<blocksize> , it’s possible to transfer at most

<blocksize> bytes onto the serial port. This number is limited to the current number of bytes of

the remote file which have been transferred from the FTP server.

After issuing #FTPGETPKT, the application can issue AT commands as usual in command

mode -- except for FTP commands that need to open data ports like #FTPLIST, because the data

port has been already opened by #FTPGETPKT itself.

Example:

Provided that an FTP connection has already been issued by an FTPOPEN command as

indicated in 2.2.4.1, the following applies.

Download the FTP file “file.txt” from the server while still remaining in command mode:

AT#FTPGETPKT="file.txt"

OK

The data port is opened and the download of the file is started; data is buffered within the

module.

By issuing #FTPRECV read command we get the available bytes to read:

AT#FTPRECV?

#FTPRECV: 600

OK

Read the required part of the available buffered data:

AT#FTPRECV=400

#FTPRECV: 400

Text row number 1 * 1111111111111111111111111 *

Text row number 2 * 2222222222222222222222222 *

Text row number 3 * 3333333333333333333333333 *

Text row number 4 * 4444444444444444444444444 *

Text row number 5 * 5555555555555555555555555 *

Text row number 6 * 6666666666666666666666666 *

Text row number 7 * 7777777777777777777777777 *

Text row number 8 * 88888888888888888888

OK

Read the required part of the available buffered data:

AT#FTPRECV =200

#FTPRECV: 200

88888 *

Text row number 9 * 9999999999999999999999999 *

Text row number 10 * AAAAAAAAAAAAAAAAAAAAAAAAA *

Text row number 12 * BBBBBBBBBBBBBBBBBBBBBBBBB *

Text row number 13 * CCCCCCCCCCCCCCCC

OK

NOTE:

to check when you have read the whole file, use AT#FTPGETPKT read command:

AT#FTPGETPKT?

#FTPGETPKT: sample.txt,0,1

OK

Third parameter indicates <eof>(end of file) current state(first parameter is file name and second

Indicates text or hex mode).

Data port is automatically closed by read command #FTPGETPKT? itself when the whole file

has been red(by last #FTPRECV): another FTP download in online/command mode can be

started by issuing #FTPGET/#FTPGETPKT.

3.3.5. FTP File download restart
14

It’s possible to restart an FTP download from a specific position(byte) of the file by issuing

#FTPREST command before FTPGET(or FTPGETPKT) command.

The syntax is:

AT#FTPREST=<restartposition>(byte).

NOTE:

it’s necessary to issue FTPTYPE=0 before FTPGET(or FTPGETPKT) command to set binary

file transfer type.

3.3.6. FTP File upload restart

It’s possible to restart an FTP upload from a specific position(byte).

If previous FTP upload(FTPPUT) of file <filename> has been interrupted, it’s possible to know

how many bytes have been received from the server by issuing #FTPFSIZE=<filename>(during an

FTP connection).

NOTE:

it’s necessary to issue FTPTYPE=0 before FTPFSIZE command to set binary file transfer type.

Then application can append missing part of the file with AT#FTPAPP=<filename>, using

FTPFSIZE response to know restart position of the local file.

To get more information for other available commands on the FTP functionality please refer to

the AT Commands Reference Guides [1], [2], and [3].

NOTE:

FTP works only on context one (AT#SGACT=1,1)

3.4. AT Commands Compatibility Table

Telit advises all clients that start a new application development with SW version 7.02.03 or

higher to use these new IP Easy AT commands. Below you can find compatibility table for old

and new commands:

IP Easy old AT

commands

IP Easy

new AT commands

Operation

description

AT#SKTOP AT#SGACT; AT#SD socket open

AT#SKTD AT#SD socket dial

AT#SKTL AT#SL socket listen

AT#SKTSET not required

AT#SKTSAV not required

AT#GPRS AT#SGACT activation of

context

+++ after AT#SKTD +++; AT#SH
socket close

+++ after AT#SKTOP +++; AT#SH; AT#SGACT

AT#USERID AT#SGACT
authentication

AT#PASSWD AT#SGACT

AT#PKTSZ AT#SCFG

socket

configuration

AT#DSTO AT#SCFG

AT#SKTTO AT#SCFG

AT#SKTCT AT#SCFG

It is strongly recommended not to mix the new commands with the old ones,

and to use only the new ones

Note: #SKTOP command is not available for versions starting from 12.00.xx1

and for HE910 product family.

3.5. Examples

3.5.1. IP Easy- HTTP client application

Let’s suppose we want to connect our embedded device to an HTTP server and retrieve an

HTML page using the IP EASY feature.

 Initial data:

Server to be contacted www.telit.com

Application Layer Protocol HTTP1.0 (RFC1945);

HTTP1.1 (RFC2068)

Page to be retrieved homepage of server

Preliminary settings

APN internet

IP of device dynamically assigned by the

network

DNS assigned by the network

USERID IPEASY

PASSWORD IPEASY

Socket parameters

Connection Identifier 1

Packet size (used by

TCP/UDP/IP stack for data

sending)

300

Socket inactivity timeout 90

Connection timeout 600

Data sending time out 50

Checking on the RFC990 the HTTP service we can found that the port 80 is dedicated for HTTP

service, therefore our HTTP server will be waiting for incoming connections on that port and we

will fix the IP EASY port to be contacted on the remote server exactly to 80.

Second thing we have to discover is whether the transport protocol has to be TCP or UDP; on

the RFC1945 we can read that the HTTP Application layer protocol is meant to be on top of

TCP/IP protocol, therefore the transport protocol choice will fall on TCP.

Now we have all the information needed to configure our system.

With our microcontroller we issue to the Telit module the following AT commands:

AT+CGDCONT = 1,"IP","internet","0.0.0.0",0,0<cr> (GPRS context setting)

For all the socket settings the following AT command will be used:

AT#SCFG=1,1,300,90,600,50

OK

Next step is activation of the context:
AT#SGACT=1,1,“EASY GPRS“,“EASY GPRS“

#SGACT: 193.199.234.255

OK

This command replies with the IP address assigned by the network.

Now we can proceed with contacting the server with AT command for socket dial:
AT#SD=1,0,80,”www.telit.com”,0,0

http://www.telit.com/

When we receive the CONNECT indication, then we are exchanging data with the HTTP server

program on the remote host machine.

Now following the HTTP protocol we ask for the homepage by sending the following lines on

the serial line:
GET / HTTP/1.1<cr><lf>

Host: www.telit.com<cr><lf>

Connection: keep-alive<cr><lf>

<cr><lf>

TIP:

Remember that the strings, which are sent to the HTTP server, have to be ended by line feed

character. To see the issued commands enable the local echo.

 As a response to our query the HTTP server will reply with the HTML code of the homepage

and some debugging responses that we will see directly on the serial line:

HTTP/1.1 200 OK

Date: Thu, 06 2003 10:21:58 GMT

Server: Apache/1.3.27 (Unix)

Last-Modified: Thu, 06 2003 10:21:58 GMT

Content-Type: text/html

Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 FINAL//EN">

<HTML>

… here is all the HTML code of the page..

</HTML>

<pause>+++<pause>

OK

AT#SH=1

OK

The Telit module is now back to command mode and the socket is closed.

3.5.2. IP Easy - EMAIL sending application

Let’s suppose we want to send with our embedded device an EMAIL by using a SMTP server.

 Initial data:

Server to be contacted smtp.domain.com

SMTP service port #25

Application Layer Protocol SMTP (RFC821)

Sender "module"<module@domain.com>

Receiver "Receiver"<receiver@server.net>

Subject Email Test

Message body This message is sent in order to

test IP Easy feature. Hello

World!

Preliminary settings

APN internet

IP of device dynamically assigned by the

network

DNS assigned by the network

USERID IPEASY

PASSWORD IPEASY

SMTP settings

SMTP server address smtp.domain.com

Email account

USERID module@domain.com

PASSWORD telit

Socket parameters

Connection Identifier 1

Packet size (used by

TCP/UDP/IP stack for data

sending)

300

Socket inactivity timeout 90

Connection timeout 600

Data sending time out 50

Checking on the RFC990 the SMTP service we can found that the port 25 is dedicated for

SMTP service, therefore our SMTP server will be waiting for incoming connections on that port

and we will fix the IPEASY port to be contacted on the remote server exactly to 25.

Second thing we have to discover is whether the transport protocol has to be TCP or UDP; on

the RFC821 we can read that the SMTP Application layer protocol is meant to be on top of

TCP/IP protocol, therefore the transport protocol choice will fall on TCP.

Now we have all the information needed to configure our system.

The email can be sent following three different procedures:

1. Opening socket with SMTP server and then sending directly SMTP commands. The

following AT commands should be issued to the Telit module:

AT+CGDCONT = 1,"IP","internet","0.0.0.0",0,0<cr> (context setting)

For all the socket settings the following AT command will be used:

mailto:module@domain.com

AT#SCFG=1,1,300,90,600,50

OK

Next step is activation of the context:
AT#SGACT=1,1,“EASY GPRS“,“EASY GPRS“

#SGACT: 193.199.234.255

OK

The command gives as response the IP address assigned by the network.

Now we can proceed with contacting the server with AT command for socket dial:
AT#SD=1, 0,25,"smtp.domain.com",0,0<cr>

When we receive the CONNECT indication, then we are exchanging data with the SMTP server

program on the remote host machine.

Following the SMTP protocol we proceed with the HELO presentation and mail delivery

directly over the serial line (in blu you can find the data sent by us, in violet the one received

from host):

 220 smtp.domain.com ESMTP Service (7.0.027-DD01) ready

HELO pcprova<cr><lf>

 250 smtp.domain.com

AUTH LOGIN<cr><lf> (authentication method)

 334 VXRlcm8gkXU6

Z204NjJAZG9tYWluLmNvbQ==<cr><lf> (module@domain.com base64 encoding)

 334 UHFzc6dcvmQ6

dGVsaXQ= <cr><lf> (telit base64 encoding)

 235 2.0.0 OK Authenticated

MAIL FROM: module@domain.com <cr><lf> (Sender)

 250 2.1.0 module@domain.com... Sender ok

RCPT TO: receiver@server.net <cr><lf> (Receiver)

 250 2.1.5 receiver@server.net... Recipient ok

DATA<cr><lf>

 354 Enter mail, end with "." on a line by itself

Return-Receipt-To: < module@domain.com ><cr><lf>

Reply-To: < module@domain.com ><cr><lf>

From: < module@domain.com ><cr><lf>

To: < receiver@server.net ><cr><lf>

Subject: Email test<cr><lf>

Date: Fri, 19 Sep 2003 11:41:32 +0200<cr><lf>

MIME-Version: 1.0<cr><lf>

X-Priority: 3 (Normal) <cr><lf>

X-MSMail-Priority: Normal<cr><lf>

X-Mailer: GM862 TELIT SW, Build 1.0.1000 (1.0.1111.0) <cr><lf>

Importance: Normal<cr><lf>

X-MimeOLE: Produced By GM862 TEST SW<cr><lf>

<cr><lf>

Content-Type: text/plain; <cr><lf>

 charset="iso-8859-1"<cr><lf>

Content-Transfer-Encoding: 7bit<cr><lf>

<cr><lf>

This message is sent in order to test IP Easy feature. Hello World!<cr><lf>

<cr><lf>

. <cr><lf>

 250 2.0.0 h8J9QNH3008461 Message accepted for delivery

QUIT<cr><lf>

 221 2.0.0 smtp.domain.com closing connection

+++

OK

AT#SH=1

OK

The Telit module is now back in the command mode and the socket is closed.

2) Using only AT commands is with the following sequence of commands issued to the Telit

module:

AT+CGDCONT=1,"IP","internet","0.0.0.0",0,0<cr> (1-context setting)

AT#ESMTP = "smtp.domain.com"<cr> (2-SMTP server setting)

AT#EUSER = "module@domain.com"<cr> (3-Authentication setting)

AT#EPASSW = "telit"<cr> (4-Authentication setting)

AT#EADDR= "module@telit.net"<cr> (5-Sender address setting)

AT#ESAV (6-save settings)

mailto:module@domain.com

NOTE:

Authentication settings could be different between context and SMTP. This is due to the fact

that in the context authentication it is requested user and password of your internet provider,

instead of the SMTP authentication where user and password is used to connect to the SMTP

server.

Now we need to activate the context:

AT#SGACT=1,1,“IPEASY“,“IPEASY“

#SGACT: 193.199.234.255

OK

This AT command gives as response the IP address of the module assigned by the network.

After receiving the OK indication, we can finally send an EMAIL:
AT#EMAILD="receiver@domain.com","Email test"

> this message is sent in order to test the IP Easy feature. Hello World!

CTRL-Z

NOTE:

SMTP works only on context one (AT#SGACT=1,1)

1. It is possible to attach a file to an email using #SMTPCL.

#SMTPCL handles attachment, managing MIME headers and encoding if required.

If it is specified that no attachment will be included(<att> parameter 0): command behavior is

the same as with #EMAILD

.

Otherwise: the command behaves like #EMAILD regarding message body text, then modem

goes into online mode(CONNECT indication is given) to allow the application to send the

attachment.

 The escape sequence has to be used to close the SMTP connection.

Encoding of data received on the serial port is performed if required(<encod> parameter), before

transmission on the SMTP socket.

The command syntax is:

AT#SMTPCL=<da>,<subj>,<att>[,<filename>,<encod>]

Where:

<da> - destination address, string type.

(maximum length 100 characters)

<subj> - subject of the message, string type.

(maximum length 100 characters)

<att> - attached file flag

0 – no attachment

1 – attach a txt file

2 – attach a binary file(jpg,bin,pdf,...)

<filename> - attached file name

(maximum length 50 characters)

<encod> -Content-Transfer-Encoding used for attachment

0 – “7bit” means data all represented as short lines of

US-ASCII data

1 – “base64” designed to represent arbitrary sequences of

octets in a form that need not be humanly readable

Note:

If a txt file (<att>=1) is attached, only <encod>0(“7bit”) is possible.

If a binary file (<att>=2) is attached, only <encod>1(“base64”) is possible.

Examples

at#smtpcl="receiver@domain.com","Email test2",1,"sample.txt",0

>message body...this is the text of the mail message…

Send CTRL-Z

CONNECT

…data received on the serial port are sent as attachment….

Send escape sequence to close the SMTP connection

+++

NO CARRIER

at#smtpcl="receiver@domain.com"," Email test3",2,"image.jpg",1

>message body...this is the text of the mail message…

Send CTRL-Z

CONNECT

…data received on the serial port are base64-encoded and sent as attachment….

Send escape sequence to close the SMTP connection

+++

NO CARRIER

3.5.3. IP Easy -EMAIL receiving application

Let's suppose we want to receive with our embedded device an EMAIL by using a POP3 server.

 Initial data:

Server to be contacted POP.mail.server

POP service port #110

Application Layer Protocol POP3 (RFC1785)

Receiver "module"<module@domain.com>

Email account username module@domain.com

Email account password telit

Context settings

APN internet

IP of device dynamically assigned by the network

DNS assigned by the network

USERID IPEASY

PASSWORD IPEASY

Socket parameters

Connection Identifier 1

Packet size (used by

TCP/UDP/IP stack for data

sending)

300

Socket inactivity timeout 90

Connection timeout 600

Data sending time out 50

Checking on the RFC1785, we can found that the port 110 is dedicated for POP3 service,

therefore our POP server will be waiting for incoming connections on that port and we will fix

the IP EASY port to be contacted on the remote server exactly to 110.

Second thing we have to discover is whether the transport protocol has to be TCP or UDP; on

the RFC1785 we can read that the POP3 Application layer protocol is meant to be on top of

TCP/IP protocol, therefore the transport protocol choice will fall on TCP.

Now we have all the information needed to configure our system.

With our microcontroller we can now issue to the Telit module the following AT commands:

AT+CGDCONT = 1,"IP","internet","0.0.0.0",0,0<cr> (1- context setting)

For all the socket settings the following AT command will be used:

AT#SCFG=1,1,300,90,600,50

OK

mailto:GM862@domain.com

Next step is activation of the context:
AT#SGACT=1,1,“IPEASY“,“IPEASY“

#SGACT: 193.199.234.255

OK

The commands gives as response the IP address assigned to the module by the network.

AT#SD=1,0,110,"POP.mail.server",0,0<cr>

When we receive the CONNECT indication, then we are exchanging data with the POP3 server

program on the remote host machine.

Following the POP3 protocol we can proceed with the authentication directly over the serial line

(in blue you can find the data sent by us, in violet the one received from host):

 +OK POP3 PROXY server ready (7.0.027) <A6B4DDEA93433C73A01@pop4.libero.it>

USER module@domain.com<cr><lf>

 +OK Password required

PASS telit<cr><lf>

 +OK 1 messages

LIST\r\n

 +OK

 1 19550

 .

RETR 1<cr><lf>

 +OK 19550 bytes

 Return-Path: <module@domain.com>

 Received: from smtp5.libero.it (193.70.192.55) by ims2d.libero.it (7.0.028)

 id 40DFC49A010E5708 for test@libero.it; Tue, 17 Aug 2004 12:24:02+0200

 Received: from smtp.telital.com (194.185.15.65) by smtp5.libero.it (7.0.027-DD01)

 .

QUIT<cr><lf>

 +OK POP3 server closing connection

+++

OK

AT#SH=1

OK

3.5.4. Remote connection between two modules

Configuration for the module that receives data (server):

Define PDP Context AT+CGDCONT=1,”IP”,”ibox.tim.it”,”0.0.0.0”

Context Activation AT#SGACT=1,1

Firewall Setup AT#FRWL=1,”198.158.1.1”,”0.0.0.0”

Socket Listen AT#SL=1,1,0,1024

First you have to define PDP context filling in the information of APN in this example:

ibox.tim.it.

Next step is activation of context which gives as reply the IP of the module assigned by

network:
AT#SGACT=1,1

#SGACT: 217.201.142.223

OK

Before opening socket in listen it is possible to define an accept firewall chain in order to filter

IP of the senders.

At the end with AT command AT#SL=1,1,1024,0 the socket will be set in listen on the port

#1024.

Configuration for the module that opens connection (client):

Define PDP Context AT+CGDCONT=1,”IP”,”ibox.tim.it”,”0.0.0.0”

Context Activation AT#SGACT=1,1

Socket Dial AT#SD=2,0,1024,”217.201.142.223”

First you have to define PDP context filling in the information of APN in this example:

ibox.tim.it.

Next step is activation of context which gives as reply the IP of the module assigned by network.

Now you can open the connection with the remote host with IP address 217.201.142.223 on the

port 1024 (as in example).

NOTE
15

:

IP of the modules can be verified with the following AT command line: AT#CGPADDR=

4. Easy GSM
16

4.1. Overview

This new feature allows the Telit module users to connect to an Internet Service Provider

through a GSM CSD call and to use the embedded TCP/IP stack, such as in IP Easy, to contact a

device in Internet and establish with it a raw data flow over the Internet networks.

The connection between the module and the Provider is based on PPP protocol over a GSM

CSD call.

An example of the protocol stack involved in the devices is reported:

In this case the speed at which packets can be downloaded is limited to the maximum data rate

for a data call, 14400 bps.

All the features of Telit multisocket, FTP and EMAIL can be used over the GSM carrier.

In order to enable GSM carrier, a particular context has to be activated with identification

number 0. The use of this context is analogue to that of GPRS/UMTS/HSPA contexts.

4.2. Commands overview

This paragraph describes the configuration and the activation of the GSM context and the new

AT commands implemented to facilitate the use of Easy GSM and IP Easy in the same device.

For more information about concerning outgoing and incoming connections, you can refer to the

chapter “Enhanced IP Easy Extension“: there are no differences at sockets level.

NOTE:

For more detailed AT commands and parameters definitions consult the AT Commands

Reference Guides [1], [2], and [3].

4.2.1. Configuring GSM access

GSM context definition differs from GPRS/UMTS/HSPA one and requires a new command:

#GSMCONT, that replaces, just in GSM case, the standard +CGDCONT. The only parameter to

set is the number of the Internet Service Provider. The command syntax is:

AT#GSMCONT=0, “IP“, <CSD num>

Where

 is the context identifier for the GSM context

 CSD num is the Internet Service Provider number

4.2.2. Configuring the embedded TCP/IP stack

The context identifier reserved to the GSM context is 0.

To use GSM carrier, and before activating the context, you have to configure at least one socket

on the connection identifier 0, through the command #SCFG.

4.2.3. Request GSM context to be activated

GSM context activation is done through the same command #SGACT, with 0 as context

identifier.

We cannot activate more than one GSM context at the same time.

The activation may require also in this case two Authentication parameters: User Name and

Password, depending on the Internet Service Provider that we want to connect to.

So the command syntax is the same as for GPRS/HSPA/UMTS:

#SGACT= 0,<Status>, [<Username>],[<Password>]

Where:

 0 is the context that we want to activate/deactivate.

 Status is the context status (0 means deactivation, 1 activation).

Example:

We want to activate GSM context defined with #GSMCONT.

Command:

AT#SGACT = 0,1

Answer:
#SGACT: “10.137.93.60”

OK if activation success.

ERROR if activation fails.

The response code to the AT#SGACT=0,1 command reports the IP address obtained from the

network, allowing the user to report it to his server or application.

Deactivating the context implies freeing the network resources previously allocated to the device.

4.2.4. IP address information

Once activated the GSM context, to interrogate the module about the IP address assigned by the

network, a new command has been implemented: #CGPADDR. It reports the all addresses

relative to the active contexts; contexts are displayed exactly like in the case of the standard

+CGPADDR.

Example:

We want to activate GSM context defined with #GSMCONT.

Command:
AT#SGACT = 0,1

Answer:
#SGACT: “10.137.93.60”

Now we want to display the IP address.

Command:
AT#CGPADDR = 0

Answer:
#CGPADDR: 0,” 10.137.93.60”

4.2.5. Limitations and connections with other AT commands

If the GSM context is active, it is not allowed to activate a context.

This check has been introduced because context activation would fail anyway: Telit module

works in Class B, so, if a GSM CSD call is on, no GPRS operation is possible.

GSM context activation is affected, like all CSD calls, by the AT+CBST command. The

maximum data rate that can be set through this command is 14400 bps (Network dependent).

Context activation is just allowed with “non transparent” data calls. This property is the default

value of one of the AT+CBST command parameters.

The commands AT+COPS=? and AT#CSURV return ERROR if a data call is active. The same

commands return ERROR also if a GSM context is active.

4.3. Examples

4.3.1. Easy GSM - HTTP client application

Let’s suppose we want to connect our embedded device to an HTTP server and retrieve an

HTML page using the EASY GSM feature. This example is analogue to the one given for

GPRS/UMTS/HSPA carrier.

Suppose to use a sim TIM.

 Initial data:

Server to be contacted www.telit.com

Application Layer Protocol HTTP1.0 (RFC1945);

HTTP1.1 (RFC2068)

Page to be retrieved homepage of server

Context settings

Provider number “3359009000“

IP of the device dynamically assigned by the

network

DNS assigned by the network

USERID Userid of the TIM account

PASSWORD Password of the TIM account

Socket parameters

Connection Identifier 0

Packet size (used by

TCP/UDP/IP stack for data

sending)

300

Socket inactivity timeout 90

Connection timeout 600

Data sending time out 50

Our HTTP server will be waiting for incoming connections on port 80 and we will fix the port to

be contacted on the remote server exactly to 80.

As transport protocol we choose TCP.

With our microcontroller we issue to the Telit module the following AT commands:

AT#GSMCONT = 0,"IP","3359009000"<cr> (GSM context setting)

For the all socket settings, the following AT command will be used:

AT#SCFG=1,0,300,90,600,50

OK

Next step is activation of the GSM context:
AT#SGACT=0,1, “userid“,“password“

#SGACT: 10.137.93.60

OK

This command replies with the IP address assigned by the network.

Now we can proceed with contacting the server with AT command for socket dial:
AT#SD=1,0,80,”www.telit.com”,0,0

When we receive the CONNECT indication, then we are exchanging data with the HTTP server

program on the remote host machine.

Now following the HTTP protocol we ask for the homepage by sending the following lines on

the serial line:

GET / HTTP/1.1<cr><lf>

Host: www.telit.com<cr><lf>

Connection: keep-alive<cr><lf>

<cr><lf>

As a response to our query, the HTTP server will reply with the HTML code of the homepage

and some debugging responses that we will see directly on the serial line:

HTTP/1.1 200 OK

Date: Thu, 06 2003 10:21:58 GMT

Server: Apache/1.3.27 (Unix)

Last-Modified: Thu, 06 2003 10:21:58 GMT

Content-Type: text/html

Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 FINAL//EN">

<HTML>

… here is all the HTML code of the page..

http://www.telit.com/

</HTML>

<pause>+++<pause>

OK

AT#SH=1

OK

The Telit module is now back to command mode and the socket is closed.

4.3.2. FTP file transfer

Let’s suppose we want to send a file to a FTP server.

Define GSM context:
AT#GSMCONT=0,”IP”, "3359009000"<cr>

OK

GSM Context Activation, as response gives IP of the module:
AT#SGACT=0,1 <cr>

#SGACT: 10.137.93.60

OK

Opening of FTP connection:

AT#FTPTO=1000<cr> (FTP settings of time-out)
OK

AT#FTPOPEN=”199.188.25.77”,”userid”,”password”,0<cr>

OK

In this case the port of the FTP server is not specified, which means that it has the default value:

21

AT#FTPTYPE=0<cr> (FTP settings of file type)
OK

FTP file transfer to the server in the file named “file.txt”:
AT#FTPPUT="file.txt"<cr>

CONNECT

(send the file)

+++ (escape sequence +++ to close the data connection)
NOCARRIER

AT#FTPCLOSE<cr> (closing FTP connection)
OK

Deactivation of GSM context if required:
AT#SGACT=0,0<cr>

OK

4.3.3. Remote connection between two modules

In this example we send data from a module using IP EASY to a module using EASY GSM.

Configuration for the module that receives data (server):

Define GSM Context AT#GSMCONT=0,”IP”,” 3359009000”,”0.0.0.0”

Context Activation AT#SGACT=0,1

You have to define GSM context filling in the information of the Internet Service Provider

Number.

Next step is activation of GSM context which gives as reply the IP of the module assigned by

network:

AT#SGACT=0,1

#SGACT: 217.200.58.225

OK

Configuration for the module that opens connection (client):

Define PDP Context AT+CGDCONT=1,”IP”,”ibox.tim.it”,”0.0.0.0”

Context Activation AT#SGACT=1,1

You have to define PDP context filling in the information of APN in this example: ibox.tim.it.

Next step is activation of context which gives as reply the IP of the module assigned by network.

AT#SGACT=1,1

#SGACT: 217.201.142.223

OK

Now, on the server side, before opening socket in listen it is possible to define an accept firewall

chain in order to filter IP of the senders.

Then with the AT command AT#SL=1,1,1024,0 the socket will be set in listen on the port

#1024:

Firewall Setup AT#FRWL=1,” 217.201.142.223”,”0.0.0.0”

Socket Listen AT#SL=1,1,1024

On the client side, you can open the connection with the remote host with IP address

217.200.58.225 on the port 1024 (as in example):

Socket Dial AT#SD=2,0,1024,” 217.200.58.225”

NOTE:

IP of the modules can be verified with the following AT command line: AT#CGPADDR=

5. Command Mode Connections

5.1. Overview

This feature allows Telit’s modules to establish a socket connection in command mode.

The “classic” online mode connection is described in the figure below:

With command mode feature now we have:

This means that the socket connection is created, but the user can give AT commands as usually

in command mode. If we receive some data on a socket a SRING message is raised.

5.2. Commands Overview

This paragraph describes the configuration and the activation of a command mode connection

and the AT commands implemented to use the new configuration socket parameters.

For anything concerning outgoing and incoming connections, you can refer to the chapter

“Enhanced IP Easy Extension“: there are no differences at sockets level.

NOTE:

For more detailed AT commands and parameters definitions consult the AT Commands

Reference Guides [1], [2], and [3].

5.2.1. Opening a socket connection in command mode

To open a socket in command mode we must use the multisocket commands AT#SD or AT#SA.

After a PDP context activation with AT#SGACT it is possible to open all sockets associated to

this PDP context in command mode using:

AT#SD=<connId>,<txProt>,<rPort>,<IPaddr>[,<closure type>[,<lPort>],1]]

In case of listening, after an unsolicited indication for an incoming connection

SRING: <connId>

we have to use:

AT#SA = <connId>,1

where the last parameter of AT#SD and AT#SA is <ConnMode>. Default value is 0 which

means “classic” online mode, 1 is used for command mode.

Examples:

Open a command mode socket on connection Id number 1:

AT#SD =1,0,10510,”88.37.127.146”,0,0,1

OK

After an unsolicited indication for an incoming connection on a listening connId:

SRING: 1

AT#SA = 1,1

OK

In “classic” online mode, if the connection is successful we have a CONNECT message, in this

case we have only an OK message in case of success and we are still in command mode.

To check if the connection is really established we ca use the AT#SS command to control socket

status.

AT#SS

#SS: 1,2,217.202.12.22,38158,88.37.127.146,10510

#SS: 2,0

#SS: 3,0

#SS: 4,0

#SS: 5,0

#SS: 6,0

We can see that connection Id 1 is opened in suspended state.

5.2.2. Configuring extended socket parameters

Before opening socket connections it is possible to set extended configuration parameters on

each of six sockets available with multisocket.

The main feature regards SRING unsolicited messages. These messages inform the user that

there are pending data on a specific connection Id.

We have three modes:

 Classic SRING: only one message (SRING: <connId>) when some new data arrive on a socket

connection (like it was for a socket connection of multisocket). This message is received also

when there’s an incoming connection on listening connection Id.

 Data amount SRING: an unsolicited message is raised for every new packet received on a socket

connection. The message gives information on the connection id and on the number of bytes

pending in the socket buffer.

 View data SRING: in this message we have connection Id, amount of buffered data by the socket

and a string (up to 1300 chars for HE910 product family, up to 64 chars for all other products)

with the dump of data extracted from the socket buffer. An unsolicited is raised until the socket

buffer is empty. In this specific case we can decide to see data as text or as hex using the

<recvDataMode> parameter (default value is 0 – text).

 View data UDP SRING: the message is the same as the previous one for TCP connections, but

for UDP connections it shows also the source IP and port and the number of bytes left in the

datagram.

NOTE:

the data amount is updated until the maximum TCP windows size for reception is reached.

The command syntax is:

AT#SCFGEXT = <connId>,<srMode>,<recvDataMode>,<keepalive>

[,<ListenAutoRsp> [,<sendDataMode>]]

NOTE:

For UC864-G, UC864-E, UC864-E-DUAL and UC864-E-AUTO the command syntax is:

AT#SCFGEXT = <connId>,<srMode>,<recvDataMode>,<keepalive>

[,<unused_A> [,<unused_B>]]

Where:

 <connId> is the connection identifier.

 <srMode> is the unsolicited Sring mode.

 <recvDataMode> - sets text or hex data view for received data in command mode
 <KeepAlive> sets TCP keepalive parameter in minutes (up to 240), 0 means keepalive

disabled.

 <ListenAutoRsp> - Set the listen auto-response mode, that affects the commands

AT#SL and AT#SLUDP
17

 <sendDataMode> - sets text or hex data mode for sending data in command

mode(AT#SSEND)
14

Examples:

 AT#SCFGEXT = 1,1,0,0 - Socket 1 set with SRING data amount

 AT#SCFGEXT = 1,2,1,0 - Socket 1 set with SRING view data mode in hex.

AT#SCFGEXT = 1,2,1,0,0,1 – Socket 1 set also with hex data mode for sending data
14

 AT#SCFGEXT = 1,3,1,0 - Socket 1 set with SRING view UDP data mode in hex.

NOTE
14

:

Through AT command #SCFGEXT2 is possible to set other configuration parameters.

The command syntax is:

AT#SCFGEXT2 = <connId>,<bufferStart>,[,<abortConnAttempt> [,<unused_B

>[,<unused_C >[,<unused_D>]]]]

Where:

 <connId> is the connection identifier of the socket on

which settings take effect

 <bufferStart>, set new behavior for data sending timer

(which timeout <Tx To> is set through #SCFG):

restart every time new bytes are received from the

serial port.

Note: when enabled, old behavior for data sending timer

is automatically disabled to avoid overlapping.

 <abortConnAttempt> enables connection attempt abort

(#SD/#SKTD/#SKTOP) before CONNECT(online mode) or

OK(command mode).

It is possible to abort attempt and give back control to

AT interface by pressing any key.

As soon as the control has been given to the AT interface

the ERROR message will be received on the interface itself.

To get more details on which settings are available on

different chipsets, please consult the AT Commands Reference Guides [1], [2], and [3].

5.2.3. Send data in command mode connections

To send data in command mode we can use the command AT#SSEND.

At the prompt we can write data and send immediately on the socket with CTRL-Z sequence.

Maximum number of bytes is 1500, if more characters are written they are truncated in upload.

The command syntax is:

AT#SSEND = <connId>

Where <connId> is the connection Id of the socket that we want to use to send data (socket must

be opened otherwise an error is raised).

Example:

We send the string “hello” on an echo socket with SRING mode set to Data amount.

AT#SSEND=1

 hello<CTRL-Z>

OK

SRING: 1,5

NOTE
14

:

Through new AT#SSENDEXT command it is possible to include all bytes within data to send,

including special characters(ESC, Ctrl-Z and BS) previously reserved with #SSEND.

The command syntax is:

AT#SSENDEXT = <connId>,<bytestosend>

When <bytestosend> bytes have been sent to the serial port,

operation is automatically completed.

5.2.4. Receive data in command mode connections

To receive data in command mode it is possible to use the AT#SRECV.

If we receive an unsolicited message SRING we can extract the data from the socket buffer in

command mode. The syntax of the command is:

AT#SRECV=<connId>,<maxByte>

Where :

 <connId> is the connection Id of the socket with data pending

 <maxbytes> is the number of pending bytes we want to extract (maximum value is

1500).

Example:

We receive a SRING data amount and then we extract all the five bytes pending with SRECV.

SRING: 1,5

at#srecv=1,5

#SRECV: 1,5

hello

OK

5.2.5. Socket Information command

It is possible to have additional information on every socket with the AT#SI command.

The command syntax is:

AT#SI [= <connId>]

Where connId is an optional parameter, we can see info on a specific socket or for all sockets.

The information shown by the command are:

 Data sent on the socket.

 Data extracted from the socket buffer.

 Data pending on the socket buffer.

 Data not acknowledged by the remote.

At#si

#SI: 1,123,400,10,50

#SI: 2,0,100,0,0

#SI: 3,589,100,10,100

#SI: 4,0,0,0,0

#SI: 5,0,0,0,0

#SI: 6,0,98,60,0

OK

Sockets 1,2,3,6 are opened with some data traffic.

For example socket 1 has 123 bytes sent, 400 bytes received, 10 byte waiting to be read

and 50 bytes waiting to be acknowledged from the remote side.

5.3. Examples

5.3.1. Open a command mode connection with Classic SRING

Open a connection on an Echo port:

AT#SD=2,0,10510,”88.37.127.146”,0,0,1

OK

AT#SSEND=2

>hello

OK

SRING: 2

AT#SSEND=2

>hello

OK

…

Only one SRING unsolicited also if we have other data pending, the user is informed only once.

5.3.2. Open a command mode connection with Data amount SRING

Open a connection on an Echo port:

AT#SD=2,0,10510,”88.37.127.146”,0,0,1

OK

AT#SSEND=2

 hello

OK

SRING: 2,5

AT#SSEND=2

 hello

OK

SRING: 2,10

Sring data amount unsolicited is updated every time new data arrives on the socket.

Now we use AT#SI to see info on connection Id 2:

AT#SI=2

#SI: 2,10,0,10,0

Ten bytes sent and ten pending on the socket.

5.3.3. Open a command mode connection with Data view SRING

We configure connection Id 1 for data view in text mode:

AT#SCFGEXT = 1,2,0,0

OK

We configure connection Id 2 for data view in hex mode for received data:

AT#SCFGEXT = 2,2,1,0

OK

Open the two echo connections in command mode:

AT#SD=1,0,10510,”88.37.127.146”,0,0,1

OK

AT#SD=2,0,10510,”88.37.127.146”,0,0,1

OK

Send some data on the first, text mode:

AT#SSEND=1

 hello

OK

SRING: 1,5,hello

Send some data on the second, hex mode for received data:

AT#SSEND=2

 hello

OK

SRING: 2,5,68656C6C6F

Data are extracted directly from the socket buffer. Now we send more than the

maximum number of chars for a SRING, this will cause two unsolicited SRING.

AT#SSEND=1

 testtesttesttesttesttesttesttesttesttesttesttesttesttesttesttesttest

OK

SRING: 1,64,testtesttesttesttesttesttesttesttesttesttesttesttesttesttesttest

SRING: 1,4,test

The first unsolicited contains the first 64 bytes of the socket buffer, the remaining 4 are

extracted with the second unsolicited message.

NOTE
18

:

it’s also possible to send data in hex data mode representation.

This is possible through setting #SCFGEXT <sendDataMode> parameter to 1.The data shall be

hexadecimal format(each octet of the data is given as two IRA character long hexadecimal

number) and given in one line.

Example:

We configure connection Id 1 for data view in hex mode for received data and also for sending

data:

AT#SCFGEXT = 1,2,1,0,0,1

OK

AT#SD=1,0,10510,”88.37.127.146”,0,0,1

OK

Send some data in hexadecimal format:

AT#SSEND=1

 68656C6C6F

OK

SRING: 1,5,68656C6C6F

5.3.4. Open a command mode UDP connection with Data view UDP SRING

We configure connection Id 1 for UDP data view in text mode:

AT#SCFGEXT = 1,3,0,0

OK

We configure connection Id 2 for data view in hex mode for received data:

AT#SCFGEXT = 2,3,1,0

OK

Open the two echo UDP connections in command mode:

AT#SD=1,1,10510,”88.37.127.146”,0,0,1

OK

AT#SD=2,1,10510,”88.37.127.146”,0,0,1

OK

Send some data on the first, text mode:

AT#SSEND=1

 hello

OK

SRING: ”88.37.127.146”,10510,1,5,0,hello

Send some data on the second, hex mode for received data:

AT#SSEND=2

 hello

OK

SRING: ”88.37.127.146”,10510,2,5,0,68656C6C6F

Now we send more than the maximum number of chars for a SRING, this will cause

two unsolicited SRING. The fist one showing also the number of bytes left in the UDP

datagram.

AT#SSEND=1

 testtesttesttesttesttesttesttesttesttesttesttesttesttesttesttesttest

OK

SRING: ”88.37.127.146”,10510,1,64,4,testtesttesttesttesttesttesttesttesttesttesttesttesttesttesttest

SRING: ”88.37.127.146”,10510,1,4,0,test

5.3.5. Open a command mode connection with AT#SA

After using AT#SL we have a <connId> listening on a specific port (only for TCP connections).

If we receive an incoming connection an unsolicited code is raised.

AT#SL = 1,1,1000

SRING: 1

Now we can accept the incoming connection:

AT#SA = 1,1

OK

and we stay in command mode, but the connection has been opened.

5.3.6. Passing from command mode to online mode interface

It’s always possible to come back to online mode interface using the command AT#SO

= <connId>.

Open an echo socket in command mode:

AT#SD=1,0,10510,”88.37.127.146”,0,0,1

OK

SRING: 1,5

Now we come back to online mode with:

AT#SO = 1

CONNECT

Hello

The AT interface is now in online mode and all characters written are interpreted as data to send

on the connection Id.

5.3.7. ICMP / PING
19

 handling

Through AT#ICMP command it’s possible to enable ICMP Ping ECHO_REPLY to a subset

(#FRWL setting) of IP addresses pinging the module.The command syntax is:

AT#ICMP=<mode>

 0 – disable ICMP Ping support(default)

 1 – enable Ping ECHO_REPLY to the subset of IP addresses set by #FRWL

 2 – enable Ping ECHO_REPLY to every IP addresses pinging the module

NOTE
20

:

Through AT#PING command is possible to send PING Echo Request messages to a specified

host(IP address or DNS host name) and to receive the corresponding Echo Reply.

The command syntax is:

AT#PING=<Ipaddr>[,<retryNum>[,<len>[,<timeout>[,<ttl>]]]]

Where:

 <Ipaddr> remote host address(IP address in dotted decimal notation or DNS host name)

 <retryNum> retries of PING Echo Request

 <len> length of PING Echo Request

 <timeout> - timeout waiting for a single Echo Reply

 <ttl> - time to live

NOTE: to use AT#PING the context has to be previously activated by AT#SGACT=1,1.

To receive the Echo Replies it’s not necessary to use AT#ICMP before AT#PING.

Example:

After #PING command:

AT#PING=”www.telit.com”

The Echo replies will be received like following string:

#PING: 01,”xxx.xxx.xxx.xxx”,6,50

Where:
<Echo Reply number>,<IP address of the remote host>,<replyTime>(100 ms units),<ttl>

Subsequent Echo replies are received as follows:
#PING: 02,”xxx.xxx.xxx.xxx”,5,50

#PING: 03,”xxx.xxx.xxx.xxx”,6,50

#PING: 04,”xxx.xxx.xxx.xxx”,5,50

OK

http://www.telit.com/

6. Notes concerning IPV6 Implementation

The table below shows in which Connection Configurations are supported IPV4, IPV6 or both

Internet Protocols in accordance with the used module family and software version. Refer to the

Application Table to see the latest Software Versions for each module family covered by the

document.

 Connection Configurations

SW Versions21 IP Easy Dial UP

10.00.xxx IPV4 IPV4 / IPV6

13.00.xxx IPV4 / IPV6 IPV4 / IPV6

16.00.xxx IPV4 IPV4 / IPV6

12.00.xxx IPV4 IPV4 / IPV6

08.01.xxx IPV4 IPV4

The table shows that the GE910 Family (13.00.xxx) supports the IPV4/IPV6 Internet Protocols

also when the IP Easy connection configuration is used. When the IPV6 parameter value is

selected via the +CGDCONT command, the TCP/IP stack installed on the module (IP Easy

configuration) uses the IPV6 Internet Protocol. In this case the protocol deals only with IPV6

addresses.

Currently, the GE910 Family provides the following commands supporting the IPV6 addresses:

 AT#SD

 AT#SSENDUDP

 AT#SSENDUDPEXT

 AT#FTPOPEN

 AT#PING

 AT#EMAILD

 AT#DNS

 AT#FRWLIPV6 (new AT command)

The IPV6 address used as input parameter in an AT command can have the following two

formats:

Where xxx is a number having the range: 000 255

A more common IPV6 format is:

The results of AT commands show the IPV6 addresses always in the first format as shown by

the following examples:

Example:

AT+CGDCONT=1,”Ipv6”,”APN”

OK

AT#SGACT=1,1

+IP: 42.1.1.152.2.76.193.109.0.0.0.5.17.176.201.1

OK

Example:

AT#SCFG=1,1,300,90,600,50

OK

AT#SD=1,0,80,”32.1.7.0.0.0.1.46.0.0.0.0.0.0.15.112”,0

CONNECT

or

AT#SD=1,0,80,” 2001:700:0:12e::f70”,0

CONNECT

Example:

AT#FTPOPEN=”2001:700:0:12e::f70”,””,””,1

OK

or

AT#FTPOPEN=”=”32.1.7.0.0.0.1.46.0.0.0.0.0.0.15.112”,””,””,1

OK

Example:

AT#PING=”32.1.7.0.0.0.1.46.0.0.0.0.0.0.15.112”

#PING: 01,” 32.1.7.0.0.0.1.46.0.0.0.0.0.0.15.112”,47,237

…

OK

or

AT#PING=”2001:700:0:12e::f70”

#PING: 01,” 32.1.7.0.0.0.1.46.0.0.0.0.0.0.15.112”,47,237

…

OK

Example:

AT#DNS=1,”2001:4860:4860::8888”,”2001:4860:4860::8844”

OK

AT#DNS?

#DNS: 1,”32.1.72.96.72.96.0.0.0.0.0.0.0.0.136.136”,”32.1.72.96.72.96.0.0.0.0.0.0

.0.0.136.68”

In addition, the GE910 Family provides a new AT command to set the firewall functionalities

working with the IPV6 format addresses, see next examples:

AT#FRWLIPV6=1,”2001:700:0:12e::f70”,”ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff”

OK

AT#FRWLIPV6?

#FRWLIPV6: “32.1.7.0.0.0.1.46.0.0.0.0.0.0.15.112”,”255.255.255.255.255.255.255.2

55.255.255.255.255.255.255.255.255”

7. List of acronyms

AAbbbbrreevviiaattiioonn DDeessccrriippttiioonn

Ack Acknowledge

APN Access Point Name

AT Attention commands

CM Command mode

0TCR Carriage Return

CSD Circuit Switched Data

CTS Clear To Send

DCD Data Carrier Detected

FTP File Transfer Protocol

GGSN Gateway GPRS Serving/Support Node

GPRS General Radio Packet Service

GSM Global System for Mobile communication

GTP GPRS Tunnelling Protocol

HTML Hyper Text Mark-up Language

HTTP Hypertext Transfer Protocol

HSCSD High-Speed Circuit-Switched Data

IP Internet Protocol

ISDN Integrated Services Digital Network

ISP Internet Service Provider

LCP Link Control Protocol

LLC Logical Link Control

MS Mobile Station

MT Mobile Terminated

NCP Network Control Protocol

OEM Other Equipment Manufacturer

PAP Password Authentication Protocol

PDP Packet Data Protocol

PDU Protocol Data Unit

PLMN Public Land Mobile Network

PPP Point to Point Protocol

QoS Quality Of Service

RLC Radio Link Control

RoHS Reduction of Hazardous Substances

RTS Ready To Send

SIM Subscriber Identity Module

SKTM Socket Mode

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

8. Document History

Revision Date Changes

ISSUE #0 2007-02-01 Initial release

ISSUE #1 2007-03-14 2.3.2 Easy GPRS – Email sending application: added new examples

ISSUE #2 2007-09-03 updated applicability table

new disclaimer

ISSUE #3 2007-11-29 This document has been integrated with Multisocket User Guide and is valid

from the 7.02.03 SW release

ISSUE #4 2008-07-16 Added new features related to sw release 7.03.00 or 7.02.05

such as: command mode connections and Easy GPRS over GSM

ISSUE#5 2009-07-20 Added new features related to sw release 7.03.01 or 7.02.06 such as: FTP in

command mode (par. 3.3.4.2, 3.3.5, 3.3.6)

ISSUE#6 2009-07-31 Applied new layout – shifted paragraphs accordingly

Added explanation about escape sequence guard time

ISSUE#7 2009-08-24 Added new features related to sw release 7.03.01 or 7.02.06 such as:

 automatic context activation,

 direct control on TCP/IP settings,

 Listen auto-response, UDP Listen,

 command mode data sending in Hex format,

 ICMP/PING handling.

ISSUE#8

2010-07-26 Added new features related to sw release 7.03.02

or 7.02.07 such as:

 added new socket configuration parameters

 (see new #SCFGEXT2 command)

 added new command #SSENDEXT for sending data

in command modeAdded new features related to sw release 7.03.02 , 7.02.07 or

10.0.02 such as:

 AT#PADFWD and AT#PADCMD commands

Removed parameter no more present in #EMAILD

command from the example(pag. 61)

Added new features related to SW release 10.0.03 such as:

 AT#BASE64 command

 AT#SGACTCFGEXT command

Added note in Easy GSM chapter, about COPS and CSURV commands

ISSUE#9 2010-10-04 Added GL865-DUAL to applicability table

ISSUE#10 2011-03-09 Added new features related to sw release 10.0.04 such as:

 AT#SMTPCL command, it allows to send and email

with different types of attachments.

#SMTPCL handles attachment, managing MIME headers

and encoding if required.

Updated all references from “GPRS” to “GPRS/UMTS/HSPA”(or removed

when not required)

Correction on #SSENDEXT referenced wrongly

as “#SSEND” at page 78; par. 5.2.3

Correction on par. 5.2.1(pag.74),

reference to #SD / cmd mode

(was wrongly indicated as “Atem”)

Added general note regarding availability of commands

on different SW version

Changed title from EASY GPRS User Guide to IP Easy User Guide

ISSUE#11 2011-10-17 Updated software versions

Corrected mistake in note at par 2.1.3

ISSUE#12 2011-10-20 Update related to differences relating to SW versions

starting from 12.00.xx1

ISSUE#13 2012-10-09 Updated Applicability and SW Versions tables.

Modified values range of the <srMode> parameter of the AT#SCFGEXT

command.

Added new commands #FTPAPPEXT, #SLASTCLOSURE

ISSUE#14 2013-02-07 Removed a note in chapter 2.1.4. Updated Applicability Table.

ISSUE#15 2013-02-19 Updated Applicability Table and chapter 1.4.

Added IPV6 parameter value relating +CGDCONT command in chapter 2.1.1.

Modified max number of bytes from 1024 to 1500 in chapter 5.2.3.

Added chapter 6.

