
Designing Systems-on-Chip Using Cores

Reinaldo A. Bergamaschi1, William R. Lee2

1IBM T. J. Watson Research Center, Yorktown Heights, NY, 2IBM Microelectronics, Raleigh, NC
rab@watson.ibm.com, brlee@us.ibm.com

Abstract
Leading-edge systems-on-chip (SoC) being designed today
could reach 20 Million gates and 0.5 to 1 GHz operating fre-
quency. In order to implement such systems, designers are
increasingly relying on reuse of intellectual property (IP)
blocks. Since IP blocks are pre-designed and pre-verified, the
designer can concentrate on the complete system without hav-
ing to worry about the correctness or performance of the indi-
vidual components. That is the goal, in theory. In practice,
assembling an SoC using IP blocks is still an error-prone,
labor-intensive and time-consuming process. This paper dis-
cusses the main challenges in SoC designs using IP blocks and
elaborates on the methodology and tools being put in place at
IBM for addressing the problem. It explains IBM’s SoC archi-
tecture and gives algorithmic details on the high-level tools
being developed for SoC design.

1. Introduction

Today’s market reality in VLSI design is characterized by: short
time-to-market, large gate count and high-performance. Moreover,
while time-to-market is paramount, complexity and performance
cannot be compromised, at the risk of reaching the market with an
uncompetitive product. This demanding environment is forcing
fundamental changes in the way VLSI systems are designed. The
use of pre-designed IP blocks (henceforth called cores) for SoC
design has become essential in order to build the required
complexity in a short time-to-market.

In practice, however, the vision of quickly assembling an SoC
using cores has not yet become reality for various reasons,
including the following:

• Architecting the system is a complex task, which requires
designers to answer questions such as, (1) what cpu should be
used, (2) what functions should be done in hardware or soft-
ware, (3) what MIPS rate will the system achieve and is that
enough for the target applications, etc. The answers to these
questions lead to the cores to be used, however, in many cases
they can only be confirmed later on in the design process.

• The integration of cores into an SoC is largely a manual and
error-prone process because it requires designers to fully

understand the functionality, interfaces and electrical charac-
teristics of complex cores, such as microprocessors, memory
controllers, bus arbiters, etc.

• Achieving full timing closure is very difficult due to the sheer
complexity of the system. In many cases it requires cores to be
tweaked which affects their reusability.

• Physical design of such large systems is a significant problem.
Even if the layout of each core is predefined, putting them
together with routing may cause unforeseen effects such as
noise and coupled capacitances which degrade performance.

• System verification is one of the major bottlenecks. Even if the
cores are pre-verified, it does not mean the whole system will
work when they are put together. Various interface and timing
issues can cause systems to fail even though the individual
cores are correct. Current formal verification as well as soft-
ware simulation techniques do not have the necessary capacity
or speed to handle large systems in short run times.

• The lack of established standards industry-wide and/or the
lack of efficient interface synthesis tools make it difficult for
IPs from different providers to be integrated into the same
SoC.

• Hardware-Software integration is another major problem
which directly affects time-to-market because it is usually
done later in the design process, when the hardware part is
more stable.

Computer-aided-design tools have traditionally focused on low-
level design issues, such as synthesis, timing, layout and
simulation. More recently, modeling approaches using variations
of high-level languages [2][5] have been developed. While they
help with modeling and simulation speed-up, they are not directly
targeted to systems using cores. The work being done by the VSI
Alliance [9] is oriented towards facilitating integration of cores,
however, it does not lessen the burden on the designer in
understanding the complexities of the cores.

After the main architectural decisions have been made, the very
first task in building an SoC is the integration of the cores into a
top-level design, which can then be simulated, synthesized,
floorplanned and used for early software development. This
integration task today is largely a manual and error-prone process
because it requires the designer to understand the functionality of
hundreds of pins in various cores and determine which pins should
be connected together. Moreover, cores are usually parameterized
and need to be configured according to their use in the SoC. These
tedious and manual tasks can insert errors in the design which may
not be caught until much later in the process. This top-level design
is the main driver for all follow-up tasks, hence it is important to
be able to implement, configure and change it easily and
efficiently.

There are almost no tools in industry today which help the
designer to build an SoC by integrating and configuring cores
easily. The complexity of current SoCs and the lack of appropriate
high-level tools make the reuse and plug-and-play goal still
unattainable.

This paper addresses these issues, and presents novel techniques

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

for SoC design using cores, which are very different from the
normal ASIC design tools. These techniques and accompanying
methodology have been implemented in a tool called “Coral”.
Coral allows SoCs to be designed at a high-level abstraction called
“virtual design” consisting of instantiations of virtual components,
connected using virtual nets. This virtual design is much more
concise and easier to create and configure than the real design.
Coral also contains algorithms for mapping this virtual design onto
a real design consisting of real cores from a library,
interconnections and glue logic.

The paper is organized as follows: Section 2 describes the target
architecture to be used and the main architectural issues involved
in creating an SoC. Section 3 presents in detail the algorithms and
techniques being developed for core-based SoCs. Section 4
presents a summary of the main contributions.

2. SoC Target Architecture

In the early stages of SoC design, cores were designed with
many different interfaces and communication protocols.
Integrating such cores in an SoC often required suboptimal glue
logic to be inserted [6]. In order to avoid this problem, standards
for on-chip bus structures were developed. Currently there are a
few publicly available bus architectures from leading
manufactures, such as the CoreConnectTM[8] from IBM and the
AMBA[1] from ARM. These bus architectures are usually tied to a
processor architecture, such as the PowerPC or the ARM. The
cores provided by these manufacturers are optimized to work with
such bus architectures, thus requiring minimal extra interface
logic.

IBM’s SoC framework consists of a core library called IBM
Blue LogicTM Core Library[3], and a fixed bus architecture called
the CoreConnectTM Architecture. The cores are predesigned and
preverified to work with the CoreConnect bus architecture and

protocols, thus allowing for reuse from chip to chip.
The IBM CoreConnect architecture provides three buses for

interconnecting cores and custom logic [8]:
• Processor Local Bus (PLB): used for interconnecting high-per-

formance, high-bandwidth cores, such as the PowerPC, DMA
controllers and external memory interfaces.

• On-Chip Peripheral Bus (OPB): used for interconnecting
peripherals which require lower data rates, such as serial ports,
parallel ports, UARTs, and other low-bandwidth cores.

• Device Control Register Bus (DCR): low speed data-path used
for passing configuration and status information between the
processor core and other cores.

Fig. 1 illustrates a CoreConnect-based SoC. Although the cores
are designed to interface with the buses almost directly, the
designer still has to connect hundreds of pins and define the
parameters for all cores. In order to create a correct top level
description/schematic of the SoC a designer has to go through
several steps, including the following:

• Define all the cores needed to implement the desired function-
ality. This process is a combination of identifying pre-
designed cores to be used either with or without modification
and identifying new cores to be designed. These choices are
typically made within the constraints of a given price/perfor-
mance target. The designer must choose between 32, 64 or
128-bit buses, processor characteristics, hardware and soft-
ware trade-offs, etc. In many cases, the choices can only be
validated later on, after simulation and performance analysis.

• Understand the functionality of all pins on all cores and deter-
mine which pins should be connected together. Although this
problem is alleviated with the use of predefined bus architec-
tures, it is still a labor intensive manual process. It requires
designers to read through lengthy documentation in order to
understand the function of all pins in all cores. Even a single
standard bus pin on just one core can cause weeks of schedule
delays if it is named inconsistently with the specifications. The

Figure 1. System-on-chip using the CoreConnect bus architecture

P P C 4X X C P U

inst da ta

P L B
M aste rs

P L B
S lav es

D R A M
C ontro lle r

P L B
A rb iter

P rocessor L oca l B us (P L B)

O P B
M asters

O P B
S lav es

O P B
A rb ite r

P L B -O P B
B ridge

D C R B us

O
n

-C
h

ip
 P

e
ri

p
h

e
ra

l
B

u
s

 (
O

P
B

)

e.g.:
UART,
IIC,
Timers,
IRDA,
SmartCard,
GPIO

e.g.:
CPU,
DMA Controller,
MPEG Audio, Video

e.g.:
Decompression Core,
External Bus Interface Units

e.g.: Bridge

PLB Master PLB Slave, OBP Master

SoC integrator will either call the core support group for infor-
mation, or worse, incorrectly connect this pin and find this
problem only later during simulation and debugging.

• Define the request priorities for the masters on the buses and
the processor interrupt request priorities. Priorities are applica-
tion specific and may dramatically affect the system perfor-
mance. Designers must analyze the application and determine
the priorities among devices. On the master side, for example,
in a set-top box chip, the video update from the MPEG
decoder may be assigned higher priority than the processor
itself. Similarly, for the slave interrupts, the designer must
choose their relative priorities for the software to take advan-
tage of the priority encoded interrupt vector generation.

• Interconnect pins according to their priorities, while possibly
leaving room in the design for last minute changes (e.g., it may
be decided at a later stage that interrupt pins should change
priority, or a new interrupt be added).

• Define which cores may access memory through a DMA con-
troller and perform the channel assignment according to the
priority of the requesting devices. When the number of DMA
requestors exceeds the number of DMA channels, channel
sharing can be utilized and/or adding an additional DMA con-
troller.

• Define address maps for all cores and pass the values as
parameters to each core, insuring that an address conflict is not
created between any two cores.

• Define the clock domains valid in the chip and connect the
right clocks to each core, as well as the appropriate clock con-
trol logic.

• Insert any required glue logic between cores

• Define all the chip I/Os and design the I/O logic including any
sharing of pins and manufacturer required test control logic.

• Check that the cores being used are compatible with respect to
operating frequency, bit-width, version number, etc.

• Document the system (e.g., address maps, interrupt priorities,
DMA channels, chip I/Os, etc.) for future use by software and
printed circuit board developers.

This non-exhaustive list is sufficient to show that, despite using
a fixed bus architecture, there still is a large number of complex
tasks that need to be performed. These tasks are performed
manually in today’s methodologies and tools, which is inefficient
and error-prone.

3. Automating SoC Integration

In order to automate many of the manual tasks described in the
previous section, a new tool called “Coral” was developed, which
contains new algorithms and methodologies for SoC design using
cores based on the concept of a synthesizable “virtual design”.

Coral increases productivity by raising the level of abstraction
in which SoC designs are performed. By enabling the designer to
work at the virtual level, it hides all the unnecessary complexity
associated with the cores, which decreases errors and increases
productivity.

Coral and its associated methodology are based on the
following elements: (A) Virtual design, (B) Interface encapsulation
and Glueless interfaces, (C) Core and Pin Properties, (D)
Interconnection Engine, (E) Virtual to Real Synthesis Engine, and
(F) Configuration Engines. Details on these elements are given in
the following sections.

3.1 Virtual Design

In the traditional ASIC design flow, there is a high-level of
abstraction represented by the register-transfer level (RTL)
language description, using hardware description languages such
as VHDL or Verilog. Most designs are written at the RT level and
mapped to a gate-level netlist by logic synthesis tools. In current
SoC design flows, there is no similar high-level abstraction. SoC
designs are described directly at the core level (similar to gate-
level) by manually instantiating the cores and the interconnections
among their pins. In other words, core-based SoC design today is
at a similar stage that ASIC design was prior to the widespread use
of hardware description languages and logic synthesis tools.

Coral’s synthesizable virtual design concept changes this
picture. The virtual design is a structural and functional
encapsulation of the real design consisting of virtual components,
virtual interfaces and virtual nets. The virtual design can be created
using a schematic editor or any hardware description language.

A virtual component is a representation of a class of real
components. For example, the PowerPC virtual component
(PPC_VC) represents all real PowerPC cores (e.g., 401, 405). For
the same virtual design, the user can at any moment select a
different real component mapping for a virtual component and
Coral will automatically regenerate the necessary interconnections
and glue logic to use the new real component.

The inputs/outputs of a virtual component are called virtual
interfaces. Virtual interfaces are connected using virtual nets. A
virtual interface represents a grouping of the real interface pins
which are functionally related. For example, the PowerPC virtual
component contains a single virtual pin PLB_M_DCU_interface
representing all real pins (in the real PowerPC cores) which are
responsible for the interface between the internal data cache unit
and the master side of the external processor bus.

Because the number of virtual ports ranges between 4 to 15 for a
virtual component vs. 50 to 300 for a real component, the task of
creating a virtual design is much simplified and roughly equivalent
to drawing the system block diagram for the SoC. The virtual
design represents both a synthesizable description of the SoC as
well as the documentation describing the function of the SoC.

In order to illustrate the degree of encapsulation of a virtual
component, let us consider the PowerPC virtual component
(PPC_VC) and the real PowerPC 401 (PowerPC401). The VHDL
component declaration for PPC_VC, shown in Fig. 2, has 10 pins,
or virtual interfaces, whereas the real component PPC401 has
approximately 160 pins. The 10 virtual pins describe functional
interfaces such as PLB_M_DCU_interface (master data cache unit

ENTITY PPC_VC IS
PORT (PLB_M_ICU_interface: in STD_LOGIC;

PLB_M_DCU_interface: in STD_LOGIC;
ISOCM_interface: in STD_LOGIC;
DSOCM_interface: in STD_LOGIC;
APU_interface: in STD_LOGIC;
RESET_interface: in STD_LOGIC;
INTERRUPT_interface: in STD_LOGIC;
CLOCK_interface: in STD_LOGIC;
DCR_interface: in STD_LOGIC;
JTAG_interface: in STD_LOGIC

);
END PPC_VC;

Figure 2. PowerPC Virtual Component interface definition

bus interface), or INTERRUPT_interface, or APU_interface
(Auxiliary processor unit interface), as well as other required
interfaces for clocking and testing. Each virtual interface may
correspond to several real pins. For example the
PLB_M_DCU_interface virtual pin corresponds to 18 real pins
(including inputs and outputs).

3.2 From Interface Encapsulation to Glueless
Interfaces

One of the primary concepts in Coral is that the system designer
never has to worry about or create any interface logic between
cores.

The use of a target bus architecture and cores predesigned to
interface to the bus eliminates the need for protocol synthesis and
reduces considerably the amount of interface logic. However, it
does not eliminate the glue logic completely, as it is sometimes
dependent on the complete system. For example, all
“acknowledgment” signals from the slave devices are OR’ed and
the output connected to the bus arbiter. The number of inputs to
this OR gate depends on the number of slave devices.

In order to allow for fully automatic synthesis of a virtual design
into a real design, Coral relies two levels of glue logic
encapsulation. First, each core is designed to contain all the static
and parameterizable protocol/interface logic. This can be done by
means of generics ports in VHDL or parameters in Verilog.
Secondly, Coral is able to create automatically a limited amount of
glue logic between cores. This logic is described as a property of
input pins. Such property can describe simple Boolean functions
that represent the glue logic from all source nets to a given input
pin. By means of these two levels, the designer is completely
spared from having to create any interface logic explicitly.

For legacy cores and third party cores which were not originally
designed to contain the interface logic, one can create core
wrappers in VHDL or Verilog which contain the necessary
parameterizable logic to interface the cores to the adopted bus
architecture.

3.3 Core and Pin Properties

In order to automatically generate interconnections among
cores, it is necessary to encode the structural and functional
characteristics of a component and its pins, in a manner that can be
algorithmically processed by a computer program. In current
design methodologies, the designer has to spend a large amount of
time reading and understanding specification manuals just to find
out how pins in different components need to be connected.

In Coral, this information is encoded into properties attached to
all components and their pins. Coral contains algorithms which can
efficiently compare these properties and decide whether two pins
should be connected. Properties associated with a pin define the
functionality and taxonomy of that pin. By assigning unique
properties to all pins in all cores, it is possible to compare those
properties and determine if the pins are compatible.

The approach in [7] also mentions classifying IPs using
properties. However, it differs completely from our work first
because it only applies to IP properties (there is no mention of pin
properties), and secondly because its goal was to be able to query a
database for IP blocks satisfying a set of properties, whereas in our
work properties are used in a much broader sense to help in the
automatic synthesis of SoCs. Moreover, the approach in [7] does
not give any algorithm for searching and reasoning about the
properties, which is an integral part of Coral (see Section 3.4).

Based on the IBM Blue LogicTM Core Library utilizing the
CoreConnectTM bus architecture and other external cores, it was
determined that most pins can be classified for interconnection
purposes according to the following functional and structural
properties:

• BUS_TYPE: the type of bus that the pin interfaces to. This can
assume values such as, PLB (processor local bus), OPB (on-
chip peripheral bus), ASB (AMBA system bus), APB (AMBA
peripheral bus), etc.

• INTERFACE TYPE: the type of interface represented by the
pin, e.g., MASTER, SLAVE.

• FUNCTION_TYPE: the function implemented by the pin,
e.g., READ, WRITE, INTERRUPT. This pin could be one of
several pins responsible for implementing the function.

• OPERATION_TYPE: the operation performed by the pin as
part of the function specified in FUNCTION_TYPE, e.g.,
REQUEST, ACKNOWLEDGE.

• DATA_TYPE: the type of data manipulated by the function,
e.g., ADDRESS, INSTRUCTION, DATA.

• RESOURCE_TYPE: the system resource used when the func-
tion specified by FUNCTION_TYPE is executed, e.g., BUS,
PERIPHERAL.

• PIN_GROUP: property used to indicate grouping of pins in
the same interface.

For example, pin DCU_plbRequest on the PowerPCTM401 is
asserted by the Data Cache Unit (DCU) inside the PowerPC, to
request a data read or write between external cacheable memory
and the general purpose registers in the execution unit across the
read or write data bus. The PowerPC acts as a master device on the
processor local bus (PLB). Given this information, we derived the
following properties for this pin:

• BUS_TYPE = PLB
• INTERFACE_TYPE = MASTER
• FUNCTION_TYPE = READ_OR_WRITE
• OPERATION_TYPE = REQUEST
• DATA_TYPE = DATA
• RESOURCE_TYPE = BUS
• PIN_GROUP = DCU

Coral uses a specialized language for specifying properties on
cores and pins. For any given core to be usable by Coral, it needs
to have a corresponding virtual component and properties
associated with all its pins. Once that is available, that core can be
used by Coral and automatically connected to other cores. This
approach makes Coral the one of the first tools for plug-and-play
use and reuse of cores in any architecture.

3.4 Interconnection Engine

Properties are used for establishing correspondence between a
virtual pin and the real pins with similar functionality, as well as
for matching up real pins in different components. By comparing
properties on pins the tool can decide whether the functionality of
a real pin falls within the functionality of a virtual pin. In addition,
by comparing properties on real pins from different components,
Coral can decide whether they should be connected.

Since the complete SoC may have hundreds to thousands of
internal pins, these comparisons need to be done very efficiently
and in a general manner. Moreover, the algorithms needs to be able
to handle not only exact matches but also overlapping sets (not
exact match). This is achieved by means of two novel techniques:

(1) property encoding using Binary Decision Diagrams[4] (BDDs),
and (2) property comparison and matching using logical operations
on BDDs.

Each property/value pair PVi = <property_type Ti ==
property_value Pi> is mapped to a Boolean variable (e.g., a BDD
variable), and a group of property/value pairs is mapped to the
AND function of all individual Boolean variables. More
specifically, given a group of property/value pairs PG = {PV1,
PV2,..., PVn}, the corresponding set of BDD variables is denoted
B(PG) = {b1, b2,..., bn}. The BDD for the complete group is given
by: . When the property
group PG is attached to a pin T, the complete BDD function F(PG)
is denoted as , or the property function F of pin T with
respect to property group PG.

The virtual to real synthesis process requires two steps of
property comparisons. First, given a virtual pin V in a virtual
component VC, the tool needs to determine the compatible set of
real pins in the corresponding real component, with respect to their
interconnection property group. This is achieved using the
following algorithm. Let and be the
Boolean functions representing the interconnection property
groups in virtual pin V and real pin R respectively, where V
belongs to virtual component VC and R belongs to real component
VR (which is a valid mapping of VC). R is compatible with V iff

, that is, the property function for V
contains the one for R. The containment operator “ “ is
computed using BDD operations. In logic terms, A contains B if

.
Secondly, given two real pins in two different components, the

tool needs to determine if they are compatible and can be
connected together. This is computed as follows. Let
and be the Boolean functions representing the
interconnection property groups in real pins Ra and Rx
respectively, in two real components. Ra is compatible with Rx iff

 or , that is one
must be fully contained in the other. This again can be computed
efficiently using BDD operations.

3.5 Virtual to Real Synthesis

The virtual-to-real synthesis engine (VRSE) is responsible for
synthesizing a real design from a virtual design. Fig. 3 illustrates
this synthesis process. The expansion of virtual interfaces and

virtual nets into real interfaces and real nets relies on properties
attached to both virtual and real components and virtual and real
pins, and on the algorithms presented in Section 3.4.The VRSE is
comprised of the following steps:

1. For each virtual component, the VRSE instantiates a real
component in the real design. The exact real component is
fully selectable by the designer based on a given virtual com-
ponent library which lists all available real components for a
given virtual component.

2. The VRSE traverses every virtual net and the virtual pins
connected to it. For each virtual pin visited, it determines the
corresponding real pins that have compatible functionality
(using the property comparison algorithms explained in the
previous sections). This is illustrated in the first comparison
step shown in Fig. 4. Given a virtual pin v1 in virtual compo-
nent VC1, the VRSE compare the properties of v1 with those
of all real pins in real component RC1. From this comparison
it can establish that real pins r1, r2 and r4 are compatible
with virtual pin v1. Similarly, it can derive that, for example,
real pins r5, r7 and r8 in real component RC2 are compatible
with virtual pin v3 in virtual component VC2.

3. Given two groups of real pins in two real components (corre-
sponding to two virtual pins connected by a virtual net), the
VRSE compares the properties on the real pins (across these
two groups) and determine which real pins should be con-
nected together. This is the second comparison step shown in
Fig. 4. The VRSE automatically determines the direction of
the real ports (in, out, inout) and connects them correctly.

Fig. 4 shows simple cases of straight connections, however, the
algorithm supports the specification of simple logic functions
associated with real pins, and when the connection is made those
logic functions are created as well. This is used for automatically
inserting any required glue logic between components.

3.6 Configuration Engine

Coral provides the designer various system configuration menus
which define much of the overall SoC operation. These menus
permit programming of the virtual component parameters in an
error free method and enable the generation of the system
documentation that is not found as part of a stand-alone core
specification. The configuration menus include clocking, address
map definition, interrupt map definition, DMA channel assignment
and the I/O specification and generation. The configuration
information becomes part of the virtual design, and passed to the
real design as parameters to the cores during virtual to real
synthesis.

As an example of such configuration capability, consider the
configuration of address maps. Each core in the design needs to be
associated with a given address map in its own bus domain. IBM’s
CoreConnectTM SoCs have three address domains: DCR (device
control register), PLB (processor local bus) and OPB (on-chip
peripheral bus). Each domain is configured through the Coral user
interface to generate all the address component parameterization.
This process defines all register and memory address space, which
can then be used to generate the documentation and keep the
design and documentation consistent.

4. Summary

This paper presented the main issues involved in designing an
SoC using cores and an approach for automating the design and
synthesis of the top-level description of the system.

F PG() b= 1 b2 … bn∧ ∧ ∧

F T()
PG

F V()
PG

F R()
PG

F V()
PG

F R()
PG

⊇
⊇

A B∨ A≡

F Ra()
PGF Rx()

PG

F Ra()
PG F Rx()

PG
⊇ F Rx()

PG F Ra()
PG

⊇

V 1

V 2

V 3

V 4
V 5

Virtua l D esign

R 1

R 3

R 2

G L
R 5

G L

R 4G L

R eal D esign

Virtua l to R eal S yn thes is

Figure 3. Virtual to real synthesis (GL = glue logic)

The algorithms and methodology presented in this paper have
been implemented in C++ and tested using the IBM Blue Logic
Core Library and the CoreConnect bus architecture. The approach
is general and can be extended to any target bus architecture.

The main characteristics of Coral are: (1) a unique
encapsulation of the structural and functional information of the
cores in virtual representations and properties, (2) a synthesizable
virtual design representation which is a high-level abstraction of
the SoC, (3) Core encapsulation and glueless interfaces which free
the designer from having to create any interface logic, (4)
algorithms for mapping a virtual design into a real design with all
interconnections and glue logic, and (5) special configuration
menus which allow the designer to specify parameters to the SoC
at the virtual design level.

As proof of concept, several virtual designs have been created
and automatically synthesized to real designs. Significant

reductions in design size and time have been accomplished. For
example, a reference SoC design composed of 41 instantiated
cores and macros was reduced from 6900 lines of Verilog for the
real design to around 600 lines for the virtual design.

Coral effectively helps designers to automate most of the
manual and error-prone tasks involved with designing a top-level
SoC using cores. Moreover, by encapsulating cores with virtual
descriptions and properties, it brings a high-level of abstraction to
SoC design which allows for easy reuse of predesigned
components.

Coral represents one of the first synthesis tools in industry that
can effectively realize the promise of plug-and-play of cores.

ACKNOWLEDGMENTS

We would like to thank the members of the Coral team, namely,
Subhrajit Bhattacharya, Foster White, Mike Muhlada, Duane
Richardson and Ronaldo Wagner for many interesting discussions
and suggestions which helped shape this paper.

REFERENCES

[1] “AMBA Specification Overview”, ARM,
http://www.arm.com/Pro+Peripherals/AMBA.

[2] G. Arnout, “SystemC Standard”, Proceedings of the ASP-
DAC 2000, January 2000.

[3] “Blue Logic Technology”, IBM,
http://www.chips.ibm.com/bluelogic.

[4] R.E. Bryant, “Graph Based Algorithms for Boolean Function
Manipulation”, IEEE Transactions on Computers, Vol.35,
No.8, August, 1986.

[5] P. Flake and S. Davidmann, “Superlog, a Unified Design Lan-
guage for System-on-Chip”, Proceedings of the ASP-DAC
2000, January 2000.

[6] A. Rincon, W. Lee and M. Slatery, “The Changing Landscape
of System-on-a-Chip Design”, IBM MicroNews, 3rd Quarter
1999, Vol.5, No.3, IBM Microelectronics.

[7] P. Schindler, K. Weidenbacher and T. Zimmermann, “IP
Repository, A Web based IP Reuse Infrastructure”, Proceed-
ings of IEEE 1999 Custom Integrated Circuits Conference,
May 1999.

[8] “The CoreConnectTM Bus Architecture” IBM, 1999,
http://www.chips.ibm.com/product/coreconnect/docs/
crcon_wp.pdf

[9] VSI AllianceTM Architecture Document, Version 1.0, VSI Alli-
ance, 1997, http://www.vsi.com/the_rest.html.

V C 1 x

x

V C 2
x

x

v1

v2

v3

v4

R C 1 x
x

R C 2
x
x

r1
r2

r5
r6

R ea l D esign

xr3
xr4

x
x

r7
r8

x r9

V net

S tep 1 :
F in d compatib le rea l pin s

R C 1 x
x

R C 2
x
x

r1
r2

r5
r6

xr3
xr4

x
x

r7
r8

x r9

n e t1

n e t2

n e t3

Step2: Compare properties or {r1, r2, r4} with {r5, r7, r8}.
Assuming that {r1, r8}, {r2, r7} and {r4, r5} are compatible,
Coral will produce the connections shown below.

Figure 4. Steps during virtual to real synthesis

Virtu a l D esign

R ea l D esign

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

