
Micriµm
Empowering Embedded Systems

µC/TCP-IP
and

The ADSP-BF537 Processor

Application Note
AN-3530

www.Micrium.com

 µC/TCP-IP
and the ADSP-BF537 Processor

2

Table of Contents

1.00 Introduction .. 3

1.01 Provided Files .. 4

1.02 Configuring µC/TCP-IP... 7

1.03 BSP Files ... 7

1.04 Configuring the Network... 7

2.00 µC/TTCP and pcattcp .. 8

2.01 µC/TTCP .. 8

2.02 pcattcp.. 10

3.00 An Example Application ... 11

3.01 app_c.c... 11

3.02 TTCP results .. 15

Acknowledgements ... 20

References.. 20

Contacts .. 20

µC/TCP-IP
and the ADSP-BF537 Processor

 3

1.00 Introduction

µC/TCP-IP is a compact, reliable, high-performance TCP/IP protocol stack. The result of many man-
years of development, µC/TCP-IP exhibits the quality that is typical of Micrium software. It contains over
100,000 lines of the cleanest, most consistent ANSI C source code that you will ever find in a TCP/IP
stack, and it is designed to be used with nearly any CPU, RTOS, and NIC (Network Interface Controller).
Therefore, µC/TCP-IP enables the rapid configuration of required network options, minimizing your time
to market.

This document explains how to use µC/TCP-IP with the Analog Device’s ADSP-BF537 processor. The
files included with this document were tested on ADSP-BF537 EZ-KIT LITE platform using Visual DSP++
5.0.

The application example, provided with this document, uses µC/OS-II v2.86 and µC/TCP-IP v1.91. It’s
intended to demonstrate the use of µC/TCP-IP through:

• Simple “ping” Echo Request from a computer which is connected to the same network as your
target board.

• Test TCP or TTCP which is a tool that performs TCP/IP or UDP/IP performance tests. TTCP is a

commandline sockets-based benchmarking tool for measuring performance between two
systems. It was originally developed in 1984 by Mike Muuss and Terry Slattery for the BSD
operating system. The original TTCP and sources are in the public domain, and copies are
available from many anonymous FTP sites.

 µC/TCP-IP
and the ADSP-BF537 Processor

4

1.01 Provided Files

µC/TCP-IP, like Micrium’s other software modules, is provided in source code form, and it is compiled
along with your application. µC/TCP-IP’s source code consists of a combination of device-independent
files and files that adapt the software to specific processors, operating systems, and NICs.

AN-3530.zip, the file that includes this document, furnishes all these files including µC/OS-II and
µC/TCP-IP source files.

Once AN-3530.zip is decompressed, you obtain the folders briefly described below. The content of
µC/TCP-IP folders is described in more detail in the µC/TCP-IP User’s Manual.

\Micrium\Software\uCOS-II\Source

This folder contains the processor-independent code for µC/OS-II.

\Micrium\Software\uCOS-II\Ports\ADSP-BF537\VDSP50

This folder contains the µC/OS-II port files for the ADSP-BF537 processor. These files are
thoroughly described in the Application Note AN-1530, which is available from
http://www.micrium.com/analog

\Micrium\AppNotes
 This directory contains the current document.

 AN-3530.pdf

\Micrium\Software\uC-TCPIP\Source

µC/TCP-IP’s device-independent files should be located in this folder.

\Micrium\Software\uC-TCPIP\NIC\ETHER
This folder should contain the files for your NIC driver. This application example was tested on
the ADSP-BF537 EZ-KIT LITE which provides an Ethernet interface that contains a SMSC
LAN83C185 device. This folder contains two subfolders:

 \Micrium\Software\uC-TCPIP\NIC\ETHER\LAN83C185

net_nic_def.h
net_nic.h
net_nic.c

 \Micrium\Software\uC-TCPIP\NIC\ETHER\PHY\LAN83C185

 net_phy.h
 net_phy.c

\Micrium\Software\uC-TCPIP\IF\

µC/TCP-IP’s network interface code is placed in this folder. A subfolder containing code
corresponding to the specific interface being used, such as Ethernet, should be located within
this folder.

µC/TCP-IP
and the ADSP-BF537 Processor

 5

\Micrium\Software\uC-TCPIP\OS\uCOS-II
This directory holds the files that serve as the interface between µC/TCP-IP and µC/OS-II.

net_os.c
net_os.h
net_os_al.h
net_os_al_c.c

\Micrium\Software\uC-TCPIP\Doc
 This directory contains µC/TCP-IP documentation files.

\Micrium\Software\uC-LIB\

The files in this folder contain Micrium’s implementations of the standard library routines used by
µC/TCP-IP. These routines are provided to simplify third-party certification of your products.

\Micrium\Software\uC-CPU\

This folder contains cpu_def.h, which declares #define constants for CPU alignment, endianness,
and other generic CPU properties. It also contains the following subfolder:

 \Micrium\Software\uC-CPU\ADSP-BF537\VDSP50
This subfolder contains cpu.h and cpu_a.asm. cpu.h file defines the Micriµm portable data types
for 8-, 16-, and 32-bit signed and unsigned integers (such as CPU_INT16U, a 16-bit unsigned
integer) for the ADSP-BF537 processor with the VDSP 5.0 toolchain. These allow code to be
independent of processor and compiler word size definitions.

\Micrium\Software\EvalBorads\ADI\ADSP-BF537_EZKIT_Lite\VDSP50\BSP
 This directory contains the following files:

bsp.h
bsp.c
net_bsp.h
net_bsp.c

net_bsp.h and net_bsp.c contain specific code to the NIC (Network Interface Controller)
used and other functions that are dependent of the hardware.

bsp.h and bsp.c hide the hardware details from the application code, and allow you to initialize
and setup the needed services like timers, leds and push-button switches.

\Micrium\Software\EvalBorads\ADI\ADSP-BF537_EZKIT_Lite\VDSP50\uC-TCP-IP\EX1
 This is the example application folder which contains the following files:

Application files VDSP++ generated files

app_c.c
app_cfg.h
net_cfg.h
os_cfg.h
includes.h

Ex1.djp
Ex1.ldf
Ex1.mak
Ex1.pcf
Ex1_basiccrt.s
Ex1_heaptab.c
Ex1_cplbtab.c

 µC/TCP-IP
and the ADSP-BF537 Processor

6

\Micrium\Software\uC-TTCP\Doc
This directory contains the µC/TTCP documentation files.

\Micrium\Software\uC-TTCP\Source
This directory contains the µC/TTCP source files (ttcp.c and ttcp.h).

\Micrium\Software\uC-TTCP\OS\uCOS-II
This directory contains ttcp_os.c file. This file is a specific RTOS (µC/OS-II) for µC/TTCP.

\Micrium\Software\uC-TTCP\Cfg\Template
This directory contains ttcp_cfg.h file which is a configuration file for µC/TTCP.

\Micrium\Software\uC-TTCP\pcattcp
For our development, Micrium has selected the PCAUSA port of TTCP to Windows Sockets for the TTCP
module running on the Windows host. It is called pcattcp. It is not part of the official release, but it’s
provided within this application example.

This directory contains the following files:

PCATTCP.chm
PCATTCP.exe
RELEASE.TXT
sourcesv2.zip
ttcpzip.exe

• PCATTCP.chm is the pcattcp html file.
• PCATTCP.exe is the tool itself.
• RELEASE.TXT contains release informations for the pcattcp versions.
• sourcesv2.zip is winzip file containing the pcattcp sources.
• ttcpzip.exe a self-extract zip file containing the 4 files above (the download result).

You will find more information about pcattcp at http://www.pcausa.com/Utilities/pcattcp.htm

µC/TCP-IP
and the ADSP-BF537 Processor

 7

1.02 Configuring µC/TCP-IP

net_cfg.h, which should be placed in your project’s Application folder, is µC/TCP-IP’s
configuration file. net_cfg.h contains constants that represent configurable parameters, such as the
number of timers, the number of buffers for packet reception and transmission, and the number of
sockets that your application can open. These constants are described in the µC/TCP-IP User’s
Manual.

1.03 BSP Files

AN-3530.zip includes two BSP files: bsp.c, and bsp.h. These files declare the functions that setup
the ADSP-BF537 EZ Kit Lite evaluation platform.

AN-3530.zip includes two Network BSP files: net_bsp.c, and net_bsp.h. These files declare the
functions that your NIC driver will use to access your hardware. The files assume that you are using the
SMSC LAN83C185 device.

1.04 Configuring the Network

This example application assumes that the ADSP-BF537 EZ Kit Lite board is connected to a network
containing a computer from where a “ping” Echo Request is sent or from where the pcattcp program is
executed in order to complete TTCP performance tests.

A static IP address of 192.168.1.13 is assigned to the board, this IP address is defined in app_cfg.h
file.

As shown in the Figure 1.1, we have used a peer to peer configuration for this example application.

Figure 1.1 Network configuration

 µC/TCP-IP
and the ADSP-BF537 Processor

8

2.00 µC/TTCP and pcattcp

µC/TTCP is compliant with the other TTCP tools available in the public domain. It was written for target
systems running µC/OS-II and µC/TCP-IP.

This section describes the µC/TTCP and the pcattcp usage.

2.01 µC/TTCP

As soon as the application is launched on the target, the Terminal Window running on the Development
system will display the application status and a command line. The user controls µC/TTCP by entering
parameters on the command line.

The command usage is displayed if the user makes an error entering the command line or by pressing
ENTER at the “>” command prompt. Here is the command usage:

Usage: -t [-options] host

 -r [-options]
Common options: \r\n");
 -l ## length of buffers read from or written to network (default 8192)
 -u use UDP instead of TCP
 -p ## port number to send to or listen at (default 5001)
 -s -t: source a pattern to network
 -r: sink (discard) all data from network
 -d set SO_DEBUG socket option (not supported)
 -b ## set socket buffer size (not supported)
 -f X format for rate: k,K = kilo{bit,byte}; m,M = mega; g,G = giga
Options specific to -t:
 -n ## number of source buffers written to network (default 2048)
 -D don't buffer TCP writes (sets TCP_NODELAY socket option)
Options specific to -r:
 -B for -s, only output full blocks as specified by -l
 -T "touch": access each byte as it is read

As an example, to start the TTCP TCP Receive Test start µC/TTCP with the "-r" option.

>-r

The TCP server will start and then wait until a remote TTCP client makes a connection attempt.

µC/TCP-IP
and the ADSP-BF537 Processor

 9

Sinkmode (-s)

The simplest and most popular TTCP mode of operation is called "sinkmode". In this mode of
operation the TTCP transmitter sends a fabricated data pattern and the TTCP receiver simply
sinks (discards) any data that it receives.

This is the default TTCP mode of operation.

Standard Streams

Alternatively, TTCP can use what is called "standard streams" or "standard I/O". With
µC/TTCP, the Serial port is used as the standard I/O.

Standard stream has only been implemented in Receiver mode. The code for Transmitter mode
still needs to be developed.

Defaults

 The µC/TTCP defaults for the command parameters are:

Parameter Value Command line
parameter

Buffer Length 8192 -l

Number of buffers used 2048 -n

Transport layer protocol TCP -u

Layer 4 port number 5001 -p

Receiver/Transmitter Receiver mode -r or –t

Sink mode Enabled -s

Block read Disabled -B

Output format 'Kilobits per
second'

-f

Received data processing Disabled -T

Socket options Not supported -d

Buffer TCP writes Not supported -D

 µC/TCP-IP
and the ADSP-BF537 Processor

10

2.02 pcattcp

Follow the steps below to run pcattcp :

• Copy the content of ttcpzip.exe
to a directory (C:\pcattcp for
example).

• Open a DOS prompt window
• Change directory to the

directory now containing
pcattcp.exe

• From the DOS prompt, start
pcattcp: C:\pcattcp>pcattcp

Without any arguments, pcattcp will
output the command usage. For more
detailed information about the pcattcp
commands, please refer to the html
help file by double clicking on
PCATTCP.chm. This will automatically open a help file.

µC/TCP-IP
and the ADSP-BF537 Processor

 11

3.00 An Example Application

app_c.c is a simple example application that can be used to test that µC/TCP-IP is running properly on
your ADSP-BF537 system. app_c.c creates one task (in addition to the idle and statistic tasks created
by µC/OS-II) that initializes µC/TCP-IP, µC/TTCP and then blinks a LED.

3.01 app_c.c

App_BootTask(), the single task created in app_c.c, as well as App_InitTCPIP(), the function that
App_BootTask() calls to initialize µC/TCP-IP, are described below in Listing 3-2 and Listing 3-3,
respectively.

Listing 3-1, main()

int main (void)
{

 CPU_INT08U os_err;

 BSP_Init(); /* Initialize BSP. */
 printf(("\n\n\n"));
 printf(("Initialize OS...\n"));
 OSInit(); /* Initialize OS. */

 /* Create start task. */
 OSTaskCreateExt(App_BootTask,
 (void *)0,
 (OS_STK *)&App_BootTaskStk[APP_OS_CFG_BOOT_TASK_STK_SIZE - 1],
 APP_OS_CFG_BOOT_TASK_PRIO,
 APP_OS_CFG_BOOT_TASK_PRIO,
 (OS_STK *)&App_BootTaskStk[0],
 APP_OS_CFG_BOOT_TASK_STK_SIZE,
 (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

#if (OS_TASK_NAME_SIZE >= 16) /* Give a name to tasks. */

 OSTaskNameSet(OS_TASK_IDLE_PRIO, "Idle", &os_err);
 OSTaskNameSet(APP_OS_CFG_BOOT_TASK_PRIO,"Boot Task", &os_err);

#endif

 printf("Start OS...\n");
 OSStart(); /* Start OS. */
}

 µC/TCP-IP
and the ADSP-BF537 Processor

12

Listing 3-2, App_BootTask()

static void App_BootTask (void *p_arg)
{

 CPU_INT08U i;

 (void)p_arg;
 printf("Initialize OS timer...\n");
 BSP_CoreTmrInit(); /* (1) */

#if (OS_TASK_STAT_EN > 0)
 printf("Initialize OS statistic task...\n");
 OSStatInit(); /* (2) */
#endif

 printf("Application resources initialization...\n");
 App_Init(); /* (3) */

 App_InitTCPIP(); /* (4) */

#if (APP_TTCP_ENABLED == DEF_ENABLED)

 APP_TRACE_DEBUG(("\n***"));
 APP_TRACE_DEBUG(("\n* *"));
 APP_TRACE_DEBUG(("\n* Micrium uC/TCP-IP TTCP Performance measurement *"));
 fflush((FILE *)0);
 APP_TRACE_DEBUG(("\n* ADSP-BF537 EZKIT Lite Platform *"));
 APP_TRACE_DEBUG(("\n* *"));
 APP_TRACE_DEBUG(("\n***"));
 APP_TRACE_DEBUG(("\n"));
 fflush((FILE *)0);
 TTCP_Init(); /* (5) */

#endif

 for (i =1 ; i < 7; i++) { /* (6) */
 BSP_ClrLED(i);
 }

 while (DEF_YES) { /* (7) */

 BSP_ToggleLED(2);
 OSTimeDly(150);
 }
}

µC/TCP-IP
and the ADSP-BF537 Processor

 13

L3-2(1) App_BootTask() calls BSP_CoreTmrInit() (declared in bsp.c file) to initialize the core
timer which will provide the ticks source for µC/OS-II.

L3-2(2) OSStatInit() is called to initialize µC/OS-II’s statistic task. This call only occurs if you
have enabled the statistic task by setting OS_TASK_STAT_EN to 1 in os_cfg.h file. The
statistic task determines what percentage of the CPU is being used by your tasks. The
statistic task also performs stack checking for any of your tasks that were created with
OSTaskCreateExt() with the stack checking option set.

L3-2(3) App_Init() initializes LEDs on ADSP-BF537 EZ-KIT Lite, and installs the appropriate ISR

for each interrupt level group.

L3-2(4) App_InitTCPIP(), which is described in Listing 3-3, is called to perform required

initializations for µC/TCP-IP.

L3-2(5) Initialize TTCP application.

L3-2(6) Clear all LEDs on ADSP-BF537 EZ-KIT Lite evaluation platform.

L3-2(7) The body of this task toggles LED#2 and then delays for 150 ticks. Once the body of the task

is executing, you should be able to ‘ping’ the board or to run TTCP performance tests.

 µC/TCP-IP
and the ADSP-BF537 Processor

14

Listing 3-3, App_InitTCPIP()

L3-3(1) Net_Init() is called to initialize µC/TCP-IP. More information on Net_Init() can be

found in the µC/TCP-IP User’s Manual.

L3-3(2) A static IP address of 192.168.1.13 is assigned to the board. If you wish to use another

address, you should modify the value of APP_CFG_IP_ADDR_STR_THIS_HOST declared in
app_cfg.h file. The address that is set using this call is the address that you should use to
‘ping’ the board.

L3-3(3) Configure the board accordingly to the chosen IP address and Network Mask.

#define APP_CFG_IP_ADDR_STR_THIS_HOST "192.168.1.13"
#define APP_CFG_IP_ADDR_STR_NET_MASK "255.255.255.0"

static NET_IP_ADDR App_IP_Addr;
static NET_IP_ADDR App_IP_Mask;

static void App_InitTCPIP (void)
{
 NET_ERR err;

 APP_TRACE_DEBUG(("Initialize TCP/IP stack...\n"));

 err = Net_Init(); /* (1)
*/

 if (err != NET_ERR_NONE) {
 APP_TRACE_DEBUG(("Net_Init() failed: error #%d, line #%d.\n", err, __LINE__));
 while (DEF_YES) {
 ;
 }
 }

 App_IP_Addr = NetASCII_Str_to_IP(APP_CFG_IP_ADDR_STR_THIS_HOST, &err); /* (2)
*/
 App_IP_Mask = NetASCII_Str_to_IP(APP_CFG_IP_ADDR_STR_NET_MASK, &err);
 NetIP_CfgAddrThisHost(App_IP_Addr, App_IP_Mask); /* (3)
*/

 APP_TRACE_DEBUG((" IP address = %s\n", APP_CFG_IP_ADDR_STR_THIS_HOST));
 APP_TRACE_DEBUG((" IP mask = %s\n", APP_CFG_IP_ADDR_STR_NET_MASK));

}

µC/TCP-IP
and the ADSP-BF537 Processor

 15

3.02 TTCP results

In this section, we present the TTCP results obtained in the following conditions:

• ADSP-BF537 Core Frequency 525 MHz.
• ADSP-BF537 System Frequency 131 MHz.
• TTCP Buffer size 8192 bytes for TCP and 1432 bytes for UDP.
• TTCP number of buffer used 2048
• Instruction cache enabled
• Data cache enabled for banks A and B
• pcattcp running on a PC with the following caracteristics:

 Intel Core 2 CPU 2.40 GHz
 2.00 GB of RAM

 .

As you can see, the TTCP UDP transmit and receive test uses a buffer length of 1432 bytes
because µC/TCP-IP does not presently support transmission fragmentation, µC/TTCP limits the
buffer size to 1432 bytes.

 µC/TCP-IP
and the ADSP-BF537 Processor

16

TCP Transmit Test

Target

To start the TTCP TCP Transmit Test start µC/TTCP with the "-t" option followed by the dotted IP address
of the remote TTCP client.

>-t 192.168.1.20

ttcp-t: BufLen=8192, NumBuf=2048, port=5001, NumConns=1 tcp -> 192.168.1.20
TTCP_RemoteIP = 192.168.1.20, TTCP_RemoteAddr = c0a80114
ttcp-t: Client socket 9 opened
Connecting to addr: 1401a8c0, port: 8913
ttcp-t: Client socket 9 connected
ttcp-t: Client socket 9 closed

ttcp-t: 16777216 bytes in 2.235 real sec = 7330.65 KB/sec (60052676.760 bps)
ttcp-t: 4207 I/O calls, msec/call = 0.531, calls/sec = 1882.326

Windows host TTCP session

The Windows host running pcattcp must initiate the Receiver part of this test. Figure 3.1 shows the
command used:

Figure 3.1 TCP Receiver part.

µC/TCP-IP
and the ADSP-BF537 Processor

 17

TCP Receive Test

Target

To start the TTCP TCP Receive Test start µC/TTCP with the "-r" option. The TCP receiver will start and
then wait until a remote TTCP client makes a connection attempt.

>-r

ttcp-r: BufLen=8192, NumBuf=2048, port=5001, NumConns=1 tcp
TTCP_RemoteIP = 0.0.0.0, TTCP_RemoteAddr = 0
ttcp-r: Listening socket opened = 9 for PORT: 5001
ttcp-r: Waiting for 1 client to request connection.

TTCP_RemoteAddLen = 16, NET_SOCK_ADDR_SIZE=16.
ttcp-r: Server socket 8 active
ttcp-r: Client socket 8 closed
ttcp-r: Listen socket 9 closed

ttcp-r: 16777216 bytes in 1.645 real sec = 9959.88 KB/sec (81591328.440 bps)
ttcp-r: 11487 I/O calls, msec/call = 0.143, calls/sec = 6982.979

Windows host TTCP session

The Windows host running pcattcp must initiate the TCP Transmitter part of this test. Figure 3.2 shows
the command used:

Figure 3.2 TCP Transmitter part.

 µC/TCP-IP
and the ADSP-BF537 Processor

18

UDP Transmit Test

Target

To start the TTCP UDP Transmit Test start µC/TTCP with the "-t" option followed by the "-u " option
followed finally by the dotted IP address of the remote TTCP client.

>-t –u 192.168.1.20

ttcp-t: BufLen=1432, NumBuf=2048, port=5001, NumConns=1 udp -> 192.168.1.20
TTCP_RemoteIP = 192.168.1.20, TTCP_RemoteAddr = c0a80114
ttcp-t: Client socket 9 opened
Connecting to addr: 1401a8c0, port: 8913
ttcp-t: Client socket 9 connected
ttcp-t: Client socket 9 closed

ttcp-t: 2932736 bytes in 0.259 real sec = 11057.92 KB/sec (90586440.464 bps)
ttcp-t: 2048 I/O calls, msec/call = 0.126, calls/sec = 7907.336

Windows host TTCP session

The Windows host running pcattcp must initiate the UDP Receiver part of this test. Figure 3.3 shows the
command used:

Figure 3.3 UDP Receiver part.

µC/TCP-IP
and the ADSP-BF537 Processor

 19

UDP Receive Test

Target

To start the TTCP UDP Receive Test start µC/TTCP with the "-r" option followed by the "-u " option. The
UDP receiver will start and then wait until a remote TTCP client makes a connection attempt.

>-r –u

ttcp-r: BufLen=1432, NumBuf=2048, port=5001, NumConns=1 udp
TTCP_RemoteIP = 0.0.0.0, TTCP_RemoteAddr = 0
ttcp-r: UDP socket 9 opened
ttcp-r: Waiting for client to send UDP datagrams.
ttcp-r: Client socket 9 closed

ttcp-r: 2932736 bytes in 0.258 real sec = 11100.78 KB/sec (90937552.584 bps)
ttcp-r: 2048 I/O calls, msec/call = 0.125, calls/sec = 7937.985

Windows host TTCP session

The Windows host running pcattcp must initiate the UDP Transmitter part of this test. Figure 3.4 shows
the command used:

Figure 3.4 UDP Transmitter part.

 µC/TCP-IP
and the ADSP-BF537 Processor

20

Acknowledgements

We would like to thank the following people for their support in making the LAN83C185 device’s driver for
the ADSP-BF537.

Analog Devices Inc:
Mr. Deep B.
Mr. Lukasiak, Tomasz.

References

µC/OS-II, The Real-Time Kernel, 2nd Edition
Jean J. Labrosse
R&D Technical Books, 2002
ISBN 1-57820-103-9

Contacts

Analog Devices Inc.
One Technology Way, P.O. Box 9106
Norwood, MA 02062-9106 U.S.A.
+1 781.329.4700
+1 781.461.3113 (FAX).
WEB: http://www.analog.com

CMP Books, Inc.
6600 Silacci Way
Gilroy, CA 95020 USA
Phone Orders: 1-800-500-6875
 or 1-408-848-3854
Fax Orders: 1-408-848-5784
e-mail: rushorders@cmpbooks.com
WEB: http://www.cmpbooks.com

Micriµm
949 Crestview Circle
Weston, FL 33327
USA
954-217-2036
954-217-2037 (FAX)
e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

