
 

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
March 11, 1999

Parallel Cyclic Redundancy Check (CRC)
for HOTLink™

Introduction
This application note discusses using CRC codes to ensure
data integrity over high-speed serial links, such as Fibre
Channel, ESCON™ and other interfaces supported by
Cypress’s CY7B923/CY7B933 HOTLink™ devices. It also
shows why parity and Hamming codes are not useful, and
describes common CRC codes used in high-speed commu-
nications systems. Finally, algorithms for parallel calculation
of CRC–16 and CRC–32 are presented.

Why Not Parity (or Why Some Parallel Interface 
Practices Don’t Apply in the Serial World)?
Some systems go to great lengths to detect data errors. Parity
is often used with parallel forms of data, on buses or memo-
ries, to detect some errors. It provides a small measure of
robustness by detecting certain bit errors with minimal redun-
dancy. However, while parity can detect single-bit errors, it
can detect only half of all multiple-bit errors. 

Other systems go further, employing Hamming codes to not
only detect, but in many instances correct, bit errors. Both of
these approaches are applied to data in its parallel form. Un-
fortunately, the use of a Hamming code requires many more
bits of redundancy, per character or word, than parity.

For transmission of data on high-speed serial channels, the
most prevalent errors are multi-bit bursts. These multi-bit
errors make parity worthless, and severely limit the effective-
ness of single-bit correcting Hamming codes. 

The large amount of redundancy in a Hamming code (7 bits
to protect a 32-bit  word) also makes it a poor choice to protect
data across a serial link. Transmission of the redundant bits
in each word can easily consume a fifth of the available link

bandwidth, or require operation of the link at a 20% faster
transfer rate to carry the redundant bits. 

In reality, bit errors of any type are quite rare in these links
(<< 1 in 1012 bits). Since these errors cannot generally be
corrected by a Hamming code or detected by character parity,
the transmission overhead of these types of detection/correc-
tion bits becomes a poor use of link bandwidth. In systems
where data is sent serially across a link, the data integrity of
the link can be much better verified using Cyclic Redundancy
Check (CRC) codes.

CRC Codes
CRC codes make use of a Linear Feedback Shift Register
(LFSR) to generate a signature based on the contents of any
data passed through it. This signature can be used to detect
the modification or corruption of bits in a serial stream. 

CRC–16 and CRC–32

In general CRC codes are able to detect:

• All single- and double-bit errors.

• All odd numbers of errors.

• All burst errors less than or equal to the degree of the 
polynomial used.

• Most burst errors greater than the degree of the polynomial 
used.

CRC codes have been used for years to detect data errors on
interfaces, and their operation and capabilities are well under-
stood. Two codes that have found wide use are CRC–16 and
CRC–32. As the names imply, CRC–16 makes use of a 16-bit
LFSR, while CRC–32 uses a 32-bit LFSR. Additional informa-
tion on CRC codes can be found in the references at the end
of this application note. 

Figure 1. Linear Feedback Implementation of CRC–16

DATA_IN

MSB

LSB

QD

R16

QD
X2

QD

X3

QD

X4

QD

X5

QD

X6

QD

X7

QD

X8

QD X9

CRC_OUTQD
X16

QD

X14

QD

X13

QD

X12

QD

X11

QD

X10

QD

X15

X

R15 R14 R13 R12 R11 R10 R9 R8

R1R2R3R4R5R6R7



Parallel Cyclic Redundancy Ch eck for HOTLink

2

The generator polynomial for CRC–16 is listed in Equation 1,
and the polynomial for CRC–32 is listed in Equation 2. These
CRC codes are traditionally calculated on the serial data
stream using a Linear Feedback Shift Registers (LFSR) built
from flip-flops and XOR gates, as shown in Figure 1. The
structure for the CRC–32 polynomial is similar to Figure 1, but
with twice the number of flip-flops. 

Eq. 1

Eq. 2

In these equations, the superscripts identify the tap location
in the shift register. The order of the polynomial is identified
by the highest order term, and specifies the number of
flip-flops in the shift register. Since these polynomials are for
modulo-2 arithmetic, each bit-shift is equivalent to a multiply
by 2.

Development of a Parallel Implementation
When used with high-speed serial data, especially data which
is encoded in the serial domain, it becomes quite difficult to
implement the CRC calculation using a shift register. Howev-
er, it is possible to convert a serial implementation into a par-
allel form that accumulates multiple bits in each clock cycle.
The following paragraphs and tables describe how the
CRC–16 polynomial is converted to calculate eight bits at a
time (i.e., a byte basis). The CRC–32 polynomial is converted
using a similar procedure, with the results calculated 16 bits
at a time (on a half-word basis). The results for CRC–32 are
presented in Tables 5 and 6, but without the intermediate cal-
culations. The generation of these intermediate equations are
left as an exercise for the reader. 

Implementation

First, a few notes:

• Ri is the i th bit of the CRC register.

• Ci is the contents of i th bit of the initial CRC register, before 
any shifts have taken place.

• R1 is the least significant bit (LSB).

• The entries under each CRC register bit indicate the values 
to be XORed together to generate the content of that bit in 
the CRC register. 

• Di is the data input, with LSB input first.

• D8 is the MSB of the input byte, and D1 is the LSB.

• A substitution is made to reduce the table size, such that 
Xi = Di XOR Ci.

The results of the CRC are calculated one bit at a time and
the resulting equations for each bit are examined. The CRC
register prior to any shifts is shown in Table 1. The CRC reg-
ister after a single bit shift is shown in Table 2. The CRC reg-
ister after two shifts is shown in Table 3.

This process continues until eight shifts have occurred. Table
4 lists the CRC register contents after eight shifts. Xi was
substituted for the various Di XOR Ci combinations. The fol-
lowing properties were used to simplify the equations:

• Commutativity (A XOR B = B XOR A).

• Associativity (A XOR B XOR C = A XOR C XOR B).

• Involution (A XOR A = 0).

A study of Table 4 reveals two interesting facts:

• The most-significant byte (bits R16–R9) of the CRC regis-
ter is only dependent on XOR combinations of the initial 
low-order byte of the CRC register and the input byte.

G X( ) X16 X15 X2 1+ + +=

G X( ) X32 X26 X23 X22 X16 X12 X11

X10 X+
8

X7 X5 X4 X2 X 1

+ + + + + + +

+ + + + + +

=

Table 1. CRC–16 Register prior to any shifts 

R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1

C16 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1

Table 2. CRC–16 Register after One Shift 

R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1

C1
D1

C16 C15
C1
D1

C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2
C1
D1

Table 3. CRC–16 Register after Two Shifts 

R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1

C2
D2
C1
D1

C1
D1

C16
C2
D2
C1
D1

C15
C1
D1

C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3
C2
D2
C1
D1



Parallel Cyclic Redundancy Ch eck for HOTLink

3

• The least-significant byte (bits R8–R1) of the CRC register 
is dependent on the XOR combination of the initial lower 
eight bits of the CRC register, the input data byte, and the 
initial contents of the high-order bits of the CRC register.

This allows the next value of the CRC register to be calculated
as an XOR of the input data character bits, and a constant
determined by the present contents of the CRC register. For
example, calculating a new value for R9 is accomplished by
calculating X3 and X2 and exclusive-ORing them together.

Implementation Issues for CRC–16 Parallel 
Algorithm
The most significant byte of the CRC register is based on
eight data inputs and eight register values. By presenting
these as address inputs to a 64Kx8 PROM, it is possible to
directly output the next state of the CRC register. A 40-MHz
maximum byte rate would dictate a total cycle time of 25 ns
or less, which is available in the CY27H512.

The lower byte of the CRC register only contains three values
that require any type of calculation (R8, R7, and R1). Of
these, R1 is the equivalent of the input for R16 XORed with
R9. This, and the inputs for R7 and R8, can be calculated in
a small PLD like a PALCE22V10.

Both of these may also be implemented using a single level
of XOR gates to calculate the X1 through X8 values, and a
pair of 256x8 EPROMs.

Another approach is to calculate the XOR functions directly
in logic, as one would do with a Field Programmable Gate
Array (FPGA) or CPLD. From Table 4, the largest XOR to be
calculated is that for R1, which contains 17 terms. Implemen-

tation of a large XOR structure consumes large numbers of
product terms in a CPLD, however, many of the XOR terms
are common across the various inputs of the CRC register. 

At an XOR width of 17, it is not possible to implement this in
a single level of logic within current Cypress CPLDs. Howev-
er, XOR factoring makes it is possible to implement this in two
levels of logic. With CPLD single-level delays of 10 ns (or
less), the CRC may be implemented in a single CPLD. By
ensuring that the input data is pipelined through an internal
register, the timing is determined only by internal delays in the
device. The CRC–16 parallel algorithm can be implemented
using Warp3® (Cypress’s VHDL-based CPLD design tool) in
a number of FLASH370i CPLD devices. The design will run at
the 40-MHz maximum parallel data rate supported by
HOTLink.

Description of CRC–32 Parallel Algorithm
The parallel algorithm for CRC–32 is derived in the same
manner as CRC–16. The differences here are that data is
now handled 16 bits (a half-word) at a time, the CRC register
is now 32 bits in length, and a different polynomial is used.

Table 5 contains the XOR information for the least-significant
half-word (LSHW) of the CRC–32 register after 16 shifts, and
Table 6 contains the XOR information for the most-significant
half-word (MSHW) of the CRC–32 register after 16 shifts.
Again, note that the MSHW only depends on XOR combina-
tions of the initial lower-order bits of the CRC–32 register and
the input data. The LSHW depends on XOR combinations of
the initial lower-order bits of the CRC–32 register, the input
data, and the initial MSHW of the CRC–32 register.

Table 4. CRC–16 Register after Eight Shifts 

R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1

X8 
X7
X6
X5
X4
X3
X2
X1

X7
X6
X5
X4
X3
X2
X1

X8 
X7

X7
X6

X6
X5

X5
X4

X4
X3

X3
X2

C15
X2
X1

C15
X1

C14 C13 C12 C11 C10 C9
X8 
X7
X6
X5
X4
X3
X2
X1

Table 5. CRC–32 Register (LSW) after 16 Shifts with X i Substitution 

R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1

C32
X1
X3
X8
X10
X11
X12
X16

C31
X2
X7
X9
X10
X11
X15

C30
X1
X6
X8
X9
X10
X14

C29
X5
X7
X8
X9
X13

C28
X4
X6
X7
X8
X12

C27
X3
X5
X6
X7
X11

C26
X2
X5
X7
X16

C25
X1
X7
X10
X15
X16

C24
X6
X9
X14
X15

C23
X5
X8
X13
X14

C22
X6
X10
X12
X13
X16

C21
X5
X9
X11
X12
X15

C20
X4
X8
X10
X11
X14

C19
X3
X7
X9
X10
X13

C18
X2
X6
X8
X9
X12

C17
X1
X5
X7
X8
X11



Parallel Cyclic Redundancy Ch eck for HOTLink

© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Implementation Issues for CRC–32 Parallel 
Algorithm
The issues confronting a designer wishing to implement this
algorithm are the same as those for the CRC–16 algorithm,
except that the magnitude of the problem is increased. Imple-
mentation of the Xi calculation in a look-up table now requires
16 inputs and, since we are calculating 16 bits at a time, 16
outputs. This implies a 64K x 16 EPROM. The difference is
that HOTLink takes parallel data at a maximum of 40 MBytes
per second, and the CRC is calculated two bytes at a time.
This gives approximately two clock cycles (50 ns) to perform
the calculation. Using an EPROM look-up table requires an
extra component (EPROM and XOR array), compared with
implementing the entire design in a CPLD.

Tables 5 and 6 show that the largest XOR is a 22-term func-
tion feeding CRC registers R20 or R21. Within a CPLD, it is
not possible to implement this in a single level of logic. How-
ever, using the slowest FLASH370i CPLDs available (66 MHz),
it is possible to implement this in three levels of logic and still
be under the 50 ns delay limit. This is one more than required
for the CRC–16 implementation, but remember, there is twice
as much time available to calculate the CRC–32. 

As data rates increase, so do timing constraints. However, for
the data rates supported by the HOTLink devices (150 to 400
MBaud), the FLASH370i devices can successfully implement
a parallel calculation of CRC–32.

Figure 2 is a graphical representation of the logic delays in the
XOR-tree portion of the CRC–32 design. Three layers of logic
at 15 ns each (for a -66 CPLD) give a maximum internal delay
of 45 ns. Note that there are no routing delays in FLASH370i
devices. This is comfortably under the 50 ns figure mentioned
earlier.

Conclusion
This application note shows how to calculate a parallel imple-
mentation of any CRC polynomial, and the equations for
CRC–16 and CRC–32 are provided. Implementation and per-
formance issues for the CRC–16 and CRC–32 polynomials
was presented. Both designs easily operate at the fastest
character rate supported by Cypress’s HOTLink devices.

Additional information on usage of CRC polynomials may be
found in the following references and in the Cypress applica-
tion note titled “Drive ESCON With HOTLink.” 

Reference
1. A. Perez, “Byte-wise CRC Calculations,” IEEE MICRO, 

June 1983, pp. 40-50.

2. A. K. Pandeya and T. J. Cassa, “Parallel CRC Lets Many 
Lines Use One Circuit,” Computer Design, Sept. 1975, pp 
87-91.

3. R. Swanson, “Understanding Cyclic Redundancy Codes,” 
Computer Design, Nov. 1975, pp. 93-99.

HOTLink is a trademark and Warp3 is a registered trademark of Cypress Semiconductor.
ESCON is a trademark of IBM.

Table 6. CRC–32 Register (MSW) after 16 Shifts 

R32 R31 R30 R29 R28 R27 R26 R25 R24 R23 R22 R21 R20 R19 R18 R17

X4
X6
X7
X10
X16

X3
X4
X5
X7
X9
X10
X15
X16

X2
X3
X7
X8
X9
X10
X14
X15
X16

X1
X2
X6
X7
X8
X9
X13
X14
X15

X1
X4
X5
X8
X10
X12
X13
X14
X16

X3
X6
X8
X10
X11
X12
X13
X15
X16

X2
X5
X8
X9
X10
X11
X12
X14
X15

X1
X6
X8
X9
X11
X13
X14
X16

X4
X5
X6
X8
X12
X13
X15
X16

X3
X4
X5
X7
X11
X12
X14
X15

X2
X3
X4
X6
X10
X11
X13
X14

X1
X2
X3
X4
X5
X6
X7
X9
X12
X13
X16

X1
X2
X3
X5
X7
X8
X10
X11
X12
X15
X16

X1
X2
X4
X6
X7
X9
X10
X11
X14
X15

X1
X3
X5
X6
X8
X9
X10
X13
X14

X2
X4
X5
X7
X8
X9
X12
X13

Figure 2. Critical Path Logic Delay Estimate for CRC-32

XOR
FF

XOR XOR
FF

XOR TREE

tPD = 15 ns tPD= 15 ns tPD = 15 ns


