
Application Report
SPRAAG0C–July 2007

Using the TMS320DM643x Bootloader
Baldwin, Karen...

ABSTRACT
This document describes the functionality of the DM643x ROM bootloader software.
Please note that the ROM bootloader requires use of Application Image Script (AIS) as
the primary data format for loading code/data. AIS is a Texas Instruments, Inc.
proprietary data format. AIS is explained in detail in Section 3 of this document.

This application report contains project code that can be downloaded from this link.
http://www-s.ti.com/sc/techlit/spraag0.zip

Contents
1 Introduction .. 2
2 Boot Mode Description... 4
3 Application Image Script ... 19
4 Booting Operating Systems (Linux®/DSP/BIOS™,etc.) 28
5 ROM Bootloader RAM Memory Requirements and Code/Data Placement 29
6 ROM Bootloader Cache Considerations ... 29
7 AIS Generation Tool , DM643x.. 29
8 Sample AIS Boot Images .. 31
9 Determining On-Chip Bootloader Version ... 40
10 Calculating CRC... 40
Appendix A Calculating the CRC .. 41

List of Figures

1 SPI Transfer With CLKSTP = 11 and CLKXP = 0 .. 14
2 24x8 Bit SPI EEPROM Read Timing ... 18
3 DM643x 24x8 Bit Address SPI Boot.. 19
4 Basic Structure of Application Image Script ... 20
5 Structure of SET Command ... 21
6 Valid SET Command Data Types... 22
7 Structure of GET Command ... 22
8 Structure of Section Load Command... 23
9 Structure of Section Fill Command ... 23
10 Structure of Jump Command .. 24
11 Structure of Jump_Close Command.. 24
12 Structure of Enable CRC/Disable CRC Commands.. 25
13 Structure of Request CRC Command.. 26
14 Structure of Function Execute Command.. 27
15 UART AIS Boot Image ... 38

List of Tables

1 Terms and Abbreviations .. 3
2 Non-Fastboot Modes (FASTBOOT = 0) ... 5
3 Fixed-Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 001b) 6
4 User-Select Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 000b, 011b,

100b, or 101b) .. 7

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 1
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/spraag0.zip
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

1 Introduction

Introduction

5 PLL Multiplier Selection (PLLMS[2:0]) in User-Select Multiplier Fastboot Modes
(FASTBOOT = 1; AEM[2:0] = 000b, 011b, 100b, or 101b) 7

6 PLL Multiplier Based on Value AEM and PLLMS[2:0] Pins................................... 8
7 PLL1 and PLL2 Multiplier Ranges.. 9
8 PLLC1 Clock Frequency Ranges... 9
9 PLLC2 Clock Frequency Ranges... 9
10 CPU Frequency During FASTBOOT... 9
11 PCI Configuration Data for Auto-Init .. 11
12 I2C Timing Register Settings .. 13
13 SPI Master Clock Frequencies for FASTBOOT = 1 .. 14
14 SPI Master Boot Modes .. 14
15 SPI 16x8 EEPROM-to-DSP McBSP0 Connection.. 15
16 Supported NAND Device Types .. 15
17 UART Connection Attributes for Boot .. 17
18 SPI EEPROM and DSP Pin Connections for 24 Bit SPI Mode 19
19 AIS Version 2.0 Supported Opcodes ... 20
20 Numeric Formats That Can Be Used in SET Command 21
21 Valid SET Command Data Types... 21
22 Valid SET Command Data Types Field Descriptions .. 22
23 Pre-Defined ROM Functions... 27
24 Sample Function Execute Command .. 27
25 DM643x Program Options ... 31
26 EMIFA ROM Fast Boot AIS Boot Image Example.. 33
27 I2C AIS Boot Image Example ... 34
28 AIS Image in I2C EEPROM Memory ... 35
29 SPI AIS Boot Image Example ... 35
30 AIS Image in SPI EEPROM Memory... 36
31 NAND Boot AIS Boot Image Example ... 38

The ROM bootloader resides in the ROM of the device beginning at ROM address 0x00100000. The ROM
boot loader (RBL) implements methods for booting in the listed modes. It reads the contents of the
BOOTCFG register to determine boot mode and performs appropriate commands to effect boot of device.
If an improper boot mode is chosen or if for some reason an error is detected during boot from a slave
device, the RBL communicates this through UART as default boot device.

When booting in master mode, the boot loader reads the boot information from the slave device as and
when required. When booting in slave mode, the boot loader depends on the master device to feed the
boot information as and when required. Please note that for all boot modes, the ROM bootloader disables
the watchdog timer for a duration of boot. All applications MUST avoid configuring the watchdog timer
during the boot process. (No AIS commands or code should change this during boot). Figure 15 shows a
list of terms and abbreviations used in this application report

• Emulation boot
• HPI
• PCI (DSP as slave)
• EMIFA ROM direct boot
• EMIFA ROM fast boot with AIS
• EMIFA ROM fast boot without AIS
• NAND

DSP/BIOS is a trademark of Texas Instruments.
Linux is a registered trademark of Linur Torvalds in the U.S. and/or other countries.
Windows is a registered trademark of MicroSoft Corporation in the United States and/or other countries.

2 Using the TMS320DM643x Bootloader SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

Introduction

• I2C (DSP as master)
• SPI 16×8 (DSP as master, 16 bits of address per SPI operation, supporting upto 64Kx8 devices)
• SPI 24×8 (DSP as master, 24 bits of address transmitted per SPI operation supporting upto 16Mx8

devices)
• UART (DSP as slave), no flow control
• UART (DSP as slave), with flow control
• VLYNQ (DSP as slave)

Table 1. Terms and Abbreviations

Term Description

Bootloader SW/Code for ROM DM643x Bootloader

AIS Application Image Script

BL Boot Loader (referring to the bootloader in this text)

DSP Digital Signal Processor (referring to DM643x in this text)

EMIF External Memory Interface

GPIO General-Purpose Input/Output

HPI Host Port Interface

I2C Inter Integrated Circuit

NAND Inverted AND Gate Not AND

OFD Object File Display

OS Op-Code Synchronization

PCI Peripheral Component Interconnect

POS Ping Op-Code Synchronization

ROM Read Only Memory

SPI Serial Peripheral Interface

SRGR Sample Rate Generator Control Register

SWS Start-Word Synchronization

UART Universal Asynchronous Receiver/Transmitter

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

2 Boot Mode Description
Boot Mode Description

The selection of the following boot modes depend upon the status of boot device pins. The status of these
pins is captured on the rising edge of device POR reset into the BOOTCFG register. The bootloader reads
the contents of the BOOTCFG register and branches to the appropriate code to implement the selected
boot.

The boot modes are grouped into three categories — Non-Fastboot Modes, Fixed-Multiplier Fastboot
Modes, and User-Select Multiplier Fastboot Modes.

• Non-Fastboot Modes (FASTBOOT = 0): The device operates in default phased-locked loop (PLL)
bypass mode during boot. The Non-Fastboot bootmodes are shown in Table 2.

• Fixed-Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 001b): The bootloader code speeds
up the device during boot according to the fixed PLL multipliers. The Fixed-Multiplier Fastboot
bootmodes are shown in Table 3.
NOTE:The PLLMS[2:0] configurations have no effect on the Fixed-Multiplier Fastboot Modes, as these
pins function as AEAW[2:0] to select the EMIFA address width when AEM[2:0] = 001b.

• User-Select Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 000b,011b,100b,101b): The
bootloader code speeds up the device during boot. The PLL multiplier is selected by the user via the
PLLMS[2:0] pins. The User-Select Multiplier Fastboot bootmodes are shown in Table 4.

If an invalid boot mode is specified, the bootloader writes an error code to the ERR field of the
BOOTCMPLT register and then defaults to UART boot for all non-host boot modes (for example, I2C,
SPI).

Boot device pins must be configured to one of the valid modes. A description of each valid mode is given
in subsequent sections.

All other modes not shown in these tables are reserved and invalid settings.

Using the TMS320DM643x Bootloader4 SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

Boot Mode Description

Table 2. Non-Fastboot Modes (FASTBOOT = 0)
DEVICE BOOT AND PLLC1 CLOCK SETTING AT BOOTCONFIGURATION PINS DM643x DMPBOOT DSPBOOTADDR(Master/Slave CLKDIV1 DOMAIN DEVICEDESCRIPTION (1) (DEFAULT) (1)

PLL)BOOTMODE[3:0] PCIEN (SYSCLK1 FREQUENCYMODE (2)
DIVIDER) (SYSCLK1)

No Boot (Emulation0000 0 or 1 Master Bypass /1 CLKIN 0x0010 0000Boot)

0001 0 or 1 Reserved – – – – –

0 HPI Boot Slave Bypass /1 CLKIN 0x0010 0000
0010

1 Reserved – – – – –

0011 0 or 1 Reserved – – – – –

EMIFA ROM Direct
0100 0 or 1 Boot Master Bypass /1 CLKIN 0x4200 000

[PLL Bypass Mode]

I2C Boot0101 0 or 1 Master Bypass /1 CLKIN 0x0010 0000[STANDARD MODE] (3)

16-bit SPI Boot0110 0 or 1 Master Bypass /1 CLKIN 0x0010 0000[McBSP0]

0111 0 or 1 NAND Flash Boot Master Bypass /1 CLKIN 0x0010 0000

UART Boot without
1000 0 or 1 Hardware Flow Control Master Bypass /1 CLKIN 0x0010 0000

[UART0]

1001 0 or 1 Reserved – – – – –

1010 0 or 1 VLYNQ Boot Slave Bypass /1 CLKIN 0x0010 0000

1011 0 or 1 Reserved – – – – –

1100 0 or 1 Reserved – – – – –

1101 0 or 1 Reserved – – – – –

UART Boot with
1110 0 or 1 Hardware Flow Control Master Bypass /1 CLKIN 0x0010 0000

[UART0]

24-bit SPI Boot1111 0 or 1 Master Bypass /1 CLKIN 0x0010 0000(McBSP0 + GP[97])
(1) For all boot modes that default to DSPBOOTADDR = 0x0010 0000 (i.e., all boot modes except the EMIFA ROM Direct Boot,

BOOTMODE[3:0] = 0100, FASTBOOT = 0), the bootloader code disables all C64x+ cache (L2, L1P, and L1D) so that upon exit
from the bootloader code, all C64x+ memories are configured as all RAM. If cache use is required, the application code must
explicitly enable the cache.

(2) The PLL MODE for Non-Fastboot Modes is fixed as shown in this table; therefore, the PLLMS[2:0] configuration pins have no
effect on the PLL MODE.

(3) I2C Boot (BOOTMODE[3:0] = 0101b) is only available if the MXI/CLKIN frequency is between 21 MHz to 30 MHz. I2C Boot is
not available for MXI/CLKIN frequencies less than 21 MHz.

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

Boot Mode Description

Table 3. Fixed-Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 001b)
DEVICE BOOT AND PLLC1 CLOCK SETTING AT BOOTCONFIGURATION PINS DM643x DMPBOOT DSPBOOTADDR(Master/Slave CLKDIV1 DOMAIN DEVICEDESCRIPTION (1) (DEFAULT) (1)

PLL)BOOTMODE[3:0] PCIEN (SYSCLK1 FREQUENCYMODE (2)
DIVIDER) (SYSCLK1)

No Boot (Emulation0000 0 or 1 Master Bypass /1 CLKIN 0x0010 0000Boot)

HPI Boot with PLL0 Slave x27 /2 CLKIN x27 / 2 0x0010 0000Multiplier x27 at boot0001
1 Reserved – – – – –

HPI Boot with PLL0 Slave x20 /2 CLKIN x20 / 2 0x0010 0000Multiplier x20 at boot0010
1 Reserved – – – – –

HPI Boot with PLL0 Slave x15 /2 CLKIN x15 / 2 0x0010 0000Multiplier x15 at boot0011
1 Reserved – – – – –

EMIFA ROM
FASTBOOT0100 0 or 1 Master x20 /2 CLKIN x20 / 2 0x0010 000with Application Image
Script (AIS)

I2C Boot0101 0 or 1 Master x20 /2 CLKIN x20 / 2 0x0010 0000[FAST MODE] (3)

16-bit SPI Boot0110 0 or 1 Master x20 /2 CLKIN x20 / 2 0x0010 0000[McBSP0]

0111 0 or 1 NAND Flash Boot Master x20 /2 CLKIN x20 / 2 0x0010 0000

UART Boot without
1000 0 or 1 Hardware Flow Control Master x20 /2 CLKIN x20 / 2 0x0010 0000

[UART0]

EMIFA ROM
1001 0 or 1 FASTBOOT Master x20 /2 CLKIN x20 / 2 0x0010 0000

without AIS

1010 0 or 1 VLYNQ Boot Slave x20 /2 CLKIN x20 / 2 0x0010 0000

1011 0 or 1 Reserved – – – – –

1100 0 or 1 Reserved – – – – –

1101 0 or 1 Reserved – – – – –

UART Boot with
1110 0 or 1 Hardware Flow Control Master x20 /2 CLKIN x20 / 2 0x0010 0000

[UART0]

24-bit SPI Boot1111 0 or 1 Master x20 /2 CLKIN x20 / 2 0x0010 0000(McBSP0 + GP[97])
(1) For all boot modes that default to DSPBOOTADDR = 0x0010 0000, the bootloader code disables all C64x+ cache (L2, L1P,

and L1D) so that upon exit from the bootloader code, all C64x+ memories are configured as all RAM. If cache use is required,
the application code must explicitly enable the cache.

(2) The PLL MODE for Fixed-Multiplier Fastboot Modes is fixed as shown in this table; therefore, the PLLMS[2:0] configuration pins
have no effect on the PLL MODE.

(3) I2C Boot (BOOTMODE[3:0] = 0101b) is only available if the MXI/CLKIN frequency is between 21 MHz to 30 MHz. I2C Boot is
not available for MXI/CLKIN frequencies less than 21 MHz.

Using the TMS320DM643x Bootloader6 SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

Boot Mode Description

Table 4. User-Select Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 000b, 011b, 100b, or
101b)

DEVICE BOOT AND PLLC1 CLOCK SETTING AT BOOTCONFIGURATION PINS DM643x DMPBOOT DSPBOOTADDR(Master/Slave CLKDIV1 DOMAIN DEVICEDESCRIPTION (1) (DEFAULT) (1)
PLL)BOOTMODE[3:0] PCIEN (SYSCLK1 FREQUENCYMODE (2)

DIVIDER) (SYSCLK1)

No Boot (Emulation0000 0 or 1 Master Bypass /1 CLKIN 0x0010 0000Boot)

0 Reserved – – – – –
0001 PCI Boot without Auto1 Slave Table 5 /2 Table 5 0x0010 0000Initialization

0 HPI Boot Slave Table 5 /2 Table 5 0x0010 0000
0010 PCI Boot with Auto1 Slave Table 5 /2 Table 5 0x0010 0000Initialization

0011 0 or 1 Reserved – – – – –

EMIFA ROM
0100 0 or 1 FASTBOOT Master Table 5 /2 Table 5 0x0010 0000

with AIS

I2C Boot0101 0 or 1 Master Table 5 /2 Table 5 0x0010 0000[FAST MODE] (3)

16-bit SPI Boot0110 0 or 1 Master Table 5 /2 Table 5 0x0010 0000[McBSP0]

0111 0 or 1 NAND Flash Boot Master Table 5 /2 Table 5 0x0010 0000

UART Boot without
1000 0 or 1 Hardware Flow Control Master Table 5 /2 Table 5 0x0010 0000

[UART0]

EMIFA ROM
1001 0 or 1 FASTBOOT Master Table 5 /2 Table 5 –

without AIS

1010 0 or 1 VLYNQ Boot Slave x20 /2 CLKIN x20 / 2 0x0010 0000

1011 0 or 1 Reserved – – – – –

1100 0 or 1 Reserved – – – – –

1101 0 or 1 Reserved – – – – –

UART Boot with
1110 0 or 1 Hardware Flow Control Master Table 5 /2 Table 5 0x0010 0000

[UART0]

24-bit SPI Boot1111 0 or 1 Master x20 /2 CLKIN x20 / 2 0x0010 0000(McBSP0 + GP[97])
(1) For all boot modes that default to DSPBOOTADDR = 0x0010 0000, the bootloader code disables all C64x+ cache (L2, L1P,

and L1D) so that upon exit from the bootloader code, all C64x+ memories are configured as all RAM. If cache use is required,
the application code must explicitly enable the cache.

(2) Any supported PLL MODE is available. [See Table 5 for supported DM643x PLL MODE options].
(3) I2C Boot (BOOTMODE[3:0] = 0101b) is only available if the MXI/CLKIN frequency is between 21 MHz to 30 MHz. I2C Boot is

not available for MXI/CLKIN frequencies less than 21 MHz.

Table 5. PLL Multiplier Selection (PLLMS[2:0]) in User-Select Multiplier Fastboot Modes
(FASTBOOT = 1; AEM[2:0] = 000b, 011b, 100b, or 101b)

DEVICE BOOT AND PLLC1 CLOCK SETTING AT BOOTCONFIGURATION PINS

CLKDIV1 DOMAINPLLMS[2:0] PLL MODE DEVICE FREQUENCY (SYSCLK1)(SYSCLK1 DIVIDER)

000 x20 /2 CLKIN x20 / 2

001 x15 /2 CLKIN x15 / 2

010 x16 /2 CLKIN x16 / 2

011 x18 /2 CLKIN x18 / 2

100 x22 /2 CLKIN x22 / 2

101 x25 /2 CLKIN x25 / 2

110 x27 /2 CLKIN x27 / 2

111 x30 /2 CLKIN x30 / 2

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

2.1 Boot Requirements, Constraints, and Default Settings

2.2 FASTBOOT Mode

Boot Mode Description

Please make note of the following requirements:

• FASTBOOT is required for all PCI boot modes.
• Bootloader only supports 16-bit address width for I2C EEPROMs.
• For PCI boot with auto-initialization, an I2C EEPROM must be connected to I2C of the device.
• Please note that all boot timings are optimized for a 27 MHZ input clock frequency.
• I2C, SPI, UART, NAND, and EMIFA FASTBOOT (BOOTMODE[3:0]=0100b) requires data for boot to

be stored in AIS Format. AIS is a Texas Instruments, Inc proprietary format for boot images. A detailed
description of AIS is given in Section 3 of this document. Any formats used for HOST modes such as
HPI and PCI is solely at the discretion of the user.

• When FASTBOOT is selected, the bootloader configures the PLL. The value of the PLL multiplier
depends on the status of the AEM and PLLMS[2:0] pins latched at reset into the BOOTCFG register.
This document bases all timing calculations assuming a 27 MHZ input clock to the device. For more
detailed information and presentation of a wider range of operating frequencies for FASTBOOT, see
the device-specific data sheet.

• The ROM bootloader does not support any NAND devices which specifically require the toggle of chip
select signal for operation.

• For NAND boot, the NAND device must be connected to EMIFA CS2.
• The bootloader disables CACHE during the boot process, regardless of boot mode chosen. The only

boot mode exception is, direct EMIF boot, in which the boot loader is not invoked; therefore, CACHE is
in power on the default state.

• The bootloader supports SPI EEPROMS with data arrangement x8 bits for all SPI boot modes.
Becasue the bootloader only provides enough clocks to retrieve 8 bits of data, it cannot support
devices with x16 bit data arrangement.

With the exception of emulation bootmode (BOOTMODE[3:0]==0000b), when FASTBOOT option is
selected, the bootloader software programs the PLL. The PLL multiplier used depends on the value of the
AEM and PLLMS[2:0] pins latched at reset. The bootloader reads the value of these pins as latched into
the BOOTCFG register at device POR reset and selects PLL multiplier according to Table 6. For more
detailed description of these settings and associated timings, see the device-specific data sheet.

Table 6. PLL Multiplier Based on Value AEM and PLLMS[2:0] Pins

FASTBOOT AEM PLLMS[2:0] PLLM

1 001 N/A If ((BOOTMODE[3:0] == 0001) && (PCIEN==0)) Then PLLM = 26 (CLKIN × 27)

If ((BOOTMODE[3:0]==0011) && (PCIEN==0)) Then PLLM=14 (CLKIN × 15)

PLLM = 19 (CLKIN × 20) for all other values of BOOTMODE[3:0], PCIEN

1 != 001 000 PLLM = 19 (CLKIN × 20) for all values of BOOTMODE[3:0], PCIEN

001 PLLM = 14 (CLKIN × 15) for all values of BOOTMODE[3:0], PCIEN

010 PLLM = 15 (CLKIN × 16) for all values of BOOTMODE[3:0], PCIEN

011 PLLM = 17 (CLKIN × 18) for all values of BOOTMODE[3:0], PCIEN

100 PLLM = 21 (CLKIN × 22) for all values of BOOTMODE[3:0], PCIEN

100 PLLM = 24 (CLKIN × 25) for all values of BOOTMODE[3:0], PCIEN

110 PLLM = 26 (CLKIN × 27) for all values of BOOTMODE[3:0], PCIEN

111 PLLM = 29 (CLKIN × 30) for all values of BOOTMODE[3:0], PCIEN

Note that the bootloader does not generate an error condition for invalid selections of the PLL multiplier.
Therefore, care must be taken to ensure that the selected PLL multiplier does not exceed the timing
constraints and operating frequency for boot peripheral or the PLL. Please see the following tables for
constraints on PLL multipliers and clock frequencies. For more detailed information on these
requirements, see the device-specific data sheet.

Using the TMS320DM643x Bootloader8 SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

2.2.1 CPU Frequency With FASTBOOT Options

Boot Mode Description

Table 7. PLL1 and PLL2 Multiplier Ranges

PLL MULTIPLIER (PLLM) MIN MAX

PLL1 Multiplier x14 x30

PLL2 Multiplier x14 x32

Table 8. PLLC1 Clock Frequency Ranges

CLOCK SIGNAL NAME MIN MAX UNIT

MXI/CLKIN 20 30 (1) MHz

At 1.2-V CVDD 400 600 MHz
PLLOUT

At 1.05-V CVDD 400 520 MHz

-600 devices 600 MHz

-500 devices 500 MHz
SYSCLK1 (CLKDIV1 Domain)

-400 devices 400 MHz

-300 devices 300 MHz
(1) MXI/CLKIN input clock is used for both PLL controllers (PLLC1 and PLLC2).

Table 9. PLLC2 Clock Frequency Ranges

CLOCK SIGNAL NAME MIN MAX UNIT

MXI/CLKIN (1) 20 30 MHz

At 1.2-V CVDD 400 900 MHz
PLLOUT

At 1.05-V CVDD 400 666 MHz

PLL2_SYSCLK1 (to DDR2 PHY) 333 MHz

PLL2_SYSCLK2 (to VPBE) 54 MHz
(1) MXI/CLKIN input clock is used for both PLL controllers (PLLC1 and PLLC2).

The boot loader software uses a fixed PLL divider of 1 (divide by 2), for deriving CPU clock. Assuming an
input oscillator frequency of 27 MHz, Table 10 lists the resulting CPU frequencies based on the PLLM
values selected by FASTBOOT options.

Table 10. CPU Frequency During FASTBOOT

PLLM CPU Frequency

19 270 MHz

14 202 MHz

15 216 MHz

17 243 MHz

21 297 MHz

24 337 MHz

26 364 MHz

27 405 MHz

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

2.3 Emulation Boot (BOOTMODE[3:0] = 0000b, FASTBOOT = 0 or 1)

2.4 HPI Boot (BOOTMODE[3:0] = 0001b or 0010b, or 0011b, PCIEN = 0, FASTBOOT = 0 or 1)

2.5 PCI Boot (BOOTMODE[3:0] = 0001b or 0010b, PCIEN = 1, FASTBOOT = 1)

Boot Mode Description

In this boot mode the ROM boot loader software executes a software loop. The emulation software has
responsibility for performing any code download and controlling the device. All FASTBOOT options are
ignored for this boot mode. The PLL operates in bypass mode, yielding a CPU timing of 27 MHZ.

In HPI boot mode, the device bootloader hardware module branches to the start of the ROM bootloader
software. Then, the ROM bootloader code performs the following sequence:

1. When FASTBOOT = 1, the bootloader programs the PLL based on PLL multiplier settings latched at
reset, as discussed in Table 6.

2. Configures any HPI register that may be required.
3. Clears the DSPBOOTADDR register. Clears boot error code field (BOOTCMPLT.ERR) and boot

complete bit (BOOTCMPLT.BC) in BOOTCMPLT register.
4. Posts HINT to the HOST device, signaling that the DSP is awake and ready for code download.
5. Enters a software loop waiting for non-zero value in the BOOTCMPLT.BC register.
6. When download of application is complete, the HOST writes the application start address into the

DSPBOOTADDR register and then sets the boot complete bit in BOOTCMPLT register.
7. Once BOOTCMPLT.BC has been set by HOST, the ROM bootloader software branches to the address

set by HOST in DSPBOOTADDR.

DM643x supports the PCI boot with DSP as PCI slave only. The bootloader implements the PCI boot with
and without auto-initialization. When the PCI boot with auto-initialization is selected, the bootloader
expects auto-init data to be stored in I2C EEPROM connected to I2C of the device. Please note that
although the bootloader attempts boot when FASTBOOT mode is not enabled, this is NOT the
recommended mode for the PCI boot. Please enable FASTBOOT with any PCI boot mode to ensure PCI
timing meets requirements.

In PCI boot mode with no auto-initialization, the ROM bootloader performs the following steps:

1. Bootloader configures PLL using the PLL multiplier selected based on the value of AEM and
PLLMS[2;0] according to Table 6. (Please note that if FASTBOOT is not selected, the bootloader still
attempts to complete boot. However, the PCI operating frequency may not meet minimal PCI
requirements of 33 MHZ).

2. Clears the DSPBOOTADDR and BOOTCMPLT register fields.
3. When boot mode = 0001b, the ROM bootloader sets PCI CONFIG_DONE bit in the PCI Configuration

Done Register (PCICFGDONE) and the PCI Slave Control Register (PCISLVCNTL) to 1. When boot
mode = 0010b, PCI auto-init mode is enabled and the ROM bootloader programs the PCI wrapper
registers setting CONFIG_DONE = 1 after this is complete.

4. The bootloader then enters a software loop polling for BOOTCMPLT.BC. Once boot complete is
detected, the ROM bootloader software branches to the address set by the HOST in DSPBOOTADDR
register.

When FASTOOT mode is selected along with the PCI boot, as the first step, the ROM bootloader software
configures the PLL prior to clearing DSPBOOTADDR and BOOTCMPLT registers.

10 Using the TMS320DM643x Bootloader SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

2.6 EMIFA ROM Direct Boot (BOOTMODE[3:0] = 0100b, FASTBOOT = 0)

2.7 EMIFA ROM Fast Boot Without AIS (BOOTMODE[3:0] = = 1001b, FASTBOOT == 1)

Boot Mode Description

When the PCI boot with auto-initialization is selected, the bootloader reads the PCI configuration data
stored in I2C EEPROM connected to the I2C of the device. The data as stored in I2C EEPROM must
begin at I2C EEPROM address 0×400 and is formatted as shown in Table 11.

Table 11. PCI Configuration Data for Auto-Init

Byte Address Contents

0x400 Vendor ID [15:8]

0x401 Vendor ID [7:0]

0x402 Device ID [15:8]

0x403 Device ID [7:0]

0x404 Class code [7:0]

0x405 Revision ID [7:0]

0x406 Class code [23:16]

0x407 Class code [15:8]

0x408 Subsystem vendor ID [15:8]

0x409 Subsystem vendor ID [7:0]

0x40a Subsystem ID [15:8]

0x40b Subsystem ID [7:0]

0x40c Max_Latency

0x40d Min_Grant

0x40e Reserved (use 0x00)

0x40f Reserved (use 0x00)

0x410 Reserved (use 0x00)

0x411 Reserved (use 0x00)

0x412 Reserved (use 0x00)

0x413 Reserved (use 0x00)

0x414 Reserved (use 0x00)

0x415 Reserved (use 0x00)

0x416 Reserved (use 0x00)

0x417 Reserved (use 0x00)

0x418 Reserved (use 0x00)

0x419 Reserved (use 0x00)

0x41a Checksum [15:8]

0x41b Checksum [7:0]

The PCI initialization data is expected to be stored in BIG-ENDIAN format.

EMIFA direct boot does not require intervention from the ROM bootloader software. The DSP hardware
boot module causes direct branch to start of EMIFA memory at address 0×42000000.

In this boot mode, the ROM bootloader configures the PLL based on values of AEM and PLLMS[2:0] pins
latched at reset. Then, it branches directly to address 0×42000000. This boot mode effectively operates
the same as EMIFA direct boot (BOOTMODE[3:0]==0100b, FASTBOOT==0), with exception that the PLL
is now configured. This enables faster EMIF clock to speed boot from an external device.

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

2.8 EMIFA ROM Fast Boot With AIS (BOOTMODE[3:0] = 0100b, FASTBOOT = 1)

2.9 I2C Master Mode Boot (BOOTMODE[3:0] = 0101b, FASTBOOT = 0 or 1)

Boot Mode Description

During EMIFA FAST ROM boot mode the DSP hardware boot module transfers control to the ROM
bootloader software. This boot mode operates differently than the EMIFA direct boot. The ROM bootloader
controls the boot process, first programming the PLL to operate at faster CPU speeds, then reading
code/data starting at EMIFA address 0×42000000. The data stored in the FLASH/ROM must be in AIS
format. A description of AIS is given in Section 3 of this document. The AIS boot image consists of AIS
commands and data necessary to load the application code into the DSP memory. Using the AIS format,
eliminates requirement for user defined secondary boot loader to load code. The ROM bootloader
processes AIS commands from the EMIFA ROM until an AIS JUMP_CLOSE instruction is encountered.
The JUMP_CLOSE instruction contains the application code start address. This command signals that the
application has been fully loaded and all AIS commands have been processed for the boot. The ROM
bootloader clears its internal state and then branches to the start of the application code. EMIF
FASTBOOT sequence:

1. Programs the PLL using the PLL multiplier selected by the value of the AEM and PLLMS[2:0] pins as
shown in Table 6.

2. Reads the value of the 8_16 pin as latched into the BOOTCFG register and sets the EMIF data width
accordingly.

3. Fetches the AIS data from the external memory and processes the AIS commands until the
JUMP_CLOSE command is encountered.

4. Branches to the application start address given in the JUMP CLOSE command.

The DM643x supports the I2C boot with DSP as I2C master only. The DSP hardware boot module
transfers control to the ROM bootloader software at device reset. The ROM bootloader configures the I2C
peripheral device, and begins read of data from the I2C EEPROM. The data stored in the I2C EEPROM is
expected to be in AIS format. The first 32 bits are ignored by the bootloader; this location is currently
reserved. The second 32 bit word must contain the AIS magic number. The remaining data in the I2C
EEPROM must be in AIS format. Please refer to Section 3 for details of AIS. Boot sequence for I2C is as
follows:

1. When FASTBOOT = 1, bootloader programs PLL using PLL miltiplier selected by values of AEM and
PLLMS[2:0] as seen in Table 6.

2. Configures I2C for master mode with slave address register set to 0x50, and own address register set
to 0×29.

3. Processes each AIS command until JUMP CLOSE command is encountered.
4. Branches to application start address
5. If an error occurs during the I2C boot process, the bootloader writes an error condition in the ERR field

of the BOOTCMPLT register. Then, it attempts to perform boot through UART.

Using the TMS320DM643x Bootloader12 SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

2.9.1 I2C Master Boot Timing

() () ()
I2C peripheral clock frequency

I2C master clock frequency =
IPSC + 1 * ICCLKL + D ICCLKH + Dé ù+ë û

2.10 SPI 16x8 Master Mode Boot (BOOTMODE[3:0] = 0110b, FASTBOOT = 0 or 1)

Boot Mode Description

The bootloader sets the following values for I2C clock pre-scale and clock low hold/clock high hold
registers:

Table 12. I2C Timing Register Settings

FASTBOOT Register Value

0 IPSC 0x2

ICCLKH 0x2D

ICLKL 0x2D

1 IPSC 0x2

ICCLKH 0x8

ICCLKL 0x8

The frequency of the I2C master clock is derived by:

For DM643x, the I2C input clock is directly derived from CLKIN. The value of the quantity represented by
"D" is determined by the IPSC value (IPSC > 1, D = 5, IPSC = 1, D = 6, IPSC = 0, D = 7). For purposes of
determining the I2C master clock used for boot, D = 5, since the boot loader software always programs a
value of 2 for IPSC. Assuming an input oscillator frequency of 27 MHz, the settings for IPSC< ICLKH,
ICCLKL, in Table 12 yields the following I2C master clock frequencies:

FASTBOOT == 1

I2C Master clock ~ 310 Khz

FASTBOOT == 0

I2C Master clock ~87 Khz

Please note that the input clock for the I2C module bypasses the PLL, therefore any FASTBOOT option
settings using AEM and PLLMS[2:0] and subsequent PLLM selection has no effect on the frequency of the
I2C master clock.

SPI 16x8 boot is implemented by configuring MCBSP0 of the device to operate in SPI mode. This mode
supports SPI EEPROMS that require 16 bits of address and fetch/receive 8 bits of data. Sixteen bits of
address allows boot from SPI devices with sizes upto 64Kx8. The bootloader only supports DSP as SPI
master for this boot mode. The bootloader software configures MCBSP0 for SPI mode with 32 bit data
transmit/receive. The SPI read command and 16 bit address are packed into the upper 3 bytes of the 32
bit word. The fourth empty byte provides the clock cycles needed to retrieve 8 bits of data out from the
SPI EEPROM. The boot flow is as follows:

1. If FASTBOOT is enabled, the bootloader programs PLL using PLLM value selected according to
Table 6.

2. The bootloader then reads AIS formatted boot image from EEPROM.
3. When last AIS command is encountered (JUMP CLOSE command) the bootloader branches to

application entry address given in the command.

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

2.10.1 SPI 16x8 Master Boot Timing

2.10.2 SPI 16x8 Master Boot Signal Polarity

ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ
B1B2B4 B3 B0B5B6B7

B0B1B2B3B4B5B6B7

FSX/SS

DX or DR/MOSI
(From Master)

CLKX/SCKÁÁ
ÁÁ

DX or DR/MISO
(From Slave)

Boot Mode Description

The SPI master clock frequency is derived from the internal clock provided to the MCBSP0. The
peripheral clock is derived by a fixed divide of 1/6 the CPU clock. The master clock is then further divided
by the value of the CLKGDV field of the MCBSP's SRGR. The bootloader software fixes the CLKGDV at a
value of 0x2. This provides a divide down ratio of 1/3 of the MCBSP input clock. Table 13 shows the
derived master clock frequency based on the possible PLLM values.

Table 13. SPI Master Clock Frequencies for FASTBOOT = 1

PLLM PLLOUT (MHz) CPU (MHz) MCBSP (MHz) SPI Master (MHz)

19 540 270 45 15

14 404 202 33.7 11

15 432 216 36 12

17 486 243 40.5 13.5

21 594 297 49.5 16.5

24 675 337 56 18.7

26 729 364 60.7 20.2

29 810 405 67.5 22.5

Please note that the timings given in the table are based on 27Mhz input clock frequency. Please check
the datasheet for your particular device and the datasheet for the your SPI EEPROM to determine proper
timiing and frequency range.

MCBSP0 is configured for SPI Master boot with following modes selected:

Table 14. SPI Master Boot Modes

Register Value

PCR Field Values Set

FSXM = 1, FSRP = 1, CLKXM = 0, FSXP = 1

SPCR Field Values Set

CLKSTP = 3, (11b)

RCR Field Values Set

RDATDLY = 1

XCR Field Value Set

XDATDLY = 1

With these modes selected, the SPI master clock polarity is inactive high, and a MCBSP begins data
transfer one-half clock cycle prior to first rising edge of clock amd samples input data on the rising edge of
the clock. This operation supports SPI EEPROMS that sample data on rising edge of clock, and send data
out on falling edge of clock.

Figure 1. SPI Transfer With CLKSTP = 11 and CLKXP = 0

14 Using the TMS320DM643x Bootloader SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

2.10.3 Connecting SPI EEPROM for SPI 16x8 Boot

2.11 NAND Flash Boot (BOOTMODE[3:0] = 0111b, FASTBOOT = 0 or 1)

Boot Mode Description

For further details on how the MCBSP operates when in SPI mode, please refer to the TMS320C6000
Multi-Channel Buffered Serial Port User's Guide (SPRU580).

To enable boot from 16x8 SPI EPPROM, the EEPROM should be connected to McbSP0 pins in
accordacne with Table 15

Table 15. SPI 16x8 EEPROM-to-DSP McBSP0 Connection

SPI EEPROM McBSP0

Sn FSX0

C CLKX0

D DX0

Q DR0

NAND Flash boot mode is currently supported via secondary boot. There is a race condition in the polling
for NAND ready in the ROM bootloader for Rev 1.10 and 1.20 of the device. Therefore this boot mode is
not fully supported in ROM. Workaround for this problem is to boot from any of the other supported boot
methods, such as I2C or SPI, and allow secondary bootloader to then load code from NAND flash. A
sample secondary boot loader and the code needed to flash the secondary code to I2C or SPI is given in
the attachment to this document. A list of devices supported by the secondary NAND boot is given in
Table 16. Please note that the secondary bootloader does not support any NAND devices which
specifically require toggle of chip select signal for operation. NAND device used for boot must be
connected to EMIFA CS2.

Table 16. Supported NAND Device Types

Device ID Page Size Total Memory Size

0×E3 512+16 4 MB

0×E5 512+16 4 MB

0×E6 512+16 8 MB

0×39 512+16 8 MB

0×6B 512+16 8 MB

0×73 512+16 16 MB

0×33 512+16 16 MB

0×75 512+16 32 MB

0×35 512+16 32 MB

0×43 512+16 16 MB

0×45 512+16 32 MB

0×53 512+16 16 MB

0×55 512+16 32 MB

0×76 512+16 64 MB

0×36 512+16 64 MB

0×79 512+16 128 MB

0×71 512+16 256 MB

0×46 512+16 64 MB

0×56 512+16 64 MB

0×74 512+16 128 MB

0×F1 2048+64 128 MB

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 15
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU580
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

2.12 UART Boot (BOOTMODE[3:0] = 1000b, 1110b, FASTBOOT = 0 or 1)

2.12.1 UART Boot Timing

Boot Mode Description

Table 16. Supported NAND Device Types (continued)

Device ID Page Size Total Memory Size

0×A1 2048+64 128 MB

0xAA 2048+64 256 MB

0×DA 2048+64 256 MB

0×AC 2048+64 512 MB

0×DC 2048+64 512 MB

0×B1 2048+64 128 MB

0×C1 2048+64 128 MB

The secondary bootloader expects the data in NAND to be in AIS format. Please note that AIS data is
considered to be a serial stream, therefore all AIS data must be contained in contiguous pages/blocks
within the FLASH. Currently, the secondary bootloader makes no attempt to bypass bad blocks. Once it
has determined location for start of AIS data, it assumes remaining data is in contiguous ‘good’ blocks of
memory. The secondary bootloader does perform 1 bit error correction, when ECC 1 bit error is detected.
The bootloader begins search of AIS data from block 1 of the memory and searches the all remaining
blocks to find the AIS magic number. Block 0 is reserved for use of the application.

UART boot differs from the other boot modes in that the bootloader software performs some
communication with the HOST during the boot process. The bootloader performs the following sequence
when UART boot is selected.

1. When FASTBOOT = 1, the bootloader programs the PLL using the PLL mulitplier selected according to
Table 6.

2. Bootloader configures UART registers as required by chosen mode.
3. Bootloader sends message BOOTME through the serial interface to the HOST.
4. Bootloader waits response from the HOST in the form of the AIS magic number. The bootloader will

continually loop, waiting for response.
5. When response is received from HOST< the bootloader processes AIS commands as read from the

serial interface until a JUMP CLOSE command is encountered.
6. When JUMP CLOSE command is read, the bootlaoder sends message, DONE, to the HOST and then

branches to the application start address.

Please note that the AIS commands are expected to be in ASCII representation, hence to send the AIS
magic word , 0x41504954, the character sequence "41","50","49","54", is expected to be recieved by the
bootloader. A sample AIS stream for UART boot is given in Section 3.

Operationally, UART boot via BOOTMODES[3:0]==1000b and 1110b are essentially the same. The
difference is in the management of data flow. When BOOTMODE[3:0] = 1000b, UART boot is executed
without use of hardware flow control. UART BOOTMODE[3:0]=1110b is selected, then the UART is
configured to use the hardware flow control module. In both modes the UART FIFO is enabled, and is set
for the maximum FIFO size of 14.

The bootloader software does not use auto-baud detect. The UART clock divide registers are set for a
total divide down value of 15. With a 27 MHZ input clock, this yields an approximate baud rate of 115 kbps
(kilobits per second). The input clock supplied to the UART bypasses the PLL, therefore this baud rate is
unaffected by PLL configuration and advantage can be taken of the FASTBOOT modes for faster CPU
clock. The required connection settings for UART boot are given in Table 17

Using the TMS320DM643x Bootloader16 SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

2.13 VLYNQ Boot (BOOTMODE[3:0]=1010b, FASTBOOT = 0 or 1)

2.13.1 VLYNQ Boot Timing

2.14 SPI 24×8 Master Mode Boot (BOOTMODE[3:0]=1111b, FASTBOOT = 0 or 1)

Boot Mode Description

Table 17. UART Connection Attributes for Boot

Attribute Value

Baud Rate 115 kbps

Data Bits 8

Stop Bits 1

Parity None

Hardware flow control (BOOTMODE[3:0} ==1110b),Flow Control or none (BOOTMODE[3:0] == 1000b)

The ROM bootloader supports boot via VLYNQ with DSP as VLYNQ slave. The bootloader ensures that
VLYNQ is enabled and then polls for BOOTCMPLT.CMPLT flag in the BOOTCMPLT register to indicate
that the download of application by VLYNQ Host is complete. The bootloader will then branch to the start
address in DSPBOOTADDR as written by the VLYNQ Host. The boot process for VLYNQ then is as
follows:

1. If FASTBOOT is enabled bootloader configures PLL according using appropriate PLL multiplier.
2. Bootloader makes sure VLYNQ is enabled.
3. Bootloader executes empty loop polling for BOOTCMPLT.CMPLT flag.
4. VLYNQ Host downloads application to DSP.
5. VLYNQ Host writes application start address to DSPBOOTADDR register.
6. VLYNQ Host writes 1 to BOOTMCPLT.CMPLT register flag.
7. Bootloader detects BOOTCMPLT.CMPLT and branches to start address in DSPBOOTADDR.

There are two independent clocks that should be considered when configuring the DSP for boot from
VLYNQ. There are 1) the VLYNQ clock (data clock) and 2) the internal VLYNQ module clock. Because the
DSP is acting as VLYNQ slave for purposes of boot, the VLYNQ clock (data clock) will be provided
externally by a VLYNQ master. This is the clock that determines the VLYNQ data rate. The VLYNQ clock
frequency should be determined by the system requirements and is independent of the internal VLYNQ
module clock frequency.

The internal VLYNQ module clock is provided by the clock module within the DSP and is affected by
CLKIN/PLLOUT depending on PLL mode. When PLL is in bypass mode, the internal VLYNQ module
clock is derived from CLKIN and has value CLKIN/6. When any of the FASTBOOT options are chosen,
then PLL is no longer in bypass mode, and internal VLYNQ module clock timing is derived from PLLOUT,
and has value SYSCLK1/6 (SYSCLK1 is CPU clock). The internal VLYNQ module clock should not
exceed 99Mhz. So care should be taken when choosing PLL multipliers for FASTBOOT option that the
value of SYSCLK1 does not exceed 594Mhz, keeping internal VLYNQ module clock at or below the rated
operating frequency of 99Mhz. Again, the 99Mhz limitation is on internal VLYNQ module clock ONLY and
has no effect on the external VLYNQ clock (data clock) provided by the VLYNQ Master.

This bootmode supports SPI EEPROMs that require 24 bits of address and transfer 8 bits of data per
read/write cycle. Twenty-four bits of address allows support of SPI EEPROMS with size upto 16Mx8. As in
SPI 16 bit mode, data stored in the SPI EEPROM is expected to be formatted as a valid AIS image and
follows the same boot flow:

1. If FASTBOOT is enabled, bootloader configures PLL
2. The bootloader then reads AIS formatted boot image from EEPROM.
3. When last AIS command is encountered (JUMP CLOSE command) the bootloader branches to

application entry address given in the command.

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

2.14.1 SPI 24x8 Master Boot Timings

2.14.2 SPI 24x8 Boot Signal Polarity

23

10876543210 9 38363534333231302928 37 39

C

22 21 3 2 1 0D

MSB

3 2 1 77 6 5 4

Data Out 1
Data
Out 2

Q

Instruction
24-Bit Address

High Impedance

S

0

MSB

Boot Mode Description

To enable communication with SPI EEPROMs that require 24 bits of address, the McBSP is configured
differently for 24 bit SPI Master mode boot, than in 16x8 Master mode. The McBSP has a native limitation
of 32 bits for transmit/receive when operating in SPI mode. To effectively address SPI EEPROMs
requiring 24 bits of address, 40 bits are actually needed; 8 bits of command + 24 bits of address + 8 bits
to clock data in/out of the EEPROM. So in SPI 24x8 Master boot, a GPIO pin is used as chip select signal,
instead of FSX0 which is normally connected for this purpose. When using this boot mode the FSX0 pin
should not be connected and is unused. McBSP0 is then configured to transmit/receive 8 bit data. Please
note that chip select is assumed inactive high for this boot mode. The 40 bits needed to communicate with
the SPI device are transmitted in separate bytes. The transmit sequence from the DSP to EEPROM is:

1. Assert GPIO (drive GPIO high initially before McBSP0 is released to avoid premature chip select
toggle).

2. De-assert GPIO (driving chip select low).
3. Transfer 8 bits of SPI command.
4. Transfer SPI addres bits [23:16].
5. Transfer SPI address bits [5:8].
6. Transfer SPI addres bits [7:0].
7. Send 8 dummy bits to enable clock out of data from EEPROM.
8. Bootloader reads 8 bits from DR0.
9. Assert GPIO (drive chip select high).

Timings for SPI 24x8 Master Boot is determined by system PLL settings and McBSP0 divide down clock.
These are described in detail in Section 2.10.1

The McBSP SPI mode settings for 24x8 mode are the same as for 16x8 SPI Master mode, CLKSTP =
11b, CLKXP = 0. In this mode, data is transmitted from DSP one-half cycle prior to rising edge of clock
and received on rising edge of clock. This operational mode is compatible with SPI EEPROMS which
sample data in on rising edge of clock and clock data out on the falling edge.

The read timings for the 24-bit SPI mode are given below. Figure 2 shows example 24x8 bit SPI EEPROM
read timing.

Figure 2. 24x8 Bit SPI EEPROM Read Timing

18 Using the TMS320DM643x Bootloader SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

8b
Instruct

A[23:16] A[15:8] A[7:0]

8b D2 8b D3 8b D48b D1 8b Dn

Sn/GP97

C/CLKX0

FSX0

D/DX0

Q/DR0

2.14.3 Connecting SPI EEPROM for SPI 24x8 Boot

3 Application Image Script

Application Image Script

Figure 3 shows how the DM643x 24x8 bit SPI boot works. Table 18 shows the pin connection between
the DM643x and the 24x8 SPI EEPROM.

Figure 3. DM643x 24x8 Bit Address SPI Boot

For 24×8 bit SPI mode, the McBSP0 pins must be connected to the SPI EEPROM according to Table 18

Table 18. SPI EEPROM and DSP Pin Connections for 24 Bit SPI Mode

SPI EEPROM DSP Comment

Sn GPIO97 Connects GPIO97 to chip select of SPI EEPROM

C CLKX0 Connects CLKX0 to clock of SPI EEPROM

D DX0 Connects DX0 to data in of SPI EEPROM

Q DR0 Connects DR0 to data out of SPI EEPROM

- FSX0 Leave uncconected, this signal is not used

The bootloader accepts boot information in the form of a script, called application image script (AIS).
Application image script is a Texas Instruments, Inc. proprietary application image transfer format. This
script is a binary file consisting of a script header followed by various commands that can be interpreted
and executed by the boot loader. Each command contains an op-code, followed by optional additional
data required to execute the op-code. The bootloader currently supports AIS version 1.99; all commands
and data are assumed to be 32 bits in width.

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

toload

Total Number of
Bytes of Code/Data

to Load

Magic Number
(0x41504954)

Total Number of
Sections to Load

Command1

Command2

JUMP_CLOSE
Command

Command Op-Code

Optional Data

Application Image Script

The AIS starts a header that consists of a magic word (0×41504954); the header is then followed by a
series of commands as shown in Figure 4. Each command consists of an op-code followed by optional
additional data. All AIS command streams are terminated with a JUMP_CLOSE command which causes
transfer of control to the loaded application code and terminates execution of the ROM bootloader.

Figure 4. Basic Structure of Application Image Script

The bootloader only accepts data in AIS format for all modes except HPI ad PCI. The following sections
define each command with appropriate op-code, structure and placement in AIS. Table 19 lists the various
opcodes that are supported by AIS 1.0.

Table 19. AIS Version 2.0 Supported Opcodes

Opcode Value

Section Load 0×58535901

Request CRC 0×58535902

Enable CRC 0×58535903

Disable CRC 0×58535904

Jump 0×58535905

Jump_Close 0×58535906

Set 0×58535907

Start Over 0×58535908

Reserved 0×58535909

Section Fill 0×5853590A

Get 0×5853590C

Function Execute 0x5853590D

20 Using the TMS320DM643x Bootloader SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

3.1 SET Command

...

... ...

MAGIC - 041504954

SET Command

More SET Commands

Other Commands

SET Op-Code

Optional Data

0x58535907

<TYPE>

<ADDRESS>

<DATA>

<SLEEP>

Application Image Script

The SET command is a simple mechanism that enables you to write 8-bit, 16-bit or 32-bit data to any
address in DSP address space. One of the arguments to this command implements a delay after the
memory write happens. This can be used for memory mapped register write to take effect. Set commands
may be used to configure various peripherals of the DSP. This includes PLL and EMIF at minimum and
can configure more peripherals if required.

When DSP comes up from reset, the PLL is in bypass mode. As a result, the CPU is clocked at the same
frequency as connected crystal/CLK IN, which is generally very low. This results in slow communication
and high boot time. Selecting FASTBOOT mitigates this by programming the PLL with a slightly higher
multiplier of 0×C, but this does not change default EMIF wait states, etc. In order to reduce boot time, the
PLL and EMIF registers can be re-configured at the very beginning of the boot process using a series of
SET commands. For this reason, all SET commands for configuring EMIF and setting PLL should be
placed at the beginning of the AIS boot image as shown in Figure 5.

Figure 5. Structure of SET Command

Each set command consists of SET (0×58535907) op-code, followed by four words of additional data as
shown. SET command entries in AIS can be explained using the following representation:
<Address> =
<Data><Type>::<Sleep>

The above command instructs bootloader to write <Data> to address <Address> in DSP address space
and then sleep for <Sleep> * CPU clocks. The data-type field <Type> decides whether <Data> should be
written as 8 bit (B), 16-bit (S) or 32-bit (I)All other fields can be in any numeric format as described in
Table 20.

Table 20. Numeric Formats That Can Be Used in SET Command

Name Format Example 1 Example 2 Example 3

Hexadecimal 1 0[xX][0-9a-fA-F]+ 0×1234abCD 0×1000 0×5a

Octal 0[0-7]+ 02215125715 010000 0132

The data-type field <Type> determines the size of the data item such as 8-bit (B), 16-bit (S) or 32-bit (l).
Data-type also can be a field or bits. This allows the setting of a particular range of bits within the data at
the specified address. For field and bits data-types, the <Type> field also encodes the start and stop bit
positions that define the field to be modified. Table 21 gives a full list of the data-types that can be used.

Table 21. Valid SET Command Data Types

Data Type Value

8 bit 1

16 bits 2

32 bits 3

Field (1-32 bits) 4

Bits(1-32 bits) 5

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

3.1.1 Valid SET Command Data Types

3.2 Get Command

...

...

MAGIC - 0x41504954

GET Command

Other Commands

GET Op-Code

Data

0x5853590C

<TYPE>

<ADDRESS>

<DATA>

<SLEEP>

Application Image Script

The field and bits data-types are handled similarly by the bootloader. The difference between these types
are that with a specifier of field, the bootloader performs a read/modify write operation at the given
address. The bits data type results in a read of the address, followed by a write of the new value to the
address. The <Type> specification is a 32-bit word that contains fields for data type (shown above), start
bit, and stop bit. The start bit and stop bit fields are required only if a data-type of field(3) or (bits(4) is
used. These fields delimit the number of bits that are affected by the instruction. Table 19 shows the
encoding of the 32 bit <Type>.

Figure 6. Valid SET Command Data Types

31 24 23 16

Reserved Stop Bit

15 8 7 0

Start Bit Data Type

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 22. Valid SET Command Data Types Field Descriptions

Bit Field Value Description

31-24 Reserved 0 Reserved

23-16 Stop Bit Stop bit (for bits and fields data type) last bit position in word that delimits field

15-8 Start Bit Start bit (for bits and fields data type) first bit position in word for start of field

7-0 Data Type Data Type (1,2,3,4,5), specifies type of data to write

The GET command enables fetch of a value stored at any read accessible DSP memory address. The
GET command has the same format as the SET command described in Section 3.1, with the exception
that delay is not required. All data formatting rules described in the SET command are valid for the GET
command. The GET command always transmits full 32 bits even if relevant data is only 8- or 16-bits wide.
Data is zero-filled and right-justified (for example, MSBs are zero for all data that is less than 32 bits in
length). Figure 7 shows the structure of the GET command.

Figure 7. Structure of GET Command

Using the TMS320DM643x Bootloader22 SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

3.3 Section Load Command

...

...

...

...

MAGIC - 0x41504954

SET Commands

SL Commands

More SL Commands

Other Commands

SECTION_LOAD Op-Code

Data

0x58535901

<ADDRESS>

<SIZE>

<DATA>

3.4 Section Fill Command

...

...
...

MAGIC - 0x41504954

SET Commands

JMP Commands

More SL/SF Commands

Other Commands

SECTION_FILL Op-Code

Data <ADDRESS>

<SIZE>

SL/SF Commands

<TYPE>

<PATTERN>

0x5853590A

Application Image Script

Section load command is used to load a chunk of code/data to DSP memory. All initialized sections of
application are loaded to DSP memory using Section Load commands. These commands are placed after
all SET commands in AIS. Figure 8 shows the structure of the section load command.

Figure 8. Structure of Section Load Command

Each section load command consists of SECTION_LOAD (0×58535901) op-code, followed by section’s
start address, size and contents.

Section fill command is used when a particular section is to be filled with a specific pattern. For example, a
section that contains all zeros can be initialized with the section fill command. These commands can be
placed anywhere where a regular section load command can occur. Figure 9 shows the structure of the
section fill command.

Figure 9. Structure of Section Fill Command

Each section fill command consists of SECTION_FILL (0×5853590A) op-code, followed by section’s start
address, size, pattern-type (8/16/32 bit) and pattern to be filled.

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

3.5 Jump Command

...

...

MAGIC - 0x41504954

SET Commands

SL/SF Commands

JMP Commands

More SL/SF Commands

Jump Op-Code

Data

0x58535905

<ADDRESS>

Other Commands

...

...

3.6 Jump_Close Command

...

MAGIC - 0x41504954

SET Commands

SL/SF Commands

JNC Commands JUMP_CLOSE Op-Code

Data

0x58535906

<ADDRESS>

Application Image Script

This command instructs the DSP to jump to start address of earlier loaded application. It consists of JUMP
(0×58535905) op-code, followed by the jump address. Figure 10 shows the structure of the jump
command.

Figure 10. Structure of Jump Command

This command is used to implement bootloader 2. To achieve this, bootloader 2 is loaded through the
section load and section fill commands. Once this is done a jump command is issued to start execution
from the start address of bootloader2. Once bootloader2 execution is over, normal AIS interpretation and
execution continues.

This command is used at the end of the boot process to start execution of the loaded application. it
instructs the DSP to terminate the boot process and jump to start address of loaded application. Figure 11
shows the structure of the Jump_Close command.

Figure 11. Structure of Jump_Close Command

This command is be placed at the end of AIS, after all other commands. It consists of JUMP_CLOSE
(0×58535906) op-code, followed by the start address of the application where the boot loader should
jump. In addition to the application entry point address, two words, the 1) total number of sections that
should have been loaded during boot, and 2) the total number of bytes which should have been loaded
during boot are placed as the last two words of the image.

Using the TMS320DM643x Bootloader24 SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

3.7 CRC Options

3.7.1 Enable/Disable CRC Commands

...

...

MAGIC - 0x41504954

CRC Commands

BT Commands

SL/SF Commands

JNC Commands

ENABLE_CRC Op-Code

Optional Data

Optional Data

DISABLE_CRC Op-Code

0x58535903

0x58535903

(No optional data)

(No optional data)

MAGIC - 0x41504954

BT Commands

CRC Commands

SL/SF Commands

JNC Commands

Application Image Script

There is a possibility of error in communication when the DSP is booting up. Execution of a corrupted
application image may result in instability or malfunction. In order to avoid such problems, AIS supports
opcodes to verify the validity of data loaded through section load/section fill commands. A proprietary
32-bit CRC computation algorithm is used for verification. The CRC options are implemented by invoking
the AIS generation tool with the appropriate option. The tool inserts the CRC enable and CRC requests
commands necessary to implement each of the following options:

No CRC—CRC computation is disabled and there is no way to detect or correct any error.

Single CRC—Single CRC is computed for all the sections. Verification is done at the end, just before
Jump N Close command. In case of error, all the sections are loaded again; CRC is recalculated
and re-verified again at the end.

Section-Wise CRC— CRC is computed for each section. Verification is done at the end of each section
and attempt to reload the section is made in case of error.

These commands are used to enable/disable computation of the CRC for sections loaded through section
load/section fill commands. Figure 12 shows the structure of the enable CRC/disable CRC commands.

Figure 12. Structure of Enable CRC/Disable CRC Commands

These commands consist of only a single ENABLE_CRC (0×58535903) or DISABLE_CRC (0×58535904)
op-code. There is no additional data required.

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

3.7.2 Request CRC Command

...

...

MAGIC - 0X41504954

BT Commands

ENA CRC Command

First SL/SF Command

More SL/SF Commands

REQ CRC Command

JNC Command

REQUEST_CRC Op-Code

Optional Data

0x58535902

<CRC>

<SEEK>

3.7.3 Start-Over Command

Application Image Script

This command is used to request and validate the current value of the CRC computed by the DSP. Using
this command requires that the enable CRC command be issued earlier in AIS. This command consists of
the REQUEST_CRC (0×58535902) op-code, followed by the expected CRC value and seek-value; the
CRC of loaded/filled section(s) are compared with the expected CRC value. If the CRC is correct,
seek-value is ignored and execution continues to next command.

A mismatch in the CRC indicates that the data loaded to the DSP memory using earlier section
load/section fill commands is corrupted. AIS has to be re-executed from the last known error-free point to
load the data again. In order to locate that point, a seek-value is made available as part of the request
CRC command. This value is to be interpreted as a negative number and should be added to the current
address in AIS. On doing this, the address points to the last error-free point in AIS; execution should be
continued as normal from this updated address.

In case of CRC error, the host should indicate the same to the DSP using the start-over command
described in Section 3.7.3. After doing that, it should add the seek-value to the AIS address pointer and
start executing AIS from that point onwards.

On receiving the start-over command, the DSP knows that the CRC error has occurred. It resets its CRC
computation and becomes ready to accept more commands from the host.

Figure 13 shows the structure of the request CRC command.

Figure 13. Structure of Request CRC Command

For a single CRC option, this command appears only once in AIS, after the last section load/section fill
command. The seek value is interpreted as a negative number, which when added to the current offset in
AIS, makes offset point to the start of the first section load/section fill command as shown in Figure 13.

For section-wise CRC option, this command appears after each section load/section fill commands. The
seek value is interpreted as a negative number, which when added to the current offset in AIS, makes
offset point to the start of the previous section load/section fill command as shown in Figure 13.

The start-over command consists of a STARTOVER (0×58535908) op-code with no additional data. This
instructs the bootloader to reset its computed CRC value to 0. This command is normally issued by host
on its own when it detects a CRC mismatch for slave modes. For master modes, this is taken care of by
the bootloader state machine.

Using the TMS320DM643x Bootloader26 SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

3.8 Function Execute Command

Magic - 0x41504954

Set Command

More Set Commands
. . .

Other Commands
. . .

Func Exec Op-Code

Optional Data
. . .

0x5853590D

No Args

Arg 0

. . .

Index

Arg n

3.8.1 PLL Config Function

Application Image Script

Figure 14 shows the structure of the function execute command.

Figure 14. Structure of Function Execute Command

The function execute command allows execution of pre-defined functions that are present in the
bootloader ROM code. For the DM643x, the following functions have been pre-defined to enable
configurability of the PLL, DDR memory controller, and EMIFA, during the boot process. Please note that
the PLL configuration using this command overwrites any PLL configuration that is performed by the
bootloader when the FASTBOOT option is selected. Table 23 shows an example pre-defined ROM
functions.

Table 23. Pre-Defined ROM Functions

Number of
Function Index Arguments Description

PLL Config 0 3 Programs PLL

EMIFA Config 1 5 Programs EMIF control registers

DDR Config 2 9 Programs DDR PLL and DDR memory controller sets the DDR
control registers

When creating the command sequence for the function execute command, the upper 16 bits of the word
immediately following the command opcode contains the number of arguments required by the function,
and the lower 16 bits must contain the function index.

The PLL config function enables re-programming of the PLL beyond what is selectable by the FASTBOOT
option. The PLL config function requires three arguments and they must be given in the order shown:

1. PLL multiplier
2. PLL divide 1 (divide down for CPU/system clock)
3. Oscillator source (0-internal , 1 - external)

Table 24 shows an example function execute command for PLL config.

Table 24. Sample Function Execute Command

AIS Data Description

0x5853590D Function Execute Opcode

0x00030000 3 arguments, Function index = 0

0x00000019 PLLM = 0x19

0x00000001 PLLDIV1 (CPU/Sysclk) = 1, divide of 2

0x00000000 Internal oscillator

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

3.8.2 EMIFA Config Function

3.8.3 DDR Config Function

4 Booting Operating Systems (Linux®/DSP/BIOS™,etc.)

Booting Operating Systems (Linux®/DSP/BIOS™,etc.)

The EMIFA config function takes five arguments, given in the following order:

1. AB1CR control register value
2. AB2CR control register value
3. AB3CR control register value
4. AB4CR control register value
5. NANDFCR control register value

Please note that this function does not override the AEM and AEAW pin settings that are latched at device
reset.

The DDR memory controller config function requires nine arguments. The arguments must be given in the
order shown:

1. DDR PLLM value
2. DDR CLK divide down
3. Video processing back end (VPBE) CLK divde down
4. DDR clock source (0-internal, 1-external)
5. DDR control register value
6. Synchronous dynamic random access memory (SDRAM) config register value
7. SDRAM timer 0 register value
8. SDRAM timer 1 register value
9. SDRAM refresh control register value

The DDR memory controller config function, programs the DRR PLL and then configures the DDR
memeory controller using the register settings given in the function execute command. It performs a single
write/read to the start of the DDR memory controller space to confirm the DDR memory controller
operation.

The ROM bootloader operates independent of boot modes provided by specific operating systems. The
boot-startup code for any operating system must be in a format in compliance with the ROM bootmodes
described in the previous sections. The ROM bootloader views all operating system start-up code no
different than any other application code. Therefore, if the operating system requires any specialized
formats to boot the preponderance of its code, this must be done via secondary boot. The secondary
bootloader for the operating system must be presented in the appropriate format for the ROM bootloader
to properly load its code. After loading the operating system boot code (secondary boot, if necessary), the
ROM bootloader branches to the operating system startup/boot-up. If a secondary bootloader was
required, the secondary bootloader then completes the download of the rest of the operating system and
begins execution.

Please note for this scenario, only the secondary bootloader MUST follow the appropriate ROM
bootloader protocol for the boot mode chosen. The rest of the operating system code/data may be in any
format required for the secondary boot to complete load of the system.

For example, if using universal boot for the uCLinux operating system, only the code for u-boot itself would
need to be in AIS format, if booting from SPI/I2C, Fast EMIF, etc. The remaining code/data for the
uCLinux operating system would be in the compressed format expected by u-boot. u-boot would then
uncompress and load the remainder of the uCLinux code to DSP memory.

Using the TMS320DM643x Bootloader28 SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

5 ROM Bootloader RAM Memory Requirements and Code/Data Placement

6 ROM Bootloader Cache Considerations

7 AIS Generation Tool , DM643x

ROM Bootloader RAM Memory Requirements and Code/Data Placement

The ROM bootloader uses a small amount of RAM in the internal memory space of the device for stack
and temporary buffer/data storage space. Memory is allocated in the first lower 20 K bytes of the L1D
(data) CACHE for this purpose. Applications MUST NOT link any initialized code/data sections into this
area of memory. Doing so may result in overwriting of essential data used by the bootloader to effect boot;
this causes boot to fail. Un-initialized sections such as the compiler generated sections , .bss, and .far,
can be allocated to this area, since these are not populated until after the boot process is complete and
the application starts to run. Also, note that the bootloader uses CPU writes to copy downloaded
code/data to memory. Becasue of this, the bootlaoder cannot directly load code into the L1P program
space. The application must actively populate this space once it has been downloaded.

The ROM bootloader disables all cache for L2 RAM and L1 RAM (both L1 Data and L1 Program) during
the boot process. If cache is enabled during the boot process via AIS commands, then be aware that the
bootloader code disables cache once again after the application code is fully loaded and prior to the
branch to application start. Therefore, the application code must explicitly enable cache, if cache use is
required. The application cannot assume cache is in default power on state, especially if cache was
enabled during boot. The bootloader does not restore cache registers to their power on defaults; it simply
disables the cache upon exit.

The DM643x is a Perl script that converts a linked executable for the DM643x to the appropriate format for
the given boot mode and data/memory widths. The DM643x is a command line tool and may be invoked
as part of a larger script or Make file. The current version of DM643x was developed using Active Perl
V5.8.6.

A simple invocation of the DM643x includes the name of the application executable file, the name of the
AIS output file, the type of the output file, the boot mode, and the data or address/memory width of the
device where the image is stored.

For example:

DM643x –i MyApplication.out –o MyApplication.ais –bootmode spi –otype ascii –addrsz 16

This invocation would produce a converted ASCII AIS file formated for the SPI boot. The AIS generation
tool can produce either an ASCII, binary, plain text, or asm output file. The asm output file contains the
AIS image in the form of assembly .word directives. This assembly file may then be assembled/linked and
passed to the Hex Conversion Utility for use with an EEPROM burner. A list of available options for the
DM643x tool is shown in Table 25.

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

AIS Generation Tool , DM643x

WARNING
Please note that the genAIS tool has a dependency on the OFD
utility (ofd6x,ofd6x.exe) that is provided with the TMS320C6000
Code Generation Tools Installation Instructions (SPRU237). The
genAIS utility currently requires ofd6x v6.1.0A06333 or above.
genAIS uses the Perl system() function to invoke the OFD utility.
Some verions of the Windows®NT and Windows95 operating
systems, may not suppport use of the system() function. In this
situation, the OFD utility must be run prior to invoking genAIS and
the resulting XML file must be specified as an input on the genAIS
command line. The options shown below in invoking the OFD
utility are optimal for usage with genAIS, and represent the minimal
set required. Therefore, it is recommended to use this set of
options when invoking the OFD.

for example,

ofd6x -x --obj_display=none,header,optheader,sections,symbols
myApp.out -o myApp.xml

genAIS -i myApp.out -x myApp.xml -o myAIS.txt -bootmode uart
-otype txt

(For more information about the OFD, please refer to TMS320C6000
Assembly Language Tools User's Guide, SPRU186).

Using the TMS320DM643x Bootloader30 SPRAAG0C–July 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU186
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

8 Sample AIS Boot Images

Sample AIS Boot Images

Table 25. DM643x Program Options

Option Description

-i filename Specifies input executable file

-o filename Specifies name of the AIS output file

-x filename Specifies name of XML output from the OFD tool (ofd6x)

-crc N (N = 0,1,2) Selects CRC generation:

N = 0 - no CRC generation

N = 1 - CRC generated for each section load

N = 2 - single CRC generated for entire load

-bootmode N (N=i2c, spi, uart. nand, raw) Specifies boot mode for which conversion is to be generated:

Please note that raw generates an AIS image that is mode independent

-otype N (N=ascii, binary, txt, asm) Specifies content format for AIS output

-memwidth N (N=8,16,24) Specifies memory/address width for external memories associated with the I2C
and SPI bootmodes. Please note that the memory width of 16 bits is the only valid
memory type for the I2C for the DM643x and C6423/C6421 devices.

-datawidth N (N=8,16) Specifies NOR flash data access width for the EMIF FASTBOOT option. Please
note that selecting this option is NOT a substitute for setting the proper EMIF
8_16-bit pin on the device when booting from EMIF.

-cfg Specifies the name of an optional configuration file that contains a sequence of
set or function execute commands to be included at the beginning of the AIS
output file.

-addrsz SPI EEPROM addres width in bits, i.e., 16, 24

AIS data streams are required for fast EMIFA, SPI, I2C, NAND Flash, and UART boot modes. A sample
AIS stream for each of these modes is presented in this section. The AIS boot images in this section were
created using a single tool called, DM643x. The DM643x is a Perl script that converts an application linked
executable file to an AIS boot image file for the bootmode selected. DM643x is discussed in the next
section. All boot images generated in this section use the same sample assembly source shown in
Example 1.

Example 1. Sample Source Code for AIS Examples

;=======================================
; Sample Assembly Source File
; a = 6;
; while(1) {
; b = a + 1;
; c = b + 2;
; }
;
;=======================================

.global _a,_b,_c

.sect "myData"
_a .word 0xA
_b .word 0xB
_c .word 0xC

.text
.global Start

Start:
MVKL .S1 _a,A3
MVKL .S1 _c,A5
MVKL .S1 _b,A4
MVKH .S1 _a,A3

|| MVK .S2 6,B4
STW .D1T2 B4,*A3

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

Sample AIS Boot Images

Example 1. Sample Source Code for AIS Examples (continued)

|| MVKH .S1 _c,A5
MV .L2X A3,B5

|| MVKH .S1 _b,A4

loop:
LDW .D2T2 *B5,B4
NOP 4
ADD .L2 1,B4,B4
STW .D1T2 B4,*A4
NOP 2
LDW .D1T1 *A4,A3
NOP 4
ADD .L1 2,A3,A3
STW .D1T1 A3,*A5
NOP 2
B .S1 loop
NOP 5

32 Using the TMS320DM643x Bootloader SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

8.1 AIS Boot Image for EMIFA ROM Boot
Sample AIS Boot Images

The first 8-bit byte in the FLASH/ROM accessed via EMIFA MUST contain the EEPROM size. Valid
values are 0×00 → 8 bit, 0×01 → 16 bit. The next three bytes are reserved. The first valid AIS word begins
on the next 32-bit word boundary. This word MUST contain the AIS magic word, 0×41504954. Any valid
AIS command may appear after the magic word. Table 20 shows the sample data stream for a 16-bit
FLASH, using the sample source included at the start of this section

Table 26. EMIFA ROM Fast Boot AIS Boot Image Example

Data Explanation

0x00000001 First byte of word specifies external memory data width

0x41504954 AIS Magic Number

0x58535903 Enable CRC Command

0x58535901 Section Load Command

0x10800000 Section Load Address

0x00000040 Section Size in Bytes

0x01802028 Start of Raw Section Data

0x02802428

0x02002228

0x01884069

0x0200032A

0x020C0277

0x02884068

0x028C1FDB

0x02084068

0x6C6E10CD

0x10442641

0x003C2C6E

0x45B06C6E

0x2C6E00B4

0x8C6E008A

0xEFC08000 End of Raw Section Data

0x58535902 Request CRC Command

0x0E85A97B Expected CRC Value

0xFFFFFFA8 Negative Pointer to Last Valid Command in Stream

0x58535901 Section Load Command

0x10800040 Section Load Address

0x0000000C Section Size in Bytes

0x0000000A Start of Section Raw Data

0x0000000B

0x0000000C End of Section Raw Data

0x58535902 Request CRC Command

0x8434A250 Expected CRC Value

0xFFFFFFDC Negative Pointer to Last Valid Command in Stream

0x58535906 Jump Close Command

0x10800000 Application Entry Point Address

0x00000002 Total number of sections that should have been loaded

0x0000004C Total number of bytes that should have been loaded

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

8.2 AIS Boot Image for I2C Boot

Sample AIS Boot Images

The first 32-bit word on the AIS header for the I2C boot mode is reserved and is ignored by the
bootloader. The second 32-bit word MUST contain the AIS magic number. A sample AIS image for I2C is
shown in Table 26.

Table 27. I2C AIS Boot Image Example

Data Explanation

0x00000002 Reserved for DM643x – boot loader ignores

0x41504954 AIS Magic Number

0x58535903 AIS Magic Number

0x58535901 Section Load Command

0x10800000 Section Load Address

0x00000040 Section Size in Bytes

0x01802028 Start Section Raw Data

0x02802428

0x02002228

0x01884069

0x02884068

0x028C1FDB

0x02084068

0x6C6E10CD

0x10442641

0x003C2C6E

0x45B06C6E

0x2C6E00B4

0x8C6E008A

0xEFC08000 End Section Raw Data

0x58535902 Request CRC Command

0x0E85A97B Expected CRC Value

0xFFFFFFA8 Negative Pointer to Last Valid Command

0x58535901 Section Load Command

0x10800040 Section Load Address

0x0000000C Section Size in Bytes

0x0000000A Start of Section RAW Data

0x0000000B

0x0000000C End Section Raw Data

0x58535902 Request CRC Value

0x8434A250 Expected CRC Value

0xFFFFFFDC Negative Pointer to Last Valid Command

0x58535906 Jump Close Command

0x10800000 Application Entry Point Address

0x00000002 Total number of sections that should have been loaded

0x0000004C Total number of bytes that should have been loaded

Using the TMS320DM643x Bootloader34 SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

8.3 AIS Boot Image for SPI Boot

Sample AIS Boot Images

Table 28 details the expected byte arrangement of the AIS boot image in the I2C EEPROM.

Table 28. AIS Image in I2C EEPROM Memory

Byte
Address Byte0 Byte1 Byte2 Byte3 32-Bit AIS Data Explanation

0x0000 0x02 0x00 0x00 0x00 0x00000002 First byte contains address size
in bytes – IGNORED by
bootloader for this device

0x0004 0x54 0x49 0x50 0x41 0x41504954 AIS Magic Word

0x0008 0x03 0x59 0x53 0x58 0x58535903 Enable CRC Command

0x000C 0x01 0x59 0x53 0x58 0x58535901 Section Load Command

0x0010 0x00 0x00 0x80 0x10 0x10800000 Section Load Address

0x0014 0x40 0x00 0x00 0x00 0x00000040 Section Size in Bytes

0x001C 0x28 0x20 0x80 0x01 0x01802028 Start Section Raw Data

0x0020 0x28 0x24 0x80 0x02 0x02802428

0x0024 0x28 0x22 0x00 0x02 0x02002228

0x0028 0x69 0x40 0x88 0x01 0x01884069

0x008C 0x58535906 JUMP CLOSE Command

0x0090 0x10800000 Application Entry Point Address

0x0094 0x00000002 Total Number of Sections

0x0098 0x0000004C Total Number of Bytes

The AIS boot image for SPI is exactly the same as I2C with the exception that the first 32-bit word in the
AIS image must contain the address width of the the SPI EEPROM expressed in bytes. The byte
containing the address width MUST be located at address 0 of the EEPROM. This address width byte is
included for internal use of the bootloader.

Table 29. SPI AIS Boot Image Example

Data Explanation

0x00000002 EEPROM Address Width in Bytes - Please note this value will be 0x00000003 in
case of 24 Bit SPI

0x41504954 AIS Magic Number

0x58535903 Request CRC Command

0x58535901 Section Load Command

0x10800000 Section Load Address

0x00000040 Section Size in Bytes

0x01802028 Start Section Raw Data

0x02802428

0x02002228

0x01884069

0x0200032A

0x020C0277

0x02884068

0x028C1FDB

0x02084068

0x6C6E10CD

0x10442641

0x003C2C6E

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

Sample AIS Boot Images

Table 29. SPI AIS Boot Image Example (continued)

Data Explanation

0x45B06C6E

0x2C6E00B4

0x8C6E008A

0xEFC08000 End Section Raw Data

0x58535902 Request CRC Command

0x0E85A97B Expected CRC Value

0xFFFFFFA8 Negative Pointer to Last Valid Command

0x58535901 Section Load Command “myData section”

0x10800040 Section Load Address

0x0000000C Section Size in Bytes

0x0000000A Start Section Raw Data

0x0000000B

0x0000000C End Section Raw Data

0x58535902 Request CRC Command

0x8434A250 Expected CRC Value

0xFFFFFFDC Negative Pointer to Last Valid Command

0x58535906 Jump Close Command

0x10800000 Application Entry Point Address

0x00000002 Total number of sections that should have been loaded

0x0000004C Total number of bytes that should have been loaded

Please note that the byte ordering of data as stored in the EEPROM should be as follows using the AIS
data from Table 28 as an example.

Table 30. AIS Image in SPI EEPROM Memory

Byte
Address Byte0 Byte1 Byte2 Byte3 32-Bit AIS Data Explanation

0x0000 0x02 0x00 0x00 0x00 0x00000002 First byte contains address size
in bytes

0x0004 0x54 0x49 0x50 0x41 0x41504954 AIS Magic Word

0x0008 0x03 0x59 0x53 0x58 0x58535903 Enable CRC Command

0x000C 0x01 0x59 0x53 0x58 0x58535901 Section Load Command

0x0010 0x00 0x00 0x80 0x10 0x10800000 Section Load Address

0x0014 0x40 0x00 0x00 0x00 0x00000040 Section Size in Bytes

0x001C 0x28 0x20 0x80 0x01 0x01802028 Start Section Raw Data

0x0020 0x28 0x24 0x80 0x02 0x02802428

0x0024 0x28 0x22 0x00 0x02 0x02002228

0x0028 0x69 0x40 0x88 0x01 0x01884069

0x008C 0x58535906 JUMP CLOSE Command

0x0090 0x10800000 Application Entry Point Address

0x0094 0x00000002 Total Number of Sections

0x0098 0x0000004C Total Number of Bytes

36 Using the TMS320DM643x Bootloader SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

8.4 AIS Boot Image for UART Boot
Sample AIS Boot Images

UART boot mode differs from the previous modes in that some communication is carried out between the
DSP and HOST in addition to transfer of AIS commands. The DSP UART acts as slave in the boot
process. But, to alert the HOST that the DSP is alive and ready to receive, it sends the initial message
BOOT ME to the HOST. As acknowledgment, the HOST then begins sending the AIS boot image,
beginning with the AIS magic number. The AIS data is sent as ASCII text. The bootloader software
converts to the equivalent hexadecimal constant.

The bootloader continues to process AIS commands transmitted by the HOST until the JUMP CLOSE
command is encountered. After the JUMP CLOSE command is received, the bootloader sends the
message DONE to the HOST. This signals the HOST that boot has successfully completed.

DSP HOST

SENDS → “BOOT ME” →

← “41” ← SENDS first byte of AIS Magic #

← “50” ← SENDS second byte of AIS Magic #

← “49” ← SENDS third byte of AIS Magic #

← “54” ← SENDS last byte of AIS Magic #

← “58” ← SENDS first byte of AIS command

← “53” ← SENDS second byte of AIS command

← “59” ← SENDS third byte of AIS command

← “03” ← SENDS last byte of AIS command

← HOST continues to SEND commands and
data until JUMP CLOSE command is issued

← “58” ← SENDS first byte of JUMP CLOSE

← “53” ← SENDS second byte of JUMP CLOSE

← “59” ← SENDS third byte of JUMP CLOSE

← “06” ← SENDS last byte of JUMP CLOSE

← “10” ← SENDS first byte of entry point address

← “80” ← SENDS second byte of entry point address

← “00” ← SENDS third byte of entry point address

← “00” ← SENDS last byte of entry point address

← “00” ← SENDS first bye of section count

← “00” ← SENDS second byte of section count

← “00” ← SENDS third byte of section count

← “02” ← SENDS last byte of section count

← “00” ← SENDS first byte of byte count

← “00” ← SENDS second byte of byte count

← “00” ← SENDS third byte of byte count

← “4C” ← SENDS last byte of byte count

SENDS → “ DONE” →

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 37
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

415049545853590358535901108000000000004001802028028024280200222801884069020

0032A020C027702884068028C1FDB020840686C6E10CD10442641003C2C6E45B06C6E2

C6E00B48C6E008AEFC08000585359020E85A97BFFFFFFA858535901108000400000000

C0000000A0000000B0000000C585359028434A250FFFFFFDC58535906108000000000000

20000004C

8.5 AIS Boot Image for NAND Boot

Sample AIS Boot Images

At this point the boot process is complete and the bootloader branches to the application start address. If
an error occurs, for example a CRC error, the bootloader issues a message CORRUPT to the host and
places an error condition in the ERR field of the BOOTCMPLT register. It then re-attempts boot.

The AIS boot image for UART is an ASCII string with no spaces or carriage returns between elements
(see Figure 15).

Figure 15. UART AIS Boot Image

AIS boot image for NAND boot is very similar to all the others seen so far, with exceptions for three words
that define the starting block and number of pages where AIS image is stored. Since this is not known
until the data is actually written to the NAND device, it is your responsibility to fill in these three fields in
the AIS data. The DM643x tool leaves space for these in Table 31 generated as place holders for real
values to be encoded later, when image is finally written to the NAND.

Table 31. NAND Boot AIS Boot Image Example

Data Explanation

0x41504954 AIS magic number

0x00000000 Place holder reserved for number of pages over which image spans

0x00000000 Place holder for block where image starts

0x00000000 Place holder for page on which image starts

0x58535903 Enable CRC command

0x58535901 Section load command

0x10800000 Section load address

0x00000040 Section size in bytes

0x01802028 Start of section raw data

0x02802428

0x02002228

0x01884069

0x0200032A

0x020C0277

0x02884068

0x028C1FDB

0x02084068

0x6C6E10CD

0x10442641

0x003C2C6E

0x45B06C6E

0x2C6E00B4

0x2C6E00B4

38 Using the TMS320DM643x Bootloader SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

8.6 Configuration Data File

Sample AIS Boot Images

Table 31. NAND Boot AIS Boot Image Example (continued)

Data Explanation

0xEFC08000 End of section raw data

0x58535902 Request CRC command

0x0E85A97B Expected CRC value

0xFFFFFFA8 Negative pointer to last valid command

0x58535901 Section load command

0x10800040 Section load address

0x0000000C Section size in bytes

0x0000000A Start section raw data

0x0000000B

0x0000000C End section raw data

0x58535902 Request CRC command

0x8434A250 Expected CRC value

0xFFFFFFDC Negative pointer to last valid command

0x58535906 JUMP CLOSE command

0x10800000 Application entry point address

0x00000002 Total number of sections that should have been loaded

0x0000004C Total number of sections that should have been loaded

By using the –cfg option, a sequence of set or function execute commands can be included at the
beginning of the AIS output data file. This allows the option to configure the DDR memory controller,
EMIF, or PLL to enable proper boot from/to external memories. The commands in this file precede any
other AIS data that is generated. Please note that the data in the configuration file is not parsed by the
genAIS tool; it is simply passed directly through to the output file. Care must be taken to ensure that a
correct data sequence appears in the file. A sample configuration file that calls the ROMed configuration
functions for the PLL, EMIF, and DDR memory controller is shown below.
0x5853590D # Function Execute Command
0x00030000 # Selects PLL configuration function, with 3 arguments
0x00000015 # PLLM value
0x00000000 # PLLDIV 0
0x00000000 # Clock source
0x5853590D # Function Execute Command
0x00050001 # Selects EMIFA configuration, with 5 arguments
0x3FFFFFFC # AB1CR control register mask
0x3FFFFFFC # AB2CR control register mask
0x3FFFFFFC # AB3CR control register mask
0x3FFFFFFC # AB4CR control register mask
0x00000000 # NANDFCR control register mask
0x5853590D # Function Execute Command
0x00090002 # Selects DDR memory configuration, with 9 arguments
0x00000017 # DDR PLLM
0x00000001 # PLL SRC
0x0000000B # DDR CLLK DIV
0x00000000 # VPBE CLK DIV
0x50006405 # DDR Control register mask
0x00138822 # SDRAM Config register mask
0x16492148 # SDRAM Timer 0 register mask
0x000CC702 # SDRAM Timer 1 register mask
0x000004EF # SDRAM Refresh control register mask

SPRAAG0C–July 2007 Using the TMS320DM643x Bootloader 39
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

9 Determining On-Chip Bootloader Version

10 Calculating CRC

Determining On-Chip Bootloader Version

The bootloader version can be found by reading the ROM location 0×0101A00. More than one ROM
version is extant at this time. ROM version 0×27B2A120 supports EMIFA direct ROM boot only. No other
boot mode should be selected, when using this version. FASTBOOT option is also NOT supported by that
ROM version. ROM versions 0×00010200 and 0×0010300 support all the features delineated within this
document, including FASTBOOT.

The on-chip bootloader uses a 32-bit CRC. Code for calculating the CRC is given in the Appendix A. The
CRC as calculated for the on-chip bootloader requires three calls to the BL_updateCrc function. The first
call is made sending the section load address as the data word. The second call uses the section size in
bytes as the data word. The third call sends the actual section data, calculating a CRC across all the data
elements in the section. So the final CRC is a combination of the CRC’s calculated for section address,
section size and section data. A sample set of calls to the function to create the expected CRC value is
shown below:

unsigned int
crc;
unsigned int sectionAddr;
unsigned int sectionSize;

unsigned int *sectionData;
crc =

BL_updateCRC(§ionAddr, 4, 0);
crc =

BL_updateCRC(§ionSize, 4, crc);
crc =

BL_updateCRC(sectionData, sectionSize, crc);

The last calculated crc value should be written as the expected CRC for the REQUEST_CRC command. If
calculating a single CRC for the entire application load, simply pass each successive crc value into the
subsequent calls to BL_updateCRC.

typedef struct {
unsigned int sectionAddr;

unsigned int sectionSize;
unsigned int

*sectionData;
} SectionDatObj;
SectionDataObj mySections[10];

unsigned int crc;
crc = 0;

for(i=0;i<10;i++) {
crc =

BL_updateCRC(&(mySections[i].sectionAddr), 4, crc);
crc = BL_updateCRC(&(mySections[i].sectionSize), 4,

crc);
crc = BL_updateCRC(mySections[i].sectionData,

mySections[i].sectionSize, crc);

}

40 Using the TMS320DM643x Bootloader SPRAAG0C–July 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

www.ti.com

Appendix A Calculating the CRC

Appendix A

The CRC calculated to process the REQUEST_CRC command is based on the following algorithm,
where data_ptr points to the first data element in the current section, section_size is the size of the
section expressed in 8-bit bytes, and crc is current CRC value.
unsigned int updateCRC(unsigned int *data_ptr, unsigned int section_size, unsigned int crc)
{

unsigned int n, crc_poly = 0x04C11DB7; /* CRC - 32 */
unsigned int msb_bit;
unsigned int residue_value;
int bits;

for(n = 0; n < (section_size>>2); n++)
{

bits = 32;
while(--bits >= 0)
{

msb_bit = crc & 0x80000000;
crc = (crc << 1) ^ ((*data_ptr >> bits) & 1);
if (msb_bit)

crc = crc ^ crc_poly;
}
data_ptr ++;

}

switch(section_size & 3)
{

case 0:
break;

case 1:
residue_value = (*data_ptr & 0xFF) ;
bits = 8;
break;

case 2:
residue_value = (*data_ptr & 0xFFFF) ;
bits = 16;
break;

case 3:
residue_value = (*data_ptr & 0xFFFFFF) ;
bits = 24;
break;

}

if(section_size & 3)
{

while(--bits >= 0)
{

msb_bit = crc & 0x80000000;
crc = (crc << 1) ^ ((residue_value >> bits) & 1);
if (msb_bit) crc = crc ^ crc_poly;

}
}
return(crc);

}

SPRAAG0C–July 2007 41
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0C

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Boot Mode Description
	2.1 Boot Requirements, Constraints, and Default Settings
	2.2 FASTBOOT Mode
	2.2.1 CPU Frequency With FASTBOOT Options

	2.3 Emulation Boot (BOOTMODE[3:0] = 0000b, FASTBOOT = 0 or 1)
	2.4 HPI Boot (BOOTMODE[3:0] = 0001b or 0010b, or 0011b, PCIEN = 0, FASTBOOT = 0 or 1)
	2.5 PCI Boot (BOOTMODE[3:0] = 0001b or 0010b, PCIEN = 1, FASTBOOT = 1)
	2.6 EMIFA ROM Direct Boot (BOOTMODE[3:0] = 0100b, FASTBOOT = 0)
	2.7 EMIFA ROM Fast Boot Without AIS (BOOTMODE[3:0] = = 1001b, FASTBOOT == 1)
	2.8 EMIFA ROM Fast Boot With AIS (BOOTMODE[3:0] = 0100b, FASTBOOT = 1)
	2.9 I2C Master Mode Boot (BOOTMODE[3:0] = 0101b, FASTBOOT = 0 or 1)
	2.9.1 I2C Master Boot Timing

	2.10 SPI 16x8 Master Mode Boot (BOOTMODE[3:0] = 0110b, FASTBOOT = 0 or 1)
	2.10.1 SPI 16x8 Master Boot Timing
	2.10.2 SPI 16x8 Master Boot Signal Polarity
	2.10.3 Connecting SPI EEPROM for SPI 16x8 Boot

	2.11 NAND Flash Boot (BOOTMODE[3:0] = 0111b, FASTBOOT = 0 or 1)
	2.12 UART Boot (BOOTMODE[3:0] = 1000b, 1110b, FASTBOOT = 0 or 1)
	2.12.1 UART Boot Timing

	2.13 VLYNQ Boot (BOOTMODE[3:0]=1010b, FASTBOOT = 0 or 1)
	2.13.1 VLYNQ Boot Timing

	2.14 SPI 248 Master Mode Boot (BOOTMODE[3:0]=1111b, FASTBOOT = 0 or 1)
	2.14.1 SPI 24x8 Master Boot Timings
	2.14.2 SPI 24x8 Boot Signal Polarity
	2.14.3 Connecting SPI EEPROM for SPI 24x8 Boot

	3 Application Image Script
	3.1 SET Command
	3.1.1 Valid SET Command Data Types

	3.2 Get Command
	3.3 Section Load Command
	3.4 Section Fill Command
	3.5 Jump Command
	3.6 Jump_Close Command
	3.7 CRC Options
	3.7.1 Enable/Disable CRC Commands
	3.7.2 Request CRC Command
	3.7.3 Start-Over Command

	3.8 Function Execute Command
	3.8.1 PLL Config Function
	3.8.2 EMIFA Config Function
	3.8.3 DDR Config Function

	4 Booting Operating Systems (Linux/DSP/BIOS,etc.)
	5 ROM Bootloader RAM Memory Requirements and Code/Data Placement
	6 ROM Bootloader Cache Considerations
	7 AIS Generation Tool , DM643x
	8 Sample AIS Boot Images
	8.1 AIS Boot Image for EMIFA ROM Boot
	8.2 AIS Boot Image for I2C Boot
	8.3 AIS Boot Image for SPI Boot
	8.4 AIS Boot Image for UART Boot
	8.5 AIS Boot Image for NAND Boot
	8.6 Configuration Data File

	9 Determining On-Chip Bootloader Version
	10 Calculating CRC
	Appendix A Calculating the CRC

