

Product Technical Specification Customer Design Guidelines

Revision: 003

Date: May 2007

WMP100/Open AT[®] Software Suite v1.0

Product Technical Specification & Customer Design Guidelines

Reference: WM_DEV_WUP_PTS_005

Revision: 003

Date: May 29, 2007

Powered by the Wavecom Open AT® Software Suite

Wavecom[®] confidential ©

Page: 1 / 180

Document Information

Level	Date	History of the evolution	
001	19/10/2006	Creation (Preliminary version)	
002	01/02/2007	Update § 3.5 (SPI Bus)	
002b	09/02/2007	Update § 3.27 (Memory Interface)	
002c	19/02/2007	Update § 3.27 (Memory Interface) Update chapter Standards and recommendations Update chapter SPI Update chapter UART1 Update chapter UART2 Update chapter ADC Update chapter ADC Update chapter AUDIO Update chapter AUDIO Update chapter Battery Charging Update chapter RESET Update chapter RESET Update chapter External Interrupt Update chapter USB Update chapter USB Update chapter Memory Interface Add chapter Ball pin out (presentation) Update chapter Memory Interface	
003a	19/05/2007	Update chapter Memory Interface	
003b	21/05/2007	Update chapter Mechanical constraints	

Overview

This document defines and specifies the WMP100/Open AT® Software Suite v1.0 available in a GSM/GPRS Class 10 quad-band version.

Table of Contents

1	Refer	ences	14
-	Refe .1.1 .1.2	erence documents	.14
1.2	List	of abbreviations	.15
2	Gene	ral description	18
2 2 2 2	.1.1 .1.2 .1.3 .1.4 .1.5	eral information Overall dimensions Environment and mechanics GSM/GPRS Features Interfaces Operating system	.18 .18 .18 .19
_	Fund .2.1 .2.2	ctional description RF functionalities Baseband functionalities	.21
2.3	Soft	ware description	.21
3	Interf	faces	22
3.1	Gen	eral Interfaces	.22
3 3 3	Pow .2.1 .2.2 .2.3 .2.4 .2.5 .2.6	ver supply Power supply description Power supply constraints on VBATT-RF Power supply constraints on VBATT-BB Electrical characteristics Pin description Application	.23 .23 .24 .24
3.3	3.3.1. 3.3.1. 3.3.1. 3.3. 3.3. 3.3.	2 Power consumption with a Dhrystone Open AT® application	.27 .28 .29 .29 .30
3.4	Elec	trical information for digital I/O	.33
3.5	SPI	Bus	.35

Wavecom[®] confidential ©

Page: 4 / 180

	3.5.1	Features	35
	3.5.1.		
	3.5.1.	0	
	3.5.1.		
	3.5.2	Pin description	
	3.5.3	Application	
	3.5.3. 3.5.3.		
3.0		bus	
	3.6.1	Features	
	3.6.1.		
	3.6.1.		
	3.6.2 3.6.3	Pin descriptionApplication	
		• •	
3.	7 Keyb	board interface	
	3.7.1		
	3.7.2	dogg. p	
		e Open AT® Software Suite 1.0 when the keyboard service	
		ble multiplexed signals become unavailable for other purpose vay if one or more GPIOs (of this table) are allocated the	
	same w	is unavailable.Application	Reyboard AA
		tion	
	• •		
3.8		n serial link (UART1)	
	3.8.1	Features	
	3.8.2 3.8.3	Pin descriptionFirst download	
	3.8.4	Application	
		ciliary serial link (UART2)	
	3.9.1 3.9.2	Features Pin description	
	3.9.2 3.9.3	Application	
		• •	
		I Interface	
	3.10.1	Features	
	3.10.2	Pin description	
	3.10.3	Application	
		eral Purpose Input/Output	
	3.11.1	Features	
	3.11.2	Pin description	62
3.	12 Anal	log to Digital Converter	65
	3.12.1	Features	
	3.12.2	Pin description	66
	3.12.3	Application	66
3	13 Diait	tal to Analog Converter	67
٥.	3.13.1	Features	
	3.13.2	Pin description	
		·	
J.	ı4 Anal	llogue audio interface	

Wavecom[®] confidential ©

Page: 5 / 180

3.	4.1 Microphone Features6	86
	.14.1.1 Electrical characteristics	86
	3.14.1.1.1 MIC1 Microphone Inputs	38
	3.14.1.1.2 MIC2 Microphone Inputs	70
3.	4.2 Speaker Features	72
	.14.2.1 Speakers Outputs Power	72
	3.14.2.1.1 SPK1 Speaker Outputs	73
	3.14.2.1.2 SPK2 Speaker Outputs	74
3.	4.3 Pin description	75
3.	4.4 Application	76
	.14.4.1 Microphone	76
	3.14.4.1.1 MIC2 Differential connection example	
	3.14.4.1.2 MIC2 single-ended connection example	
	3.14.4.1.3 MIC1 Differential connection example	
	3.14.4.1.4 MIC1 Single-ended connection example	32
	.14.4.2 Speaker	34
	3.14.4.2.1 SPK2 Differential connection	34
	3.14.4.2.2 SPKx Single-ended connection	34
3.	4.5 Design recommendation	35
	.14.5.1 General	35
	.14.5.2 Recommended microphone characteristics	
	.14.5.3 Recommended speaker characteristics	
	.14.5.4 Recommended filtering components	
	.14.5.5 Audio track and PCB layout recommendation	38
2 15	PWM / Buzzer Output	ജര
	5.1 Features	
	5.2 Pin description	
	5.3 Application	
	Battery charging interface	91
3.	6.1 Feature 91	
	.16.1.1 Pre-Charging	
	.16.1.2 Temperature monitoring	
	6.2 Pin description	
3.	6.3 Application	95
2 17	ON / ~OFF signal	97
	7.1 Features	
		97
	7.3 Application	
٥.	.17.3.1 Power ON	
	.17.3.2 Power OFF	
	BOOT signal10	
	8.1 Features10	
	8.2 Pin description10	
3.	8.3 Application10	Э3
3 10	Reset signals10	ე⊿
	9.1 Features	
	9.2 Pin description10	
	9.3 Application10	
٥.	0.0 Application	JO

Wavecom[®] confidential ©

Page: 6 / 180

3.20 Exte 3.20.1 3.20.2 3.20.3	rnal Interrupt Features	110
3.20.4	Application	111
3.21 VCC 3.21.1 3.21.2 3.21.3	_2V8 and VCC_1V8 output	113 113
3.22 Real 3.22.1 3.22.2 3.22.3 3.22.4	Time Clock Features Pin description Application Design recommendation	114 114 115
3.23 BAT 3.23.1 3.23.2 3.23.3 3.23.3 3.23.3	3.2 Non Rechargeable battery	116 117 117 118
3.24 FLA: 3.24.1 3.24.2 3.24.3	SH-LED signal Features Pin description Application	120 121
3.25 Digi 3.25.1 3.25.2 3.25.3	tal audio interface (PCM) Features Pin description Application TBD	122 125
3.26 USB 3.26.1 3.26.2 3.26.3	2.0 interface Features Pin description Application	126 127
3.27.1 3.27.2 3.27.2 3.27.2 3.27.2 3.27.2 3.27.2 3.27.2	1.2 Case of ST 32/8 (M36W0R5030T0ZAQF) 1.3 Access bus Waveform 1.4 Access bus timing (read access) 1.5 Access bus timing (write access) 1.6 Flash space 1.7 RAM space 1.8 16-bit wide data bus User Space	130 131 132 137 138 138
3.27.2 3.27.3 3.27.4 3.27.5	Electrical characteristics of the signals	140 143

Wavecom[®] confidential ©

Page: 7 / 180

3.28	RF i	nterface 148	
	28.1	RF connection	
	28.2	RF performances	
	28.3 28.4	Antenna specifications	
٥.,	20.4	Antenna	149
4	Cons	umption measurement procedure	153
4.1	Hard	dware configuration	153
	1.1	Equipment	
	1.2	Wireless Microprocessor motherboard	
4.	1.3	SIM cards used	156
		ware configurations	
	2.1	Wireless Microprocessor configuration	
	2.2	Equipment configuration	
4.3	Tem	nplate	158
5	Tech	nical specifications	159
5.1	Ball	Grid Array pin out	159
5.2	Envi	ironmental Specifications	165
5.3	MSI	_ level	167
5.4	Med	chanical specifications	167
	4.1	Physical characteristics	167
	4.2	Mechanical drawings	
	4.3	Mechanical constraints	
5.5	PCB	specifications	170
6	Perip	heral devices references	171
6.1	SIM	Card Reader	171
6.2	Mic	rophone	171
6.3	Spe	aker	172
6.4	Ante	enna Cable	172
6.5	GSN	Л antenna	172
7	Noise	es and design	173
7.1	EMO	C recommendations	173
7.2	Pov	/er Supply	173
8 .	Appe	ndix	174
8.1	Star	ndards and Recommendations	174

Wavecom[®] confidential ©

Page: 8 / 180

8.2 Safety	y recommendations (for information only)	178
8.2.1 F	RF safety	178
8.2.1.1	General	178
8.2.1.2	Exposure to RF energy	178
8.2.1.3	Efficient terminal operation	178
8.2.1.4	Antenna care and replacement	179
8.2.2	General safety	179
8.2.2.1	Driving	179
8.2.2.2	Electronic devices	179
8.2.2.3	Vehicle electronic equipment	179
8.2.2.4	Medical electronic equipment	179
8.2.2.5		
8.2.2.6	Children	180
8.2.2.7	Blasting areas	180
8228		180

Page: 9 / 180

Table of Figures

Figure 1 : Functional architecture	. 20
Figure 2 : Power supply during burst emission	. 23
Figure 3 : Reject filter diagram	. 25
Figure 4: SPI Timing diagrams, Mode 0, Master, 4 wires	. 36
Figure 5: Example of 4-wire SPI bus application	. 38
Figure 6: Example of 3-wire SPI bus application	. 38
Figure 7: I ² C Timing diagrams, Master	. 40
Figure 8: First example of I ² C bus application	. 42
Figure 9: Second example of I ² C bus application	. 42
Figure 10: Example of keyboard implementation	. 45
Figure 11: Example of UART1 connection for download with another device on the link	. 48
Figure 12: Example of RS-232 level shifter implementation for UART1	. 50
Figure 13: Example of V24/CMOS serial link implementation for UART1	. 52
Figure 14: Example of full modem V24/CMOS serial link implementation for UART1	. 53
Figure 15: Example of RS-232 level shifter implementation for UART2	. 56
Figure 16: Example of SIM Socket implementation	. 60
Figure 17: Example of MIC2 input differential connection with LC filter	. 76
Figure 18: Example of MIC2 input differential connection without LC filter	. 77
Figure 19: Example of MIC2 input single-ended connection with LC filter	. 78
Figure 20: Example of MIC2 input single-ended connection without LC filter	. 79
Figure 21: Example of MIC1 input differential connection with LC filter	. 80
Figure 22: Example of MIC1 input differential connection without LC filter	. 81
Figure 23: Example of MIC1 input single-ended connection with LC filter	. 82
Figure 24: Example of MIC1 input single-ended connection without LC filter	. 83
Figure 25: Example of Speaker differential connection	. 84
Figure 26: Example of Speaker single-ended connection	. 84
Figure 27: Microphone	. 85
Figure 28: Audio track design	. 88
Figure 29: Example of buzzer implementation	. 90

Wavecom[®] confidential ®

Figure 30: Example of LED driven by the BUZZ-OUT output	90
Figure 31: Charging block diagram	91
Figure 32: Charging schematic for Li-Ion	95
Figure 33: Example of ON/~OFF pin connection	98
Figure 34 : Power-ON sequence (no PIN code activated)	98
Figure 35 : Power-OFF sequence	101
Figure 36: Example of BOOT pin implementation	103
Figure 37 : Reset functional block	104
Figure 38 : Reset waveform events	105
Figure 39 : Reset sequence waveform	107
Figure 40: BOOT sequence waveform	108
Figure 41: Example of ~RESET pin connection with push button configuration	.108
Figure 42: Example of ~RESET pin connection with transistor	100
configuration	
Figure 43: Example of INTx driving example with open collector	
Figure 44: Example of INTx driving example with open collector	
Figure 45 : PCB lay out for the crystal MS2V-T1S	
Figure 46 : Real Time Clock power supply	
Figure 47: RTC supplied by a gold capacitor	
Figure 48: RTC supplied by a non rechargeable battery	
Figure 49: RTC supplied by a rechargeable battery cell	
Figure 50 : FLASH-LED state during RESET and Initialization time	
Figure 51: Example of GSM activity status implementation	
Figure 52 : PCM Frame waveform	
Figure 53 : PCM Sampling waveform	
Figure 54: Example of USB implementation	
Figure 55: Memory bus	
Figure 56: Read synchronous timing	
Figure 57: Write synchronous timing	
Figure 58: Read / Write Asynchronous timing	
Figure 59: Memory connection schematic	
Figure 60: Memory PCB	
Figure 61: Antenna and ground balls placement	
Figure 62: RF 50 ohms embedded line	
Figure 63: Antenna connection point keep away area	151

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 11 / 180

Figure 64: RF connector and ESD protection example	151
Figure 65: Typical hardware configuration	154
Figure 66 : Environmental classes	166
Figure 67 : Mechanical drawing	168
Figure 68 : Mechanical drawing	169

Cautions

This platform contains a modular transmitter. This device is used for wireless applications. Note that all electronics parts and elements are ESD sensitive.

Information provided herein by WAVECOM is accurate and reliable. However no responsibility is assumed for its use and any of such WAVECOM information is herein provided "as is" without any warranty of any kind, whether express or implied.

General information about WAVECOM and its range of products is available at the following internet address: http://www.wavecom.com

Trademarks

®, WAVECOM®, WISMO®, Open AT®, Wireless Microprocessor®, Wireless CPU®, and certain other trademarks and logos appearing on this document, are filed or registered trademarks of Wavecom S.A. in France or in other countries. All other company and/or product names mentioned may be filed or registered trademarks of their respective owners.

Copyright

This manual is copyrighted by WAVECOM with all rights reserved. No part of this manual may be reproduced in any form without the prior written permission of WAVECOM. No patent liability is assumed with respect to the use of their respective owners.

1 References

1.1 Reference documents

For more details, several documents are referenced in this specification. The WAVECOM documents references herein are provided in the WAVECOM documentation package; the general reference documents which are not WAVECOM owned are not provided in the documentation package.

1.1.1 WAVECOM reference documentation

- [1] Wireless Microprocessor® WMP100 Technical Specification Reference: WM_DEV_WUP_PTS_004
- [2] WMP100 Development Kit User Guide Reference: WM_DEV_WUP_UGD_001
- [3] AT Command Interface Guide for Open AT® Firmware v6.5 Reference: WM DEV OAT UGD 035

1.1.2 General reference documentation

- [4] "I²C Bus Specification", Version 2.0, Philips Semiconductor 1998
- [5] ISO 7816-3 Standard

1.2 List of abbreviations

Abbreviation Definition

AC Alternative Current

ADC Analog to Digital Converter A/D Analog to Digital conversion

AF Audio-Frequency

AT ATtention (prefix for modem commands)

AUX AUXiliary

CAN Controller Area Network

CB Cell Broadcast

Circular Error Probable CEP

CLK CLocK

CMOS Complementary Metal Oxide Semiconductor

CS Coding Scheme **CTS** Clear To Send

DAC Digital to Analogue Converter

dB **D**eci**b**el

DC **Direct Current**

DCD Data Carrier Detect

DCE Data Communication Equipment

DCS Digital Cellular System

DR Dynamic Range DSR Data Set Ready

DTE Data Terminal Equipment

DTR Data Terminal Ready **EFR** Enhanced Full Rate

E-GSM Extended GSM

EMC ElectroMagnetic Compatibility EMI ElectroMagnetic Interference Enhanced Message Service **EMS**

ENable ΕN

ESD ElectroStatic Discharges

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 15 / 180

Abbreviation Definition

FIFO First In First Out

FR Full Rate

FTA Full Type Approval

GND GrouND

GPI General Purpose Input

GPC General Purpose Connector

GPIO General Purpose Input Output

GPO General Purpose Output

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile communications

HR Half Rate

I/O Input / Output

LNA Low Noise Amplifier

MAX MAXimum
MIC MICrophone
MIN MINimum

MMS Multimedia Message Service

MO Mobile Originated
MT Mobile Terminated

na Not ApplicableNF Noise Factor

NMEA National Marine Electronics Association

NOM NOMinal

NTC Négative Temperature Coefficient

PA Power Amplifier

Pa Pascal (for speaker sound pressure measurements)

PBCCH Packet Broadcast Control CHannel

PC Personal Computer
PCB Printed Circuit Board

PDA Personal Digital Assistant

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

WM_DEV_WUP_PTS_005-003

May 29, 2007

Page: 16 / 180

Abbreviation Definition

PFM Power Frequency Modulation

PSM Phase Shift Modulation
PWM Pulse Width Modulation
RAM Random Access Memory

RF Radio Frequency

RFI Radio Frequency Interference
RHCP Right Hand Circular Polarization

RI Ring Indicator

RST ReSeT

RTC Real Time Clock

RTCM Radio Technical Commission for Maritime services

RTS Request To Send

RX Receive

SCL Serial CLock
SDA Serial DAta

SIM Subscriber Identification Module

SMS Short Message Service

SPI Serial Peripheral Interface

SPL Sound Pressure Level

SPK SPeaKer

PSRAM Pseudo Static RAM
TBC To Be Confirmed

TDMA Time Division Multiple Access

TP Test Point

TVS Transient Voltage Suppressor

TX Transmit
TYP TYPical

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

USSD Unstructured Supplementary Services Data

VSWR Voltage Standing Wave Ratio

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 17 / 180

2 General description

2.1 General information

The WMP100 Wireless Microprocessor® is a self-contained E-GSM/GPRS 900/1800 and 850/1900 quad-band processor, including the characteristics listed in the subsection below.

2.1.1 Overall dimensions

Length: 25 mmWidth: 25 mm

Thickness: 3.65 mmWeight: 4.25 g

Package: WMBGA576 / ball Ø 0,6 mm @ pitch 1mm

2.1.2 Environment and mechanics

- Green policy: Restriction of Hazardous Substances in Electrical and Electronic Equipment (RoHS) compliant
- Complete shielding

The WMP100 is compliant with RoHS Directive 2002/95/EC which sets limits for the use of certain restricted hazardous substances. This directive states that "from 1st July 2006, new electrical and electronic equipment put on the market does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE)".

2.1.3 GSM/GPRS Features

- 2 Watts EGSM 900/GSM 850 radio section running under 3.6 Volts
- 1 Watt GSM1800/1900 radio section running under 3.6 Volts
- Hardware GPRS class 10 capable

2.1.4 Interfaces

- Digital section running under 2.8 Volts and 1.8 Volts.
- 3V/1V8 SIM interface
- 1.8V Parallel interface for devices (memories, LCD...)
- Power supply
- Watchdog
- Serial links (UART)
- Analogue audio
- ADC / DAC
- PCM digital audio
- Keyboard
- USB 2.0 slave
- Serial buses (I2C,SPI)
- PWM (BUZZER)
- **GPIOs**

2.1.5 Operating system

- Real Time Clock with calendar
- Echo Cancellation + noise reduction (quadri codec)
- Full GSM or GSM/GPRS Operating System stack

Page: 19 / 180

2.2 Functional description

The global architecture of WMP100 is described below:

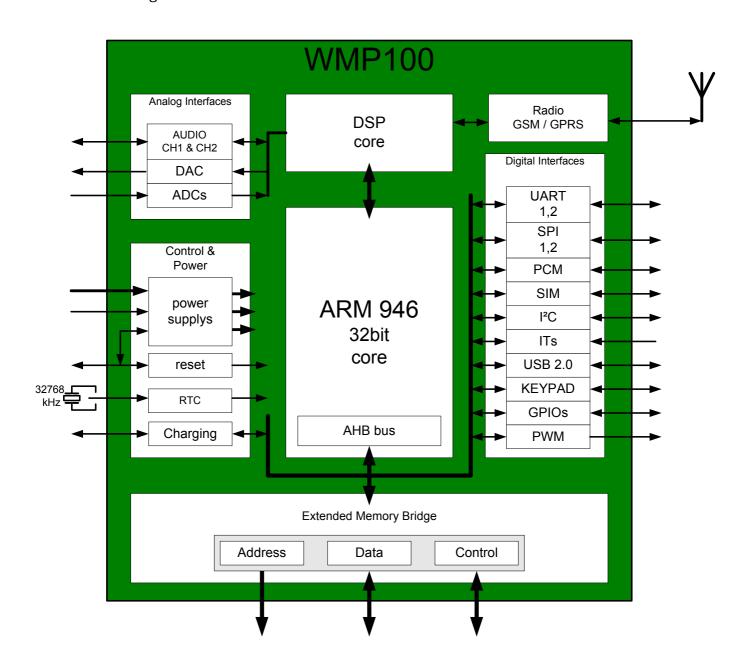


Figure 1 : Functional architecture

Wavecom confidential ©

Page: 20 / 180

2.2.1 RF functionalities

The Radio Frequency (RF) range complies with the Phase II EGSM 900/DCS 1800 and GSM 850/PCS 1900 recommendation. The frequencies are listed in the table below.

	Transmit band (Tx)	Receive band (Rx)
GSM 850	824 to 849 MHz	869 to 894 MHz
E-GSM 900	880 to 915 MHz	925 to 960 MHz
DCS 1800	1710 to 1785 MHz	1805 to 1880 MHz
PCS 1900	1850 to 1910 MHz	1930 to 1990 MHz

The RF part is based on a specific quad band chip including:

- a Digital low-IF receiver
- a Quad-band LNAs (Low Noise Amplifier)
- an Offset PLL (Phase Locked Loop) transmitter
- a Frequency synthesizer
- a Digitally controlled crystal oscillator (DCXO)
- a Tx/Rx FEM (Front-End Wireless Microprocessor®) for quad-band GSM/GPRS

2.2.2 Baseband functionalities

The Baseband is composed of an ARM9, a DSP and an analog element (with audio signals, I/Q signals, ADC, DAC).

The core power supply is to 1.8 volts. The analog power supply is to 2.8v

2.3 Software description

The Open AT® Software Suite v1.0 is the software package that supports WMP100. It consists of:

- An Open AT® Firmware v6.5 which drives the WMP100 thanks to an AT command interface over a serial port or USB.
- An Open AT® Operating System (OS) v5.0 which runs various types of applications (telemetry, multimedia, automotive...)
- An Open AT[®] Integrated Development Environment (IDE) which builds and debugs applications over the Open AT[®] Operating System
- Several Open AT® plug-ins which are software provided by Wavecom that are able to run over the Open AT® Operating System

Wavecom[®] confidential ©

Page: 21 / 180

3 Interfaces

3.1 General Interfaces

The WMP100 is provided with a "Development Kit Wireless Microprocessor®" containing an access to the all interfaces.

The available interfaces are described in the table below.

chapter	Name	Driven by Open AT® Firmware v6.5	Not driven by Open AT® Firmware v6.5	Driven by Open AT® OS v5.0	Not driven by Open AT® OS v5.0
18.5.1	SPI Bus		Х	Х	
18.5.2	I2C Bus		X	X	
11	Keyboard Interface	Х		X	
12.2	Main Serial Link	X		X	
13.2	Auxiliary Serial Link	X		Х	
14	SIM Interface	Х		Х	
3	General Purpose IO	Х		X	
18.3	Analog to Digital Converter	X		Х	
18.4	Digital to Analog Converter	X		Х	
16	Analog audio Interface	Х		Х	
9	PWM / Buzzer Output	Х		Х	
18.3.1	Battery charging interface	Х		Х	
18.7	External Interruption	Х		Х	
18.1	VCC_2V8 and VCC_1V8		Х		Х
17	Real Time Clock	Х		Х	
18.2	BAT-RTC (Backup Battery)	Х		Х	
8	FLASH-LED signal	Х		Х	
18.6	Digital Audio Interface (PCM)	Х		Х	
15	USB 2.0 Interface	Х		Х	
4	Memory interface		Х	Х	
	(on parallel interface)				

Wavecom[®] confidential ®

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 22 / 180

3.2 Power supply

3.2.1 Power supply description

The power supply is one of the key elements in the design of a GSM terminal.

The WMP100 is powered by a single power supply VBATT. This power supply feeds two inputs to the supply, VBATT-BB and VBATT-RF.

VBATT-RF powers all the radio components of the WMP100. It has to be carefully designed because most of the current is transmitted through this input. The VBATT-RF current is bursted due to the GSM / GPRS transmission protocol.

VBATT-BB supplies the digital part of the WMP100. VBATT-BB is directly connected to the internal power management unit of the WMP100. This unit controls the VBATT-BB voltage and provides the power supplies like VCC_1V8 and VCC 2V8.

Note: The VBATT-BB input generates noise, so the VBATT must be filtered by a band reject filter.

3.2.2 Power supply constraints on VBATT-RF

Due to the bursted emission in GSM / GPRS, the power supply must be able to deliver high current peaks in a short time. During the peaks the ripple (U_{ripp}) on the supply voltage must not exceed a certain limit (see Table 1 Power supply voltage for details).

• In communication mode, a GSM/GPRS class 2 terminal emits $577\mu s$ radio bursts every 4.615ms. (See Figure 2 below.)



Figure 2: Power supply during burst emission

• In communication mode, a GPRS class 10 terminal emits $1154\mu s$ radio bursts every 4.615ms.

Wavecom[®] confidential ©

Page: 23 / 180

VBATT-RF:

• supplies the RF components with 3.6 V directly. It is essential to keep a minimum voltage ripple at this connection in order to avoid any phase error.

The RF Power Amplifier current (1.5 A peak in GSM /GPRS mode) flows with a ratio of:

- $_{\odot}$ 1/8 of the time (around 577 μ s every 4.615ms for GSM /GPRS cl. 2) and
- o 2/8 of the time (around 1154 μ s every 4.615ms for GSM /GPRS cl. 10).

The rising time is around $10\mu s$.

3.2.3 Power supply constraints on VBATT-BB

The VBATT-BB input is used as well to supply the WMP100 core as well to monitor the level voltage of VBATT.

VBATT-BB is internally connected to several regulators and to a switching regulator which provides the VCC_1V8 voltage internally. Because the switching regulator generates perturbation on the VBATT signal, it is mandatory to add an external reject filter between VBATT and VBATT-BB.

3.2.4 Electrical characteristics

Input power Supply Voltage

	V _{MIN}	V _{NOM}	V _{MAX}	I _{MAX}	Ripple max (U _{ripp})
VBATT-BB	3.2	3.6	4.8	0.3 A <mark>(TBC)</mark>	(TBD)
VBATT-RF ^{1,2}	3.2	3.6	4.8	1.5 A <mark> (TBC)</mark>	10mV <mark>(TBC)</mark>

Table 1 Power supply voltage

- (1): This value has to be guaranteed during the burst (with 1.5A Peak in GSM or GPRS mode)
- (2): Maximum operating Voltage Stationary Wave Ratio (VSWR) 2:1

When powering the WMP100 with a battery, the total impedance (battery+protections+PCB) should be <150 mOhms.

Wavecom[®] confidential ©

Page: 24 / 180

3.2.5 Pin description

Signal	Pin number
VBATT-BB	AC1,AC2,AD1,AD2
VBATT-RF	A12,A13,A14,B12,B13,B14

3.2.6 Application

The reject filter must be connected between VBATT and VBATT-BB.

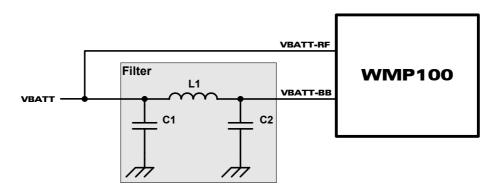


Figure 3: Reject filter diagram

Recommended components:

C1, C2: $10\mu F + /-20\%$

GRM21BR60J106KE19L from MURATA
 CM21X5R106M06AT from KYOCERA
 JMK212BJ106MG-T from TAYO YUDEN

o C2012X5R0J106MT from TDK

L1: 220nH +/-5%

0805CS-221XJLC from COILCRAFT0805G221J E from STETCO

Wavecom confidential ©

Page: 25 / 180

3.3 Power consumption

Power consumption depends on the configuration used. It is for this reason that the following consumption values are given for each mode, RF band and type of software used (with or without an Open AT® application).

Note: All of the following information is given assuming a 50 Ω RF output.

The following consumption values were obtained by performing measurements on WMP100 samples at a temperature of 25° C.

Three VBATT values are used to measure the consumption, VBATT_{MIN} (3.2V), VBATT_{MAX} (4.8V) and VBATT_{TYP} (3.6V).

The average current is given for the three VBATT values and the peak current given is the maximum current peak measured with the three VBATT voltages.

For a more detailed description of the operating modes, (refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5).

For more information about the consumption measurement procedure, refer to § 4.

All following consumption measurement values have to be confirmed.

3.3.1.1 Power consumption without Open AT® processing

The following measurement results are relevant when no processing is required by the Open AT® application :

Either there is no Open AT® application or the Open AT® application is disabled

	Power co	nsumption without Op	en AT [®] pro	ocessing			
Operating mode	Parameters	I _{MIN} average VBATT=4,8V	I _{NOM} average VBATT=3,6V	I _{MAX} average VBATT=3,2V	I _{MAX} peak	unit	
Alarm Mode	21	16	15		μΑ		
Fast Idle Mode	Paging 9 (Rx bu	rst occurrence ~2s)	15	17	18	160 _{RX}	mA
r ust fale mode	Paging 2 (Rx bu	rst occurrence ~0,5s)	17	18	19	160 _{RX}	mA
Slow Idle Mode ¹	Paging 9 (Rx bu	rst occurrence ~2s)	1.5 (1.5 to 1.75)	1.6 (1.6 to 1.9)	1.7 (1.7 to 2.05)	160 _{RX}	mA
Slow fulle Mode	Paging 2 (Rx bu	4 (4 to 4.3)	4.4 (4.4 to 4.75)	4.6 (4.6 to 4.95)	160 _{RX}	mA	
Fast Standby Mode	•		30	36	39		mA
Slow Standby Mode			1.4	1.4	1.5		mA
	850/900 MHz	PCL5 (TX power 33dBm)	210	218	222	1450 _{TX}	mA
Connected Mode	000/300 WII 12	PCL19 (TX power 5dBm)	81	89	92	270 _{TX}	mA
	1800/1900 MHz	PCL0 (TX power 30dBm)	145	153	157	850 _{TX}	mA
	1000, 1000 1111 12	PCL15 (TX power 0dBm)	77	85	88	250 _{TX}	mA
	850/900 MHz	gam. 3(TX power 33dBm)	201	209	213	1450 _{TX}	mA
Transfer Mode		gam.17(TX power 5dBm)	78	85	88	270 _{TX}	mA
class 8 (4Rx/1Tx)	1800/1900 MHz	gam.3(TX power 30dBm)	138	146	149	850 TX	mA
		gam.18(TX power 0dBm)	74	81	84	250 _{TX}	mA
Transfer Mode	850/900 MHz	gam.3 (TX power 33dBm)	364	372	378	1450 _{TX}	mA
	3337000 1111 12	gam.17 (TX power 5dBm)	112	120	123	270 _{TX}	mA
class 10 (3Rx/2Tx)	1800/1900 MHz	gam.3 (TX power 30dBm)	237	245	248	850 _{TX}	mA
	gam.18 (TX power 0dBm)		104	111	115	250 TX	mA

TX means that the current peak is the RF transmission burst (Tx burst)

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 27 / 180

 $_{\rm RX}$ means that the current peak is the RF reception burst (Rx burst)

¹Slow Idle Mode consumption depends on the SIM card used. Some SIM cards respond faster than others, in which case the longer the response time is, the higher the consumption is. These measurements were performed with a large

number of 3V SIM cards, the results in brackets are the minimum and maximum currents measured from among all the SIMs used.

3.3.1.2 Power consumption with a Dhrystone Open AT® application

The Open AT® application used is the Dhrystone application. The following consumption results are measured during the run of the Dhrystone application.

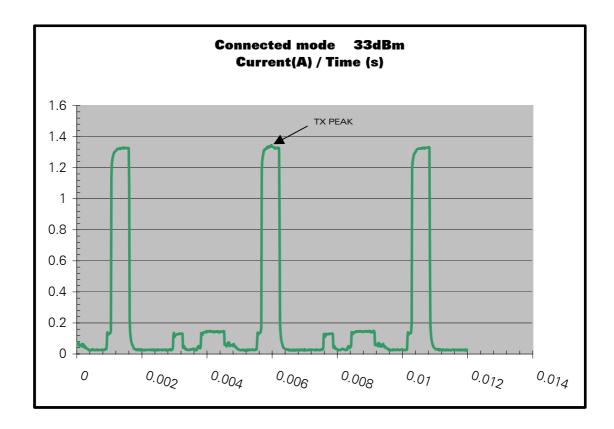
	Power consu	mption with Dhrystone	Open AT	® applicati	on		
Operating mode	Parameters	I _{MIN} average VBATT=4,8V	I _{NOM} average VBATT=3,6V	I _{MAX} average VBATT=3,2V	I _{MAX} peak	unit	
Alarm Mode	1	N/A	N/A	N/A		μΑ	
Fast Idle Mode	Paging 9 (Rx but	rst occurrence ~2s)	31	38	41	160 _{RX}	mA
rast luie Moue	Paging 2 (Rx but	rst occurrence ~0,5s)	32	39	42	160 RX	mA
Slow Idle Mode	Paging 9 (Rx but	rst occurrence ~2s)	N/A	N/A	N/A	160 _{RX}	mA
Slow late wode	Paging 2 (Rx but	Paging 2 (Rx burst occurrence ~0,5s)			N/A	160 _{RX}	mA
Fast Standby Mode		31	38	41		mA	
Slow Standby Mode	1	N/A	N/A	N/A		mA	
	850/900 MHz	PCL5 (TX power 33dBm)	211	219	223	1450 _{TX}	mA
Connected Mode		PCL19 (TX power 5dBm)	82	90	93	270 TX	mA
Connected Mode	1800/1900 MHz	PCL0 (TX power 30dBm)	146	154	159	850 _{TX}	mA
		PCL15 (TX power 0dBm)	78	85	89	250 _{TX}	mA
	050/000 MILL	gam. 3(TX power 33dBm)	202	210	214	1450 _{TX}	mA
Transfer Mode	850/900 MHz	gam.17(TX power 5dBm)	78	86	89	270 _{TX}	mA
class 8 (4Rx/1Tx)	4000/4000 MILE	gam.3(TX power 30dBm)	140	148	151	850 _{TX}	mA
	1800/1900 MHz	gam.18(TX power 0dBm)	75	82	85	250 TX	mA
Transfer Mode class 10 (3Rx/2Tx)	050/000 MILL-	gam.3 (TX power 33dBm)	365	373	379	1450 _{TX}	mA
	850/900 MHz	gam.17 (TX power 5dBm)	113	121	125	270 TX	mA
	1000/1000 1:::	gam.3 (TX power 30dBm)	239	247	250	850 TX	mA
	1800/1900 MHz	gam.18 (TX power 0dBm)	105	113	117	250 _{TX}	mA

 $_{\rm TX}$ means that the current peak is the RF transmission burst (Tx burst)

 $_{\rm RX}$ means that the current peak is the RF reception burst (Rx burst)

3.3.1.3 Consumption waveform samples

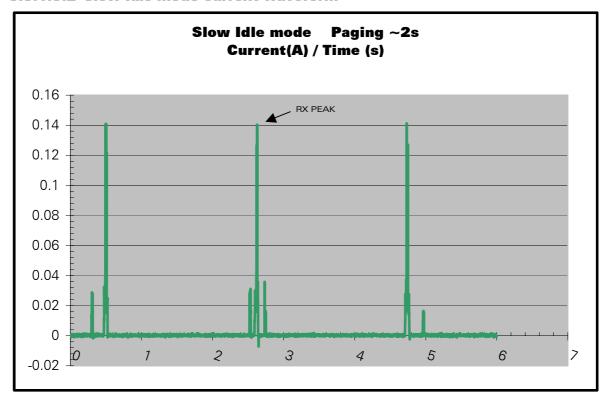
The consumption waveforms presented below are for an EGSM900 network configuration without the Open AT® Software Suite running on the WMP100.


The typical VBATT voltage is 3.6V.

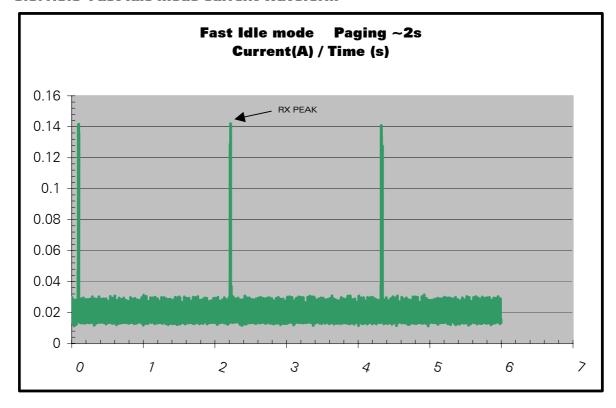
Four significant operating mode consumption waveforms are described:

- > Connected Mode (PCL5: Tx power 33dBm)
- > Slow Idle mode (Paging 9)
- > Fast idle mode (Paging 9)
- > Transfer mode (GPRS class 10, gam.3: Tx power 33dBm)

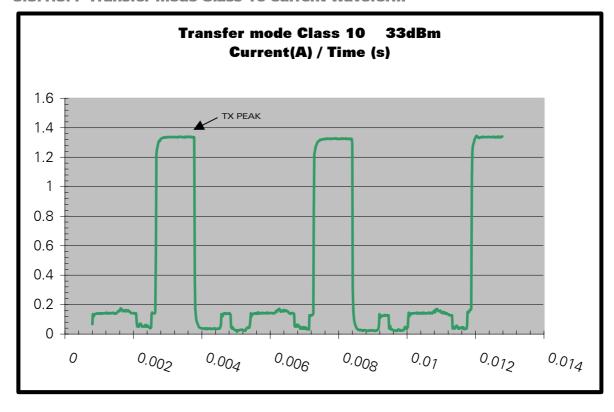
The following waveform shows only the form of the current.


3.3.1.3.1 Connected mode current waveform

Page: 29 / 180



3.3.1.3.2 Slow Idle mode current waveform



3.3.1.3.3 Fast Idle mode current waveform

3.3.1.3.4 Transfer mode Class 10 current waveform

3.4 Electrical information for digital I/O

There are three types of digital I/O on the WMP100: 2.8Volt CMOS, 1.8Volt CMOS and Open drain.

The I/O concerned are all interfaces like GPIOs, SPIs, Keypad, etc.

The three types are described below.

Electrical characteristics of digital I/O

2.8 Volts type (2V8)									
Parameter	Parameter I/O type Minim. Typ Maxim. Condition								
Internal 2.8V power supply		VCC_2V8	2.74V	2.8V	2.86V				
Input / Output pin	V _{IL}	CMOS	-0.5V*		0.84V				
	V_{IH}	CMOS	1.96V		3.2V*				
	V _{oL}	CMOS			0.4V	$I_{OL} = -4 \text{ mA}$			
	V_{OH}	CMOS	2.4V			$I_{OH} = 4 \text{ mA}$			
	I _{OH}				4mA				
	I _{OL}				- 4mA				

^{*}Absolute maximum ratings

1.8 Volts type (1V8)									
Parameter	Parameter I/O type Minim. Typ Maxim. Condition								
Internal 1V8 power supply		VCC_1V8	1.76V	1.8V	1.94V				
Input / Output pin	V _{IL}	CMOS	-0.5V*		0.54V				
	V _{IH}	CMOS	1.33V		2.2V*				
	V_{OL}	CMOS			0.4V	$I_{OL} = -4 \text{ mA}$			
	V _{oH}	CMOS	1.4V			$I_{OH} = 4 \text{ mA}$			
	I _{OH}				4mA				
	I _{OL}		_		- 4mA				

^{*}Absolute maximum ratings

without prior written agreement.

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged

Page: 33 / 180

	Open drain outputs type								
Signal name	Parameter	I/O type	Maximum	Condition					
FLASH-LED	V _{oL}	Open Drain			0.4V				
	I _{OL}	Open Drain			8mA				
BUZZ-OUT V _{OL}		Open Drain			0.4V				
		Open Drain			100mA				
SDA / GPIO27	V _{TOL}	Open Drain			3.3V	Tolerated voltage			
and	V _{IH}	Open Drain	2V						
SCL /	V _{IL}	Open Drain			0.8V				
GPIO26	V _{oL}	Open Drain			0.4V				
	I _{OL}	Open Drain			3mA				

The reset states of each I/O are given in their corresponding interface's chapter descriptions. The states definitions are defined below:

Reset state definition					
Parameter	Definition				
0	Set to GND				
1	Set to supply 1V8 or 2V8 depending of I/O type				
Pull down	Internal pull down with ~60K resistor.				
Pull up	Internal pull up with ~60K resistor to supply 1V8 or 2V8 depending of I/O type.				
Z	High impedance				
Undefined	Be careful, undefined mustn't be used in your application if a special state at reset is needed. Those pins can be a toggling signal during reset.				

Page: 34 / 180

3.5 SPI Bus

The WMP100 provides two SPI bus (i.e. for LCD, memories...).

3.5.1 Features

- a CLK signal
- an I/O signal
- an I signal
- a CS signal complying with standard SPI bus.

3.5.1.1 Characteristics

- Master mode operation
- The Hardware CS is usable only for word handling mode. In normal mode the CS can be any GPIO.
- The SPI speed is from 102 Kbit/s up to 13 Mbit/s in master mode operation
- 3 or 4-wire interface
- SPI-mode configuration: 0 to 3 (for more details, refer to document [3] AT Command Interface Guide for Open AT[®] Firmware v6.5).
- 1 to 16 bits data length

3.5.1.2 SPI configuration

Operation	Maximum Speed	SPI- Mode	Duplex	3-wire type	4-wire type
Master	13 Mb/s	0,1,2,3	Half	SPIx-CLK; SPIx-IO; ~SPIx-CS	SPIx-CLK; SPIx-IO; SPIx-I; ~SPIx-CS

For the 4-wire configuration, SPIx-I/O is used as output only, SPIx-I is used as input only. For the 3-wire configuration, SPIx-I/O is used as input and output.

Page: 35 / 180

3.5.1.3 SPI waveforms

Waveform for SPI transfer with 4-wire configuration in master mode 0 (chip select is not represented).

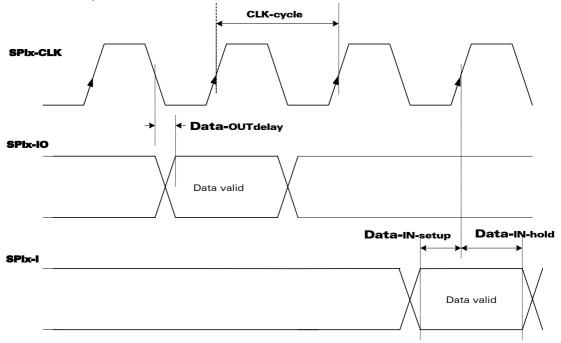


Figure 4: SPI Timing diagrams, Mode 0, Master, 4 wires

AC characteristics

Signal	Description	Minimum	Тур	Maximum	Unit
CLK-cycle	SPI clock frequency	0.1015		13	MHz
Data-OUT delay	Data out ready delay time			10	ns
Data-IN-setup	Data in setup time	2			ns
Data-OUT-hold	Data out hold time	2			ns

3.5.2 Pin description

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
SPI1-CLK	U15	0	2V8	Z	SPI Serial Clock	GPIO28
SPI1-IO	V12	I/O	2V8	Z	SPI Serial input/output	GPIO29
SPI1-I	R13	I	2V8	Z	SPI Serial input	GPIO30
~SPI1-CS	M14	0	2V8	Z	SPI Enable	GPIO31 / INT5

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
SPI2-CLK	R15	0	2V8	Z	SPI Serial Clock	GPIO32
SPI2-IO	M13	I/O	2V8	Z	SPI Serial input/output	GPIO33
SP2-I	U16	I	2V8	Z	SPI Serial input	GPIO34
~SPI2-CS	T18	0	2V8	Z	SPI Enable	GPIO35 / INT4

See chapter 3.4, "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.

3.5.3 Application

3.5.3.1 4-wire interface

The particularity of the 4-wire serial interface (SPI bus) is that the input and the output data lines are dissociated. The SPIx-IO signal is used only for data output and the SPIx-I signal is used only for data input.

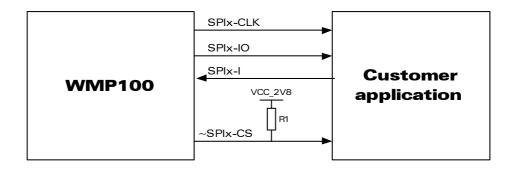


Figure 5: Example of 4-wire SPI bus application

One pull up resistor R is needed to set the SPIx-CS level during the reset state.

Except for R, no external component is needed if the electrical specification of the customer application complies with the WMP100 SPIx interface electrical specification.

3.5.3.2 3-wire interface

When used in 3-wire interface (SPI bus), only the line SPIx-IO is used for output and input data.

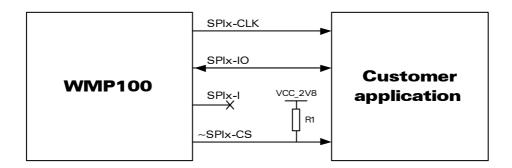


Figure 6: Example of 3-wire SPI bus application

The SPIx-I line is not used in 3-wire configuration. This line can be left opened or used as GPIO for a different application functionality.

One pull up resistor R is needed to set the SPIx-CS level during the reset state. Except for R, no external component is needed if the electrical specification of

Wavecom[®] confidential ©

Page: 38 / 180

the customer application complies with the WMP100 SPIx interface electrical specification.

The SPIx interface voltage range is 2.8V. It can be powered by the VCC_2V8 (ball R1) of the WMP100 or by another power supply.

R value depends on the peripheral plugged on the SPIx interface.

3.6 I2C bus

3.6.1 Features

The I2C interface includes a clock signal (SCL) and a data signal (SDA) complying with a 100Kbit/s-standard interface (standard mode: s-mode).

3.6.1.1 Characteristics

The I²C bus is always master.

The maximum speed transfer range is 400Kbit/s (Fast mode: f-mode).

For more information on the bus, see document [4] "I²C Bus Specification", Version 2.0, Philips Semiconductor 1998.

3.6.1.2 I²C waveforms

I²C bus waveform in master mode configuration:

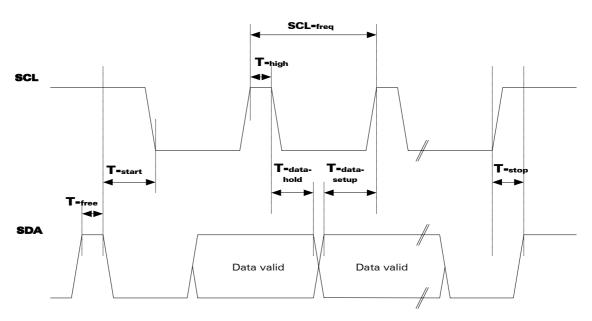


Figure 7: I²C Timing diagrams, Master

Page: 40 / 180

AC characteristics

Signal	Description	Minimum	Тур	Maximum	Unit
SCL-freq	I ² C clock frequency	100		400	KHz
T-start	Hold time START condition	0.6			μs
T-stop	Setup time STOP condition	0.6			μs
T-free	Bus free time, STOP to START	1.3			μs
T-high	High period for clock	0.6			μs
T-data-hold	Data hold time	0		0.9	μs
T-data-setup	Data setup time	100			ns

3.6.2 Pin description

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
SCL	AA15	0	Open drain	Z	Serial Clock	GPIO26
SDA	AA16	I/O	Open drain	Z	Serial Data	GPIO27

See chapter 3.4, "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.

3.6.3 Application

The two lines need to be pull up to the VI^2C voltage. The VI^2C voltage is dependent on the customer application component connected on the I^2C bus. Nevertheless, the VI^2C must complying with the WMP100 electrical specification (3.3V Max).

The VCC_2V8 (ball R1) of the WMP100 can be used to connect the pull up resistors, if the I²C bus voltage is 2.8 V.

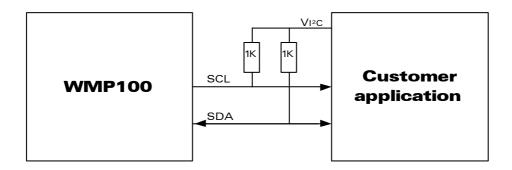


Figure 8: First example of I²C bus application

The I²C bus is complying with the Standard mode (baud rate 100Kbit/s) and the Fast mode (baud rate 400Kbit/s). The pull up resistor value choice depends on the mode used. For the Fast mode, it is recommended to use 1K ohm resistor to ensure the compliance with the I²C specification. For the Standard mode, higher values of resistors can be used to save power consumption.

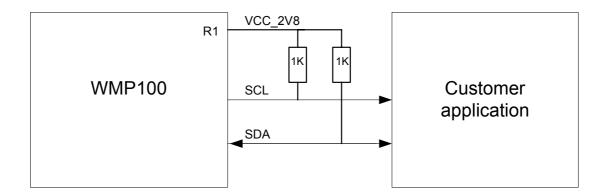


Figure 9: Second example of I²C bus application

Wavecom[®] confidential ©

Page: 42 / 180

3.7 Keyboard interface

3.7.1 Features

This interface provides 10 connections:

- 5 rows (ROW0 to ROW4),
- 5 columns (COL0 to COL4).

The scanning is a digital one, and the debouncing is done in the WMP100. No discrete components like resistors or capacitors are needed.

The keyboard scanner is equipped with:

- internal pull-down resistors for the rows
- pull-up resistors for the columns.

Current only flows from the column pins to the row pins. This allows a transistor to be used in place of the switch for power-on functions.

No discrete components like R, C (Resistor, Capacitor) are needed.

3.7.2 Pin description

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
ROW0	AC23	I/O	1V8	0	Row scan	GPIO9
ROW1	AD22	I/O	1V8	0	Row scan	GPIO10
ROW2	AD21	I/O	1V8	0	Row scan	GPIO11
ROW3	AC22	I/O	1V8	0	Row scan	GPIO12
ROW4	AD23	I/O	1V8	0	Row scan	GPIO13
COL0	AD19	I/O	1V8	Pull up	Column scan	GPIO4
COL1	AD20	I/O	1V8	Pull up	Column scan	GPIO5
COL2	AC20	I/O	1V8	Pull up	Column scan	GPIO6
COL3	AC19	I/O	1V8	Pull up	Column scan	GPIO7
COL4	AC21	I/O	1V8	Pull up	Column scan	GPIO8

See chapter 3.4, "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.

With the Open AT® Software Suite 1.0 when the keyboard service is used the whole multiplexed signals become unavailable for other purposes. In the same way if one or more GPIOs (of this table) are allocated the keyboard service is unavailable.

Application

Keypad matrix application allows for up to 25 keys.

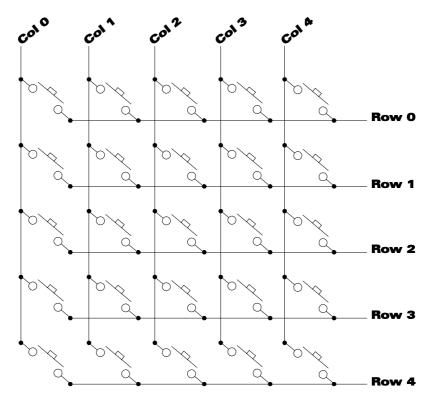


Figure 10: Example of keyboard implementation

3.8 Main serial link (UART1)

A flexible 8-wire serial interface is available complying with V24 protocol signaling but not with V28 (electrical interface) due to a 2.8 Volts interface.

3.8.1 Features

The maximum baud rate of the UART1 is 921 Kbit/s.

The signals are the follows:

- TX data (CT103/TX)
- RX data (CT104/RX)
- Request To Send (~CT105/RTS)

Wavecom® confidential ®

Page: 45 / 180

- Clear To Send (~CT106/CTS)
- Data Terminal Ready (~CT108-2/DTR)
- Data Set Ready (~CT107/DSR)
- Data Carrier Detect (~CT109/DCD)
- Ring Indicator (~CT125/RI).

3.8.2 Pin description

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
CT103/TXD1*	R17	I	2V8	Z	Transmit serial data	GPIO36
CT104/RXD1*	T13	0	2V8	1	Receive serial data	GPIO37
~CT105/RTS1*	Y18	I	2V8	Z	Request To Send	GPIO38
~CT106/CTS1*	N15	0	2V8	Z	Clear To Send	GPIO39
~CT107/DSR1*	T12	0	2V8	Z	Data Set Ready	GPIO40
~CT108- 2/DTR1*	M16	I	2V8	Z	Data Terminal Ready	GPIO41
~CT109/DCD1 *	AB16	0	2V8	Undefined	Data Carrier Detect	GPIO43
~CT125/RI1 *	AA18	0	2V8	Undefined	Ring Indicator	GPIO42
CT102/GND*	AA19		GND		Ground	

See chapter 3.4, "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.

With the Open AT® Software Suite 1.0 when the UART1 service is used the whole multiplexed signals become unavailable for other purposes. In the same way if one or more GPIOs (of this table) are allocated the UART1 service is unavailable.

The **rising time** and **falling time** of the reception signals (mainly CT103) have to be less than **300 ns**.

Wavecom[®] confidential ®

Page: 46 / 180

^{*}According to PC view

Recommendation:

The WMP100 is designed to operate using all the serial interface signals. In particular, it is mandatory to use RTS and CTS for hardware flow control in order to avoid data corruption during transmission.

5-wire serial interface hardware design:

- Signal: CT103/TXD1*, CT104/RXD1*, ~CT105/RTS1*, ~CT106/CTS1*
- The signal ~CT108-2/DTR1* must be managed following the V24 protocol signalling if we want to use the slow idle mode
- Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 for more information.

4-wire serial interface hardware design:

- CT103/TXD1*, CT104/RXD1*, ~CT105/RTS1*, ~CT106/CTS1*
- The signal ~CT108-2/DTR1* must be configured at the low level
- Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 for more information.

2-wire serial interface hardware design:

- This case is possible for connected external chip but not recommended (and forbidden for AT command or modem use)
- The flow control mechanism has to be managed at the customer side.
- CT103/TXD1*, CT104/RXD1*
- The signal ~CT108-2/DTR1* must be configured at the low level
- The signals ~CT105/RTS1*, ~CT106/CTS1* are not used, please configure the AT command (AT+IFC=0,0 see document [3] AT Command Interface Guide for Open AT[®] Firmware v6.5).
- The signal ~CT105/RTS1* must be configured at the low level
- Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 for more information.

Wavecom[®] confidential ©

Page: 47 / 180

3.8.3 First download

The first download of the Flash (when Flash is blank) of the WMP100 must be done through the UART1 serial interface. That's mandatory that the UART1 is available for the first download, so it's necessary to be careful about the connectivity of the UART1 with others devices used in the application.

If no device is connected and there are no conflicts, the computer can be directly connected on the WMP100 through a RS232 level shifter.

When a device is used on UART1, allowing for the ability to unselect the device during the download is recommended (via the enable signal).

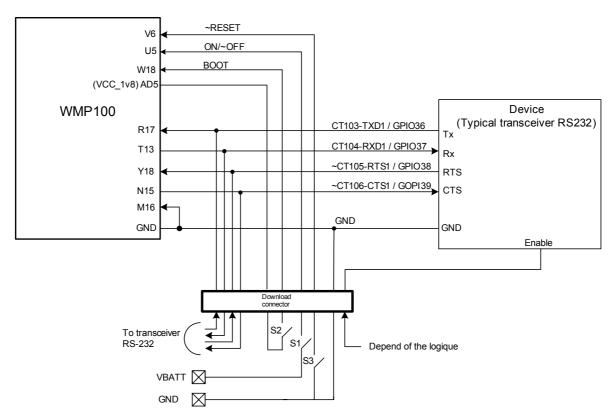


Figure 11: Example of UART1 connection for download with another device on the link

The Download connector is directly connected on the four UART1 signals, which may create conflicts with the Device lines. For this reason an enable must be available on the device to set the device output signals at High impedance.

Wavecom[®] confidential ©

Page: 48 / 180

NOTE:

• In this configuration (4-wire), the signal ~CT108-2/DTR1 (ball M16) must be configured at the low level.

At the same time, to run the first download, the BOOT signal of the WMP100 must be driven. The switch **S2 must be closed**. After the download started S2 can be open. See the BOOT signal chapter (§ 3.18) for more information.

If the WMP100 is power ON (VBATT present), **S1 must be closed** for enable the WMP100.

Start the specific PC software tool provided by WAVECOM.

S3 must be closed* (a pulse to 0L during at least 200μ s) for start the download. See RESET signals chapter (§3.19) for more information.

* S3 can be not use if the condition on S1 and S2 are respected before than the power supply is applied.(There is in this case an automatic internal reset).

If a computer is used for the first download, a RS232 level shifter must be used (See the application with the ADM3307EACP in this chapter).

Note: XMODEM download can be launched only through the UART1, and the first download has to be launched with a specific PC software tool provided by WAVECOM..

3.8.4 Application

The level shifter must be a 2.8V with V28 electrical signal compliant.

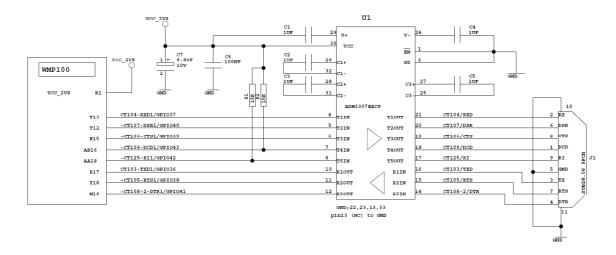


Figure 12: Example of RS-232 level shifter implementation for UART1

U1 chip also protects the WMP100 against ESD at 15KV. (Air Discharge)

Recommended components:

R1, R2 : 15Kohm

C1, C2, C3, C4, C5 : 1uF

C6: 100nF

C7: 6.8uF TANTAL 10V CP32136 AVX

U1 : ADM3307EACP ANALOG DEVICES

J1 : SUB-D9 female

R1 and R2 are necessary only during Reset state to forced ~CT1125-RI1 and ~CT109-DCD1 signal to high level.

The ADM3307EACP chip is able to speed up to **921Kb/s***. If others level shifters are used, ensured that their speed are compliant with the UART1 speed useful.

*: For this baud rate the power supply must be provided by an **external** regulator at 3.0 V.

The ADM3307EACP can be powered by the VCC_2V8 (ball R1) of the WMP100 or by an external regulator at 2.8 V (the baud rate will be limited up to 720kbps).

If the UART1 interface is connected directly to a host processor, it is not necessary to used level shifters. The interface can be connected as shown below:

V24/CMOS possible design:

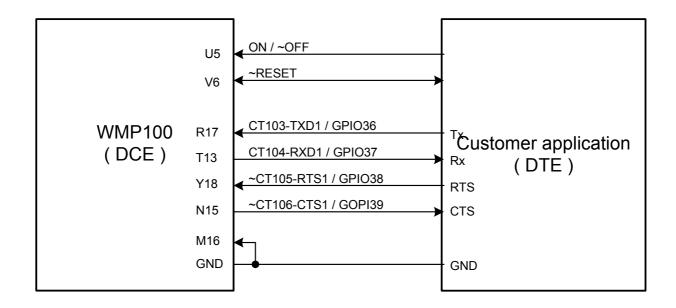


Figure 13: Example of V24/CMOS serial link implementation for UART1

The design shown in the above figure is a basic design.

However, a more flexible design to access this serial link with all modem signals is shown below

Wavecom[®] confidential ®

Page: 52 / 180

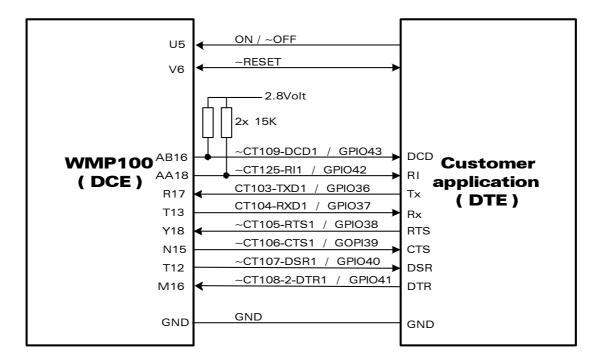


Figure 14: Example of full modem V24/CMOS serial link implementation for UART1

It is recommended to add a 15K-ohm pull-up resistor on ~CT125-RI1 and ~CT109-DCD1 to set high level during reset state.

The UART1 interface is 2.8 Volt type, but is 3 Volt tolerant.

The WMP100 UART1 is designed to operate using all the serial interface signals. In particular, it is mandatory to use RTS and CTS for hardware flow control in order to avoid data corruption during transmission.

Warning: If you want to activate Power Down mode (Wavecom 32K mode) in your Open AT[®] application, you need to wire the DTR ball to a GPIO. Please refer to the document [3] AT Command Interface Guide for Open AT[®] Firmware v6.5 (see the "Appendixes") for more information on Wavecom 32K mode activation using the Open AT[®] Software Suite.

Page: 53 / 180

3.9 Auxiliary serial link (UART2)

An auxiliary serial interface (UART2) is available on WMP100. This interface may be used to connect a Bluetooth or a GPS chip controlled by an Open AT® Plug-in.

3.9.1 Features

Maximum baud rate of the UART2 is 921 Kbit/s.

The signals are the follows:

- TX data (CT103/TX)
- RX data (CT104/RX)
- Request To Send (~CT105/RTS)
- Clear To Send (~CT106/CTS)

The WMP100 is designed to operate using all the serial interface signals. In particular, it is mandatory to use RTS and CTS for hardware flow control in order to avoid data corruption during transmission.

2-wire serial interface hardware design:

- This case is possible for connected external chip but not recommended (and forbidden for AT command or modem use)
- The flow control mechanism has to be managed at the customer side.
- CT103/TXD2*, CT104/RXD2*
- The signals ~CT105/RTS2*, ~CT106/CTS2* are not used, please configure the AT command (AT+IFC=0,0. Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5.
- The signal ~CT105/RTS2* must be configured at the low level
- Please refer to the document [3] AT Command Interface Guide for Open AT[®] Firmware v6.5 (see the "Appendixes").

Page: 54 / 180

3.9.2 Pin description

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
CT103 / TXD2*	T16	I	1V8	Z	Transmit serial data	GPIO14 / INT6
CT104 / RXD2*	U17	0	1V8	Z	Receive serial data	GPIO15
~CT106 / CTS2*	W17	0	1V8	Z	Clear To Send	GPIO16
~CT105 / RTS2*	V13	I	1V8	Z	Request To Send	GPIO17 / INT7
CT102/GND*	V15		GND		Ground	

^{*} According to PC view

See chapter 3.4, "Electrical information for digital I/O" Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.

With the Open AT® Software Suite 1.0 when the UART2 service is used the whole multiplexed signals become unavailable for other purposes. In the same way if one or more GPIOs (of this table) are allocated the UART2 service is unavailable.

3.9.3 Application

The voltage level shifter must be a 1.8V with V28 electrical signal compliant.

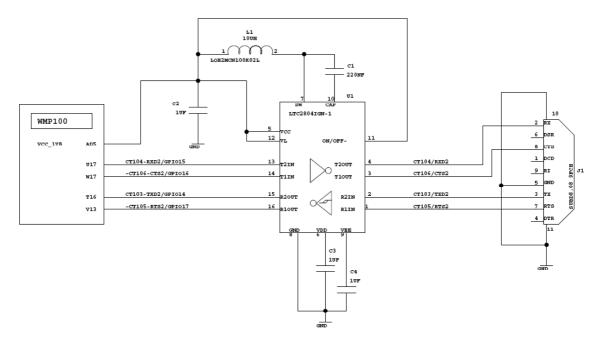


Figure 15: Example of RS-232 level shifter implementation for UART2

Page: 56 / 180

Recommended components:

Capacitors

■ C1: 220nF

• C2, C3, C4 : 1μF

Inductor

■ L1:10µH

RS-232 Transceiver

U1: LINEAR TECHNOLOGY LTC[®]2804IGN

■ J1 : SUB-D9 female

The LTC2804 can be powered by the VCC_1V8 (ball AD5) of the WMP100 or by an external regulator at 1.8 V.

The UART2 interface can be connected directly to others components if the voltage interface is 1.8 V.

3.10 SIM Interface

The Subscriber Identification Module can be directly connected to the WMP100 through this dedicated interface.

3.10.1 Features

The SIM interface controls 1.8V and 3V SIM card.

It is recommended to add Transient Voltage Suppressor diodes (TVS) on the signal connected to the SIM socket in order to prevent any Electrostatics Discharge.

TVS diodes with low capacitance (less than 10 pF) have to be connected on SIM-CLK and SIM-IO signals to avoid any disturbance of the rising and falling edge.

These types of diodes are mandatory for the Full Type Approval. They shall be placed as close as possible to the SIM socket.

The following references can be used: DALC208SC6 from ST Microelectronics.

5 signals exist:

SIM-VCC: SIM power supply.

~SIM-RST: reset. SIM-CLK: clock. SIM-IO: I/O port.

SIMPRES: SIM card detect.

The SIM interface controls a 3V / 1V8 SIM. This interface is fully compliant with GSM 11.11 recommendations concerning SIM functions.

Page: 58 / 180

Electrical Characteristics of SIM interface

Parameter		Conditions	Minim.	Тур	Maxim.	Unit
SIM-IO V _{IH}		I _{IH} = ± 20μA	0.7xSIMVCC			V
SIM-IO V _{IL}		I _{IL} = 1mA			0.4	V
~SIM-RST, SIM-	CLK	Source current = 20μ A	0.9xSIMVCC			V
V _{OH}						
SIM-IO V _{OH}		Source current = 20μ A	0.8xSIMVCC			
~SIM-RST, SIN SIM-CLK	Л-IО,	Sink current =			0.4	V
V _{oL}		-200μΑ				
SIM-VCC Ou Voltage	utput		2.84	2.9	2.96	V
Voltage		Ivcc= 1mA				
		SIMVCC = 1.8V	1.74	1.8	1.86	V
		lvcc= 1mA				
SIM-VCC current	t	VBATT = 3.6V			10	mA
	e/Fall	Loaded with 30pF		20		ns
Time						
~SIM-RST, Rise Time	e/Fall	Loaded with 30pF		20		ns
	e/Fall	Loaded with 30pF		0.7	4	
Time	e /Fall	Loaded With Joph		0.7	1	μs
SIM-CLK Freque	ncy	Loaded with 30pF			3.25	МН
						z

Note:

When **SIMPRES** is used, a **low to high** transition means that the SIM card is inserted and a **high to low** transition means that the SIM card is removed.

3.10.2 Pin description

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
SIM-CLK	Y2	0	2V9 / 1V8	0	SIM Clock	Not mux
~SIM-RST	Y1	0	2V9 / 1V8	0	SIM Reset	Not mux
SIM-IO	W1	I/O	2V9 / 1V8	*Pull up	SIM Data	Not mux
SIM-VCC	W2	0	2V9 / 1V8		SIM Power Supply	Not mux
SIMPRES	Y3	I	1V8	Z	SIM Card Detect	GPIO18 / INT8

^{*}SIM-IO pull up is about 10K ohm

See chapter 3.4, "Electrical information for digital I/O" on page 33 for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.

3.10.3 Application

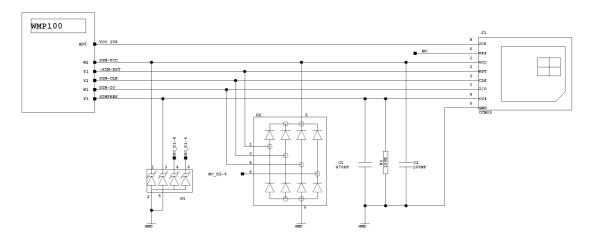


Figure 16: Example of SIM Socket implementation

Page: 60 / 180

Recommended components:

• R1: 100K ohm

C1: 470pFC2: 100nF

D1: ESDA6V1SC6 from ST

D2: DALC208SC6 from SGS-THOMSON

• J1: ITT CANNON CCM03 series (See chapter 9.2 for more information)

The capacitor (C2) placed on the SIM-VCC line must not exceed 330 nF.

SIM socket connection:

Pin description of the SIM socket

Signal	Pin number	Description
VCC	1	SIM-VCC
RST	2	~SIM-RST
CLK	3	SIM-CLK
CC4	4	SIMPRES with 100 k Ω pull down resistor and 470 pF capacitor
GND	5	GROUND
VPP	6	Not connected
I/O	7	SIM-IO
CC8	8	VCC_1V8 of WMP100 (ball AD5)

3.11 General Purpose Input/Output

The Wireless Microprocessor® provides up to **49** General Purpose I/O. They are used to control any external device such as a LCD or a Keyboard backlight...

3.11.1 Features

Reset State:

- 0 : Set to GND
- 1: Set to supply 1V8 or 2V8 depending of I/O type.
- Pull down: Internal pull down with ~60K resistor.
- Pull up: Internal pull up with ~60K resistor to supply 1V8 or 2V8 depending of I/O type.
- Z: High impedance.
- Undefined: Be careful, undefined mustn't be used in your application if a special state at reset is needed. Those pins can be toggling signals.

3.11.2 Pin description

Signal	Pin number	I/O	I/O type	Reset state	Multiplexed with
GPIO0	W15	I/O	1V8	0	Not mux
GPIO1	R18	I/O	1V8	Z	CS2 / A25
GPIO2	U22	I/O	1V8	Z	A24
GPIO3	V16	I/O	1V8	Z	INT0 / A26
GPIO4	AD19	I/O	1V8	Pull up	COL0
GPIO5	AD20	I/O	1V8	Pull up	COL1
GPIO6	AC20	I/O	1V8	Pull up	COL2
GPIO7	AC19	I/O	1V8	Pull up	COL3
GPIO8	AC21	I/O	1V8	Pull up	COL4
GPIO9	AC23	I/O	1V8	0	ROW0
GPIO10	AD22	I/O	1V8	0	ROW1
GPIO11	AD21	I/O	1V8	0	ROW2
GPIO12	AC22	I/O	1V8	0	ROW3
GPIO13	AD23	I/O	1V8	0	ROW4

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 62 / 180

Signal	Pin number	I/O	I/O type	Reset state	Multiplexed with
GPIO14	T16	I/O	1V8	Z	CT103-TXD2 / INT6
GPIO15	U17	I/O	1V8	Z	CT104-RXD2
GPIO16	W17	I/O	1V8	Z	~CT106-CTS2
GPIO17	V13	I/O	1V8	Z	~CT105-RTS2 / INT7
GPIO18	Y3	I/O	1V8	Z	SIMPRES / INT8
GPIO19	AA17	I/O	2V8	Z	Not mux
GPIO20	Y13	I/O	2V8	Undefined	Not mux
GPIO21	AA13	I/O	2V8	Undefined	Not mux
GPIO22	M15	I/O	2V8	Z	Not mux
GPIO23	V17	I/O	2V8	Z	Not mux
GPIO24	N16	I/O	2V8	Z	Not mux
GPIO25	Y19	I/O	2V8	Z	INT1
GPIO26	AA15	I/O	Open drain	Z	SCL
GPIO27	AA16	I/O	Open drain	Z	SDA
GPIO28	U15	I/O	2V8	Z	SPI1-CLK
GPIO29	V12	I/O	2V8	Z	SPI1-IO
GPIO30	R13	I/O	2V8	Z	SP1-I
GPIO31	M14	I/O	2V8	Z	~SPI1-CS / INT5
GPIO32	R15	I/O	2V8	Z	SPI2-CLK
GPIO33	M13	I/O	2V8	Z	SPI2-IO
GPIO34	U16	I/O	2V8	Z	SP2-I
GPIO35	T18	I/O	2V8	Z	~SPI2-CS / INT4
GPIO36	R17	I/O	2V8	Z	CT103-TXD1
GPIO37	T13	I/O	2V8	1	CT104-RXD1
GPIO38	Y18	I/O	2V8	Z	~CT105-RTS1
GPIO39	N15	I/O	2V8	Z	~CT106-CTS1
GPIO40	T12	I/O	2V8	Z	~CT107-DSR1

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 63 / 180

Signal	Pin number	I/O	I/O type	Reset state	Multiplexed with
GPIO41	M16	I/O	2V8	Z	~CT108-2-DTR1
GPIO42	AA18	I/O	2V8	Undefined	~CT125-RI1
GPIO43	AB16	I/O	2V8	Undefined	~CT109-DCD1
GPIO44	AB13	I/O	2V8	Undefined	32kHz buffered output clock
GPIO45	Y17	I/O	1V8	Z	INT2
GPIO46	V18	I/O	2V8	Z	INT3
GPIO47	Y15	I/O	1V8	0	Not mux
GPIO48	Y16	I/O	1V8	0	Not mux

See chapter 3.4, "Electrical information for digital I/O" for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.

3.12 Analog to Digital Converter

Three **A**nalog to **D**igital **C**onverters inputs are provided by the WMP100. Those converters are 10 bits resolution, ranging from 0 to 2V.

3.12.1 Features

BAT-TEMP / AUX-ADC2 input can be used, typically, to monitor external temperature, useful for safety power off in case of application over heating (for Li-lon battery).

AUX-ADC0 and AUX-ADC1 input can be used for customer application

Electrical Characteristics of ADC

Parameter		Min	Тур	Max	Unit
Resolution			10		bits
Sampling rate	е		216		S/s
Input signal r	ange	0		2	V
ADC Reference Accuracy			TBD		%
Integral Accu	racy		15		mV
Differential A	ccuracy		2.5		mV
Input impedance	BAT-TEMP / AUX-ADC2		1 M		Ω
	AUX-ADC0		1M		Ω
	AUX-ADC1		1M		Ω

3.12.2 Pin description

Signal	Pin number	I/O	I/O type	Description
BAT-TEMP / AUX- ADC2*	N18	I	Analog	A/D converter
AUX-ADC0	N17	1	Analog	A/D converter
AUX-ADC1	M17	I	Analog	A/D converter

^{*}This input can be used for battery charging temperature sensor, see chapter "3.16 Battery Charging interface ".

3.12.3 Application

The BAT-TEMP / AUX-ADC2 input is used for battery monitoring during charging of battery. All information is provided in the "Battery Charging" (see chapter 3.16).

3.13 Digital to Analog Converter

One **D**igital to **A**nalog **C**onverter (DAC) input is provided by the Wireless Microprocessor[®].

3.13.1 Features

The converter is 8-bit resolution, guaranteed monotonic with a ranges from 0V to 2.3V.

This output assumes a typical external load of $2k\Omega$ and 50pF in parallel to GND.

Electrical Characteristics of the DAC

Parameter	Min	Тур	Max	Unit
Resolution	-	8	-	bits
Maximum Output voltage	2.1	2.2	2.3	V
Minimum Output voltage	0	-	40	mV
Output voltage after reset	-	1.147	-	V
Integral Accuracy	-5	-	+5	LSB
Differential Accuracy	-1	-	+1	LSB
Full scale settling time	-	40	-	μs
(load: 50pF // $2k\Omega$ to GND)				
One LSB settling time	-	8	-	μs
(load: 50pF // 2k Ω to GND)				

3.13.2 Pin description

Pin description of the DAC

Signal	Pin number	I/O	I/O type	Description
AUX-DAC0	V14	0	Analog	D/A converter

3.14 Analogue audio interface

Two different microphone inputs and two different speaker outputs are supported. The WMP100 also includes an echo cancellation feature which allows hands free function.

In some cases, ESD protection must be added on the audio interface lines.

3.14.1 Microphone Features

The connection can be either differential or single-ended but <u>using a differential</u> <u>connection in order to reject common mode noise and TDMA noise is strongly recommended</u>. When using a single-ended connection, be sure to have a very good ground plane, a very good filtering as well as shielding in order to avoid any disturbance on the audio path.

The gain of MIC inputs is internally adjusted and can be tuned using an AT command.

Both can be configured in differential or single ended.

The MIC2 inputs already include the biasing for an electret microphone allowing an easy connection.

3.14.1.1 Electrical characteristics

3.14.1.1.1 MIC1 Microphone Inputs

By default, the MIC1 inputs are single-ended but it can be configured in differential.

The MIC1 inputs do not include an internal bias . The MIC1 input needs to have an external biasing if an electret micro is used.

AC coupling is already embedded in the Wireless Microprocessor®.

Wavecom[®] confidential ©

Page: 68 / 180

Equivalent circuits of MIC1

DC equivalent circuit	AC equivalent circuit		
MIC1P - DC MIC1N - Blocked	MIC1N Z1 MIC1N Z1 GND		

Electrical Characteristics of MIC1

Parameters			Тур	Max	Unit	
DC Characteristics			N/A		V	
AC Characteristics	Z1	70	120	160	ΚΩ	
200 Hz <f<4 khz<="" td=""><td></td><td></td><td></td><td></td><td colspan="2"></td></f<4>						
Maximum working voltage	AT+VGT*=2		13.8		mVrms	
	AT+VGT*=1		77.5			
(MIC1P-MIC1N)	AT+VGT*=0		346			
Maximum rating voltage	Positive			+7.35	V	
(MIC1P or MIC1N)	Negative	0.9				

^{• *}The input voltage depends of the input micro gain set by AT command. Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5.

3.14.1.1.2 MIC2 Microphone Inputs

By default, the MIC2 inputs are differential ones, but it can be configured in single ended. They already include the convenient biasing for an electret microphone. The electret microphone can be directly connected on those inputs, thus allowing easy connection to a handset.

AC coupling is already embedded in the Wireless Microprocessor®.

Equivalent circuits of MIC2

DC equivalent circuit	AC equivalent circuit
MIC2P R MIC2+	MIC2P Z2 MIC2N Z2 GND

Electrical Characteristics of MIC2

Parameters		Min	Тур	Max	Unit
Internal biasing	MIC2+	2	2.1	2.2	V
DC Characteristics	Output current		0.5	1.5	mA
	R2	1650	1900	2150	Ω
	Z2 MIC2P (MIC2N=Open)	1.1	1.3	1.6	
	Z2 MIC2N (MIC2P=Open)		1.5	1.0	ΚΩ
AC Characteristics 200 Hz <f<4 khz<="" td=""><td>Z2 MIC2P (MIC2N=GND)</td><td>0.9</td><td rowspan="2">1.1</td><td rowspan="2">1.4</td></f<4>	Z2 MIC2P (MIC2N=GND)	0.9	1.1	1.4	
	Z2 MIC2N (MIC2P=GND)	0.5			
	Impedance between MIC2P and MIC2N	1.3	1.6	2	
Maximum working	AT+VGT*=2		13.8		
voltage (MIC2P-MIC2N)	AT+VGT*=1	77.5			mVrms
	AT+VGT*=0		346		
Maximum rating voltage	Positive			+7.35**	V
(MIC2P or MIC2N)	Negative	-0.9			V

^{• *}The input voltage depends of the input micro gain set by AT command. Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5

^{• **}Because MIC2P is internally biased, it is necessary to use a coupling capacitor to connect an audio signal provided by an active generator. Only a passive microphone can be directly connected to the MIC2P and MIC2N inputs.

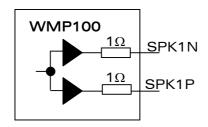
3.14.2 Speaker Features

The connection is single-ended on SPK1 and is differential or single-ended on SPK2. Using a differential connection to reject common mode noise and TDMA noise is strongly recommended. Moreover in single-ended mode, ½ of the power is lost. When using a single-ended connection, be sure to have a very good ground plane, a very good filtering as well as shielding in order to avoid any disturbance on the audio path.

Parameter	Тур	Unit	Connection
Z (SPK1P, SPK1N)	16 or 32	Ω	single-ended mode
Z (SPK2P, SPK2N)	4	Ω	single-ended mode
Z (SPK2P, SPK2N)	8	Ω	Differential mode

3.14.2.1 Speakers Outputs Power

The both speakers maximum power output are not similar, that is due to the different configuration between the Speaker1 which is only single ended and the speaker2 which can be differential, so speaker2 can provides more power.


The maximal specifications given below are available with the maximum power output configuration values set by an AT command. The typical values are recommanded.

3.14.2.1.1 SPK1 Speaker Outputs

With the SPK1 interface, only single ended speaker connection is allowed

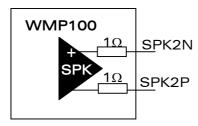
Equivalent circuits of SPK1

Electrical Characteristics of SPK1

Parameters	Min	Тур	Max	Unit		
Biasing voltage	-		1.30		V	
Output swing	RL=16 Ω : AT+VGR=6; ended	,		1.7	-	Vpp
voltage	RL=32 Ω ; AT+VGR=6; ended	-	1.9	2.75	Vpp	
RL	Load resistance	14.5	32	-	Ω	
IOUT	Output current;	RL=16Ω	-	40	85	mA
	value peak	single-ended; peak value $RL=32\Omega$		22	-	mA
POUT	RL=16Ω; AT+VGR*=6		-	25		mW
	RL=32Ω; AT+VGR*=6		-	16	27	mW
RPD	Output pull-down resi power-down	28	40	52	ΚΩ	

^{*}The output voltage depends of the output speaker gain set by AT command. Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5.

Wavecom[®] confidential ©


Page: 73 / 180

3.14.2.1.2 SPK2 Speaker Outputs

The SPK2 interface allows differential and single ended speaker connection

Equivalent circuits of SPK2

Electrical Characteristics of SPK2

Parameters		Min	Тур	Max	Unit
Biasing voltage	SPK2P and SPK2N		1.30		V
Output	RL=8 Ω : AT+VGR=6*; single ended	-	-	2	Vpp
swing voltage	RL=8Ω: AT+VGR=6*; differential	-	-	4	Vpp
	RL=32 Ω : AT+VGR=6*; single ended	-	-	2.5	Vpp
	RL=32Ω: AT+VGR=6*; differential	-	-	5	Vpp
RL	Load resistance	6	8	-	Ω
IOUT	Output current; peak value; RL= 8Ω	-	-	180	mA
POUT	RL=8Ω; AT+VGR=6*;	-	-	250	mW
RPD	Output pull-down resistance at power-down	28	40	52	ΚΩ
VPD	Output DC voltage at power-down	-	-	100	mV

^{*}The output voltage depends of the output speaker gain set by AT command. Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5.

If a singled ended solution is used with the speaker2 output, only one of the both SPK2 has to be chosen. The result is a maximal output power divided by 2.

Wavecom® confidential ®

Page: 74 / 180

3.14.3 Pin description

Signal	Pin number	I/O	I/O type	Description
MIC1P	AC10	I	Analog	Microphone 1 positive input
MIC1N	AB10	I	Analog	Microphone 1 negative input
MIC2P	AC9	I	Analog	Microphone 2 positive input
MIC2N	AB9	1	Analog	Microphone 2 negative input
SPK1P	AC8	0	Analog	Speaker 1 positive output
SPK1N	AB8	0	Analog	Speaker 1 negative output
SPK2P	AC7	0	Analog	Speaker 2 positive output
SPK2N	AB7	0	Analog	Speaker 2 negative output

3.14.4 Application

3.14.4.1 Microphone

3.14.4.1.1 MIC2 Differential connection example

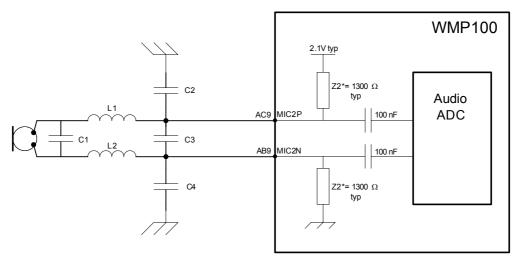


Figure 17: Example of MIC2 input differential connection with LC filter

*:Z2 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.2.

Note: Audio quality can be very good without L1, L2, C2, C3, C4 depending on the design. But if there is EMI perturbation, this filter can reduce the TDMA noise. This filter (L1, L2, C2, C3, C4) is not mandatory. If not used, the capacitor must be removed and coil replaced by 0 Ohm resistors as the shown in the following schematic.

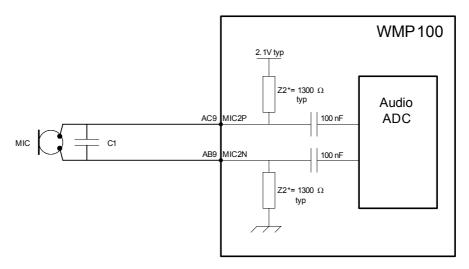


Figure 18: Example of MIC2 input differential connection without LC filter

*:Z2 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.2.

The capacitor C1 is highly recommended to eliminate the TDMA noise. C1 must be close to the microphone.

Recommended components:

- C1: 12pF to 33pF (depending of the design ,needs to be tuned)
- C2, C3, C4: 47pF (need to be tuned depending on the design)
- L1, L2: 100nH (need to be tuned depending on the design)

3.14.4.1.2 MIC2 single-ended connection example

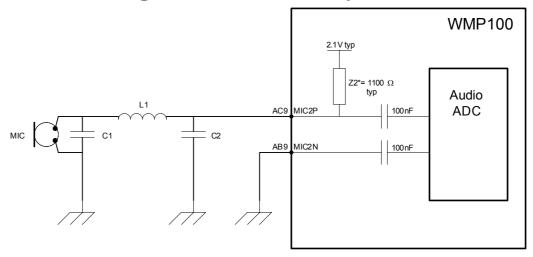


Figure 19: Example of MIC2 input single-ended connection with LC filter

*:Z2 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.2.

Internal input impedance value becomes 1100 ohms, due to the connection of MIC2N to ground.

The single ended design is not recommended for improve TDMA rejection noise. Usually, it's difficult to eliminate TDMA noise from a single ended design.

It is recommended to add L1 and C2 footprint to add a LC filter to try to eliminate the TDMA noise.

When not used, the filter can be removed by replacing L1 by a 0 Ohm resistor and by disconnecting C2, as the following schematic.

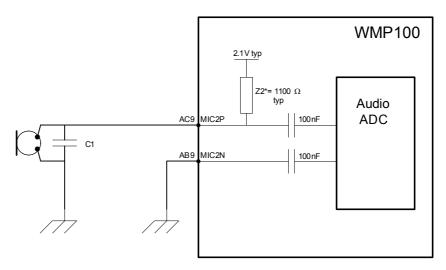


Figure 20: Example of MIC2 input single-ended connection without LC filter

*:Z2 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.2.

The capacitor C1 is highly recommended to eliminate the TDMA noise. C1 must be close to the microphone.

Recommended components:

- C1: 12pF to 33pF (depending of the design ,needs to be tuned)
- C2: Must be tuned depending of the design.
- L1: Must be tuned depending of the design.

3.14.4.1.3 MIC1 Differential connection example

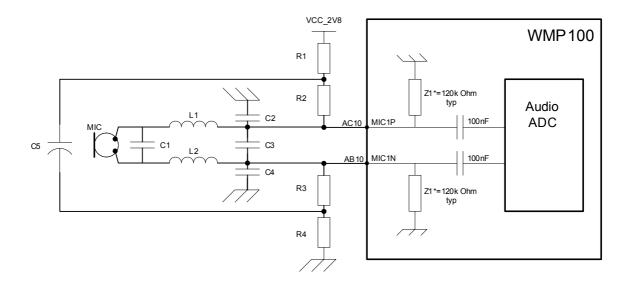


Figure 21: Example of MIC1 input differential connection with LC filter

*:Z1 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.1.

Note: Audio quality can be very good without L1, L2, C2, C3, C4 depending on the design. But if there is EMI perturbation, this filter can reduce the TDMA noise. This filter (L1, L2, C2, C3, C4) is not mandatory. When not used, the capacitor must be removed and coil replaced by 0 Ohm resistors as shown in the following schematic.

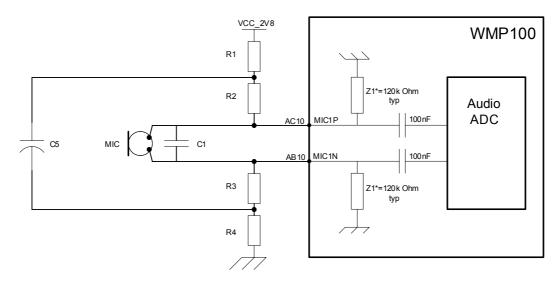


Figure 22: Example of MIC1 input differential connection without LC filter

*:Z1 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.1.

The capacitor C1 is highly recommended to eliminate the TDMA noise. C1 must be close to the microphone.

Vbias can be VCC_2V8 of the WMP100 (ball R1) but it is possible to use another 2V to 3V supply voltage depending of the micro characteristics.

Be careful, if VCC 2V8 is used TDMA noise can degrade quality.

Recommended components:

- R1: 4.7K ohm (for Vbias equal to 2.8V)
- R2, R3: 820 ohm
- R4: 1K ohm
- C1: 12pF to 33pF (depending of the design ,needs to be tuned)
- C2, C3, C4: 47pF (need to be tuned depending on the design)
- C5 : 2.2uF +/- 10%
- L1, L2 : 100nH (need to be tuned depending on the design)

Page: 81 / 180

3.14.4.1.4 MIC1 Single-ended connection example

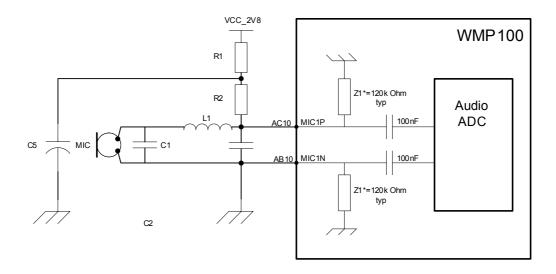


Figure 23: Example of MIC1 input single-ended connection with LC filter

*:Z1 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.1.

The single ended design is not recommended for improve TDMA rejection noise. Usually, it's difficult to eliminate TDMA noise from a single ended design.

It is recommended to add L1 and C2 footprint to add a LC EMI filter to try to eliminate the TDMA noise.

When not used, the filter can be removed by replacing L1 by a 0 Ohm resistor and by disconnecting C2, as the following schematic.

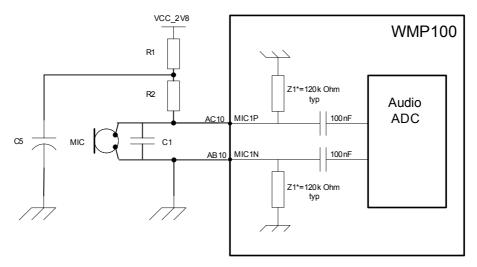


Figure 24: Example of MIC1 input single-ended connection without LC filter

*:Z1 is from 200Hz to 4kHz. For more characteristics refer to the chapter 3.14.1.1.1.

Recommended components:

- R1: 4K7 ohm (for Vbias equal to 2.8V)
- R2: 820 ohm
- C1: 12pF to 33pF (depending of the design ,needs to be tuned)
- C2: Must be tuned depending of the design.
- C5: 2.2uF +/- 10%
- L1: Must be tuned depending of the design.

Vbias must be very "clean" to avoid bad performance in case of single-ended implementation. That is the reason why Vbias could be another 2 V to 3V power supply instead of VCC 2V8 which is available on the ball R1.

CAUTION: If VCC 2V8 is used TDMA noise can degrade quality.

The capacitor C1 is highly recommended to eliminate the TDMA noise. C1 must be close to the microphone.

Wavecom[®] confidential ©

Page: 83 / 180

3.14.4.2 Speaker

3.14.4.2.1 SPK2 Differential connection

Figure 25: Example of Speaker differential connection

Impedance of the speaker amplifier output in differential mode is:

 $R \le 2\Omega$ +/-10 %

The connection between the WMP100 pins and the speaker must be designed to keep the serial impedance lower than 3 Ω in differential mode.

3.14.4.2.2 SPKx Single-ended connection

Typical implementation:

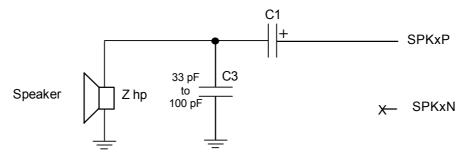


Figure 26: Example of Speaker single-ended connection

 $4.7 \, \mu\text{F} < \text{C1} < 47 \, \mu\text{F}$ (depending on speaker characteristics and output power).

Using a single-ended connection includes losing of the output power (- 6 dB) compared to a differential connection.

The connection between the WMP100 pins and the speaker must be designed to keep the serial impedance lower than 1.5 Ω in single ended mode.

If SPKxP channel is used, SPKxN can be left opened.

If SPKxN channel is used, SPKxP can be left opened.

Wavecom[®] confidential ©

Page: 84 / 180

3.14.5 Design recommendation

3.14.5.1 General

When speakers and microphones are exposed to the external environment, it is recommended to add ESD protection as closed as possible to the speaker or microphone, connected between the audio lines and a good ground.

The microphone connections may be either differential or single-ended, but using a differential connection to reject common mode noise and TDMA noise is strongly recommended.

While using a single-ended connection, ensure to have a good ground plane, a good filtering as well as shielding, in order to avoid any disturbance on the audio path.

It is important to select an appropriate microphone, speaker and filtering components to avoid TDMA noise

3.14.5.2 Recommended microphone characteristics

The impedance of the microphone has to be around 2 k Ω .

Sensitivity from -40dB to -50 dB.

SNR > 50 dB.

Frequency response compatible with the GSM specifications.

To suppress TDMA noise, it is highly recommended to use microphones with two internal decoupling capacitors:

-CM1=56pF (0402 package) for the TDMA noise coming from the demodulation of the GSM 850 and GSM900 frequency signal.

-CM2=15pF (0402 package) for the TDMA noise coming from the demodulation of the DCS/PCS frequency signal.

The capacitors have to be soldered in parallel of the microphone

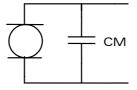


Figure 27: Microphone

Wavecom[®] confidential ©

Page: 85 / 180

3.14.5.3 Recommended speaker characteristics

Type of speakers: Electro-magnetic /10mW

Impedance: 8Ω for hands-free (SPK2) Impedance: 32Ω for heads kit (SPK1)

Sensitivity: 110dB SPL min

Receiver frequency response compatible with the GSM specifications.

3.14.5.4 Recommended filtering components

When designing a GSM application, it is important to select the right audio filtering components.

The strongest noise, called TDMA, is mainly due to the demodulation of the GSM850/GSM900/DCS1800 and PCS1900 signal: A burst being produced every 4.615ms; the frequency of the TDMA signal is equal to 216.7Hz plus harmonics.

The TDMA noise can be suppress by filtering the RF signal using the right decoupling components.

The types of filtering components are:

- -RF decoupling inductors
- -RF decoupling capacitors

A good "Chip S-Parameter" simulator is proposed by Murata, the following link help to find it:

http://www.murata.com/designlib/mcsil.html

Using different Murata components, we could see that the value, the package and the current rating can have different decoupling effects.

Page: 86 / 180

The table below shows some examples with different Murata components:

Package		0402	
Filtered band	GSM900	GSM 850/900	DCS/PCS
Value	100nH	56pF	15pF
Types	Inductor	Capacitor	Capacitor
Position	Serial	Shunt	Shunt
Manufacturer	Murata	Murata	Murata
Rated	150mA	50V	50V
Reference	LQG15HSR10J02 or LQG15HNR10J02	GRM1555C1H560JZ01	GRM1555C1H150JZ01 or GRM1555C1H150JB01
Package		0603	
Filtered band	GSM900	GSM 850/900	DCS/PCS
Value	100nH	47pF	10pF
Types	Inductor	Capacitor	Capacitor
Position	Serial	Shunt	Shunt
Manufacturer	Murata	Murata	Murata
Rated	300mA	50V	50V
Reference	LQG18HNR10J00	GRM1885C1H470JA01 or GRM1885C1H470JB01	GRM1885C1H150JA01 or GQM1885C1H150JB01

3.14.5.5 Audio track and PCB layout recommendation

To avoid TDMA noise, it is recommended to surround the audio tracks by ground:

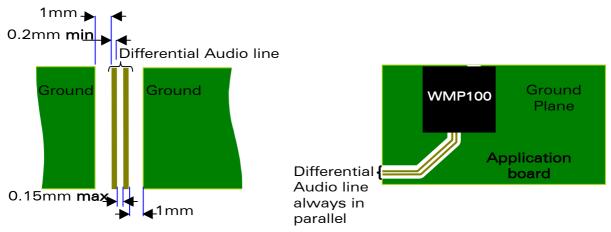


Figure 28: Audio track design

Remark:

Avoid digital tracks crossing under and over the audio tracks.

3.15 **PWM / Buzzer Output**

This output is controlled by a PWM controller and provides a buzzer service.

3.15.1 Features

The BUZZ-OUT is an open drain one. A buzzer can be directly connected between this output and VBATT. The maximum current is 100 mA (PEAK).

Electrical Characteristics

Parameter	Condition	Minimum	Maximum	Unit
V _{OL}	IoI = 100mA		0.4	٧
I _{PEAK}	VBATT = VBATTmax		100	mA
Frequency		TBD	TBD	Hz
Duty cycle		TBD	TBD	%

3.15.2 Pin description

Signal	Pin number	I/O	I/O type	Reset state	Description
BUZZ-OUT	U4	0	Open drain	Z	Buzzer output

See chapter 3.4, "Electrical information for digital I/O" on page 33 for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.

Page: 89 / 180

3.15.3 Application

The maximum peak current is 100 mA and the maximum average current is 40 mA. A diode against transient peak voltage must be added as described below.

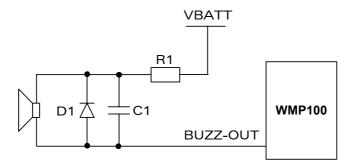


Figure 29: Example of buzzer implementation

Where:

R1 must be chosen in order to limit the current at I_{PEAK} max

C1 = 0 to 100 nF (depending on the buzzer type)

D1 = BAS16 (for example)

Recommended characteristics for the buzzer:

electro-magnetic type

• Impedance: 7 to 30 Ω

Sensitivity: 90 dB SPL min @ 10 cm

Current: 60 to 90 mA

The BUZZ-OUT output can also be used to drive a LED as shown in the Figure below:

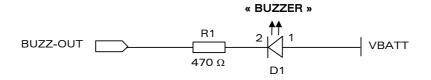


Figure 30: Example of LED driven by the BUZZ-OUT output

R1 value can be accorded depending of the LED (D1) characteristics.

Wavecom[®] confidential ©

Page: 90 / 180

3.16 Battery charging interface

The WMP100 charging interface is able to drive the charging of different batteries technologies by combing hardware and software controls.

3.16.1 Feature

The charging architecture of WMP100 supports 3 batteries technologies:

- Ni-Cd (Nickel-Cadmium)
- Ni-Mh (Nickel-Metal Hydride)
- > Li-lon (Lithium-lon)

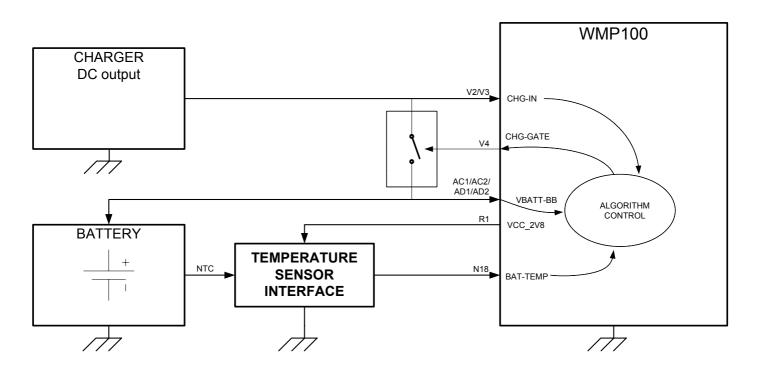


Figure 31: Charging block diagram

The software algorithm controls a switch (by CHG-GATE signal), which connects the CHG-IN signal to the VBATT-BB signal. The algorithm controls the frequency and the connected time of the switching. During the charging procedure the battery charging level is controlled by the VBATT-BB measurement. When the battery is full, the algorithm stopped the charging procedure.

Wavecom[®] confidential ©

Page: 91 / 180

When Li-lon battery is used, the battery temperature is monitoring through the BAT-TEMP ADC input.

One more charging mode is provided by the WMP100. It's called "Precharging" mode, but it's a special charging mode because it is activated only when the WMP100 is OFF. So the control is only performed by the hardware. The goal of this charging mode is to prevent the battery to be damaged by preventing the discharged under the minimum battery level.

3.16.1.1 Pre-Charging

When a charger DC power supply is connected to the CHG-IN signal and if the voltage battery is between 2.8v and 3.2v, a constant current of 50mA is provided to the battery.

When the battery is able to supply the WMP100/Open AT® Software Suite v1.0, the WMP100 is automatically powered on and the software algorithm is activated to finish the charge.

Note: When pre-charging is launched, the FLASH-LED output blinks automatically.

3.16.1.2 Temperature monitoring

The monitoring of the temperature is only available for the Li-lon battery. The BAT-TEMP / AUX-ADC2 (N18) ADC input must be used to sample the temperature analog signal provided by a NTC temperature sensor which is placed close to the battery cellular. The minimum and maximum temperature range can be set by software command.

Electrical Characteristics of battery charging interface

Para	Minimum	Тур	Maximum	Unit	
Charging Opera	0		50	°C	
BAT-TEMP / AUX- ADC2	resolution		10		bits
	sampling rate		216		S/s
	Input Impedance (R)		1M		Ω
	Input signal range	0		2	V
CHG-IN	Voltage (for I=Imax)	4.6*			V
	Voltage (for I=0)			6*	V
CHG-GATE	Switch control by current	30	40	50	mA

^{*}To be parameterized as per battery manufacturer

3.16.2 Pin description

Pin description of battery charging interface

Signal	Pin number	I/O	I/O type	Description
CHG-IN	V2 / V3	_	Analog	Current source input
CHG-GATE	V4	0	Analog	Current source to drive PNP transistor
BAT-TEMP / AUX-ADC2	N18	I	Analog	A/D converter

3.16.3 Application

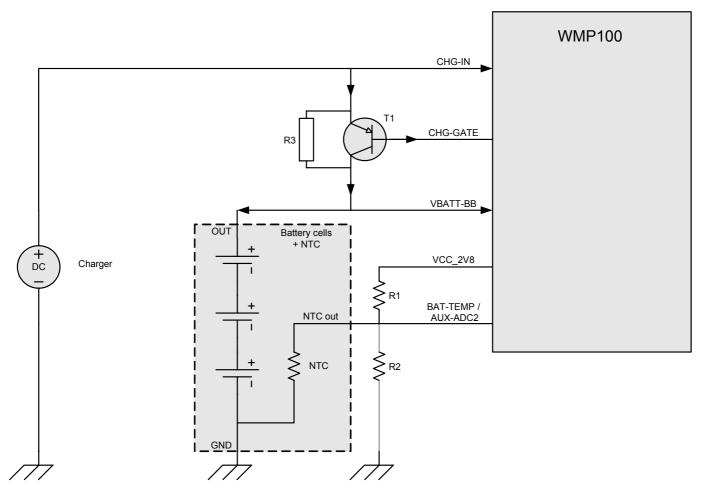


Figure 32: Charging schematic for Li-Ion

The charging schematic needs a transistor to switch the current from the Charger DC source power supply to the battery. The control of the transistor is performed by the WMP100 through the CHG-GATE signal.

It is important that the Charger DC power supply has a limited output current to not damage the transistor T1.

The R1 and R2 resistors are needed only when the temperature is monitored, typically for Li-lon battery. The R1 is necessary to bias the NTC resistor of the battery. The VCC_2V8 output power voltage of the WMP100 can be used to power the bridge R1/ R2 / NTC. The R1 and R2 values have to be calculated to have a maximum of 2volt at the BAT-TEMP / AUX-ADC2 input on the WMP100.

Wavecom[®] confidential ©

Page: 95 / 180

The R3 resistor must be added to improve the performances of the charge.

Pre-Charging mode doesn't use the T1 transistor, when Pre-charging is activated, the current provided by the Charger DC power supply crosses the WMP100 by the CHG-IN signal to the VBATT-BB to charge the battery. The current limitation is controlled inside the WMP100.

Recommended components:

- o T1: NSL12AW from On Semiconductor
- o R1 = 100K
- \circ R2 = 270K
- R3= 5.6K (package 0402, 1/16W, +-5% is sufficient)
- NTC = 100K @ 25°C NTH4G42B104F01 from MURATA

Note:

- In this example, the transistor T1 has a maximal continuous current of 2A, so the Charger DC power supply must have an output current limited to 2A.
- The maximum Charger output current, provided to the battery, must be accorded to the battery electrical characteristics.

3.17 ON / ~OFF signal

This input is used to switch ON or OFF the Wireless Microprocessor.

A high level signal has to be provided on the pin $ON/\sim OFF$ to switch ON the Wireless Microprocessor.. The voltage of this signal has to be maintained at $0.8 \times VBATT$ during a minimum of 4000ms. This signal can be left at high level until switch off.

To switch OFF the Wireless Microprocessor the pin ON/OFF has to be released. The Wireless Microprocessor can be switched off through the Operating System.

Warning:

All external signals must be inactive when the Wireless Microprocessor is OFF to avoid any damage when starting and allow Wireless Microprocessor to start and stop correctly.

3.17.1 Features

Electrical Characteristics of the signal

Parameter	I/O type	Minimum	Maximum	Unit
V _{IL}	CMOS		VBATT x 0.2	V
V_{IH}	CMOS	VBATT x 0.8	VBATT	V

3.17.2 Pin description

Signal	Pin number	I/O	I/O type	Description
ON/~OFF	U5	I	CMOS	WMP100 Power ON

3.17.3 Application

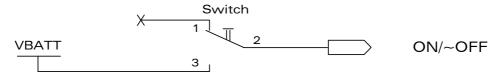


Figure 33: Example of ON/~OFF pin connection

3.17.3.1 Power ON

Once WMP100/Open AT® Software Suite v1.0 is powered, the application must set the ON/OFF signal to high to start the WMP100/Open AT® Software Suite v1.0 power ON sequence. The ON/OFF signal must be held high during a minimum delay of $T_{\text{on/off-hold}}$ (Minimum hold delay on the ON/ \sim OFF signal) to power-ON. After this delay, an internal mechanism maintains the WMP100/Open AT® Software Suite v1.0 in power ON condition.

During the power ON sequence, an internal reset is automatically performed by the WMP100/Open AT® Software Suite v1.0 for 40ms (typically). During this phase, any external reset should be avoided during this phase.

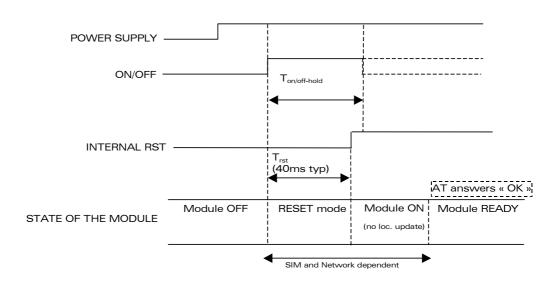


Figure 34 : Power-ON sequence (no PIN code activated)

Wavecom[®] confidential ©

Page: 98 / 180

The duration of the firmware power-up sequence depends on:

• the need to perform a recovery sequence if the power has been lost during a flash memory modification.

Other factors have a minor influence

- the number of parameters stored in EEPROM by the AT commands received so far
- the ageing of the hardware components, especially the flash memory
- · the temperature conditions

The *recommended* way to de-assert the ON/~OFF signal is to use either an AT command or WIND indicators: the application has to detect the end of the power-up initialization and de-assert ON/~OFF afterwards.

- Send an "AT" command and wait for the "OK" answer: once the initialization is complete the AT interface answers « OK » to "AT" message¹.
- Wait for the "+WIND: 3" message: after initialization, the WMP100/Open AT® Software Suite v1.0, if configured to do so, will return an unsolicited "+WIND: 3" message. The generation of this message is enabled or disabled via an AT command.

Note:

• Please refer to the document [3] AT Command Interface Guide for Open AT® Firmware v6.5 for more information on these commands.

Proceeding thus – by software detection - will always prevent the application from de-asserting the ON/~OFF signal too early.

If WIND indicators are disabled or AT commands unavailable or not used, it is still possible to de-assert $ON/\sim OFF$ after a delay long enough $(T_{on/off-hold})$ to ensure that the firmware has already completed its power-up initialization.

The table below gives the minimum values of $T_{\text{on/off-hold}}$:

T_{on/off-hold} minimum values

Open AT® Firmware	T _{on/off-hold} Safe evaluations of the firmware power-up time
6.65 & above	8 s

The above figure take the worst cases into account: power-loss recovery operations, slow flash memory operations in high temperature conditions, and

Wavecom[®] confidential ©

Page: 99 / 180

¹ If the application manages hardware flow control, the AT command can be sent during the initialisation phase.

so on. But they are safe because they are large enough to ensure that ON/~OFF is not de-asserted too early.

Additional notes:

- 1. Typical power-up initialization time figures for best cases conditions (no power-loss recovery, fast and new flash memory...) approximate 3.5 seconds in every firmware version. But releasing ON/~OFF after this delay does not guarantee that the application will actually start-up if for example the power plug has been pulled off during a flash memory operation, like a phone book entry update or an AT&W command...
- 2. The ON/~OFF signal can be left at a high level until switch OFF. But this is not recommended as it will prevent the AT+CPOF command from performing a clean power-off. (see also <<<NOTE IN POWER OFF CHAPTER>>> for an alternate usage)
- 3. When using a battery as power source, it is not recommended to let this signal high:
 - If the battery voltage is too low and the ON/ \sim OFF signal at low level, an internal mechanism switches OFF the WMP100/Open AT® Software Suite v1.0. This automatic process prevents the battery to be over discharged and optimize its life span.
- 4. During the power-ON sequence, an internal reset is automatically performed by the WMP100/Open AT® Software Suite v1.0 for 40 ms (typically). Any external reset should be avoided during this phase.
- 5. Connecting a charger on the WMP100/Open AT® Software Suite v1.0 as exactly the same effect than setting the ON/~OFF signal. In particular the WMP100/Open AT® Software Suite v1.0 will not POWER-OFF after the AT+CPOF command, unless the Charger is disconnected.

3.17.3.2 Power OFF

To properly power OFF the WMP100/Open AT® Software Suite v1.0 the application must reset the ON/OFF signal and then send the AT+CPOF command to deregister from the network and switch off the WMP100/Open AT® Software Suite v1.0.

Once the « OK » response is issued by the WMP100/Open AT® Software Suite v1.0, the power supply can be switched off.

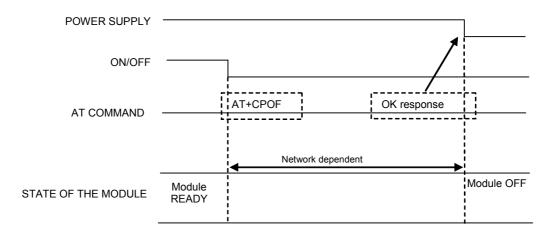


Figure 35 : Power-OFF sequence

Note:

• If the ON/~OFF pin is maintained to ON (High Level) then the module can't be switched OFF.

3.18 BOOT signal

A specific control pin BOOT is available to download the WMP100 only if the standard XMODEM download, controlled with AT command, is not possible.

Specific PC software, provided by WAVECOM, is needed to perform this download, specifically for the first download of the Flash memory.

3.18.1 Features

The BOOT pin must be connected to the VCC 1V8 for this specific download.

воот	Operating mode	Comment
Leave open	Normal use	No download
Leave open	Download XMODEM	AT command for Download AT+WDWL
1	Download specific	Need WAVECOM PC software

For more information, see chapter 3.8.3.

This BOOT pin must be left open for normal use or XMODEM download.

However, in order to make development and maintenance phases easier, it is highly recommended to set a test point, either a jumper or a switch to VCC_1V8 (ball AD5) power supply.

3.18.2 Pin description

Signal	Pin number	I/O	I/O type	Description
воот	W18	I	1V8	Download mode selection

Page: 102 / 180

3.18.3 Application

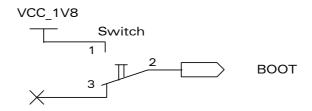


Figure 36: Example of BOOT pin implementation

3.19 Reset signals

The WMP100 have two reset signals. The main is ~RESET which is the input reset of the processor. The second is ~EXT-RESET which is derived from the main reset.

3.19.1 Features

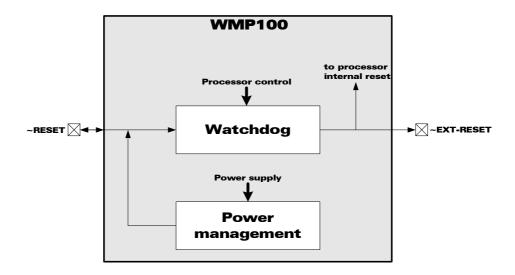


Figure 37: Reset functional block

The ~RESET signal is an input/output signal. It is controlled as well by the user as well by an internal voltage supervisor. This ~RESET signal drive the reset of the processor through the watchdog unit.

The ~EXT-RESET is an output signal and is the result of the combination of the ~RESET and the watchdog reset. This signal is used to provide a reset to all the microprocessor's system components. Typically, the ~EXT-RESET is used to reset the NOR Flash memories state machine.

Page: 104 / 180

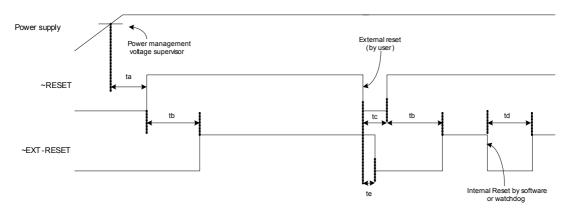


Figure 38: Reset waveform events

Three different reset events can occur:

o Power on reset:

The power on reset is automatically controlled by the internal power management unit. It resets the ~RESET signal as long as the power supply voltage VCC 1V8 is under 1.60 V typ.

The ~RESET is always reset when the VCC_1V8 is high, after what a cancellation time is launched (ta).

The ~EXT-RESET is always reset when the ~RESET signal is high, after what a cancellation time is launched (tb).

o External reset (~RESET):

The external reset is managed by the user or by an external event of the WMP100. This is the asynchronous reset of the processor. The external reset must be generated on the ~RESET signal.

The \sim Reset signal must be held low during the time (tc) to reset the microprocessor.

o Internal reset (~EXT-RESET):

The internal reset is launched by the watchdog unit, controlled by the processor. This reset affects only the ~EXT-RESET signal (td).

Electrical Characteristics of the signals

	Parameter		Minimum	Тур	Maximum	Unit
~RESET	Input Impe	dance (R)*		100K		Ω
	Input Impe	dance (C)		10n		F
	~Reset	time (tc)	200			μs
	Cancellatio	on time (ta)	20	40	100	ms
	at powe	r up only				
	Vı	H**	0.57			V
	V	, IL	0		0.57	V
	V	, IH	1.33			V
~EXT- RESET	Watchdog	reset (td)		300		μs
	Cancellatio	n time (tb)		34	35	ms
	Delay after a ~RESET active (te)				122	μs
~CSO	First acces	ss time (tf)		17		μs
	Total boot time (tg)	BOOT = 1			200	ms
		BOOT = Leave open ***			20	

^{*} internal pull up

Sequence after an external reset event (~RESET)::

To activate the « emergency » reset sequence, the ~RESET signal has to be set to low for 200µs minimum for example by a push button . As soon as the reset is complete, the interface answers « OK » to the application.

Page: 106 / 180

^{**}V_{H:} Hysterisis Voltage

^{***} Normal configuration. Refer to the chapter 3.18 for further details on the BOOT signal.

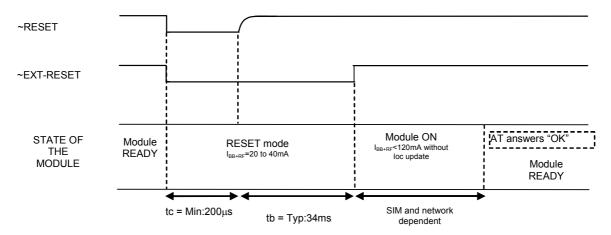


Figure 39 : Reset sequence waveform

At power up, the ~RESET time (ta), is performed after switching ON the Wireless Microprocessor®. It is generated by the internal WMP100 voltage supervisor.

The ~RESET time is provided by the internal RC component. To keep the same time, it's not recommended to plug another R or C component into the ~RESET signal. Only a switch or an open drain gate is recommended.

The (tb) time is the cancellation time needed for the WMP100/Open AT® Software Suite v1.0 initialization. (tb) time is automatically done by the WMP100/Open AT® Software Suite v1.0 itself, after a hardware reset.

The firsts access on ~CS0 after an internal reset event (~EXT-RESET):

After an internal reset (like a Watchdog reset) the delay of the active ~CSO signal (chip select 0 for access to the external FLASH) depend of the BOOT signal state. Refer to the chapter 3.18 for further details on the BOOT signal.

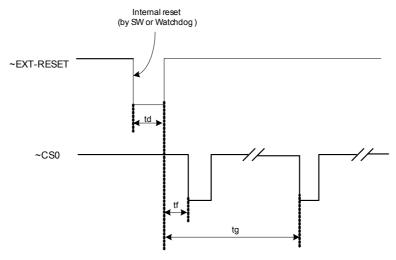


Figure 40: BOOT sequence waveform

3.19.2 Pin description

Signal	Pin number	I/O	I/O type	Description
~RESET	V6	I/O Open Drain*	1V8	WMP100 Reset
~EXT-RESET	AB14	O Push Drain	1V8	External Reset

^{*} internal pull up. See the characteristics in the table §3.19.1.

3.19.3 Application

If used (emergency reset), it has to be driven by an open collector or an open drain output (due to the internal pull-up resistor embedded into the Wireless Microprocessor®) as shown in the diagram hereunder.

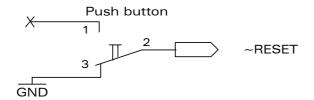


Figure 41: Example of ~RESET pin connection with push button configuration

Wavecom[©] confidential ©

Page: 108 / 180

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

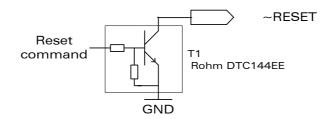


Figure 42: Example of ~RESET pin connection with transistor configuration

Open collector or open drain transistor can be used. If an open collector is chosen, T1 can be a Rohm DTC144EE.

Reset command	~RESET	Operating mode			
1	0	Reset activated			
0	1	Reset inactive			

3.20 External Interrupt

The WMP100 provides up to 9 external interrupts inputs in two voltages ranges (in 1.8V and 2.8V).

3.20.1 Features

Those interrupt inputs can be activated on:

- · high to low edge
- · low to high edge
- low to high and high to low edge

When used, interruptions input must not be left opened.

If not used, they have to be configured as GPIO.

Electrical characteristics of the signals

Parameter	Minimum	Maximum	Unit	
Interrupt pin at 1V8	V _{IL}		0.54	V
	V _{IH}	1.33		V
Interrupt pin at 2V8	V _{IL}		0.84	V
interrupt pin at 2vo	V _{IH}	1.96		V

3.20.2

3.20.3 Pin description

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
INTO	V16	- 1	1V8	Z	External Interrupt 0	GPIO3 / A26
INT1	Y19	I	2V8	Z	External Interrupt 1	GPIO25
INT2	Y17	I	1V8	Z	External Interrupt 2	GPIO45
INT3	V18	I	2V8	Z	External Interrupt 3	GPIO46
INT4	T18	-	2V8	Z	External Interrupt 4	GPIO35 / ~SPI2-CS
INT5	M14	I	2V8	Z	External Interrupt 5	GPIO31 / ~SPI1-CS
INT6	T16	I	1V8	Z	External Interrupt 6	GPIO14 / CT103-TXD2
INT7	V13	I	1V8	Z	External Interrupt 7	GPIO17 / ~CT105- RTS2
INT8	Y3	I	1V8	Z	External Interrupt 8	GPIO18 / SIMPRES

See chapter 3.4, "Electrical information for digital I/O" on page 33 for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.

3.20.4 Application

INTx are high impedance input type, so it is important to set the interrupt input signal with pull up or pull down resistor if they are driven by an open drain, open collector or by a switch. If they are driven by a push-pull transistor, no pull up or pull down resistor is necessary.

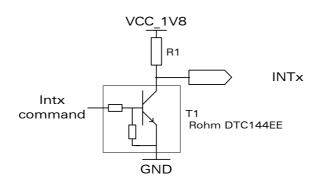


Figure 43: Example of INTx driving example with open collector

Wavecom® confidential ©

Page: 111 / 180

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

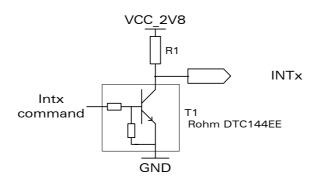


Figure 44: Example of INTx driving example with open collector

Where:

R1 value can be 47K Ohm.

T1 can be a Rohm DTC144EE open collector transistor.

3.21 VCC_2V8 and VCC_1V8 output

VCC_2V8 output can be used only for pull-up resistor and can be used as a reference supply.

VCC_1V8 is used to supply the Flash and Ram memories; it can be used as well for pull-up resistors.

Those voltages supplies are available when the WMP100 is on.

3.21.1 Features

Electrical characteristics of the signals

Parameter		Minimum	Тур	Maximum	Unit
VCC_1V8	Output voltage	1.76	1.8	1.94	V
	Output Current			80 (TBC)	mΑ
VCC_2V8	Output voltage	2.74	2.8	2.86	V
	Output Current			15	mA

3.21.2 Pin description

Signal	Pin number	I/O	I/O type	Description
VCC_1V8	AD5	0	Supply	Digital supply
VCC_2V8	R1	0	Supply	Digital supply

3.21.3 Application

Those digital power supplies are mainly used to:

- o VCC 1V8 is used to supply Flash and Ram memory devices
- o pull-up signals such as I/O
- o supply the digital transistors driving LEDs
- o supply the SIMPRES signal
- act as a voltage reference for ADC interface AUX-ADC (only for VCC_2V8)

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 113 / 180

3.22 Real Time Clock

The Real Time Clock of the WMP100 need to be feeds by a 32768Hz frequency. An internal oscillator is available to drive a crystal at the frequency of 32768Hz.

3.22.1 Features

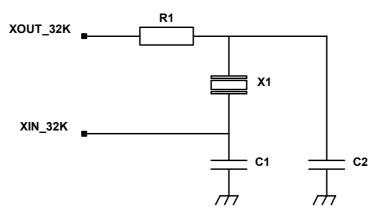
Those two pins are used to connect a crystal which is mandatory to setup and to run the WMP100.

It is possible to access to the 32768 Hz signal (buffered output) on the GPIO44 (ball AB13). Refer to the chapter 3.11.

Electrical characteristics of the signal

Parameter		Minimu m	Тур	Maximu m	Unit
	32kHz oscillator input cycle time	-	1/3276 8	-	μs
XIN_32K	32kHz oscillator input high time	5	-	-	μs
	32kHz oscillator input low time	5	-	-	μs
Start time	32kHz oscillator start time	-	-	2	S
GPIO44	Delay time with respect to XIN_32K	-	-	20	ns

3.22.2 Pin description


Signal	Pin number	I/O	I/O type	Description
XIN_32K	AC24	I	analog	Oscillator input
XOUT_32K	AB24	0	analog	Oscillator output

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 114 / 180

3.22.3 Application

The R1 resistor is mandatory if the crystal maximum power dissipation is under $1\mu W$.

The value of the components R1, C1 and C2 are tuned with the crystal MS2V-T1S.

It is important to place the crystal close to the WMP100, to reduce as a minimum the length of the nets.

Recommended components:

■ C1, C2 : 22pF

R1: 100Kohm

X1: 32768Hz crystal. MS2V-T1S (+/- 20ppm @25°C) Microcrystal

3.22.4 Design recommendation

Exemple with the crystal. MS2V-T1S

Layer 1:

- -Good ground under the crystal.
- -Good ground connection of the crystal legs and the load capacitance of the crystal.
- -Crystal as close as possible to the WMP100 in order to decreases as maximum as possible the parasite capacitance brought by the design of the layout

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 115 / 180

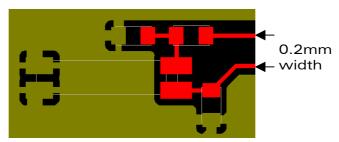


Figure 45: PCB lay out for the crystal MS2V-T1S

Layer 2:

A complete layer of ground

3.23 BAT-RTC (Backup Battery)

The WMP100 provides an input / output to connect a Real Time Clock power supply.

3.23.1 Features

This pin is used as a back-up power supply for the internal **R**eal **T**ime **C**lock. The RTC is supported by the WMP100 when VBATT is available but a back-up power supply is needed to save date and hour when the VBATT is switched off.

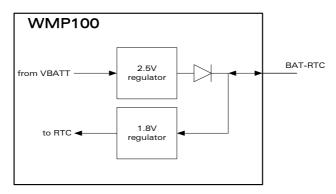


Figure 46: Real Time Clock power supply

If the RTC is not used this pin can be left open.

If the VBATT is available, the back-up battery can be charged by the internal 2.5V power supply regulator.

Wavecom[®] confidential ©

Page: 116 / 180

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Electrical characteristics of the signal

Parameter	Minimum	Тур	Maximum	Unit
Input voltage	1.85		2.5	V
Input current consumption*		3.3		μΑ
Output voltage		2.45		V
Output current			2	mA

^{*}Provided by a RTC back-up battery when WMP100 is off and VBATT = 0V.

3.23.2 Pin description

Signal	Pin number	I/O	I/O type	Description
BAT-RTC	U6	I/O	Supply	RTC Back-up supply

3.23.3 Application

Back-up Power Supply can be provided by:

- A super capacitor
- A non rechargeable battery
- A rechargeable battery cell.

3.23.3.1 Super Capacitor

Super Capacitor

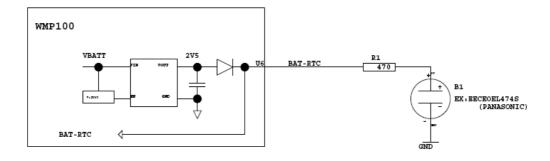


Figure 47: RTC supplied by a gold capacitor

Estimated range with 0.47 Farad Gold Cap: 25 minutes minimum.

Note: the Gold Capacitor maximum voltage is 2.5V.

3.23.3.2 Non Rechargeable battery

Non rechargeable battery cell

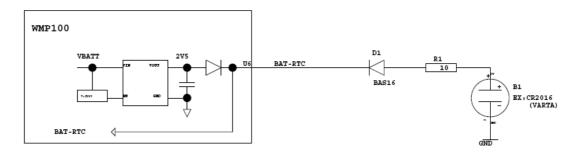


Figure 48: RTC supplied by a non rechargeable battery

The diode D1 is mandatory to not damage the non rechargeable battery. Estimated range with 85 mAh battery: 800 h minimum.

Wavecom confidential ©

Page: 118 / 180

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

3.23.3.3 Rechargeable battery cell

Rechargeable battery cell

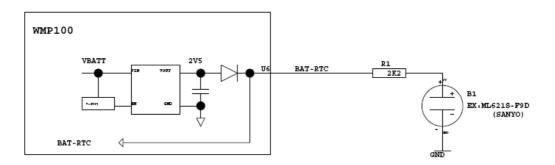


Figure 49: RTC supplied by a rechargeable battery cell

Estimated range with 2 mAh rechargeable battery: ~15 hours.

WARNING:

Before battery cell assembly ensure that cell voltage is lower than 2.5 V to avoid any damage to the Wireless Microprocessor®.

Page: 119 / 180

3.24 FLASH-LED signal

3.24.1 Features

FLASH LED is an open drain output. A LED and a resistor can be directly connected between this output and VBATT.

When the WMP100 is OFF, if 2.8V < VBATT < 3.2V and a charger is connected on CHG-IN inputs, this output indicates, by flashing (100 ms ON, 900 ms OFF), the pre-charging phase of the battery.

When the WMP100 is ON, this output is used to indicate the network status.

FLASH-LED status

WMP100 state	VBATT status	FLASH-LED status	WMP100 status
WMP100 OFF	VBATT<2.8V or VBATT> 3.2V	OFF	WMP100 is OFF
	2.8V < VBATT	Pre-charge flash	WMP100 is OFF,
	< 3.2V	LED ON for 100 ms,	Pre-charging mode
		OFF for 900 ms	(charger must be connected on CHG-IN to activate this mode)
WMP100 ON	VBATT > 3.2V	Permanent	WMP100 switched ON, not registered on the network
		Slow flash	WMP100 switched ON,
		LED ON for 200 ms, OFF for 2 s	registered on the network
		Quick flash	WMP100 switched ON,
		LED ON for 200 ms, OFF for 600 ms	registered on the network, communication in progress
		Very quick flash	WMP100 switched on,
		LED ON for 100ms, OFF for 200ms	software downloaded is either corrupted or non-compatible ("BAD SOFTWARE")

Page: 120 / 180

Electrical characteristics of the signal

Parameter	Condition	Minimum	Тур	Maximum	Unit
Vol				0.4	V
Іоит				8	mA

The FLASH-LED state is high during the RESET time and undefined during the software initialization time. During software initialization time, during 2 seconds max after RESET cancellation, the FLASH-LED signal is toggling and it doesn't provide the WMP100 status. After the 2s, the FLASH-LED provides the true status of the Wireless Microprocessor®.

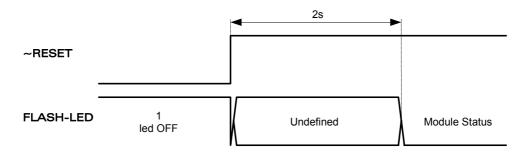


Figure 50: FLASH-LED state during RESET and Initialization time

3.24.2 Pin description

Signal	Pin number	I/O	I/O type	Reset state	Description
FLASH- LED	U3	0	Open Drain Output	1 *	LED driving

^{*} This signal is undefined 2 seconds after the reset (initialization time).

See chapter 3.4, "Electrical information for digital I/O" on page 33 for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.

Wavecom confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 121 / 180

3.24.3 Application

The GSM activity status indication signals FLASH-LED (pin U3) can be used to drive a LED. This signal is an open-drain digital transistor according to the WMP100 activity status.

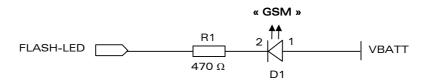


Figure 51: Example of GSM activity status implementation

R1 value can be harmonized depending of the LED (D1) characteristics.

3.25 Digital audio interface (PCM)

The Digital audio interface (PCM) interface mode allows the connectivity with audio standard peripherals. It can be used, for example, for connecting an external audio codec.

The programmability of this mode allows address a large range of audio peripherals.

3.25.1 Features

- IOM-2 compatible device on physical level
- Master mode only with 6 slots by frame, user only on slot 0
- Bit rate single clock mode at 768KHz only
- 16 bits data word MSB first only
- Linear Law only (no compression law)
- Long Frame Synchronization only
- Push pull configuration on PCM-OUT and PCM-IN

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 122 / 180

The digital audio interface configuration can't be different from the specified features above.

AC characteristics

Signal	Description	Minimum	Тур	Maximum	Unit
Tsync_low + Tsync_high	PCM-SYNC period		125		μs
Tsync_low	PCM-SYNC low time		93		μs
Tsync_high	PCM-SYNC high time		32		μs
TSYNC-CLK	PCM-SYNC to PCM-CLK time		-154		Ns
TCLK-cycle	PCM-CLK period		1302		Ns
TIN-setup	PCM-IN setup time	50			Ns
TIN-hold	PCM-IN hold time	50			Ns
TOUT-delay	PCM-OUT delay time			20	Ns

PCM interface consists of 4 wires:

- PCM-SYNC (output): The frame synchronization signal delivers an 8KHz frequency pulse that synchronizes the frame data in and the frame data out.
- PCM-CLK (output): The frame bit clock signal controls the data transfer with the audio peripheral.
- PCM-OUT (output): The frame "data out" depending on the selected configuration mode.
- PCM-IN (input): The frame "data in" is depending on the selected configuration mode.

Page: 123 / 180

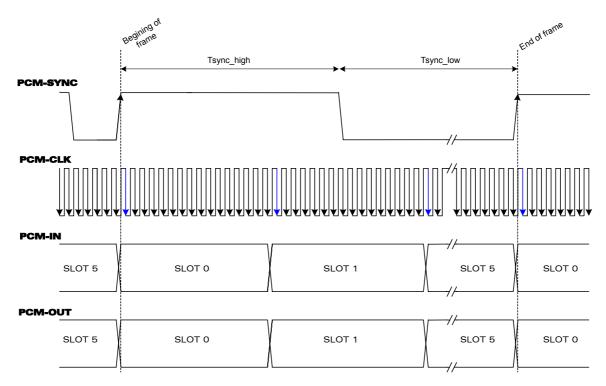


Figure 52: PCM Frame waveform

Page: 124 / 180

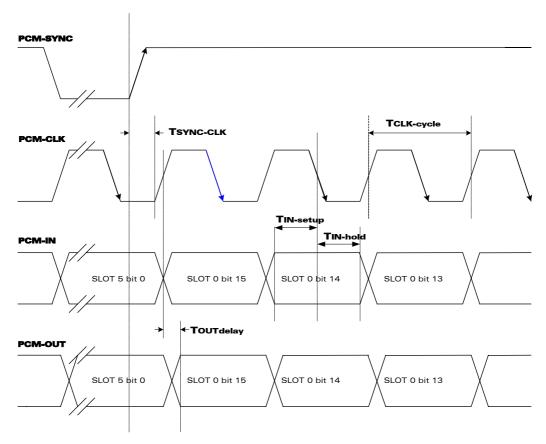


Figure 53: PCM Sampling waveform

3.25.2 Pin description

Signal	Pin number	I/O	I/O type	Reset state	Description
PCM-SYNC	Y21	0	1V8	Pull down	Frame synchronization 8Khz
PCM-CLK	W21	0	1V8	Pull down	Data clock
PCM-OUT	W22	0	1V8	Pull up	Data output
PCM-IN	AA22	I	1V8	Pull up	Data input

See chapter 3.4, "Electrical information for digital I/O" on page 33 for Open drain, 2V8 and 1V8 voltage characteristics and for Reset state definition.

Wavecom® confidential ®

Page: 125 / 180

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

3.25.3 Application TBD

3.26 USB 2.0 interface

A 5-wire USB slave interface is available, compiling with USB 2.0 protocol signaling, but not with electrical interface, due to the not complying 5V of VPAD-USB.

The USB interface signals are VPAD-USB, USB-DP, USB-DM, USB-DET, USB-CN

and GND.

3.26.1 Features

- > 12Mbit/s full speed transfer rate
- > 3.3V typ compatible
- > USB Softconnect feature
- Download feature is not supported by USB
- > CDC 1.1 ACM compliant

Electrical characteristics of the signals

Parameter	Min	Тур	Max	Unit
VPAD-USB, USB-DP, USB-DM, USB-CN	3	3.3	3.6	V
VPAD-USB Input current consumption		8		mA

NOTE:

A 5V to 3.3V typ. voltage regulator is needed between the external interface power in line (+5V) and the WMP100 line (VPAD-USB).

3.26.2 Pin description

Signal	Pin number	I/O	I/O type	Description	Multiplexed with
VPAD-USB	AB19	I	VPAD_USB	USB Power Supply	Not mux
USB-DP	W19	I/O	VPAD_USB	Differential data interface positive	Not mux
USB-DM	AA20	I/O	VPAD_USB	Differential data interface negative	Not mux
USB-CN	Y20	0	VPAD_USB	Connect (high or low speed)	Not mux
USB-DET	R14	I	VCC_1V8	Detection	Not mux

3.26.3 Application

A typical schematic is shown below:

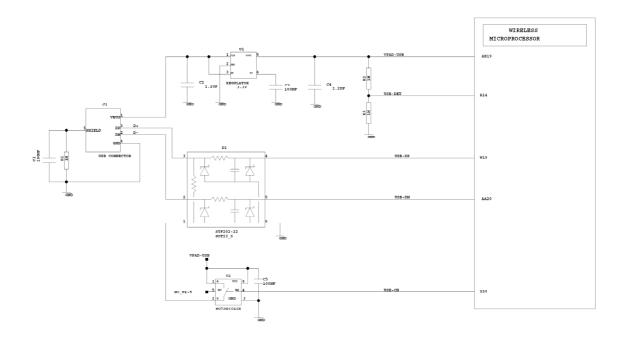


Figure 54: Example of USB implementation

Recommended components:

R1,R2, R3: 1MOhm

C1, C3 : 100nF

■ C2, C4 : 2.2µF

■ D1: STF2002-22 from SEMTECH

U1: LP2985AIM 3.3V from NATIONAL SEMICONDUCTOR

U2 : NC7SZ66L6X from FAIRCHILD

The regulator used is a 3.3V one. It is supply through J1 when the USB wire is plugged.

USB-DET is a WMP100 External Interruption (R14) used for the USB wire presence detection.

The EMI/RFI filter with ESD protection is D1. The D1 integrated pull up resistor used to detection of full speed. USB-CN (Y20) drives this pull-up.

R1 and C1 have to be close J1.

Wavecom[®] confidential ©

Page: 128 / 180

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

3.27 Memory interface

The memory interface is used to connect many memory parts technologies as Flash NOR, Flash NAND, SRAM and PSRAM components.

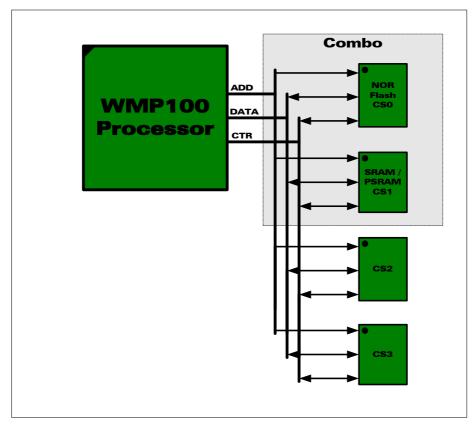


Figure 55: Memory bus

The interface is able to drive up to 4 independents memories. Some memories can be enclosed in the same package, like the Combo memories.

Each Chip select space can be configured undependably.

It is mandatory that the memory connected on CS0 is the FLASH and CS1 is the RAM.

3.27.1 Features

3.27.1.1 Generic Description

- Up to 128 MByte address range per chip select (~CS0 and ~CS1 only)
- > Up to 4 chip select available
- > Support for 8, 16, and 32 bit (multiplexed synchronous mode) devices
- > Byte enable signals for 16 bit and 32 bits operation
- Fully programmable timings based on hclk (a division of the ARM clock) cycles (except for synchronous mode which is based on CLKBURST cycles)
 - o individually selectable timings for read and write
 - 0 to 7 clock cycles for setup
 - o 1 to 32 clock cycles for access cycle
 - 1 to 8 clock cycles for page access cycle
 - o 0 to 7 clock cycles for hold
 - o 1 to 15 clock cycles for turnaround
- Page mode Flash memory support
 - page size of 4, 8, 16 or 32
- Burst mode Flash memory support up to hclk clock frequency (for devices sensitive to rising edge of the clock only)
 - o hclk, hclk/2, hclk/4 or hclk/8 burst clock output
 - o burst size of 4, 8, 16, 32
 - WAIT input
 - o automatic CLKBURST power-down between accesses
- Intel mode (WE and OE) and Motorola mode (E and R/W) control signals
- Synchronous write mode
- Synchronous multiplexed data/address mode (x32 mode)
- > Adaptation to word, halfword, and byte accesses to the external devices

Page: 130 / 180

3.27.1.2 Case of ST 32/8 (M36W0R5030T0ZAQF)

- > 32 Mbits FLASH: Mandatory configuration of CS0 space :
 - Bursted mode (Synchronous read / asynchronous write)Burst frequency: 26 MHz
 - Burst size: 4 half words
 - 3 clock cycles for read access cycle (read latency)
 - o 5 clock cycles for write access cycle
 - 0 clock cycles for setup and hold
 - 1 clock cycle for turnaround
 - o 16-bit wide data bus
 - o "Top boot" type of flash architecture
 - o Intel SW command set
- > 8 Mbits SRAM: Mandatory configuration of CS1 space :
 - o Asynchronous mode
 - o Intel mode (WE and OE)
 - Same configuration for Read and Write access
 - 1 clock cycle for setup
 - o 2 clock cycles for access cycle
 - 0 clock cycles for hold
 - o 1 clock cycle for turnaround

See the paragraphs 3.27.1.4 and 3.27.1.5 respectively for the timing definition of the asynchronous read and write access.

Page: 131 / 180

3.27.1.3 Access bus Waveform

Synchronous timing diagram

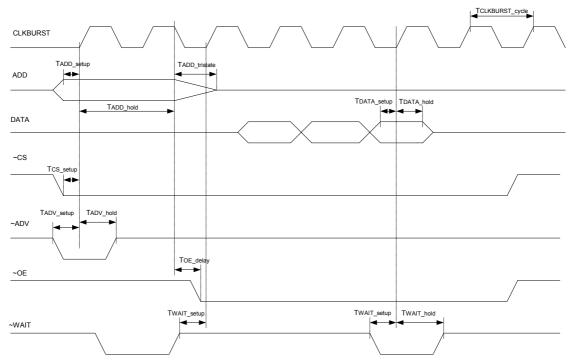


Figure 56: Read synchronous timing

Signal	Description	Minimum	Тур	Maximum	Unit
TCLKBURST	CLKBURST clock period time	19		78	ns
TADD_setup	Address bus setup time	7			ns
TADD_hold	Address bus hold time	19			ns
TADD_tristate	Address bus tristate time			10	ns
TDATA_setup	Data bus setup time	5			ns
TDATA_hold	Data bus hold time	3			ns
TCS_setup	Chip select setup time	7			ns
TADV_setup	ADV setup time	7			ns
TADV_hold	ADV hold time	7			ns
TOE_delay	Output Enable delay time			13	ns
TWAIT_setup	Wait setup time	5			ns
TWAIT_hold	Wait hold time	5			ns

Page: 133 / 180

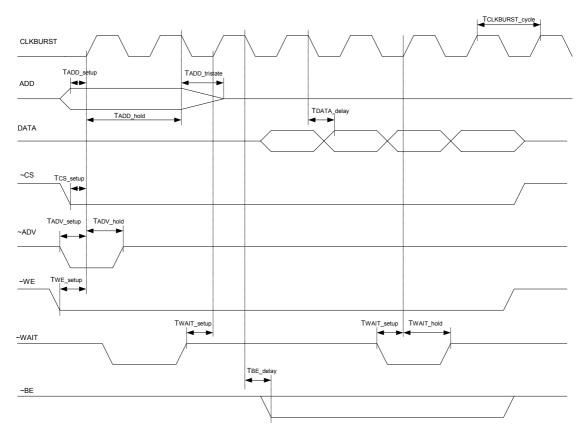


Figure 57: Write synchronous timing

Signal	Description	Minimum	Тур	Maximum	Unit
TDATA_delay	CLKBURTS falling edge to DATA valid delay			4	ns
TWE_setup	WE to CLKBURST setup time	7			ns
TBE_delay	CLKBURST falling edge to BE delay			4	ns

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 134 / 180

Asynchronous time diagram

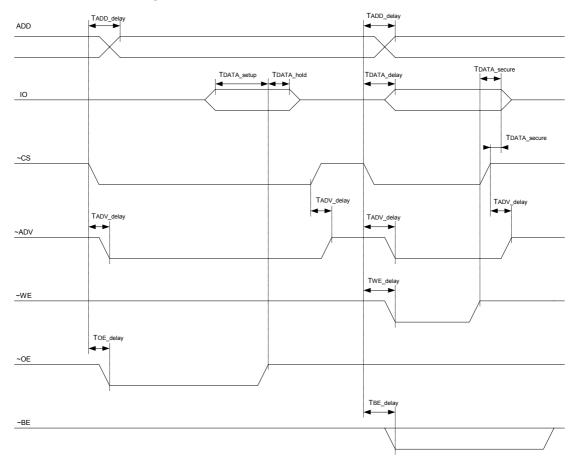
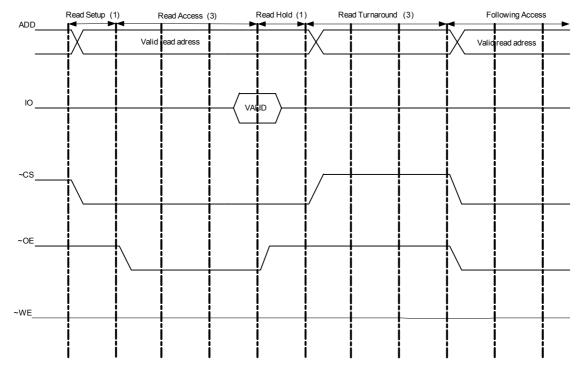


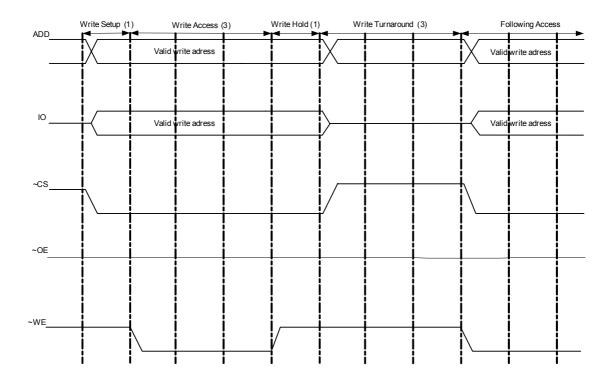
Figure 58: Read / Write Asynchronous timing


Signal	Description	Minimum	Тур	Maximum	Unit
TADD_delay	Address delay time from Chip Select active			3	ns
TDATA_setup	Data to Output Enable setup time	18			ns
TDATA_hold	Data hold time after Output Enable inactive	3			ns
TDATA_delay	Data delay time from Chip Select active			5	ns
TDATA_secure	Data hold time after Write Enable inactive or Chip Select inactive	-5			ns
TADV_delay	ADV delay time from Chip Select active and inactive			3	ns
TWE_delay	Write Enable delay time from Chip Select active			3	ns
TOE_delay	Output Enable delay time from Chip Select active			5	ns
TBE_delay	BE delay time from Chip Select active			3	ns

Page: 136 / 180

3.27.1.4 Access bus timing (read access)

The figure shows the definition of read access timing.



Page: 137 / 180

3.27.1.5 Access bus timing (write access)

The figure shows the definition of write access timing.

3.27.1.6 Flash space

The Flash space (program memory) is dedicated on the CS0 pin chip select. This memory embeds the Open AT® Software Suite v1.0, so this device has to run at a special configuration of the memory bus to ensure the full functionality of the WMP100/Open AT® Software Suite v1.0.

Refer to the chapter 3.27.1.2 for the details on the configuration.

3.27.1.7 RAM space

The Ram space is dedicated on the CS1 pin chip select. This memory has to run at a special configuration of the memory bus to ensure the full functionality of the WMP100/Open AT® Software Suite v1.0.

Refer to the chapter 3.27.1.2 for the details on the configuration.

Wavecom[®] confidential ©

Page: 138 / 180

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

3.27.1.8 16-bit wide data bus User Space

The users' memory space is available on chip select CS2 and CS3.

User space range size is up to 64Mbytes.

3.27.2 Electrical characteristics of the signals

The memory interface voltage is provided by the VCC_1V8 power supply. So it is mandatory to supply the memories devices by VCC_1V8 power supply voltage provided by the WMP100 Wireless Microprocessor®.

Parameter	Min	Тур	Max	Unit	
VCC_1V8 (Wireless Microprocessor® supply	output)	1.76	1.9	1.94	V
Memory Specification	1,7		1,95	V	
(M36W0R5040T5ZAQ or M36W0R5030T0ZAQ)	1,7		1,95	V	

3.27.3 Pin description

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
~WAIT	R19	I	1V8	Pull up	Flash burst wait for synchronous operation	Not mux
~CS0	P19	0	1V8	1	Flash chip select	Not mux
~CS1	R20	0	1V8	1	RAM chip select	Not mux
~CS2 (*)	R18	0	1V8	Z	User chip select	GPIO1 / A25
~CS3	T17	0	1V8	1	User chip select	Not mux
CLKBURST	M19	0	1V8	Z	Burst Clock	Not mux
~ADV	U19	0	1V8	1	Burst address valid	Not mux
~WE-E	P20	0	1V8	1	write enable (Intel mode) / enable signal (Motorola mode)	Not mux
~OE-R/W	N20	0	1V8	1	output enable (Intel mode) / read not write (Motorola mode)	Not mux
BE1	P18	0	1V8	1	select for 16 or 32 bits devices	Not mux

^(*) Add a pull-up for the Reset State

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
D0	W24	I/O	1V8	Pull down	Data	Not mux
D1	W23	I/O	1V8	Pull down	Data	Not mux
D2	AA24	I/O	1V8	Pull down	Data	Not mux
D3	Y23	I/O	1V8	Pull down	Data	Not mux
D4	U21	I/O	1V8	Pull down	Data	Not mux
D5	Y22	I/O	1V8	Pull down	Data	Not mux

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 140 / 180

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
D6	Y24	I/O	1V8	Pull down	Data	Not mux
D7	V21	I/O	1V8	Pull down	Data	Not mux
D8	V20	I/O	1V8	Pull down	Data	Not mux
D9	U20	I/O	1V8	Pull down	Data	Not mux
D10	V24	I/O	1V8	Pull down	Data	Not mux
D11	V22	I/O	1V8	Pull down	Data	Not mux
D12	V23	I/O	1V8	Pull down	Data	Not mux
D13	AA23	I/O	1V8	Pull down	Data	Not mux
D14	U23	I/O	1V8	Pull down	Data	Not mux
D15	T23	I/O	1V8	Pull down	Data	Not mux
A0	T19	0	1V8	1	Address	Not mux
A1	U18	0	1V8	1	Address	Not mux
A2	U24	I/O	1V8	Pull down	Address	Not mux
А3	P24	I/O	1V8	Pull down	Address	Not mux
A4	N24	I/O	1V8	Pull down	Address	Not mux
A5	M21	I/O	1V8	Pull down	Address	Not mux
A6	M24	I/O	1V8	Pull down	Address	Not mux
A7	N23	I/O	1V8	Pull down	Address	Not mux
A8	R24	I/O	1V8	Pull down	Address	Not mux
A9	R22	I/O	1V8	Pull down	Address	Not mux
A10	P22	I/O	1V8	Pull down	Address	Not mux
A11	T22	I/O	1V8	Pull down	Address	Not mux
A12	R23	I/O	1V8	Pull down	Address	Not mux
A13	M22	I/O	1V8	Pull down	Address	Not mux
A14	P21	I/O	1V8	Pull down	Address	Not mux

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 141 / 180

Signal	Pin number	I/O	I/O type	Reset state	Description	Multiplexed with
A15	R21	I/O	1V8	Pull down	Address	Not mux
A16	P23	I/O	1V8	Pull down	Address	Not mux
A17	T21	I/O	1V8	Pull down	Address	Not mux
A18	T24	0	1V8	0	Address	Not mux
A19	M23	0	1V8	0	Address	Not mux
A20	N21	0	1V8	0	Address	Not mux
A21	N22	0	1V8	0	Address	Not mux
A22	M20	0	1V8	0	Address	Not mux
A23	N19	0	1V8	0	Address	Not mux
A24	U22	0	1V8	Z	Address	GPIO2
A25	R18	0	1V8	Z	Address	GPIO1 / ~CS2
A26	V16	0	1V8	Z	Address	GPIO3 / INTO

Page: 142 / 180

3.27.4 Application

An application is given to be compatible with two combo memories with different capacities. Respectively with 32Mb/16Mb and 32Mb/8Mb.

The first combo memory is the ST M36W0R5040T5ZAQ (which embedded FLASH and PSRAM memory).

The second combo memory is the ST M36W0R5030T0ZAQ (which embedded FLASH and SRAM memory).

See the "NOTE" below.

without prior written agreement.

Page: 143 / 180

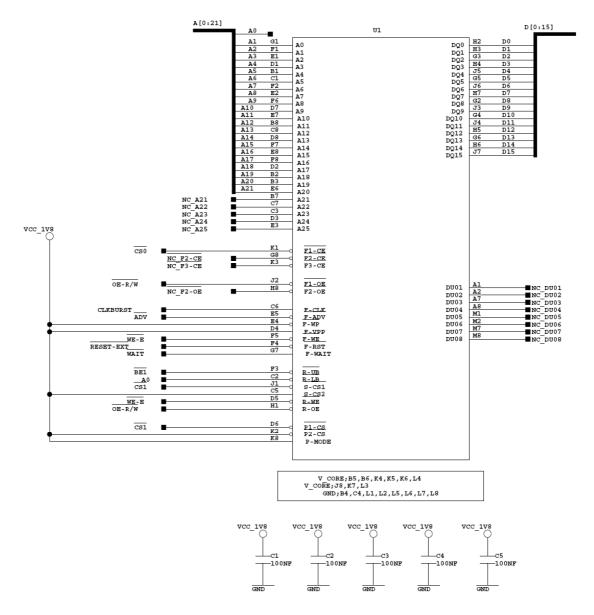


Figure 59: Memory connection schematic

NC: not connected

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 144 / 180

Recommended components:

- U1 : Can be the M36W0R5040T5ZAQ from STMicroelectronics :
 - o 32Mbits of Bursted Flash (synchrone), Top type.
 - o 16Mbits of PSRAM (asynchrone).
 - Temperature range from -30°C to +85°C.
 - 16Bit bus Data wide type
 - o 1.8 Volt core and I/O type

Or can be the M36W0R5030T0ZAQ from STMicroelectronics:

- o 32Mbits of Bursted Flash (synchrone), Top type.
- o 8Mbits of SRAM (asynchrone).
- Temperature range from -40°C to +85°C.
- o 16Bit bus Data wide type
- 1.8 Volt core and I/O type
- Decoupling capacitors: 100nF

The ~CS1 signal must be connect to D6 ball of the combo M36W0R5040T5ZAQ.

The \sim CS1 signal must be connect to J1 ball of the combo M36W0R5030T0ZAQ.

3.27.5 Constraints

Electrical constraints:

- The Flash type must be a "Top" type, see on the part number: i.e:M36W0R5040T5ZAQ
- The reset of the Flash must be done by the ~EXT-RESET (ball AB14) signal, (see RESET chapter).
- Decoupling capacitors have to be used and to be placed close to the memory power supply pins. (see the Memory location figure below)
- The power supply VCC_1V8(ball AD5). is provided by the WMP100.

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 145 / 180

- Because it is a 16Bit bus data wide implementation, the Address signal A0 has to be used to select the Low value of the data bus (8 bits LSB).
 So ~BE1 and A0 have to be connected to ~R-UB and ~R-LB of the memory (See schematic).
- The Flash must be connected on ~CSO and the RAM on the ~CS1.

PCB constraints:

 The memory must be place close to the Wireless Microprocessor[®] (see the Memory location figure below)

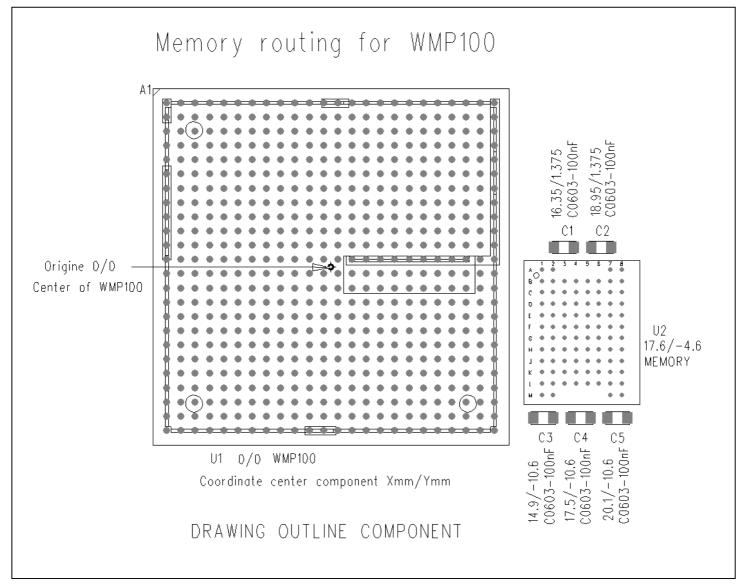
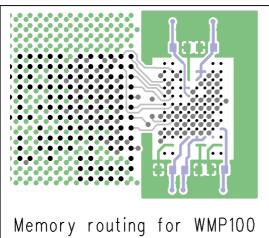
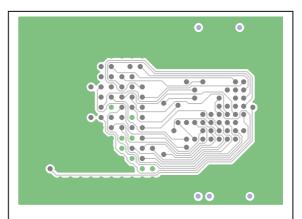
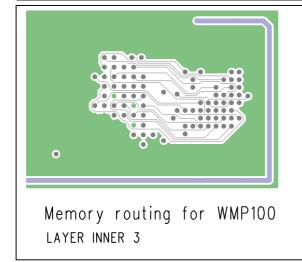


Figure 55: Memory location


Wavecom[®] confidential ©

Page: 146 / 180


This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.


- All the memory bus nets must have a maximum length of 30 mm.
- It is recommended to shield around all the signals (see the Memory PCB figure below).
- All signals must be routed with adjoining layers (see the Memory PCB figure below). We do not recommend adding other signals between the Wireless Microprocessor® and the memory.
- PCB structure example: 4 layers (see the Memory PCB figure below)
 - Inner layer trace 100 μ m, clearance 100 μ m
 - Layer top and bottom trace 150 μ m, clearance 150 μ m

Memory routing for WMP100 LAYER INNER 2

Memory routing for WMP100 LAYER BOTTOM (See by transparency)

Figure 60: Memory PCB

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 147 / 180

3.28 RF interface

The impedance is 50 Ohms nominal and the DC resistance is 0 Ohm.

3.28.1 RF connection

The RF antenna connection uses a unique BGA Ball associated with grounded BGA balls all around.

This ball must be connected, using a PCB via, to an embedded RF 50 ohms line, in order to avoid any pollution coming from base-band signals.

For the same reasons, the RF connection and the RF embedded line must be kept 1 cm away from any noisy base-band signal. Without following this rule the RX sensitivity might be degraded.

The other side of the embedded 50 ohms RF line can be connected to a RF connector or a soldering pad in order to connect an antenna.

It's also possible to use a CMS antenna or to design an antenna directly on the same PCB.

Notes:

- The WMP100 does not support an antenna switch for a car kit but this function can be implemented externally and it can be driven using a GPIO
- The antenna cable and connector should be chosen in order to minimize losses in the frequency bands used for GSM 850/900MHz and 1800/1900MHz.
- 0.5dB can be considered as a maximum value for loss between the WMP100 and an external connector.

3.28.2 RF performances

RF performances are compliant with the ETSI recommendation GSM 05.05.

The main parameters for Receiver are:

- GSM850 Reference Sensitivity = -108 dBm Static & TUHigh
- E-GSM900 Reference Sensitivity = -108 dBm Static & TUHigh
- DCS1800 Reference Sensitivity = -107 dBm Static & TUHigh
- PCS1900 Reference Sensitivity = -107 dBm Static & TUHigh
- Selectivity @ 200 kHz : > +9 dBc
- Selectivity @ 400 kHz : > +41 dBc
- Linear dynamic range: 63 dB
- Co-channel rejection: >= 9 dBc

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

And for Transmitter:

- Maximum output power (EGSM & GSM850): 33 dBm +/- 2 dB at ambient temperature
- Maximum output power (GSM1800 & PCS1900): 30 dBm +/- 2 dB at ambient temperature
- Minimum output power (EGSM & GSM850): 5 dBm +/- 5 dB at ambient temperature
- Minimum output power (GSM1800 & PCS1900): 0 dBm +/- 5 dB at ambient temperature

3.28.3 Antenna specifications

The antenna must fulfill the following requirements:

• The optimum operating frequency depends on application. A dual Band or a quad band antenna shall work in these frequency bands and have the following characteristics:

			WMP100 86							
Charact	teristic	E-GSM 900	PCS 1900							
TX Frequency		880 to 915 MHz	1710 to 1785 MHz	824 to 849 MHz	1850 to 1910 MHz					
RX Freq	quency	925 to 960 MHz								
Impeda	nce	50 Ohms								
\/C\A/B	Rx max	1.5 :1								
VSWR Tx max		1.5 :1								
Typical radiated gain			0dBi in one direction at least							

3.28.4 Antenna

The RF antenna connection uses a unique BGA Ball associated with grounded BGA balls all around.

This BGA ball must be connected, using a PCB via, to an embedded RF 50 ohms line, in order to protect the antenna line from the noise coming from base-band signals.

The figure below shows the RF ball and the ground balls around, and a PCB via placement example.

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 149 / 180

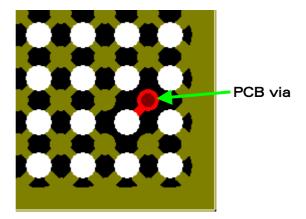


Figure 61: Antenna and ground balls placement

The figure below shows the RF embedded line and the PCB via.

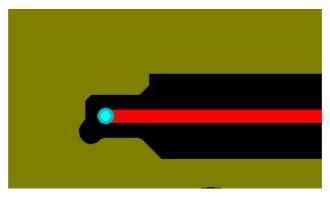


Figure 62: RF 50 ohms embedded line

This 50 ohms line is surrounded by **two ground planes** in order to protect this antenna line from noise. The length of the line shouldn't be too high (more than a few cm) because of RF insertions losses. The **width of the line must be calculated** in order to ensure a 50 ohms characteristic impedance.

For the same reasons, not only the RF connection but also the RF embedded line should be kept about 1 cm away from any (noisy) Baseband signal in order to ensure a good RX sensitivity level.

Figure below shows a keep away area for the antenna connection point. This restricted area must not contain any noisy base-band signals (like any bus or clock signal).

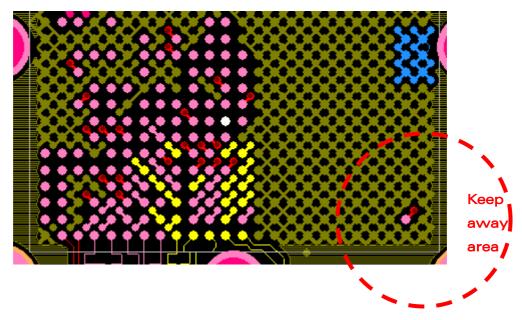


Figure 63: Antenna connection point keep away area

The other end of the embedded 50 ohms RF line can be connected to a RF connector or a soldering pad in order to connect an antenna.

It's recommended to add an ESD protection component on the antenna line, in order to increase the final product ESD tolerance.

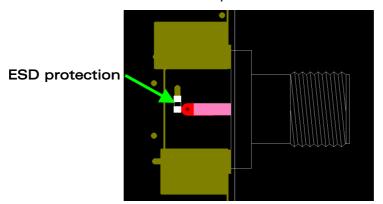


Figure 64: RF connector and ESD protection example

This ESD protection component can be an 82 nH Multi-Layer HF inductor (0603 case). It must be connected between RF output and ground as short as possible.

It's also possible to use an antenna chip or to choose to design an antenna directly on the same PCB.

Page: 151 / 180

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

WARNING:

Wavecom strongly recommends working with an antenna manufacturer either to develop an antenna adapted to the application or to adapt an existing solution to the application.

Both the mechanical and electrical antenna adaptation is one of the key issues in the design of the GSM terminal.

Page: 152 / 180

4 Consumption measurement procedure

This chapter describes the consumption measurement procedure used to obtain the Wireless Microprocessor consumption specification

WMP100/OASS1.0 consumption specification values are measured for all operating modes available on this product. See the appendix of document [3] AT Command Interface Guide for Open AT® Firmware v6.5.

Consumption results are highly dependent on the hardware configuration used during measurement, this chapter describes the hardware configuration settings to be used to obtain optimum consumption measurements.

4.1 Hardware configuration

The hardware configuration includes both the measurement equipment and the Wireless Microprocessor with its motherboard.

4.1.1 Equipment

Four devices are used to perform consumption measurement.

- > A communication tester
- > A current measuring power supply
- A standalone power supply
- A computer, to control the Wireless Microprocessor and save measurement data.

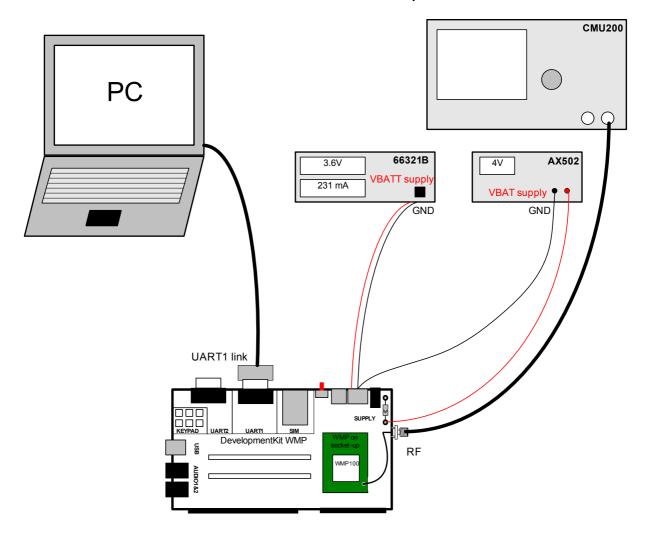


Figure 65: Typical hardware configuration

Page: 154 / 180

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

The communication tester is a CMU 200 from Rhode & Schwartz. This tester offers all GSM/GPRS network configurations required and allows a wide range of network configurations to be set.

The **AX502** standalone power supply is used to supply all motherboard components except the Wireless Microprocessor. The goal is to separate motherboard consumption from Wireless Microprocessor consumption -which is measured by the other power supply, the **66321B** "current measuring power supply".

The "current measuring power supply" is also connected and controlled by the computer (GPIB control not shown in the previous figure).

A SIM must be inserted in the Development Kit Wireless Microprocessor during all consumption measurements.

Equipment reference list:

Device	Manufacturer	Reference	
Communication	Rhode &	CMU 200	Quad Band
Tester	Schwartz		GSM/DCS/GPRS
Current measuring power supply	Agilent	66321B	Used for VBATT (for WMP alone)
Stand alone power supply	Metrix	AX502	Used for VBAT (for boards peripherals)

4.1.2 Wireless Microprocessor motherboard

The Wireless Microprocessor board used is the Development Kit Wireless Microprocessor V2. This board can be used to perform consumption measurement with several settings. For a description of the settings, see document [2] WMP100 Development Kit User Guide.

The Wireless Microprocessor is only powered by VBATT. The Development Kit board is powered by the standalone power supply at VBAT. It is for this reason that the link between VBATT and VBAT (J605) must be opened (by removing the solder at the top of board in the SUPPLY area).

- VBATT powered by the current measuring power supply (66321B).
- VBAT powered by the standalone power supply (AX502).

The R600, resistor, and D603,D604 diodes (around the BAT-TEMP connector) must be removed.

The UART2 link is not used, therefore J201, J202, J203, J204 must be opened (by removing the solder).

The "FLASH-LED" must be not used, so J602 must be opened (by removing the solder).

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 155 / 180

The USB link is not used, therefore J301, J302, J303, J304, J305 must be opened (by removing the solder).

Around "CONFIG" area, the switch BOOT must be to OFF position.

The goal of the settings is to eliminate all bias current from VBATT and to supply the entire board (except the Wireless Microprocessor) via VBAT only.

The standalone power supply may be set to 4 Volts.

4.1.3 SIM cards used

Consumption measurement may be performed with 3-Volt or 1.8-Volt SIM cards. However, all specified consumption values are for a 3-Volt SIM card.

CAUTION: The SIM card is supplied by the Wireless Microprocessor, consumption measurement results may vary depending of the SIM card used.

4.2 Software configurations

Software configuration for the equipment and Wireless Microprocessor settings.

4.2.1 Wireless Microprocessor configuration

Wireless Microprocessor software configuration is simply performed by selecting the operating mode to be used to perform the measurement.

A description of the operating modes and the procedure used to change operating mode are given in the appendix of document [3] AT Command Interface Guide for Open AT® Firmware v6.5.

An overview of the WMP100/OASS1.0 operating modes is given below:

- Alarm Mode
- Fast Idle Mode
- Slow Idle Mode
- > Fast Standby Mode
- Slow Standby Mode
- Connected Mode
- Transfer Mode class 8 (4Rx/1Tx) (in GPRS mode)
- Transfer Mode class 10 (3Rx/2Tx) (in GPRS mode)

Page: 156 / 180

4.2.2 Equipment configuration

The communication tester is set according to Wireless Microprocessor operating mode.

Paging during idle modes, Tx burst power, RF band and GSM/DCS/GPRS may be selected on the communication tester.

Network analyzer configuration according to operating mode:

Operating	mode	Communication tester configuration				
Alarm Mo	ode	N/A				
Fast Idle I	Mode	Paging 9	(Rx burst occurrence ~2s)			
l ast lale i	viode	Paging 2 (F	Rx burst occurrence ~0,5s)			
Slow Idle	Mode	Paging 9	(Rx burst occurrence ~2s)			
Slow lale	Wiode	Paging 2 (F	Rx burst occurrence ~0,5s)			
Fast Stan	dby Mode		N/A			
Slow Star	ndby Mode		N/A			
		850/900 MHz	PCL5 (TX power 33dBm)			
Connecte	d Mode		PCL19 (TX power 5dBm)			
Commodic	4 111040	1800/1900 MHz	PCL0 (TX power 30dBm)			
		1000, 1000 11112	PCL15 (TX power 0dBm)			
		850/900 MHz	Gam.3 (TX power 33dBm)			
	Transfer Mode class 8	000,000 11112	Gam.17 (TX power 5dBm)			
	(4Rx/1Tx)	1800/1900 MHz	Gam.3 (TX power 30dBm)			
		1000, 1000 11112	Gam.18 (TX power 0dBm)			
GPRS		850/900 MHz	Gam.3 (TX power 33dBm)			
GI NO		000/000 1711 12	Gam.17 (TX power 5dBm)			
	Transfer Mode class 10	1800/1900 MHz	Gam.3 (TX power 30dBm)			
	(3Rx/2Tx)	1000, 1000 1011 12	Gam.18 (TX power 0dBm)			
		1800/1900 MHz	Gam.5 (TX power 26dBm)			
		1000/1900 101H2	Gam.18 (TX power 0dBm)			

The standalone power supply may be set from 3.2V to 4.5V.

The power supply (VBATT) used for measurement may be set from 3.2V to 4.8V according Wireless Microprocessor VBATT specifications.

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 157 / 180

4.3 Template

This template may be used for consumption measurement, all modes and configurations are available.

Three VBATT voltages are measured, 3.2V, 3.6V and 4.8V and the minimum/maximum RF transmission power configurations are set and measured.

	Power consumption									
Operati	ng mode	Parameters		I _{MIN} average VBATT=4,8V	I _{NOM} average VBATT=3,6V	I _{MAX} average VBATT=3,2V	I _{MAX} peak	unit		
Alarm N	Mode							μΑ		
Fast Idl	e Mode	Paging 9 (Rx but	rst occurrence ~2s)					mA		
i dot idi	o modo	Paging 2 (Rx but	rst occurrence ~0,5s)					mA		
Slow Id	lle Mode	Paging 9 (Rx but	rst occurrence ~2s)					mA		
CIOW IG	iio iiiodo	Paging 2 (Rx but	rst occurrence ~0,5s)					mA		
Fast St	andby Mode	•						mA		
Slow St	tandby Mode)						mA		
		850/900 MHz	PCL5 (TX power 33dBm)					mA		
Connoc	ted Mode	030/900 WII IZ	PCL19 (TX power 5dBm)					mA		
Connec	teu Mode	1800/1900 MHz	PCL0 (TX power 30dBm)					mA		
			PCL15 (TX power 0dBm)					mA		
		850/900 MHz	Gam.3 (TX power 33dBm)					mA		
	Transfer Mode	650/900 WHZ	Gam.17 (TX power 5dBm)					mA		
	class 8 (4Rx/1Tx)	1800/1900 MHz	Gam.3 (TX power 30dBm)					mA		
		1800/1900 WHZ	Gam.18 (TX power 0dBm)					mA		
GPRS		850/900 MHz	Gam.3 (TX power 33dBm)					mA		
	Transfer	030/300 IVII 12	Gam.17 (TX power 5dBm)					mA		
	Mode class 10		Gam.3 (TX power 30dBm)					mA		
	(3Rx/2Tx)	1800/1900 MHz	Gam.18 (TX power 0dBm)					mA		
			Gam.18 (TX power 0dBm)					mA		

Wavecom[®] confidential ®

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

5 Technical specifications

5.1 Ball Grid Array pin out

Signal Name	Description	I/O	Voltage Domain	MUX	MUX	MUX	Ball number
VBATT-RF	Power Supply	I	VBATT	VBATT-RF	-	-	A12, A13, A14, B12, B13, B14
VBATT-BB	Power Supply	I	VBATT	VBATT-BB	-	-	AC1, AC2, AD1, AD2
RF-OUT	Radio antenna connection	I/O	Analog RF	RF-OUT	-	-	B23
VCC_2V8	Power Supply	0	VCC_2V8	VCC_2V8	-	-	R1
VCC_1V8	Power Supply	0	VCC_1V8	VCC_1V8	-	-	AD5
BAT-RTC	Power Supply	I/O	BAT-RTC	BAT-RTC	-	-	U6
SIM-CLK	SIM clock	0	1V8 / 2V9	SIM-CLK	-	-	Y2
~SIM-RST	SIM reset	0	1V8 / 2V9	~SIM-RST	-	-	Y1
SIM-IO	SIM data	I/O	1V8 / 2V9	SIM-IO	-	-	W1
SIM-VCC	SIM power supply	0	1V8 / 2V9	SIM-VCC	-	-	W2
SIMPRES / INT8 / GPIO18	SIM presence detection	I/O	VCC_1V8	SIMPRES	INT8	GPIO18	Y3
MIC1P	Microphone input 1 positive	I	Analog	MIC1P	-	-	AC10
MIC1N	Microphone input 1 negative	I	Analog	MIC1N	-	-	AB10
MIC2P	Microphone input 2 positive	I	Analog	MIC2P	-	-	AC9
MIC2N	Microphone input 2 negative	1	Analog	MIC2N	-	-	AB9
SPK1P	Speaker output 1 positive	0	Analog	SPK1P	-	-	AC8
SPK1N	Speaker output 1 negative	0	Analog	SPK1N	-	-	AB8
SPK2P	Speaker output 2 positive	0	Analog	SPK2P	_	-	AC7
SPK2N	Speaker output 2 negative	0	Analog	SPK2N	_	-	AB7
CHG-IN	Charger input voltage	I	Analog	CHG-IN	_	-	V2, V3
CHG-GATE	Charger transistor control output	0	Analog current	CHG-GATE	-	-	V4
AUX-ADC2 / BAT-TEMP	Analog to Digital converter 3	I	Analog	AUX-ADC2 / BAT-TEMP	-	-	N18

Wavecom[®] confidential ®

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 159 / 180

Signal Name	Description	I/O	Voltage Domain	MUX	MUX	MUX	Ball number
AUX-ADC1	Analog to Digital converter 2	I	Analog	AUX-ADC1	-	-	M17
AUX-ADC0	Analog to Digital converter 1	1	Analog	AUX-ADC0	-	-	N17
AUX-DAC0	Digital to Analog converter	0	Analog	AUX-DAC0	-	-	V14
XIN_32K	Oscillator crystal input	I	Analog	XIN_32K	-	-	AC24
XOUT_32K	Oscillator crystal output	0	Analog	XOUT_32K	-	-	AB24
~RESET	Input Reset signal	I/O	VCC_1V8	~RESET	-	-	V6
~EXT-RESET	Output External reset	0	VCC_1V8	~EXT- RESET	-	-	AB14
воот	BOOT control	I	VCC_1V8	BOOT	-	-	W18
Flash LED	WMP100 Status LED	0	Open Drain VBATT	Flash LED	-	-	UЗ
BUZZ-OUT	Buzzer output control	0	Open Drain VBATT	BUZZ-OUT	-	-	U4
ROW0 / GPIO9	Row Scan of keypad	I/O	VCC_1V8	ROW0	GPIO9	-	AC23
ROW1 / GPIO10	Row Scan of keypad	I/O	VCC_1V8	ROW1	GPIO10	-	AD22
ROW2 / GPIO11	Row Scan of keypad	I/O	VCC_1V8	ROW2	GPIO11	-	AD21
ROW3 / GPIO12	Row Scan of keypad	I/O	VCC_1V8	ROW3	GPIO12	-	AC22
ROW4 / GPIO13	Row Scan of keypad	I/O	VCC_1V8	ROW4	GPIO13	-	AD23
COL0 / GPIO4	Column Scan of keypad	I/O	VCC_1V8	COLO	GPIO4	ı	AD19
COL1 / GPIO5	Column Scan of keypad	I/O	VCC_1V8	COL1	GPIO5	-	AD20
COL2 / GPIO6	Column Scan of keypad	I/O	VCC_1V8	COL2	GPIO6	-	AC20
COL3 / GPIO7	Column Scan of keypad	I/O	VCC_1V8	COL3	GPIO7	-	AC19
COL4 / GPIO8	Column Scan of keypad	I/O	VCC_1V8	COL4	GPIO8	-	AC21
PCM-SYNC	PCM frame synchronization	0	VCC_1V8	PCM-SYNC	-	ı	Y21
PCM-CLK	PCM clock	0	VCC_1V8	PCM-CLK	-	-	W21
PCM-OUT	PCM data output	0	VCC_1V8	PCM-OUT	-	-	W22
PCM-IN	PCM data input	ı	VCC_1V8	PCM-IN	-	-	AA22
CT103 / TXD1 / GPI036	Transmit serial data	I/O	VCC_2V8	CT103 / TXD1	GPIO36	-	R17

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 160 / 180

Signal Name	Description	I/O	Voltage Domain	MUX	MUX	MUX	Ball number
CT104 / RXD1 / GPIO37	Receive serial data	I/O	VCC_2V8	CT104 / RXD1	GPIO37	-	T13
~CT105 / RTS1 / GPIO38	Ready To Send	I/O	VCC_2V8	~CT105 / RTS1	GPIO38	-	Y18
~CT106 / CTS1 / GPIO39	Clear To Send	I/O	VCC_2V8	~CT106 / CTS1	GPIO39	-	N15
~CT107 / DSR1	Data Set Ready	I/O	VCC_2V8	~CT107 / DSR1	GPIO40	-	T12
~CT108-2 / DTR1 / GPIO41	Data Serial Ready	I/O	VCC_2V8	~CT108-2 / DTR1	GPIO41	-	M16
~CT109 / DCD1 / GPIO43	Data Carrier Detect	I/O	VCC_2V8	~CT109 / DCD1	GPIO43	-	AB16
~CT125 / RI1 / GPIO42	Ring Indicator	I/O	VCC_2V8	~CT125 / RI1	GPIO42	-	AA18
CT103 / TXD2 / INT6 / GPIO14	Transmit serial data	I/O	VCC_1V8	CT103 / TXD2	INT6	GPIO14	T16
CT104 / RXD2 / GPIO15	Receive serial data	I/O	VCC_1V8	CT104 / RXD2	GPIO15	-	U17
~CT105 / RTS2 / INT7 / GPIO17	Ready To Send	I/O	VCC_1V8	~CT105 / RTS2	INT7	GPIO17	V13
~CT106 / CTS2 / GPIO16	Clear To Send	I/O	VCC_1V8	~CT106 / CTS2	GPIO16	-	W17
SCL / GPIO26	I ² C serial clock	I/O	Open drain	SCL	GPIO26	_	AA15
SDA / GPIO27	I ² C serial data	I/O	Open Drain	SDA	GPIO27	_	AA16
SPI1-CLK / GPIO28	SPI serial clock	I/O	VCC_2V8	SPI1-CLK	GPIO28	-	U15
SPI1-IO / GPIO29	SPI serial data input and output	I/O	VCC_2V8	SPI1-IO	GPIO29	-	V12
SPI1-I / GPIO30	SPI serial data input only input	I/O	VCC_2V8	SPI1-I	GPIO30	-	R13
SPI1-CS / INT5 / GPIO31	SPI chip select	I/O	VCC_2V8	SPI1-CS	INT5	GPIO31	M14
SPI2-CLK / GPIO32	SPI serial clock	I/O	VCC_2V8	SPI2-CLK	GPIO32	-	R15
SPI2-IO / GPIO33	SPI serial data input and output	I/O	VCC_2V8	SPI2-IO	GPIO33	_	M13
SPI2-I / GPIO34	SPI serial data input only input	I/O	VCC_2V8	SPI2-I	GPIO34	-	U16
SPI2-CS / INT4 / GPIO35	SPI chip select	I/O	VCC_2V8	SPI2-CS	INT4	GPIO35	T18

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 161 / 180

Signal Name	Description	I/O	Voltage Domain	MUX	MUX	MUX	Ball number
INT3 / GPIO46	Interruption input	I/O	VCC_2V8	INT3	GPIO46	-	V18
USB-DP	Universal Serial Bus Data positive	I/O	VPAD-USB	USB-DP	-	-	W19
USB-DM	Universal Serial Bus Data negative	I/O	VPAD-USB	USB-DM	-	-	AA20
USB-CN	Universal Serial Bus Connect	0	VPAD-USB	USB-CN	-	-	Y20
USB-DET	Universal Serial Bus interruption	1	VCC_1V8	USB-DET	-	-	R14
GPIO44	General Purpose Input Output	I/O	VCC_2V8	GPIO44	-	-	AB13
GPIO19	General Purpose Input Output	I/O	VCC_2V8	GPIO19	-	-	AA17
GPIO21	General Purpose Input Output	I/O	VCC_2V8	GPIO21	-	-	AA13
GPIO20	General Purpose Input Output	I/O	VCC_2V8	GPIO20	-	-	Y13
GPIO47	General Purpose Input Output	I/O	VCC_1V8	GPIO47	-	-	Y15
GPIO48	General Purpose Input Output	I/O	VCC_1V8	GPIO48	-	-	Y16
GPIO0	General Purpose Input Output	I/O	VCC_1V8	GPIO0	-	-	W15
GPIO24	General Purpose Input Output	I/O	VCC_2V8	GPIO24	-	-	N16
GPIO22	General Purpose Input Output	I/O	VCC_2V8	GPIO22	-	-	M15
GPIO23	General Purpose Input Output	I/O	VCC_2V8	GPIO23	-	-	V17
INT0 / A26 / GPIO3	Interruption input	I/O	VCC_1V8	INTO	A26	GPIO3	V16
INT1 / GPIO25	Interruption input	I/O	VCC_2V8	INT1	GPIO25	-	Y19
INT2 / GPIO45	Interruption input	I/O	VCC_1V8	INT2	GPIO45	-	Y17
AO	Address bus	0	VCC_1V8	A0	-	-	T19
A1	Address bus	0	VCC_1V8	A1	_	-	U18
A2	Address bus	0	VCC_1V8	A2	-	_	U24
АЗ	Address bus	0	VCC_1V8	АЗ	_	_	P24
A4	Address bus	0	VCC_1V8	A4	_	-	N24
A5	Address bus	0	VCC_1V8	A5	_	_	M21
A6	Address bus	0	VCC_1V8	A6	-	-	M24
A7	Address bus	0	VCC_1V8	A7	-	-	N23
A8	Address bus	0	VCC_1V8	A8	-	-	R24
A9	Address bus	0	VCC_1V8	A9	_	-	R22

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 162 / 180

Signal Name	Description	1/0	Voltage Domain	MUX	MUX	MUX	Ball number
A10	Address bus	0	VCC_1V8	A10	-	-	P22
A11	Address bus	0	VCC_1V8	A11	-	-	T22
A12	Address bus	0	VCC_1V8	A12	-	-	R23
A13	Address bus	0	VCC_1V8	A13	-	-	M22
A14	Address bus	0	VCC_1V8	A14	-	_	P21
A15	Address bus	0	VCC_1V8	A15	-	_	R21
A16	Address bus	0	VCC_1V8	A16	-	_	P23
A17	Address bus	0	VCC_1V8	A17	-	_	T21
A18	Address bus	0	VCC_1V8	A18	-	-	T24
A19	Address bus	0	VCC_1V8	A19	-	_	M23
A20	Address bus	0	VCC_1V8	A20	-	_	N21
A21	Address bus	0	VCC_1V8	A21	-	_	N22
A22	Address bus	0	VCC_1V8	A22	-	-	M20
A23	Address bus	0	VCC_1V8	A23	-	-	N19
A24 / GPIO2	Address bus	I/O	VCC_1V8	A24	GPIO2	-	U22
D0	Data bus	I/O	VCC_1V8	D0	-	-	W24
D1	Data bus	I/O	VCC_1V8	D1	-	-	W23
D2	Data bus	I/O	VCC_1V8	D2	-	-	AA24
D3	Data bus	I/O	VCC_1V8	D3	-	-	Y23
D4	Data bus	I/O	VCC_1V8	D4	-	-	U21
D5	Data bus	I/O	VCC_1V8	D5	_	_	Y22
D6	Data bus	I/O	VCC_1V8	D6	-	-	Y24
D7	Data bus	I/O	VCC_1V8	D7	_	_	V21
D8	Data bus	I/O	VCC_1V8	D8	_	_	V20
D9	Data bus	I/O	VCC_1V8	D9	_	_	U20
D10	Data bus	I/O	VCC_1V8	D10	-	-	V24
D11	Data bus	I/O	VCC_1V8	D11	_	_	V22
D12	Data bus	I/O	VCC_1V8	D12	-	-	V23
D13	Data bus	I/O	VCC_1V8	D13	-	-	AA23
D14	Data bus	I/O	VCC_1V8	D14	-	-	U23
D15	Data bus	I/O	VCC_1V8	D15	-	-	T23
~WAIT	Burst Wait signal	ı	VCC_1V8	~WAIT	-	-	R19
~CS0	Chip select Flash	0	VCC_1V8	~CS0	-	-	P19
~CS1	Chip select RAM	0	VCC_1V8	~CS1	-	-	R20
~CS2 / A25 / GPIO1	Chip select	I/O	VCC_1V8	~CS2	A25	GPIO1	R18

Wavecom confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 163 / 180

Signal Name	Description	I/O	Voltage Domain	MUX	MUX	MUX	Ball number
~CS3	Chip select	0	VCC_1V8	~CS3	-	-	T17
CLKBURST	Burst clock	0	VCC_1V8	CLKBURST	-	-	M19
~ADV	Burst address valid signal	0	VCC_1V8	~ADV	-	-	U19
~WE-E	Write enable	0	VCC_1V8	~WE-E	-	-	P20
~OE-R/W	Read enable	0	VCC_1V8	~OE-R/W	-	-	N20
BE1	2 nd byte enable	0	VCC_1V8	BE1	-	-	P18
BE3	4 th byte enable	0	VCC_1V8	BE3	-	_	T20
GND	Ground	A4, B22 C16 D1, D22 E15 E9, F23 G16 G9, H225 J16, M1, N2, R10 T8, V7, Y12 AAE AC1 AD1	A5, A6, A7, B24, B3, B4, C17, C18, G10, D11, D23, D24, G17, G18, G17, G17, G18, G17, A6, A6, A6, A6, A6, A6, A6, A6, A6, A6	A8, A9, B1, 4, B5, B6, B7, C19, C20, C2, C12, D13, D1, D3, D4, D5, E18, E19, E2, F12, F13, F4, F5, F6, F7, G19, G2, K12, K13, H4, H5, H3, H4, H5, H3, H4, H5, H12, K12, K13, K4, K5, K19, L2, L20, M12, M18, H10, P1, P10, R2, R3, R4, F4, U11, U12, U3, W11, W12, W11, W12, W11, W12, W11, W12, W11, AA10, A4, AA8, AA9, A3, AB4, AB5, AC5, AC6, D24, AD3, AE	B10, B11, B1 7, B8, B9, C1 11, C22, C23, 4, D15, D16, D6, D7, D8, E20, E21, E2 14, F15, F16 7, G21, G22, 14, H15, K1 16, H7, H8, J20, J21, J2 K14, K15, K1 16, K7, K8, K9 L21, L22, L2 M2, M3, M4, P13, P14, F1 15, R6, R7, R J13, U14, U2, W13, W14, W13, W14, W13, W14, A11, AA12, A AB1, AB12, A AB6, AC12 AD10, AD11 D4, AD6, AD	15, B16, B17, C10, C11, C, C24, C3, C4, D17, D18, E D9, E1, E10, E2, E23, E24, E G23, G24, E G23, E G24, E G24	11, A22, A23, A24, A3, B18, B19, B20, B21, C12, C13, C14, C15, C5, C6, C7, C8, C9, C19, D2, D20, D21, E11, E12, E13, E14, E3, E4, E5, E6, E7, E8, E19, F2, F20, F21, F22, E2, G13, G14, G15, G3, G4, G5, G6, G7, G8, E8, H19, H2, H20, H21, J11, J12, J13, J14, J3, J4, J5, J6, J7, J8, K19, K2, K20, K21, 1, L12, L13, L14, L15, 4, L5, L6, L7, L8, L9, 7, M8, M9, N1, N10, C4, P5, P6, P7, P8, P9, E10, V1, V10, V11, V15, V6, W7, W8, W9, Y10, AA2, AA21, AA3, AA4, AB18, AB2, AB21, 4, AC15, AC16, AC17, 3, AD14, AD15, AD16,
RESERVED	Do not connect. (Left opened)		T6, T7, V19,				16, P17, R16, T3, T4, ⁄8, Y9, AB11, AB20,

- * The I/O direction information is concerning only the nominal signal. When the signal is configured in GPIO, it can always be an Input or an Output.
- ** For more information about the multiplexing of those signals, see "General purpose input /output" chapter 3.11

Page: 164 / 180

5.2 Environmental Specifications

Wavecom specify following temperature range of WMP100 product

The WMP100 is compliant with following operating class

Conditions	Temperature range
Operating / Class A	-20 °C to +55°C
Operating / Storage / Class B	-40 °C to +85°C

Function Status Classification:

Class A:

The WMP100 shall have full function during and after an external influence. The GSM performance shall meet the minimum ETSI requirements.

Class B:

Any functions can be out of specified tolerances. All the functions will be going back to normal tolerances automatically after that the external influence has been removed. Performance is allowed to go outside of the minimum ETSI requirements, but it must be possible to connect a call and send an SMS.

Page: 165 / 180

WMP100)	ENVIRONNEMENTAL CLASSES					
TYPE OF TEST	STANDARDS	STORAGE Class 1.2	TRANSPORTATION Class 2.3	OPERATING (PORT USE) Class 7.3			
Cold	IEC 68-2.1 Ab test	-25° C 72 h	-40° C 72 h	-20° C (GSM900) 16 h -10° C (GSM1800/1900) 16h			
Dry heat	IEC 68-2.2 Bb test	+70° C 72 h	+70° C 72 h	+55° C 16 h			
Change of temperature	IEC 68-2.14 Na/Nb test		-40° / +30° C 5 cycles t1 = 3 h	-20° / +30° C (GSM900) 3 cycles -10° / +30° C (GSM1800/1900): 3 cycles t1 = 3 h			
Damp heat cyclic	IEC 68-2.30 Db test	+30° C 2 cycles 90% - 100% RH variant 1	+40° C 2 cycles 90% - 100% RH variant 1	+40° C 2 cycles 90% - 100% RH variant 1			
Damp heat	IEC 68-2.56 Cb test	+30° C 4 days	+40° C 4 days	+40° C 4 days			
Sinusoidal vibration	IEC 68-2.6 Fc test	5 - 62 Hz : 5 mm / s 62 - 200Hz : 2 m / s2 3 x 5 sweep cycles					
Random vibration wide band	IEC 68-3.36 Fdb test		5 - 20 Hz : 0.96 m2 / s3 20 - 500Hz : - 3 dB / oct 3 x 10 min	10 -12 Hz : 0.96 m2 / s3 12 - 150Hz : - 3 dB / oct 3 x 30 min			

Figure 66: Environmental classes

Page: 166 / 180

5.3 MSL level

The WMP100 is MSL 3 and 2 reflows are allowed in customer side including one for rework of the component.

If the product is double side, the WMP100 should be assembled on the side that will see only one reflow.

5.4 Mechanical specifications

5.4.1 Physical characteristics

The WMP100 has a complete self-contained shield.

• Overall dimensions :25 x 25 x 3.65 mm

Weight: 4.25 g

5.4.2 Mechanical drawings

The next page gives the mechanical specifications of WMP100.

Page: 167 / 180

WMP100/Open AT® Software Suite v1.0 S ≅ Pitch

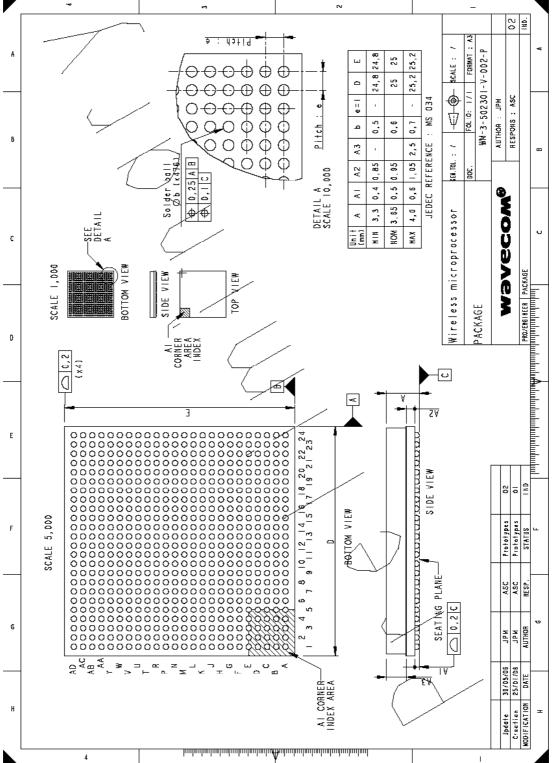


Figure 67: Mechanical drawing

W∂VecoM[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

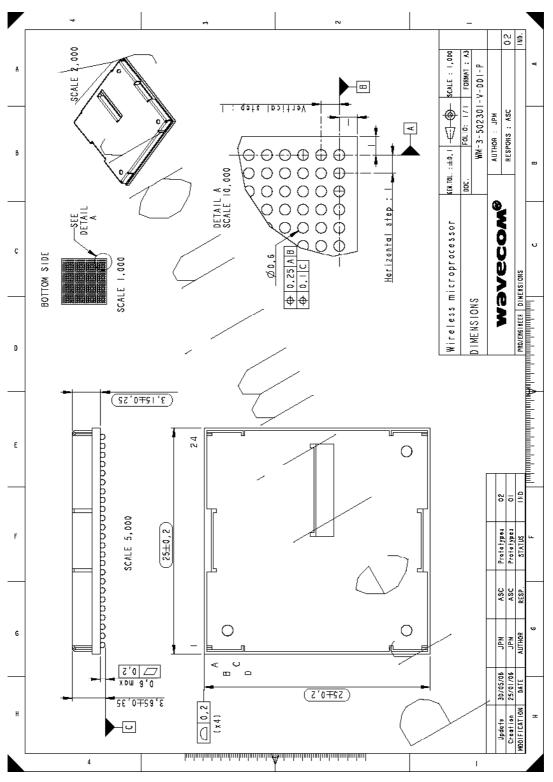


Figure 68: Mechanical drawing

Wavecom[®] confidential ©

Page: 169 / 180

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

5.4.3 Mechanical constraints

Wavecom recommend the customer to check on their own application if the WMP100 can withstand their mechanical environment.

If needed, mechanical study should be done to reduce the warpage of the mother board and the transmission of mechanical chocks. Underfill can also be envisaging.

Underfill process is described in the Manufacturing guideline.

5.5 PCB specifications

Due to the density of connections, the PCB stack should be the following:

4 layers (track / distance 100 μ m / 100 μ m, with though-holes vias Diam 0.25, pad 0.5 mm), but 6 layers may be necessary according to the functionality needed (track / distance 150 μ m / 150 μ m may be possible).

Page: 170 / 180

6 Peripheral devices references

6.1 SIM Card Reader

- ITT CANNON CCM03 series (see http://www.ittcannon.com)
- AMPHENOL C707 series (see http://www.amphenol.com)
- JAE (see http://www.jae.com)

Drawer type:

MOLEX 99228-0002 (connector) / MOLEX 91236-0002 (holder) (see http://www.molex.com)

6.2 Microphone

Possible suppliers:

- HOSIDEN
- PANASONIC
- PEIKER

6.3 Speaker

Possible suppliers:

- SANYO
- HOSIDEN
- **PRIMO**
- PHILIPS

6.4 Antenna Cable

The following cable reference has been qualified for being mounted on WMP100:

- RG178
- TBD

6.5 GSM antenna

GSM antennas and support for antenna adaptation can be obtained from manufacturers such as:

- ALLGON (http://www.allgon.com)
- IRSCHMANN (http://www.hirschmann.com/)

Page: 172 / 180

7 Noises and design

7.1 EMC recommendations

The EMC tests have to be performed as soon as possible on the application to detect any possible problem.

When designing, special attention should be paid to:

- Possible spurious emission radiated by the application to the RF receiver in the receiver band
- ESD protection is mandatory for all peripherals accessible from outside (SIM, serial link, etc.)
- EMC protection on audio input/output (filters against 900MHz emissions)
- · Biasing of the microphone inputs
- Length of the SIM interface lines (preferably <10cm)
- Ground plane: WAVECOM recommends having a common ground plane for analog / digital / RF grounds.
- Metallic case or plastic casing with conductive paint are recommended

Note:

The WMP100 does not include any protection against overvoltage.

7.2 Power Supply

The power supply is one of the key issues in the design of a GSM terminal.

A weak power supply design could affect in particular:

- EMC performances.
- the emissions spectrum
- the phase error and frequency error

WARNING:

Careful attention should be paid to:

- Quality of the power supply: low ripple, PFM or PSM systems should be avoided (PWM converter preferred).
- Capacity to deliver high current peaks in a short time (pulsed radio emission).

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 173 / 180

8 Appendix

8.1 Standards and Recommendations

GSM ETSI, 3GPP, GCF and NAPRD03 recommendations for Phase II.

Specification Reference	Title
3GPP TS 45.005 v5.5.0 (2002-08) Release 5	Technical Specification Group GSM/EDGE. Radio Access Network; Radio transmission and reception
GSM 02.07 V8.0.0 (1999- 07)	Digital cellular telecommunications system (Phase 2+);
	Mobile Stations (MS) features (GSM 02.07 version 8.0.0 Release 1999)
GSM 02.60 V8.1.0 (1999	Digital cellular telecommunications system (Phase 2+);
07)	General Packet Radio Service (GPRS); Service description, Stage 1 (GSM 02.60 version 8.1.0 Release 1999)
GSM 03.60 V7.9.0 (2002- 09)	Technical Specification Group Services and System Aspects;
	Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Service description; Stage 2 (Release 1998)
3GPP TS 43.064 V5.0.0 (2002-04)	Technical Specification Group GERAN; Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Overall description of the GPRS radio interface; Stage 2 (Release 5)
3GPP TS 03.22 V8.7.0 (2002-08)	Technical Specification Group GSM/EDGE. Radio Access Network; Functions related to Mobile Station (MS) in idle mode and group receive mode; (Release 1999)
3GPP TS 03.40 V7.5.0 (2001-12)	Technical Specification Group Terminals;
	Technical realization of the Short Message Service (SMS)
	(Release 1998)
3GPP TS 03.41 V7.4.0 (2000-09)	Technical Specification Group Terminals; Technical realization of Cell Broadcast Service (CBS) (Release 1998)
ETSI EN 300 903 V8.1.1 (2000-11)	Digital cellular telecommunications system (Phase 2+);
	Transmission planning aspects of the speech service in the GSM

Wavecom[®] confidential ®

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

	Public Land Mobile Network (PLMN) system (GSM 03.50 version 8.1.1 Release 1999)
3GPP TS 04.06 V8.2.1 (2002-05)	Technical Specification Group GSM/EDGE Radio Access Network; Mobile Station - Base Station System (MS - BSS) interface; Data Link (DL) layer specification (Release 1999)
	Technical Specification Group Core Network;
(2002-09)	Digital cellular telecommunications system (Phase 2+);
	Mobile radio interface layer 3 specification (Release 1998)
3GPP TS 04.10 V7.1.0	Technical Specification Group Core Networks;
(2001-12)	Mobile radio interface layer 3 Supplementary services specification; General aspects (Release 1998)
3GPP TS 04.11 V7.1.0 (2000-09)	Technical Specification Group Core Network; Digital cellular telecommunications system (Phase 2+); Point-to-Point (PP) Short Message Service (SMS) support on mobile radio interface
	(Release 1998)
3GPP TS 45.005 v5.5.0 (2002-08)	Technical Specification Group GSM/EDGE. Radio Access Network; Radio transmission and reception (Release 5)
	Technical Specification Group GSM/EDGE
(2002-08)	Radio Access Network; Radio subsystem link control (Release 5)
	Technical Specification Group GSM/EDGE
(2002-08)	Radio Access Network; Radio subsystem synchronization (Release 5)
3GPP TS 46.010 V5.0.0 (2002-06)	Technical Specification Group Services and System Aspects;
	Full rate speech; Transcoding (Release 5)
3GPP TS 46.011 V5.0.0 (2002-06)	Technical Specification Group Services and System Aspects;
	Full rate speech; Substitution and muting of lost frames for
	full rate speech channels (Release 5)
3GPP TS 46.012 V5.0.0 (2002-06)	Technical Specification Group Services and System Aspects;
	Full rate speech; Comfort noise aspect for full rate speech traffic channels (Release 5)

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 175 / 180

Specification Reference	Title
3GPP TS 46.031 V5.0.0 (2002-06)	Technical Specification Group Services and System Aspects;
	Full rate speech; Discontinuous Transmission (DTX) for full rate speech traffic channels (Release 5)
3GPP TS 46.032 V5.0.0 (2002-06)	Technical Specification Group Services and System Aspects;
	Full rate speech; Voice Activity Detector (VAD) for full rate speech traffic channels (Release 5)
TS 100 913V8.0.0 (1999- 08)	Digital cellular telecommunications system (Phase 2+);
	General on Terminal Adaptation Functions (TAF) for Mobile Stations (MS) (GSM 07.01 version 8.0.0 Release 1999)
GSM 09.07 V8.0.0 (1999- 08)	Digital cellular telecommunications system (Phase 2+);
	General requirements on interworking between the Public Land Mobile Network (PLMN) and the Integrated Services Digital Network (ISDN) or Public Switched Telephone Network (PSTN) (GSM 09.07 version 8.0.0 Release 1999)
3GPP TS 51.010-1 v5.0.0 (2002-09)	Technical Specification Group GSM/EDGE; Radio Access Network; Digital cellular telecommunications system (Phase 2+); Mobile Station (MS) conformance specification; Part 1: Conformance specification (Release 5)
3GPP TS 51.011 V5.0.0 (2001-12)	Technical Specification Group Terminals; Specification of the Subscriber Identity Module - Mobile Equipment (SIM - ME) interface (Release 5)
ETS 300 641 (1998-03)	Digital cellular telecommunications system (Phase 2);
	Specification of the 3 Volt Subscriber Identity Module - Mobile Equipment (SIM-ME) interface (GSM 11.12 version 4.3.1)
GCF-CC V3.7.1 (2002-08)	Global Certification Forum – Certification criteria
NAPRD03 V2.6.0 (2002-06)	North America Permanent Reference Document for PTCRB tests

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 176 / 180

The Wireless Microprocessor WMP100 connected to a development kit board application is certified to be in accordance with the following Rules and Regulations of the Federal Communications Commission (FCC).

Power listed on the Gant is conducted for Part 22 and conducted for Part 24.

This device contains EGSM/GPRS Class 10 functions in the 900 and 1800MHz Band, which are not operational in U.S. Territories.

This device can be used only for mobile and fixed applications. The antenna(s) used for this transmitter must be installed at a distance of minimum 20 cm from all persons and must not be co-located or operated with any other antenna or transmitter.

Users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance.

Antennas used for this OEM module must not exceed 0.9 dBi gain for GSM 850 MHz and 7.1 dBi for GSM 1900 MHz for fixed operating configurations. For mobile operations the gain must not exceed 0.9 dBi for GSM 850 MHz and 3.1 dBi for GSM 1900 MHz. This device is approved as a module to be installed in other devices.

Installed in portable devices, the RF exposure condition requires a separate mandatory equipment authorization for the final device.

The license module will have a FCC ID label on the module itself. The FCC ID label must be visible through a window or it must be visible when an access panel, door or cover is easily removed.

If not, a second label must be placed on the outside of the device that contains the following text: FCC ID: O9EWMP100

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- o This device may not cause harmful interference.
- This device must accept any interference received, including interference that may cause undesired operation.

8.2 Safety recommendations (for information only)

IMPORTANT

FOR THE EFFICIENT AND SAFE OPERATION OF YOUR GSM APPLICATION **BASED ON WMP100**

PLEASE READ THIS INFORMATION CAREFULLY

8.2.1 RF safety

8.2.1.1 General

Your GSM terminal is based on the GSM standard for cellular technology. The GSM standard is spread all over the world. It covers Europe, Asia and some parts of America and Africa. This is the most used telecommunication standard.

Your GSM terminal is actually a low power radio transmitter and receiver. It sends out and receives radio frequency energy. When you use your GSM application, the cellular system which handles your calls controls both the radio frequency and the power level of your cellular modem.

8.2.1.2 Exposure to RF energy

There has been some public concern about possible health effects of using GSM terminals. Although research on health effects from RF energy has focused on the current RF technology for many years, scientists have begun research regarding newer radio technologies, such as GSM. After existing research had been reviewed, and after compliance to all applicable safety standards had been tested, it has been concluded that the product was fitted for use.

If you are concerned about exposure to RF energy there are things you can do to minimize exposure. Obviously, limiting the duration of your calls will reduce your exposure to RF energy. In addition, you can reduce RF exposure by operating your cellular terminal efficiently by following the below guidelines.

Efficient terminal operation

For your GSM terminal to operate at the lowest power level, consistent with satisfactory call quality:

If your terminal has an extendible antenna, extend it fully. Some models allow you to place a call with the antenna retracted. However your GSM terminal operates more efficiently with the antenna fully extended.

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Do not hold the antenna when the terminal is « IN USE ». Holding the antenna affects call quality and may cause the modem to operate at a higher power level than needed.

8.2.1.4 Antenna care and replacement

Do not use the GSM terminal with a damaged antenna. If a damaged antenna comes into contact with the skin, a minor burn may result. Replace a damaged antenna immediately. Consult your manual to see if you may change the antenna yourself. If so, use only a manufacturer-approved antenna. Otherwise, have your antenna repaired by a qualified technician.

Use only the supplied or approved antenna. Unauthorized antennas, modifications or attachments could damage the terminal and may contravene local RF emission regulations or invalidate type approval.

8.2.2 General safety

8.2.2.1 **Driving**

Check the laws and the regulations regarding the use of cellular devices in the area where you have to drive as you always have to comply with them. When using your GSM terminal while driving, please:

- give full attention to driving,
- pull off the road and park before making or answering a call if driving conditions so require.

8.2.2.2 Electronic devices

Most electronic equipment, for example in hospitals and motor vehicles is shielded from RF energy. However RF energy may affect some improperly shielded electronic equipment.

8.2.2.3 Vehicle electronic equipment

Check your vehicle manufacturer representative to determine if any on-board electronic equipment is adequately shielded from RF energy.

8.2.2.4 Medical electronic equipment

Consult the manufacturer of any personal medical devices (such as pacemakers, hearing aids, etc...) to determine if they are adequately shielded from external RF energy.

Wavecom[®] confidential ©

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 179 / 180

Turn your terminal **OFF** in health care facilities when any regulations posted in the area instruct you to do so. Hospitals or health care facilities may be using RF monitoring equipment.

8.2.2.5 Aircraft

Turn your terminal OFF before boarding any aircraft.

- · Use it on the ground only with crew permission.
- Do not use it in the air.

To prevent possible interference with aircraft systems, Federal Aviation Administration (FAA) regulations require you to have permission from a crew member to use your terminal while the aircraft is on the ground. To prevent interference with cellular systems, local RF regulations prohibit using your modem while airborne.

8.2.2.6 Children

Do not allow children to play with your GSM terminal. It is not a toy. Children could hurt themselves or others (by poking themselves or others in the eye with the antenna, for example). Children could damage the modem, or make calls that increase your modem bills.

8.2.2.7 Blasting areas

To avoid interfering with blasting operations, turn your unit OFF when in a « blasting area » or in areas posted: « turn off two-way radio ». Construction crews often use remote control RF devices to set off explosives.

8.2.2.8 Potentially explosive atmospheres

Turn your terminal **OFF** when in any area with a potentially explosive atmosphere. It is rare, but your application or its accessories could generate sparks. Sparks in such areas could cause an explosion or fire resulting in bodily injuries or even death.

Areas with a potentially explosive atmosphere are often, but not always, clearly marked. They include fuelling areas such as petrol stations; below decks on boats; fuel or chemical transfer or storage facilities; and areas where the air contains chemicals or particles, such as grain, dust, or metal powders.

Do not transport or store flammable gas, liquid, or explosives, in the compartment of your vehicle which contains your terminal or accessories.

Before using your terminal in a vehicle powered by liquefied petroleum gas (such as propane or butane) ensure that the vehicle complies with the relevant fire and safety regulations of the country in which the vehicle is to be used.

This document is the sole and exclusive property of WAVECOM. Not to be distributed or divulged without prior written agreement.

Page: 180 / 180

WAVECOM S.A. - 3 esplanade du Foncet - 92442 Issy-les-Moulineaux Cedex - France - Tel: +33(0)1 46 29 08 00 - Fax: +33(0)1 46 29 08 00 8 Wavecom, Inc. - 4810 Eastgate Mall - Second Floor - San Diego, CA 92121 - USA - Tel: +1 858 352 0101 - Fax: +1 858 558 5485 WAVECOM Asia Pacific Ltd. - Unit 201-207, Znd Floor, Bio-Informatics Centre - No.2 Science Park West Avenue - Hong Kong Science Park, Shatin - New Territories, Hong Kong