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Abstract. This paper provides an overview of trellis descriptions for block
codes. The design and implementation of efficient trellis decoders for the (32,
26) and the (32, 21) BCH codes is then considered in some detail. Minimum
edge and vertex counts for the (32, 26) code are derived, and then generalized
for arbitrary extended Hamming codes. A subcode analysis technique is used
to tighten the lower bound on edge complexity for the (32, 21) code. A trellis
is then found that satisfies the optimized lower bound with equality.
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1 Introduction

The word lengths for paging and mobile messaging systems generally dictate
the use of short block codes. For example, POCSAG (a ubiquitous paging
standard in the 1980’s and early 1990’s) and Motorola’s FLEX protocol (the
de-facto standard in high speed paging in North America, South America, and
Southeast Asia) both use the (32, 21) BCH code. This same code is used on
the forward channel of Motorola’s ReFLEX protocol – a FLEX derivative that
provides two-way service and extended capacity through frequency reuse and
time sharing [5]. The European Radio Messaging System (ERMES) uses a
(30, 18) code that is related to the (32, 21) code. The decoders used in these
systems reside in small mobile units, and are thus severely constrained by power
and weight limitations. Simple algebraic, hard decision decoders (HDD’s) are
generally used.

∗ This work was funded by National Science Foundation Grant Number NCR-9216686.
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In this paper, we explore the design and implementation of trellis-based
soft decision decoders (SDD’s) for the (32, 21) and (32, 26) BCH codes. SDD’s
are particularly useful in a fading environment, as they can incorporate channel
attentuation information into the decoding process [25]. We begin with the
(32, 26) BCH code, which is a member of the general family of extended
Hamming codes. Minimum-edge and vertex counts are derived for all extended
Hamming codes. A simple algorithm is then presented for constructing trellises
that satisfy the minimum-edge and vertex counts.

A subcode-based analysis technique is used to find tight lower bounds on
the dimensions of the past and future subcodes of the (32, 21) BCH code.
This technique begins by identifying a class of “critical” (12, 2, 6) subcodes
in the (32, 21) code. A mapping is then defined that relates these subcodes to
minimum weight nonzero words within the dual of the (32, 21) code. Knowledge
of the dual code weight distribution and subcode profile is then used to create
restrictions on the past subcode dimension profile for the (32, 21) code. This
leads to a lower bound on edge count that is shown to be optimal through the
identification of a trellis that satisfies the bound with equality.

2 Trellis Decoders for Block Codes

This section provides a review of the various techniques that have been devel-
oped for designing and analyzing trellis decoders for block codes. Section 2.1
illustrates a method for constructing the trellis of a block code given its parity
check matrix. Section 2.2 discusses the various complexity measures that have
been proposed for evaluating the resulting trellis.

Two codes areequivalentif one can be described as a permutation of the
other. On memoryless channels, equivalent codes provide the same coding gain.
On the other hand, the minimum-edge trellises for equivalent codes can have
substantially different complexity. This has spurred much effort in finding the
permutation of a code that results in the “best” trellis, i.e. one of minimal
complexity with respect to a certain complexity measure. The identification of
the best, or simply a good, permutation of a code requires a detailed exploration
of the relationship between the code and its dual. Section 2.3 presents several
well-known duality identities necessary for that purpose.

Section 2.4 reviews the Mattson-Solomon (MS) polynomial and some of
its properties. The MS polynomial is a useful tool for the study of cyclic codes
in general, and the BCH codes in particular. We will make use of the MS
polynomial when we search for the minimal complexity trellis for the (32, 21)
BCH code.
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2.1 Trellises of Linear Binary Block Codes

We now review the trellis construction for binary linear block codes that was
first described by Bahlet al. in 1974 [2]. LetH = [h1, . . . , hn] be a parity
check matrix for an(n, k) codeC, wherehi , i = 1, . . . , n are the length(n−k)

column vectors ofH . The vertices of the trellis to be constructed are a subset
of a 2(n−k) × n grid. Identify each of the 2n−k grid positions at depthi with an
(n − k)-tuples, and let0 at depth 0 and0 at depthn be the source and sink,
respectively. A path from the source to the sink is then completely specified by
a state (vertex) sequence(0, s1, . . . , sn−1, 0). Let c = (c1, . . . , cn) be a code
word, and define the state sequences(c) = (s0, s1, . . . , sn) as follows:

s0 = 0
si+1 = si + ci+1hi+1 i = 1, . . . , n ,

(1)

where the coordinate addition takes place inGF(2). By the definition of a parity
check matrix (H ), we havesn = 0. Each code word can be mapped onto a unique
path from the source to the sink by (1). The set of all paths{s(c) : c ∈ C} form
a trellis for the codeC. Such a trellis for a (7, 4) Hamming code is shown in
Figure 1.

The trellis developed above and exemplified by Figure 1 is commonly re-
ferred to here as the BCJR trellis [18]. It is possible to construct numerous
trellises for a given codeC. Clearly trellises with low edge or vertex count
for a code are more useful in actual implementations. In an appendix of [6],
Forney proposed a trellis for binary codes which Muder later showed to have a
minimal number of vertices at each depth [19]. Further, Muder showed that any
minimal trellis is isomorphic to the Forney trellis. In [18], McEliece shows that
the BCJR trellis also minimizes the vertex count as well as the edge count at
each depth, and therefore the two trellises are identical up to an isomorphism.
For these reasons, the minimal trellis or the BCJR trellis of a codeC will be
referred to as “the trellis of the codeC”.

The vertex setVi consists of all states or verticessi in (1). All pairs
(si , si+1) form the edge setEi,i+1. The vertex setV and the edge setE of
the trellis are the unions ofVi and the unions ofEi , respectively. We now give
some characterizations of theVi andEi,i+1. We follow the notation of McEliece
[18], from which the following three Theorems have been taken.

Theorem 1 Vi andEi,i+1 are vector spaces over GF(2).

Definition. Theith past subcodePi , the ith past projectionP i , the ith future
subcodeFi and theith future projectionF i of C are defined as

Pi = {c ∈ C : ci+1 = · · · = cn = 0}
P i = {(c1, . . . , ci) : c ∈ C}
Fi = {c ∈ C : c1 = · · · = ci = 0}
F i = {(ci+1, . . . , cn) : c ∈ C}

(2)



524 X. Wang, S. B. Wicker

(100)
(010)
(110)
(001)
(101)
(011)
(111)

(000)

0   0   0   1   1   1   1

0   1   1   1   0   1   0

1   0   1   1   1   0   0

1   1   0   0   1   1   0   -codeword and its corresponding path in the trellis

Fig. 1. The parity check matrixH and the trellis for the Hamming (7, 4) code

Their dimensions are denoted bypi , pi , fi andf i respectively. By convention
we take

Pn = P n = F0 = F 0 = C, P0 = P 0 = Fn = Fn = (0)

and thus
pn = pn = f0 = f 0 = k, p0 = p0 = fn = f n = 0

Theorem 2
k = pi + fi = pi + f i . (3)

Let si = dimVi andbi = dimEi,i+1, we have the following

Theorem 3
si = k − pi − fi

bi = k − pi − fi+1 .
(4)

Given an(n, k) codeC, the trellis can be constructed by applying (1) over all
code words. This construction is not practical ifC has a large dimension. More
efficient algorithms for constructing the trellis have been presented in [17, 23].

2.2 Complexity of the Trellis and the Effect of Permutation

The complexity of the trellis of an(n, k) codeC can be measured in terms of
one or more the following:

• State complexity:s(C) = max{s0, s1, . . . , sn}.
• Branch complexity: b(C) = max{b1, b2, . . . , bn}.
• Edge complexity:E(C) = |E| = ∑n

i=1 Ei−1,i = ∑n
i=1 2bi .

A complexity measure similar to the edge complexity was also proposed in
[22]. It has been shown thats(C), b(C), and logE(C) are asymptotically the
same in that the ratio of any two of them approaches unity as the code lengthn

increases [10].
Wolf [26] gave an upper bound for the state complexitys(C): s(C) ≤

min{k, n−k}. For most of the codes in their original forms, this upper bound is
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often an equality. Since the complexity of the trellis depends on the ordering of
the code coordinates [6, 16], tighter bounds can be obtained by permutating the
coordinates of the code. By doing so we identify the codeC with all its equiva-
lent codes. Improved bounds ons(C) for some BCH codes are given in [8, 22].
In some cases, the lower bounds and the upper bounds are identical, indicating
exact values fors(C). Lower bounds ons(C) for some general(n, k, d) codes
with certaind are given in [22], and lower bounds or exact values fors(C) for
some codes with certain weight distributions are given in [27].

Let k(i; C) be the maximum dimension of any length-i subcode ofC.
The sequence{k(0; C), k(1; C), . . . , k(n; C)} is called the dimension-length
profile (DLP) of the codeC [7]. The DLP often leads to good lower bounds
on s(C) [7, 10]. However, the computation of the DLP is difficult for most
codes. Recently, Lafourcade-Jumenbo and Vardy developed a trellis partitioning
technique that further improves the lower bounds for a large number of codes
[10]. Their method also applies to nonlinear codes.

On the practical side, the edge complexity is a more accurate measure of the
trellis complexity with respect to the number of computations. For a given code
C, among all the trellises of its equivalent codes, the trellis with the minimum
number of edges is referred to as theminimum-edgetrellis. Similarly, the trellis
with the minimum number of vertices is referred to as theminimum-vertex
trellis. It can be easily established that

|E| ≤ |V | − 1 ≤ 2|E| ,

which shows that|V | is as good a measure of complexity as|E|. A minimum-
edge trellis is not necessarily a minimum-vertex trellis and vice versa. Sharper
lower bounds onE(C) for many binary codes are derived in [10] through the use
of trellis partitioning and nonlinear integer programming. A heuristic algorithm
for constructing a trellis with low edge complexity was proposed in [4].

It was shown by Lafourcade-Jumenbo and Vardy [10, 11] that asymptoti-
cally good codes have infinite trellis complexity. This means that even if the
trellis complexity can be reduced by permutation, it eventually grows at an ex-
ponential rate as the code length increases. However, for many practical codes,
trellises are still an efficient means for decoding. Luna, Fontaine, and Wicker
have developed an iterative technique that provides ML and near-ML trellis
decoding with far less complexity than in the straightforward application of
Viterbi decoding to the code trellis [12]. Aguado and Farrell developed a hy-
brid stack decoding algorithm for block codes in [1], which can handle much
higher trellis complexity than the Viterbi algorithm (VA) does.

The choice of a complexity measure depends in part on what one hopes to
do with the trellis decoder under consideration. McEliece pointed out in [18]
that the VA requiresO(|E|) arithmetic operations when applied to the trellis. It
follows that a software-based decoder will benefit from a minimization of edge
complexity. Komura, Oka, Fujiwara, Onoye, Kasami, and Lin, however, have
shown that the VA is not an efficient approach for IC-based trellis decoders



526 X. Wang, S. B. Wicker

[9]. Instead the regularity of the trellis structure was employed, allowing for
a straightforward application of pipelining and parallel processing. Recursive
trellis structures have been developed for Reed-Muller hybrid-ARQ protocols
by Martin, Honary, Markarian, and Wicker in [15] (see also [14]). Komura
et al. used the structure of a (64, 35) subcode of the (64, 42) Reed-Muller code
to develop an extremely fast inner codec for a concatenated system intended
for near-earth satellites [9]. Komuraet al’s codec is intended to run at several
hundred megabits per second – a speed that cannot be achieved by a hardware
implementation that uses Viterbi decoding and a minimum-edge trellis.

Having said the above, we will pursue minimum-edge complexity in this
paper. The minimum-edge complexity of a code provides a convenient gauge
of the complexity of SDD’s for a block code, and is certainly more concise than
the admittedly fuzzy idea of “trellis regularity”.

2.3 Duality Properties of Linear Codes

In this section we present a review of various relationships that can be drawn
between a linear block code and its dual code. LetC be an(n, k) linear block
code, and letC⊥ denote its dual. The past and future subcodes ofC⊥ are denoted
byP ⊥

i andF⊥
i , and the past and future projections are denoted byP ⊥i andF⊥i .

The results in this section are from Forney [7].
SinceC⊥ is an(n, n − k) code, applying (3) in Theorem 2 of Section 2.1,

we obtain

n − k = p⊥i + f ⊥
i = p⊥

i + f ⊥i . (5)

Theorem 4 Pi andP ⊥i are dual codes, andP i andP ⊥
i are dual codes.

Note that in Theorem 4 we treat the subcodesPi andP ⊥
i as of lengthi, ignoring

their lastn − i bits that are all zeros.

Proof. Let ci ∈ Pi . By the definitions ofPi andP ⊥i , we havecidT
i = 0 for all

di ∈ P ⊥i . On the other hand, if for somec′
i , c′

id
T
i = 0 for all di ∈ P ⊥i , then

the vectorc′ defined by

c′ = (c′
i ,

n−i︷ ︸︸ ︷
0, . . . , 0)

satisfiesc′dT = 0 for all d ∈ C⊥. Thusc′ ∈ C and hencec′
i ∈ Pi . Now we

have proved thatPi consists of all thei-tuples orthogonal toP ⊥i , i.e.,Pi and
P ⊥i are dual codes. The second statement of the theorem can be proved along
the same lines. q.e.d.

By Theorem 4 the dimensions ofPi andP ⊥i sum to their lengthi, as do
the dimensions ofP ⊥

i andP i . Thus we have
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Corollary 5
i = pi + p⊥i = p⊥

i + pi . (6)

Similarly we can prove the following:

Theorem 6 Fi andF⊥i are dual codes, andF i andF⊥
i are dual codes.

Corollary 7
n − i = fi + f ⊥i = f ⊥

i + f i . (7)

Other duality identities can be derived from the identities developed in this
section and Section 2.1. For example, combining (5), (6) and (7) we get

k − pi − fi = n − k − p⊥
i − f ⊥

i . (8)

Let s⊥
i denote the dimension of the vertex setV ⊥

i in the trellis ofC⊥, By (4)
and (8) we have

si = s⊥
i .

The above duality identities will be used extensively in the search for minimal
complexity trellises.

2.4 The Mattson-Solomon Polynomial

A brief review of the Mattson-Solomon polynomial is presented in this section.
All results in this section are from [13].

Let F = GF(q), whereq is the power of a primep. Let n be an integer
relatively prime top. A vector of lengthn in F , a = (a0, a1, . . . , an−1) can be
represented by a polynomial inF [x], a(x) = a0 + a1x + · · · an−1x

n−1. Let m
be the smallest number such thatn|(qm − 1). LetF = GF(qm) and letα ∈ F
be a primitiventh root of unity.

Definition. The Mattson-Solomon(MS) polynomialassociated witha(x) is
the following polynomial inF[z]:

A(z) =
n∑

j=1

Ajz
n−j , (9)

where

Aj = a(αj ) =
n−1∑
i=0

aiα
ij

It is straightforward to show that the MS polynomial has the linearity property:
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Theorem 8 If c(x) = a(x) + b(x), thenC(z) = A(z) + B(z).

Lemma 9
n−1∑
i=0

αi = 0 (10)

Proof. α 6= 1 by definition. Thus
n−1∑
i=0

αi = (1 − αn)/(1 − α) = 0

q.e.d.

Let g(y) be any polynomial, and denote by [g(y)]n the remainder wheng(y)

is divided byyn − 1. Define thecomponentwise productg(y) ∗ h(y) of two
polynomials

g(y) =
n−1∑
i=0

giy
i and h(y) =

n−1∑
i=0

hiy
i

to be

g(y) ∗ h(y) =
n−1∑
i=0

gihiy
i

The following two theorems can be proved by direct substitution and use of
(10).

Theorem 10 (Inversion formula)

a(x) = 1

n

n−1∑
i=0

A(αi)xi . (11)

Theorem 11 (i) c(z) = [a(x)b(x)]n if and only if C(z) = A(z) ∗ B(z). (ii)

c(x) = a(x) ∗ b(x) if and only ifC(z) = 1

n
[A(z)B(z)]n.

Note that the denominatorn in Theorems 10 and 11 should be reduced
modulop. For the most popular case ofp = 2, 1/n = 1 modulop (n must be
odd if it is to be relatively prime top = 2).

A(z) is also referred to as thediscrete Fourier transformof a(x). a(x) and
A(z) are transform pairs, as one can be recovered from the other by (9) and (11).

For any polynomialg(y), itseffective degreedeff(g) is defined to be deg(g)−
i, wherei is the smallest number such that the coefficientgi of yi is nonzero.
Obviouslydeff(g) ≤ deg(g). Consider a transform pair{a(x), A(z)}, where
both are of degreen − 1. Let s = deff(A). ThenA(z) hass nonzero roots in
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F, which meansA(z) has no more thans roots in{1, α, . . . , αn−1}. From the
inversion formula (11) we see thata(x) has at mosts zero coefficients, or it has
at leastn − s nonzero coefficients. We summarize the above discussion in the
following theorem.

Theorem 12 If a has MS polynomialA(z), then the weight ofa satisfies

w(a) ≥ n − deff(A) . (12)

(12) is a slightly improved version of Corollary 27 in Chapter 8 of [13].

3 Trellises for the (32, 26) and (32, 21) BCH Codes

This section focuses on the construction and implementation of trellis decoders
for the(32, 26, 4) and the(32, 21, 6) extended BCH codes. In Section 3.1 we
construct the minimum-edge trellis for the (32, 26) code. We note that this code
can be viewed within the context of the extended Hamming codes. Bounds on
the number of edges and vertices for trellises for the entire class of extended
Hamming codes are derived. A simple construction algorithm for minimum-
edge and minimum-vertex trellises is then presented. Section 3.2 begins with
the construction of a tight lower bound on the edge complexity of the minimum-
edge trellis for the(32, 21, 6) code. A subcode analysis technique is used to
substantially improve the previous bound. A trellis is then described that satisfies
the bound with equality.

3.1 Minimum Edge Trellises for Hamming Codes
and Extended Hamming Codes

We start with the (31, 26, 3) Hamming code. A parity check matrix can be
constructed by selecting as columns all 31 distinct, nonzero binary 5-tuples.
The extended Hamming code is obtained by adding a parity bit to each code
word. The following parity check matrix is a typical result. Since we are not
distinguishing among equivalent codes, we will refer to this as “the” parity
check matrix for the (32, 26, 4) extended Hamming code.

H = H(32,26) =




00000000000000001111111111111111
00000000111111110000000011111111
00001111000011110000111100001111
00110011001100110011001100110011
01010101010101010101010101010101
11111111111111111111111111111111




(13)

One objective in the search for a minimum-edge trellis for an(n, k) code is
the minimization of the number of independent rows ofHi andH̄n−i for each
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i = 1, . . . , n/2, whereHi and H̄n−i are the matrices consisting of the first
i columns and the lastn− i columns of the parity check matrixH , respectively.
The rational is as follows. The dimensionsi of the vertex spaceVi is

si = rank(HiG
T
i ) ≤ min{rank(Gi), rank(Hi)} ≤ rank(Hi) = p⊥i , (14)

whereGi is the matrix formed by the firsti columns of the generator matrixG.
The first equality in (14) follows from the fact that each vertex inVi is a linear
combination of the columns inHiG

T
i , as indicated in (1). Ifp⊥i is made small,

thensi will be small, thus reducing the number of vertices and edges. A similar
argument can be made forf ⊥i = rank(H̄n−i). For the extended codes we have
the following lemma.

Lemma 12 Let H be a parity check matrix for an extended Hamming code,
where one row ofH is the all 1’s vector. Then fori = 0, 1, . . . , n − 1,

p⊥i ≥ dlog2 ie + 1 (15)

f ⊥i ≥ dlog2(n − i)e + 1 . (16)

Proof. Let u1, . . . , up⊥i be a basis forP ⊥i in which u1 is the all 1’s vector.
Since the basis consists of linearly independent rows, one of which is constant-
valued, any column inHi is completely determined by itsp⊥i − 1 bits in rows
u2, . . . , up⊥i . Since all of the columns inHi are distinct, the number of bits
determining columni has to be no less thandlog2 ie, or p⊥i − 1 ≥ dlog2 ie.
Equation (16) can be proved similarly. q.e.d.

An examination of (13) reveals that the equality is satisfied in (15) for the left
half of H . For the right half ofH , we observe that it is identical to the left half
except for the first row (by adding the last row to the first row, we can exchange
the left and the right halves). The permutation(16, 31), (17, 30), . . . , (23, 24)
then mirrors the left and the right halves. Adding the first row to the last row,
we get the permutedH in its minimal-span form (for the properties of the
minimal-span form, see [18]):

HP
(32,26) =




00000000000000001111111111111111
00000000111111111111111100000000
00001111000011111111000011110000
00110011001100111100110011001100
01010101010101011010101010101010
11111111111111110000000000000000




It can be seen that both equations (15) and (16) are satisfied, and henceHP
(32,26)

minimizesp⊥i andf ⊥i for everyi. The dimensionspi andfi can be read off
directly from the corresponding generator matrixGP

(32,26) in its minimal-span
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form. We list half of the dimension profiles along withsi = 26− pi − fi and
bi = 26− pi − fi+1. The other half follows by symmetry.

i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
pi : 0 0 0 0 1 1 2 3 4 4 5 6 7 8 9 10 11
fi : 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 11
si : 0 1 2 3 3 4 4 4 4 5 5 5 5 5 5 5 4
bi : 1 2 3 4 4 5 5 5 5 6 6 6 6 6 6 5 5

The total number of edges is|E| = 2
∑15

i=0 2bi = 1180. This equals the
lower bound on the number of edges for any(32, 26) code, as established in
[4]. The trellis obtained here is a minimum-edge trellis. Dolinaret al. found a
minimum-edge trellis for the extended(32, 26, 4) BCH code using a heuristic
algorithm [4]. The minimum-edge trellis of any extended Hamming code can
be constructed in the manner used above for the(32, 26, 4) code. First, a lower
bound is derived forsi .

Lemma 13 For the(2m, 2m − m − 1, 4) extended Hamming code,

si =
{

p⊥i , i = 0, 1, . . . , 2m−1 − 1
f ⊥i , i = 2m−1 + 1, . . . , 2m . (17)

Proof. We havesi = s⊥
i = k − f ⊥

i − p⊥
i = p⊥i − p⊥

i . Since the weight
distribution of the dual code is{B0 = B2m = 1, B2m−1 = 2m+1 − 2}, it follows
thatp⊥

i = 0 for i = 0, 1, . . . , 2m−1 − 1. The second result can be proved in the
same way. q.e.d.

Corollary 14

si ≥ dlog2 ie + 1 i = 1, . . . , 2m−1 − 1 (18)

si ≥ dlog2(2
m − i)e + 1 i = 2m−1 + 1, . . . , 2m − 1 (19)

s2m−1 ≥ m − 1 . (20)

Proof. Equations (18) and (19) are direct consequences of Lemmas 12 and
13. Equation (20) is obtained by observing thats2m−1 = p⊥2m−1 − p⊥

2m−1 ≥
m − 1. q.e.d.

The parity check matrix of the(2m − 1, 2m − m − 1, 3) Hamming code has
as columns the set of all distinct, nonzero, binarym-tuples. By introducing an
m-bit zero column and adding an all-one row, we get the parity check matrix
Hm for the extended code. The following algorithm gives the permuted parity
check matrixHP

m :

1. Sorting: Identify each column ofHm with an m-bit integer. Arrange the
columns in ascending order.
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2. Column Exchange:Exchange columns 2m−1 + i and 2m − 1 − i of the
rearranged matrix fori = 0, 1, . . . , 2m−1 − 1.

3. Minimal-Span Form (optional): Add the top row to the bottom row.

Form = 5, the above algorithm givesHP
5 = HP

(32,26). By reading offs⊥
i = si

from HP
m , it can be seen that all the equalities are satisfied in equations (18),

(19) and (20). Thus theHP
m has a minimum-vertex trellis. The next result shows

that the trellis ofHP
m is also minimum-edge.

Theorem 15 The trellisT = (V , E) of theHP
m is both minimum-vertex and

minimum-edge. Further, the number of vertices and the number of edges are
given by

|V | = (22m+1 − 9 · 2m−1 + 10)/3
|E| = (22m+2 − 9 · 2m+1 + 20)/3

respectively.

Proof.We have seen thatT is minimum-vertex. To see thatT is also minimum-
edge, we show thatbi is minimized for eachi. For 0≤ i ≤ 2m−1 − 1,bi = k −
pi−fi+1 = si+1−(p⊥

i+1−p⊥
i ) = si+1−p⊥

i+1. The only possible position for a
nonzerop⊥

i+1 is ati = 2m−1−1, and indeedp2m−1 = 1. Thusp⊥
i+1 is maximized,

which means thatsi is minimized, and so isbi . For 2m−1 ≤ i ≤ 2m − 1, note
thatbi = si+1 + 1 − (f ⊥

i − f ⊥
i+1) and apply the same argument forfi .

To compute the number of vertices, note that the trellisT is symmetric, so
one need only consider half of the trellis. Using Equations (18) and (20) with
equalities, we have

|V | = 2s2m−1 + 2
2m−1−1∑

i=0
2si

= 2m−1 + 2(1 + 2 +
2m−1−1∑

l=2
2l−22l + (2m−2 − 1)2m

= (22m+1 − 9 · 2m−1 + 10)/3 .

The expression for|E| can be obtained by noting thatbi = si + 1 for i =
0, 1, . . . , 22m−1 − 2, b2m−1−1 = s2m−1−1, and thus |E| = 2|V | − 2m

− 2m+1. q.e.d.

3.2 The Minimum-edge Trellis for the (32, 21, 6) BCH Code

Let C ′ be the(31, 21, 5) BCH code, and letC be the extension ofC ′ obtained
by adding a parity bit. Their dual codes are denoted byC ′⊥ andC⊥ respectively.
Given a ∈ C andb ∈ C⊥, let a′ andb′ be the restrictions ofa andb on C ′

andC ′⊥ respectively. Note that fora ∈ C, eithera = (a′, 0) or a = (a′, 1).
For b ∈ C⊥, however, eitherb = (b′, 0) or b = 1 + (c′, 0) for somec′ ∈ C ′⊥,
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where1 is the all-one code word ofC⊥. Let 1′ be the all-one vector obtained
by removing the parity check bit from1.

The polynomial representations are used exclusively here for code words
in C ′ andC ′⊥. For example,a(x) is the polynomial ofa′ ∈ C ′, not a ∈ C.
When we speak of the zeros (nonzeros) ofa ∈ C, we actually mean the zeros
(nonzeros) ofa(x). We usemi(x) to denote the minimal polynomial whose
roots lie in conjugate classi, andCi to denote the index set of conjugate class
i (i.e. the associated cyclotomic coset). In our case, we have

m0(x) = x + 1
m1(x) = x5 + x2 + 1 = x5m15(1/x)

m3(x) = x5 + x4 + x3 + x2 + 1 = x5m7(1/x)

m5(x) = x5 + x4 + x3 + x + 1 = x5m11(1/x) ,

and
C0 = {0}
C1 = {1, 2, 4, 8, 16} C3 = {3, 6, 12, 24, 17}
C5 = {5, 10, 20, 9, 18} C7 = {7, 14, 28, 25, 19}
C11 = {11, 22, 13, 26, 21} C15 = {15, 30, 29, 27, 23} .

We also use the notation such thatCj = Ci if j = (2ki mod 31) for somek,
e.g.,C−7 = C24 = C3.

The generator polynomial used to representC ′ is g(x) = m1(x)m3(x) =
x10+x9+x8+x6+x5+x3+1. The only other polynomial that will generate a
BCH codeC ′′ with the same parameters ism7(x)m15(x). HoweverC ′ andC ′′ are
equivalent; in fact, the code polynomials of one are the reciprocals of the code
polynomials of the other. This justifies allusions to the(31, 21, 5) BCH code.

The weight distributions ofC ′ andC ′⊥ have been found to be [13]

i : 0 5 6 7 8 9
W ′

i : 1 186 806 2635 7905 18190
i : 10 11 12 13 14 15

W ′
i : 44392 85560 142600 195300 251100 301971

and
i : 0 12 16 20

W ′⊥
i : 1 310 527 186

respectively, whereW ′
31−i = W ′

i for i = 0, 1, . . . , 15. The weight distributions
of C andC⊥ follow immediately:

i : 0 6 8 10 12 14 16
Wi : 1 992 10540 60152 228160 446400 603942

and
i : 0 12 16 20 32

W⊥
i : 1 496 1054 496 1

whereW32−i = Wi for i = 0, 1, . . . , 15.
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To find a minimum-edge trellis forC, start with a lower bound developed
in [4] that states that for an(n, k) code,

pi ≤ p∗
i = min{K(i, d), i − (n − k) + K(n − i, d⊥)} (21)

fi ≤ f ∗
i = min{K(n − i, d), k − i + K(i, d⊥)} (22)

for any permutations of the code. In (21) and (22),d andd⊥ are the minimum
distances of the code in consideration and its dual respectively, andK(i, d) is
the largest possible dimension for a binary linear code of lengthi and minimum
distanced. The exact value ofK(i, d) or a bound can be found in the tables of
[3] for n ≤ 127. The bounds in (21) and (22) can be derived from

pi = i − (n − k) + f ⊥
i

fi = k − i + p⊥
i

, (23)

which can be obtained through (3), and (5)–(7).
In the case at hand,(n, k, d, d⊥) = (32, 21, 6, 12). Since the bounds are

symmetric, we list half profiles of the bounds along with the derived lower
boundss∗

i andb∗
i on si andbi :

i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p∗

i : 0 0 0 0 0 0 1 1 1 2 2 3 3 4 5 5 6
f ∗

i : 21 20 19 18 17 16 15 14 13 12 11 10 10 9 8 7 6
s∗
i : 0 1 2 3 4 5 5 6 7 7 8 8 8 8 8 9 9

b∗
i : 1 2 3 4 5 6 6 7 8 8 9 8 9 9 9 10 10

(24)
The lower bound on the edge count is then given by

E∗ =
15∑
i=0

2b∗
i = 8316 (25)

The heuristic algorithm in [4] finds a trellis of 17,340 edges. We now show that
the lower bound profile in (24) is not achievable, as is the lower bound on the
edge count in (25). We begin by noting that

Lemma 16 C ′⊥ ⊂ C ′ and henceC⊥ ⊂ C.

Proof. The generator polynomialh(x) of C ′⊥ hasg(x) as a factor: withn = 31
andk = 21 we have

h(x) = xk(x−n + 1)/g(x−1)

= x21m5(x
−1)m7(x

−1)m11(x
−1)m15(x

−1)m0(x
−1)

= m11(x)m3(x)m5(x)m1(x)m0(x)

= m11(x)m5(x)m0(x)g(x)

q.e.d.
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Theorem 17 The profile bound in(24) is not achievable.

Proof. Suppose that we have a permutation that achieves the profile in (24).
Sincef12 = 10, usingp⊥

i = fi − (k − i), we havep⊥
12 = 10− (21− 12) = 1,

andp⊥
i = 0, for 0 ≤ i ≤ 11. Thus inC⊥ (possibly permuted), there is a code

wordc1 of weight 12 with all of its 1’s packed in the first 12 bits. By Lemma 1,
c1 is also inC. But this would makep12 = p11+1, which contradictsp11 = p12

in the assumption. q.e.d.

An alternative proof of Theorem 17 uses the fact thatC⊥ contains the all-
ones word1. If the bound in (24) is achieved, then by symmetry,C⊥ containsc1

as well asc2 of weight 12, with 1’s packed in the last 12 bits. But then the word
1− c1 − c2 lies inC⊥. This word has weight 32− 12− 12 = 8, a contradiction
of d⊥ = 12.

A tighter lower bound on the edge count than (25) will now be established.
A trellis will then be described that satisfies the improved bound with equality.

The following is a subcode analysis that identifies a “critical” subcode, and
then uses the containment of this subcode in past subcodes to derive bounds
on the dimension of the past subcodes. These bounds on dimension are used to
improve the profile bound in Equation (24).

Definition. Two code wordsaandb are said to benonoverlappingif w(a+b) =
w(a) + w(b).

Lemma 18 Let a = (a0, a1, . . . , a31) be a code word inC⊥ of weight12.
DefineC(a) = {(c0, c1, . . . , c31) ∈ C : (a0c0, a1c1, . . . , a31c31) ∈ C} (C(a)

is said to begeneratedby a). ThenC(a) is a subcode ofC and contains two
nonoverlapping code words inC of weight6.

Proof. ObviouslyC1 is a subcode ofC. Let I be the index set of the nonzero
components ofa. By Lemma 16,a is also inC, then∑

i∈I

hi = 0

Since the rank of the parity check matrixH(32,21) is 11 and|I | = 12, there must
be anI1 ⊂ I such that ∑

i∈I1

hi =
∑

i∈I\I1

hi = 0

Hence, both binary vectors withI1 andI\I1 as their index sets of the nonzero
components are code words ofC, and must have weight 6. q.e.d.

Lemma 18 says that a subcode generated bya has at least dimension 2. It
will now be shown that such a subcode has exactly dimension 2.

Consider the set� of all code words of weight 12 inC⊥. For a code word
a ∈ �, eithera = (a′, 0) for somea′ ∈ C ′⊥, or a = 1 + (b′, 0) for some
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b ∈ C ′⊥ with weight 20. Based on this observation, we partition� into �1 and
�2, where�1 consists of alla ∈ � of the form(a′, 0), and�2 = �\�1. Let
�′ be the set� restricted onC ′⊥; that is, the set of all code words in� with
the parity bit removed.�′

1 and�′
2 are similarly defined. Thus all code words

(of C ′⊥) in �′
1 have weight 12 and all code words in�′

2 have weight 11.

Lemma 19 For a′, b′ ∈ �′, if a′ + b′ /∈ �′, thenw(a′ + b′) ≥ 15.

Proof. The three possible weights for code words inC ′⊥ are 12, 16 and 20.
Eithera′ + b′ ∈ C ′⊥ or a′ + b′ = 1′ + c′ for somec′ ∈ C ′⊥ by the definition of
�′, andw(c′) < 20. In the former case we must havew(a′ + b′) ≥ 16, and in
the latter case,w(a′ + b′) ≥ 15. q.e.d.

Lemma 20 Let a ∈ �1. Then the nonzeros ofa are either the zeros ofm7(x)

or the zeros ofm7(x)m15(x).

Proof.From the proof of Lemma 16, we have

x31 + 1 = h(x)m7(x)m15(x) .

Sincea′ ∈ C ′⊥, it follows thath(x) dividesa(x), and there are only three possi-
bilities for the nonzeros ofa: (i) the zeros ofm7(x), (ii) the zeros ofm7(x)m15(x)

and (iii) the zeros ofm15(x). In the last case, the nonzero-coefficient terms of
the MS polynomialA(z) of a are{z31−i , i ∈ C15} = {z, z2, z4, z8, z16}. Thus
deff [A(z)] is 15. By Theorem 12 in Section 2.4,w(a) ≥ 31− 15 = 16, contra-
dictinga ∈ �1. q.e.d.

Corollary 21 Let a ∈ �1. Then the nonzero-coefficient terms of its MS poly-
nomialA(z) are either{zi, i ∈ C−7 ∪C−15 = C3 ∪C1} or {zi, i ∈ C−7 = C3}.

Lemma 22 Let a ∈ �2. Then the nonzeros ofa are the zeros ofm0(x)m7(x)

m15(x) or the zeros ofm0(x)m7(x).

Proof.Sincea = 1 + (b′, 0) for someb′ ∈ C ′⊥,

a(x) =
30∑
i=0

xi + b(x) = x31 + 1

x + 1
+ b(x) .

Thus the nonzeros ofaare the nonzeros ofb(x) and1 ∈ GF(25). The conclusion
follows from the argument in the proof of Lemma 20. q.e.d.

Lemma 23 Let a ∈ �2. Then the nonzero-coefficient terms of its MS polyno-
mial A(z) are either{zi, i ∈ C0 ∪ C3 ∪ C1} or {zi, i ∈ C0 ∪ C1}.
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Lemma 24 Let0 6= α ∈ GF(25). Then the equationx3 + α3 = 0 has only one
root x = α in GF(25).

Proof. x3 + α3 = (x + α)(x2 + αx + α2). Supposeβ ∈ GF(25) is a root of
x2 + αx + α2. Certainlyβ 6= 0 andβ 6= α. Sinceβ2 + αβ + α2 = 0, or
(β/α)2 + (β/α) + 1 = 0, it follows thatβ/α is in bothGF(22) andGF(25).
However,GF(22) does not have common elements withGF(25) other than 0
and 1, a contradiction. q.e.d.

Let a = (a0, a1, . . . , an−1) andb = (b0, b1, . . . , bn−1). Define thecompo-
nentwise productof a andb to be

ab = (a0b0, a1b1, . . . , an−1bn−1)

If A(z) and B(z) are the MS polynomials ofa and b respectively, then by
Theorem 11 of Section 2.4, the MS polynomial ofab is given by

AB(z) = [A(z)B(z)]n

Lemma 25 For anya′, b′ ∈ �′, a′b′ /∈ C ′.

Proof.We need to consider three cases: (i)a′, b′ ∈ �′
1; (ii) a′ ∈ �′

1, b′ ∈ �′
2 and

(iii) a′,b′ ∈ �′
2. Case (i). By Corollary 21, the nonzero-coefficient terms ofA(z)

orB(z) are either{z, z2, z3, z4, z6, z8, z12, z16, z17, z24} or {z3, z6, z12, z17, z24}.
It is straightforward to verify that the coefficient ofz27 in A(z)B(z) is always
(AB)31−27 = (AB)4 = A7B28 + A28B7. SinceA28 = a(α28) = a((α7)4) =
(a(α7))4 = A4

7 and similarlyB28 = B4
7, we have(AB)4 = A7B7(A

3
7 + B3

7).
Either(AB)4 is zero or not. If(AB)4 is not zero, thenα4 is not a root ofa′b′,
thusa′b′ 6∈ C ′. If (AB)4 = 0, then(A3

7 + B3
7) = 0. By Lemma 24, this only

happens whenA7 = B7, or (A+B)7 = A7 +B7 = 0. By Corollary 21,a′ + b′

is not in�′, which implies, in the light of Lemma 19, thatw(a′ + b′) ≥ 15.
Hencew(a′b′) = [w(a′) + w(b′) − w(a′ + b′)]/2 ≤ 4. Again,a′b′ cannot be
in C ′. Cases (ii) and (iii) can be proved using similar arguments, along with
Corollaries 21 and 23. q.e.d.

The next corollary expands the result of Lemma 25 to the extended code.

Corollary 26 For anya, b ∈ �, ab 6∈ C.

Proof.Consider two cases: (i) eithera = (a′, 0) or b = (b′, 0). In this case,ab
is a′b′ with the addition of a zero parity bit; (ii)a 6= (a′, 0) andb 6= (b′, 0). In
this case,ab is a′b′ with the one parity bit. In either case, sincea′b′ 6∈ C ′ by
Lemma 25,ab 6∈ C. q.e.d.

LetS12 be the set of all subcodes ofC generated by code words of weight
12 inC⊥. The following theorem characterizes the structure of such subcodes.
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Theorem 27 Any subcodeS ∈ S12 is a (12, 2, 6) code.

Proof.Let a andb be in�. b does not belong to the the subcodes generated by
a, otherwise we would haveb = ac for somec ∈ C, soab = aac = ac = b,
contradicting Corollary 26. Thus there are 496 subcodes inS12, generated by
496 code words in�. Sincew(ab) ≤ 6, no code word inC of weight 6 belongs
to both subcodes generated bya andb by Corollary 26. Since a subcode inS12

contains at least two weight-6 code words ofC by Lemma 18, all 496 subcodes
contain at least 496× 2 = 992differentweight-6 code words ofC. But there
are exactly 992 weight-6 code words inC, therefore each subcode has exactly 2
(nonoverlapping) weight-6 code words ofC. Consequently there are only four
code words in the subcode, with a weight distributionW0 = W12 = 1,W6 = 2,
making it a(12, 2, 6) code. q.e.d.

Lemma 28 An(n, 3) subcode ofC which contains a subcode ofS ∈ S12 must
haven ≥ 14.

Proof.Let S3 be such a subcode andS2 ∈ S12 be contained inS3. Let a be the
weight-12 code word inS2 and letb be a code word inS3 but not inS2. Clearly
n = w(a) + w(b) − w(ab). We prove the result by showing thatw(ab), and
hencen, is even.

Case (i): botha′ andb′ have odd weights. By Corollary 23, the (possible)
nonzero-coefficient terms ofA(z) are{zi, i ∈ C0∪C1∪C3}. Since the generator
polynomial ofC ′ is m1(x)m3(x), the (possible) nonzero-coefficient terms of
B(z) are{zi, i ∈ C0∪C1∪C3∪C5∪C11}. Note thatA0 = B0 = 1. Then it can
be verified by expandingA(z)B(z) that the constant term (modulo(z31 − 1))
in A(z)B(z) is 1, meaning thata′b′ has an odd weight. Since the parity bits of
both a andb are 1, we have thatw(ab) = w(a′b′) + 1 is even. Case (ii): at
least one of thea′ andb′ has an even weight. The possible nonzero-coefficient
terms ofa′ andb′ are exactly the same as in case (i) except that at least one of
theA(z) andB(z) does not have the constant term. Similarly we can verify that
there is no constant term (modulo(z31 − 1)) in A(z)B(z), and it follows that
w(ab) = w(a′b′) is even. q.e.d.

A subcodeSn of lengthn, which contains a subcodeSn−1, has a dimension
k(Sn) at mostk(Sn−1) + 1. This proves the following corollary.

Corollary 29 An (n, 4) subcode ofC containing a subcode ofS ∈ S12 must
haven ≥ 15. An (n, 5) subcode ofC containing a subcode ofS ∈ S12 must
haven ≥ 16.

Let i1 be such thatp⊥
i1

= 1 andp⊥
i = 0 for i = 0, 1, . . . , i1 − 1. Obviously

i1 ≥ 12. Combining the constraints posed by (23) and (24), Theorem 27,
Lemma 28 and Corollary 29, bounds on the half profiles of the (32, 21) code
for i1 = 12, 13, 14 and 15 can be written as follows.
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i1 = 12 :
i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pi : 0 0 0 0 0 0 1 1 1 1 1 1 2 2 3 4 5
fi : 21 20 19 18 17 16 15 14 13 12 11 10 10 9 8 7 6
si : 0 1 2 3 4 5 5 6 7 8 9 10 9 10 10 10 10
bi : 1 2 3 4 5 6 6 7 8 9 10 10 10 11 11 11

(26)

i1 = 13 :
i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pi : 0 0 0 0 0 0 1 1 1 1 1 1 2 2 3 4 5
fi : 21 20 19 18 17 16 15 14 13 12 11 10 9 9 8 7 6
si : 0 1 2 3 4 5 5 6 7 8 9 10 10 10 10 10 10
bi : 1 2 3 4 5 6 6 7 8 9 10 11 10 11 11 11

(27)

i1 = 14 :
i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pi : 0 0 0 0 0 0 1 1 1 2 2 2 2 2 3 4 5
fi : 21 20 19 18 17 16 15 14 13 12 11 10 9 8 8 7 6
si : 0 1 2 3 4 5 5 6 7 7 8 9 10 11 10 10 10
bi : 1 2 3 4 5 6 6 7 8 8 9 10 11 11 11 11

(28)

i1 = 15 :
i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pi : 0 0 0 0 0 0 1 1 1 2 2 3 3 3 3 4 5
fi : 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 7 6
si : 0 1 2 3 4 5 5 6 7 7 8 8 9 10 11 10 10
bi : 1 2 3 4 5 6 6 7 8 8 9 9 10 11 11 11

(29)

In the case ofi1 = 15, the existing constraints allow thatp14 ≤ 4. Suppose that
p14 = 4. The fact thati1 = 15 means that we have a code word inC⊥ hence in
C with all of its nonzero bits in the first 15 bits, which makesp15 = p14+1 = 5.
This contradicts Corollary 29. We then havep14 ≤ 3 as shown in (29).

Fori1 = 16, we have a code worda in C⊥ hence inC with all of its nonzero
bits in the first 16 bits, but now there are two possibilities: (i)w(a) = 12 and
(ii) w(a) = 16. For case (i), we can write the half profile bound as follows:

i1 = 16, w(a) = 12 :
i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pi : 0 0 0 0 0 0 1 1 1 2 2 3 3 3 4 4 5
fi : 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 6
si : 0 1 2 3 4 5 5 6 7 7 8 8 9 10 11 11 10
bi : 1 2 3 4 5 6 6 7 8 8 9 9 10 11 11 11

(30)

For case (ii), we consider the subcodeS of length 16 generated bya. Let k(S)

be the dimension of theS. The dual codeS⊥ of S is then{ab : b ∈ C⊥}. Since

w(a + b) = w(a) + w(b) − 2w(ab) = 16+ w(b) − 2w(ab) ≤ 20 ,
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we have

w(ab) ≥ [w(b) − 4]/2 ≥ (12− 4)/2 = 4 .

The minimum distanced(S⊥) of S⊥ is at least 4 (in fact, it is exactly 4). This
implies that forS⊥, f ⊥

i (S) = 0, i = 13, 14, 15 and 16, from which we get

pi = pi(S) = k(S) + f ⊥
i + i − 16 = k(S) + i − 16 ,

for i = 13, 14, 15 and 16. We can also get a bound forp11 from d(S⊥) ≥ 4. In
this case we must havef ⊥

11 ≤ 1, and

p11 = k(S) + f ⊥
11 + 11− 16 ≤ k(S) − 4 .

Sincep16 = k(S) ≤ 6 by (24), we have obtained the following profile bound:

i1 = 16, w(a) = 16 :
i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pi : 0 0 0 0 0 0 1 1 1 2 2 2 3 3 4 5 6
fi : 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 6
si : 0 1 2 3 4 5 5 6 7 7 8 9 10 10 10 10 9
bi : 1 2 3 4 5 6 6 7 8 8 9 10 10 11 11 10

(31)

For i1 > 16,fi is strictly decreasing withi for i ≤ 16, giving us the following
profile bound.

i1 > 16 :
i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pi : 0 0 0 0 0 0 1 1 1 2 2 3 3 4 5 5 6
fi : 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
si : 0 1 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10
bi : 1 2 3 4 5 6 6 7 8 8 9 9 10 10 10 11

(32)

We are now able to compute the lower boundsEH
i1

on the edge count for the half
profiles for various possiblei1. From Equations (26)–(29) and (32), we have

EH
12 = 10,302, EH

13 = 12,350, EH
14 = 10,558,

EH
15 = 8,510, EH

(i1>16) = 6,974 (33)

EH
16 can be obtained by considering both (30) and (31). (30) gives an edge count

of 7,998 and (31) gives 8,510. Therefore

EH
16 = 7,998 (34)
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A lower bound on the edge count over all possible permutations can be obtained
immediately from (33) and (34):

E ≥ 2 min{EH
12, E

H
13, E

H
14, E

H
15, E

H
16, E

H
(i1>16)} = 13,948 (35)

Note that the half profile which gives this lower bound is (32). This new bound
is a significant improvement over the bound given by (25) on one hand, but on
the other hand it limits further reductions in trellis complexity. Better yet (or
worse yet), the bound given in (35) can be further tightened.

A profile with its left half as (32) cannot be symmetric (i.e.,pi = f32−i , fi =
p32−i). Therefore we cannot have a full profile in which both halves are identical
to (32). Note that if we decreasep16 = 6 to p16 = 5 in (32), the edge count
remains unchanged. It is possible to construct a symmetric profile based on this
modified half profile. This can be done by using the symmetric mapping

pi = f32−i , fi = p32−i (36)

to map the modified left half profile to the right half, and concatenating the two
halves. The complete profile is given by (37). The profile gives an edge count of
2EH

(i1>16) = 13, 948. We will show, however, that this bound is not attainable.
Some preliminary results are necessary for the proof.

i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
pi : 0 0 0 0 0 0 1 1 1 2 2 3 3 4 5 5 5
fi : 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
si : 0 1 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10
bi : 1 2 3 4 5 6 6 7 8 8 9 9 10 10 10 11 11

i : 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
pi : 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
fi : 5 5 5 4 3 3 2 2 1 1 1 0 0 0 0 0 0
si : 11 10 9 9 9 8 8 7 7 6 5 5 4 3 2 1 0
bi : 11 10 10 10 9 9 8 8 7 6 6 5 4 3 2 1

(37)

Lemma 30 If p14 = 5, thenf14 = 7.

Proof.p14 = 5 implies thati1 > 14, since otherwise we would havep14 = 3
by Corollary 29. Thusfi is strictly decreasing:fi = fi−1 −1 for i < 14, which
givesf14 = 7. q.e.d.

Lemma 30 shows that the future codeF14 is an(18, 7, 6) code if the past
codeP14 is a(14, 5, 6) code. We now consider the dual code ofF14, which is
the future projection subcodeF⊥14 of F⊥.
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Lemma 31 If p14 = 5, then the minimum distance ofF⊥14 is at least3.

Proof. Let a ∈ C⊥. Let aP ∈ F⊥14 be the projection ofa on F⊥14. Case
(i): w(a) = 12. We must havew(aP ) ≥ 3 since otherwise we would have a
subcode of dimension 6 and length not larger than 16 consisting ofP14 anda,
a contradiction to Corollary 29. Case (ii):w(a) = 16. Again,w(aP ) ≥ 3, since
the only other possibility is thatw(aP ) = 2, in which case there would be a
(16, 6, 6) subcode generated bya. This subcode containsP14, which violates
(31). Finally, case (iii):w(a) = 20. In this case we havew(aP ) ≥ 6. We
conclude thatw(aP ) ≥ 3 for all aP ∈ F⊥14. q.e.d.

Theorem 32 If p14 = 5, then there is no(14, 5, 6) subcode inF 14 .

Proof. Since the minimum distance ofF⊥14 is at least 3 by Lemma 31, any
subcode of length 4 ofF⊥14 has a dimension of at most 1. This givesf ⊥

14(F14) =
f14(F

⊥14) < 2. Applying the duality identities toF14 andF⊥14, we have

p14(F14) = f ⊥
14(F14) + 14+ k(F14) − n(F14) < 5

wheren(F14) = 18 andk(F14) = 7 by Lemma 30. This proves the theorem.
q.e.d.

Theorem 33 There are no nonoverlapping(14, 5, 6) subcodes.

Proof.This is a direct consequence of Theorem 32. q.e.d.

Theorem 34 The edge countE > 13,948.

Proof.Previous lemmas, theorems and corollaries have shown that (37) is the
only possible profile to achieve (35). Note that in (37),p14 = f18 = 5, so we
have two(14, 5, 6) subcodes, one on the first 14 bits and the other one on the
last 14 bits. This contradicts Theorem 33. q.e.d.

Having precluded the profile in (37), a new lower bound on the edge count
can be obtained by considering the following two cases. (i) Both half profiles
havei1 > 16 when considered as left half profiles. The best left half profiles
with respect to the edge count are given in (32) and (37). The “second best” half
profile in this case will have to havep14 = 4 under the constraint that the other
half profile already hasp14 = 5. The resulting full profile will be the same as
(37), but with eitherp14 or f18 being changed to 4. Such a profile gives an edge
count of 14,972. (ii) One half profile hasi1 ≤ 16. An examination of (33) and
(34) shows that the combination of the profiles in (30) and (32) gives the lowest
edge count in this case, which is again 14,972. Thus we have established the
following
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Theorem 35 The edge countE ≥ 14,972.

A computer search was devised that used several of the above theorems,
lemmas, and corollaries to limit the search space. A permutation which gives a
trellis with 14,972 edges was found. Theorem 35 can thus be reexpressed as an
exact value for the minimal edge complexity for the extended BCH(32, 21, 6)

code.
Consider the following parity check matrixH(32,21) in a standard form,

H(32,21) =




10010100100111101010110000000000
11011110110100011111101000000000
11111011111101100101000100000000
01111101111110110010100010000000
10101010011000110011100001000000
11000001101011110011000000100000
01100000110101111001100000010000
10100100111101010110000000001000
01010010011110101011000000000100
00101001001111010101100000000010
11100111000101001100100000000001




(38)

The permutation

(0, 26, 16, 10, 13, 4, 7, 14, 3, 19, 5, 1, 25, 30, 29, 27, 21, 6, 17)
(2, 23, 15, 28, 22, 8, 11, 24, 18)(9, 20)(12)(31)

yields a matrix with an associated trellis that satisfies the bound in Theorem 35
with equality. The permuted parity check matrix is given by

H ′
(32,21) =




00001101010010100101011110000000
00010101111110100110001101101000
00000000011101110110010111111100
00000001110111010111101110110000
00000001101101110010001010001010
00000001110000110001010010111001
00100100110101000000011110101000
00000001110111111000010101000000
01000101001100010101000110101000
00000010100001010011011101011000
10000100001011100000011101110000




The profile of the resulting trellis is the same as (37) but withp14 being changed
to 4.

From the implementation perspective it is sometimes desirable to have a
symmetric trellis (that is,pi = fn−i , fi = pn−i for an (n, k) code). It is not
difficult to see, from the arguments for Theorem 35, that the number of edges
for symmetric trellises is lower bounded by the edge count of the following
profile:
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i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
pi : 0 0 0 0 0 0 1 1 1 2 2 3 3 4 4 5 5
fi : 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
si : 0 1 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10
bi : 1 2 3 4 5 6 6 7 8 8 9 9 10 10 10 11 11

i : 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
pi : 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
fi : 5 5 4 4 3 3 2 2 1 1 1 0 0 0 0 0 0
si : 11 10 9 9 9 8 8 7 7 6 5 5 4 3 2 1 0
bi : 11 10 10 10 9 9 8 8 7 6 6 5 4 3 2 1

(39)

The only difference between (37) and (39) is thatp14 andf18 are 4 in (39)
rather than 5 in (37). The edge count in (39) is 15,996. Again, the profile in (39)
is achievable. For example, the following permutation yields a trellis with the
desired profile.

(0, 26, 17, 2, 16, 27, 22, 9, 29, 28, 23, 12, 3, 15)
(1, 21, 7, 18, 25, 20, 11, 5, 13, 4, 14)
(6, 24, 19, 10)(8)(30)(31)

(40)

The permuted parity check matrix is given by (41).

HP
(32,21) =




01101101100110010000100101000000
00110001101111110000101011110000
00001100101011110101111010101000
00011011100111100101111101000000
00011001001001010111001011000000
10011101100000110001010110000000
00111100100000101100101011000000
00010101100100010101101000100100
00101001011010100001101110000000
00010100000001000101110111100010
00100100001100110100110001100001




(41)

4 Conclusions

This paper focused on the construction of minimum-edge trellises for some
BCH codes, and in particular, the(32, 26, 4) and (32, 21, 6) extended BCH
codes, which have been considered or employed in wireless paging systems.

The minimum-edge trellises provide the most efficient structures for
maximum-likelihood decoding using the Viterbi algorithm. The construction
of such a trellis for the(32, 26, 4) extended BCH code was presented in the
paper and generalized to the entire class of the(2m, 2m − m − 1, 4) extended
Hamming codes, which is a subclass of the extended BCH codes.
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A subcode analysis was developed to show that the minimal edge count for
the trellis for the(32, 21, 6) extended BCH code is 14,948. A trellis with this
edge complexity was identified. The analysis means developed in the paper can
be applied to the construction of minimum-edge trellises for the variants of the
(32, 21) BCH code, such as the(30, 18) shortened BCH code used in ERMES,
and for other BCH codes as well.

The trellises developed for the (32, 26) and (32, 21) codes are highly ir-
regular, i.e. the constituents of their vertex sets change significantly with trellis
depth. This creates a problem with the implementation, for it can require a
separate lookup table at each trellis depthi. It has been shown by one of the
authors [24] that a mapping technique can be used to pack the vertices at depth
i into the set{0, 1, . . . , 2si − 1}, wheresi is the dimension of the vector space
formed by the vertex set at depthi. The map is described by a single matrix,
which requires far less storage capacity thann distinct lookup tables.

The primary applications of interest for this work involve small mobile
devices that are typically used in a fading environment. It has been shown
elsewhere [21] that the performance of the SDD’s developed here are superior
to that of the standard HDD’s over a Rayleigh fading channel. The (32, 21)
SDD provides substantial coding gain relative to the (32, 21) HDD, while the
(32, 26) SDD is comparable to the (32, 21) HDD. The (32, 21) SDD thus offers
the opportunity for improved performance, while the (32, 26) SDD offers an
increase in data throughput through a reduction in overhead.
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