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Abstract. This paper provides an overview of trellis descriptions for block
codes. The design and implementation of efficient trellis decoders for the (32,
26) and the (32, 21) BCH codes is then considered in some detail. Minimum
edge and vertex counts for the (32, 26) code are derived, and then generalized
for arbitrary extended Hamming codes. A subcode analysis technique is used
to tighten the lower bound on edge complexity for the (32, 21) code. A trellis

is then found that satisfies the optimized lower bound with equality.
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1 Introduction

The word lengths for paging and mobile messaging systems generally dictate
the use of short block codes. For example, POCSAG (a ubiquitous paging
standard in the 1980’s and early 1990’s) and Motorola’s FLEX protocol (the
de-facto standard in high speed paging in North America, South America, and
Southeast Asia) both use the (32, 21) BCH code. This same code is used on
the forward channel of Motorola’s ReFLEX protdeoa FLEX derivative that
provides two-way service and extended capacity through frequency reuse and
time sharing [5]. The European Radio Messaging System (ERMES) uses a
(30, 18) code that is related to the (32, 21) code. The decoders used in these
systems reside in small mobile units, and are thus severely constrained by power
and weight limitations. Simple algebraic, hard decision decoders (HDD's) are
generally used.

* This work was funded by National Science Foundation Grant Number NCR-9216686.
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In this paper, we explore the design and implementation of trellis-based
soft decision decoders (SDD’s) for the (32, 21) and (32, 26) BCH codes. SDD’s
are particularly useful in a fading environment, as they can incorporate channel
attentuation information into the decoding process [25]. We begin with the
(32, 26) BCH code, which is a member of the general family of extended
Hamming codes. Minimum-edge and vertex counts are derived for all extended
Hamming codes. A simple algorithm is then presented for constructing trellises
that satisfy the minimum-edge and vertex counts.

A subcode-based analysis technique is used to find tight lower bounds on
the dimensions of the past and future subcodes of the (32, 21) BCH code.
This technique begins by identifying a class of “critical” (12, 2, 6) subcodes
in the (32, 21) code. A mapping is then defined that relates these subcodes to
minimum weight nonzero words within the dual of the (32, 21) code. Knowledge
of the dual code weight distribution and subcode profile is then used to create
restrictions on the past subcode dimension profile for the (32, 21) code. This
leads to a lower bound on edge count that is shown to be optimal through the
identification of a trellis that satisfies the bound with equality.

2 Trellis Decoders for Block Codes

This section provides a review of the various techniques that have been devel-
oped for designing and analyzing trellis decoders for block codes. Section 2.1
illustrates a method for constructing the trellis of a block code given its parity
check matrix. Section 2.2 discusses the various complexity measures that have
been proposed for evaluating the resulting trellis.

Two codes arequivalentif one can be described as a permutation of the
other. On memoryless channels, equivalent codes provide the same coding gain.
On the other hand, the minimum-edge trellises for equivalent codes can have
substantially different complexity. This has spurred much effort in finding the
permutation of a code that results in the “best” trellis, i.e. one of minimal
complexity with respect to a certain complexity measure. The identification of
the best, or simply a good, permutation of a code requires a detailed exploration
of the relationship between the code and its dual. Section 2.3 presents several
well-known duality identities necessary for that purpose.

Section 2.4 reviews the Mattson-Solomon (MS) polynomial and some of
its properties. The MS polynomial is a useful tool for the study of cyclic codes
in general, and the BCH codes in particular. We will make use of the MS
polynomial when we search for the minimal complexity trellis for the (32, 21)
BCH code.
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2.1 Trellises of Linear Binary Block Codes

We now review the trellis construction for binary linear block codes that was
first described by Bahét al. in 1974 [2]. LetH = [hq, ..., h,] be a parity
check matrix for arfn, k) codeC, whereh;,i = 1, ..., n are the lengthin — k)
column vectors of{. The vertices of the trellis to be constructed are a subset
of a 2"=% x n grid. Identify each of the’2* grid positions at depthwith an

(n — k)-tuple s, and let0 at depth 0 and at depthn be the source and sink,
respectively. A path from the source to the sink is then completely specified by

a state (vertex) sequen¢@, s;,...,S,_1,0). Letc = (¢, ..., ¢,) be a code
word, and define the state seques@ = (S, S1, ..., S,) as follows:
=0
. 1
S+1=S+Ci+lhi+l l=17'~~5n9 ()

where the coordinate addition takes plac&H(2). By the definition of a parity
check matrix {f), we haves, = 0. Each code word can be mapped onto a unique
path from the source to the sink by (1). The set of all p&slrs : c € C} form

a trellis for the code”. Such a trellis for a (7, 4) Hamming code is shown in
Figure 1.

The trellis developed above and exemplified by Figure 1 is commonly re-
ferred to here as the BCJR trellis [18]. It is possible to construct numerous
trellises for a given cod€'. Clearly trellises with low edge or vertex count
for a code are more useful in actual implementations. In an appendix of [6],
Forney proposed a trellis for binary codes which Muder later showed to have a
minimal number of vertices at each depth [19]. Further, Muder showed that any
minimal trellis is isomorphic to the Forney trellis. In [18], McEliece shows that
the BCJR trellis also minimizes the vertex count as well as the edge count at
each depth, and therefore the two trellises are identical up to an isomorphism.
For these reasons, the minimal trellis or the BCJR trellis of a ¢oaeéll be
referred to as “the trellis of the cod#'.

The vertex setV; consists of all states or verticess in (1). All pairs
(S, si+1) form the edge seE; ;1. The vertex seV and the edge sef of
the trellis are the unions df; and the unions oF;, respectively. We now give
some characterizations of theandE; ; 1. We follow the notation of McEliece
[18], from which the following three Theorems have been taken.

Theorem 1 V; and E; ;11 are vector spaces over GE).

Definition. Thei’* past subcode?;, thei’” past projectionP’, thei'" future
subcodeF; and thei" future projectionF’ of C are defined as

Pi.={CGC:Ci+l=--‘=Cn=O}
P'={(c1,...,¢c;)):ceC} (2)
F,={ceC:cp=---=¢; =0}

F' ={(ci41,...,¢,) :CeC}
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Fig. 1. The parity check matrix and the trellis for the Hamming (7, 4) code

Their dimensions are denoted py, p’, f; and f’ respectively. By convention
we take

P,=P'=F=F"=C, Pp=P°=F,=F"=(0)

and thus o o
pm=p"=fo=f =k po=p =fi=f"=0

Theorem 2 ' '
k=p'+fi=pi+f". 3)

Lets; = dimV; andb; = dim E; ; 1, we have the following

Theorem 3 . p
Si=Kk—=pi— Ji

4

bi =k —pi — fi+1 - @)

Given an(n, k) codeC, the trellis can be constructed by applying (1) over all
code words. This construction is not practical’ihas a large dimension. More
efficient algorithms for constructing the trellis have been presented in [17, 23].

2.2 Complexity of the Trellis and the Effect of Permutation

The complexity of the trellis of an, k) codeC can be measured in terms of
one or more the following:

e State complexity:s(C) = maxso, 51, ..., Sy}
e Branch complexity: b(C) = maxXba, bo, ..., b,}.
e Edge complexity: E(C) = |E| =Y.' Ei—1, = Y 14 2%,

A complexity measure similar to the edge complexity was also proposed in
[22]. It has been shown thatC), b(C), and logE (C) are asymptotically the
same in that the ratio of any two of them approaches unity as the code length
increases [10].

Wolf [26] gave an upper bound for the state complexit¢): s(C) <
min{k, n — k}. For most of the codes in their original forms, this upper bound is
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often an equality. Since the complexity of the trellis depends on the ordering of
the code coordinates [6, 16], tighter bounds can be obtained by permutating the
coordinates of the code. By doing so we identify the cOdeith all its equiva-

lent codes. Improved bounds ©¢C) for some BCH codes are givenin [8, 22].

In some cases, the lower bounds and the upper bounds are identical, indicating
exact values for (C). Lower bounds or(C) for some generah, k, d) codes

with certaind are given in [22], and lower bounds or exact valuessfar) for

some codes with certain weight distributions are given in [27].

Let k(i; C) be the maximum dimension of any lengttsubcode ofC.

The sequencé(0; C), k(1; C), ..., k(n; C)} is called the dimension-length
profile (DLP) of the codeC [7]. The DLP often leads to good lower bounds
on s(C) [7, 10]. However, the computation of the DLP is difficult for most
codes. Recently, Lafourcade-Jumenbo and Vardy developed atrellis partitioning
technique that further improves the lower bounds for a large number of codes
[10]. Their method also applies to nonlinear codes.

On the practical side, the edge complexity is a more accurate measure of the
trellis complexity with respect to the number of computations. For a given code
C, among all the trellises of its equivalent codes, the trellis with the minimum
number of edges is referred to as thmimum-edgérellis. Similarly, the trellis
with the minimum number of vertices is referred to as theimum-vertex
trellis. It can be easily established that

|El <|VI-1=<2]E|,

which shows thatV | is as good a measure of complexity|&3. A minimum-

edge trellis is not necessarily a minimum-vertex trellis and vice versa. Sharper
lower bounds orE (C) for many binary codes are derived in[10] through the use
of trellis partitioning and nonlinear integer programming. A heuristic algorithm
for constructing a trellis with low edge complexity was proposed in [4].

It was shown by Lafourcade-Jumenbo and Vardy [10, 11] that asymptoti-
cally good codes have infinite trellis complexity. This means that even if the
trellis complexity can be reduced by permutation, it eventually grows at an ex-
ponential rate as the code length increases. However, for many practical codes,
trellises are still an efficient means for decoding. Luna, Fontaine, and Wicker
have developed an iterative technique that provides ML and near-ML trellis
decoding with far less complexity than in the straightforward application of
Viterbi decoding to the code trellis [12]. Aguado and Farrell developed a hy-
brid stack decoding algorithm for block codes in [1], which can handle much
higher trellis complexity than the Viterbi algorithm (VA) does.

The choice of a complexity measure depends in part on what one hopes to
do with the trellis decoder under consideration. McEliece pointed out in [18]
that the VA require®) (| E|) arithmetic operations when applied to the trellis. It
follows that a software-based decoder will benefit from a minimization of edge
complexity. Komura, Oka, Fujiwara, Onoye, Kasami, and Lin, however, have
shown that the VA is not an efficient approach for IC-based trellis decoders
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[9]. Instead the regularity of the trellis structure was employed, allowing for
a straightforward application of pipelining and parallel processing. Recursive
trellis structures have been developed for Reed-Muller hybrid-ARQ protocols
by Martin, Honary, Markarian, and Wicker in [15] (see also [14]). Komura
et al. used the structure of a (64, 35) subcode of the (64, 42) Reed-Muller code
to develop an extremely fast inner codec for a concatenated system intended
for near-earth satellites [9]. Komusd al's codec is intended to run at several
hundred megabits per seabn a speed that cannot be achieved by a hardware
implementation that uses Viterbi decoding and a minimum-edge trellis.

Having said the above, we will pursue minimum-edge complexity in this
paper. The minimum-edge complexity of a code provides a convenient gauge
of the complexity of SDD’s for a block code, and is certainly more concise than
the admittedly fuzzy idea of “trellis regularity”.

2.3 Duality Properties of Linear Codes

In this section we present a review of various relationships that can be drawn
between a linear block code and its dual code.C éte an(n, k) linear block
code, and le€* denote its dual. The past and future subcodes'adre denoted
by P+ andF;-, and the past and future projections are denoted-byand £+
The results in this section are from Forney [7].

SinceC* is an(n, n — k) code, applying (3) in Theorem 2 of Section 2.1,
we obtain

n—k=p"+ fr=p-+ 7. (5)

Theorem 4 P; and P! are dual codesand P’ and P/ are dual codes.

Note thatin Theorem 4 we treat the subco#teand P+ as of lengthi, ignoring
their lastn — i bits that are all zeros.

Proof. Letc; € P;. By the definitions ofP; and P/, we havec;d] = 0 for all
d; € P*. On the other hand, if for som®, c;d” = 0 for alld; € P+, then
the vectorc’ defined by

¢ =(.0,...,0
satisfiesc’d” = 0 foralld € C*. Thusc’ € C and hence] € P;. Now we
have proved thaP; consists of all thé-tuples orthogonal té®+/, i.e., P; and
P+ are dual codes. The second statement of the theorem can be proved along
the same lines. Q.E.D.

By Theorem 4 the dimensions & and P sum to their lengthi, as do
the dimensions of- and P'. Thus we have
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Corollary 5 ' '
i=pi+pt=p-+p . (6)

Similarly we can prove the following:
Theorem 6 F; and F* are dual codesand F' and F;- are dual codes.

Corollary 7 ' '
n—i=fi+fr=f+1. )

Other duality identities can be derived from the identities developed in this
section and Section 2.1. For example, combining (5), (6) and (7) we get

k—pi—fi=n—k—pi—fi. (8)

Let s;- denote the dimension of the vertex $&t in the trellis of C+, By (4)
and (8) we have

S; = Sl-J' .

The above duality identities will be used extensively in the search for minimal
complexity trellises.

2.4 The Mattson-Solomon Polynomial

A brief review of the Mattson-Solomon polynomial is presented in this section.
All results in this section are from [13].

Let F = GF(g), wheregq is the power of a prime. Letn be an integer
relatively prime top. A vector of lengtm in F, a = (ag, a1, ..., a,_1) can be
represented by a polynomial f[x], a(x) = ap + a1x + - - -a,_1x" L. Letm
be the smallest number such thatg™ — 1). Let.# = GF(¢™) and lete € &
be a primitiventh root of unity.

Definition. The Mattson-Solomo( S) polynomialassociated witlu(x) is
the following polynomial inZ[z]:

AR =) A 9)
j=1
where
n—1
Aj= a(e)) = Zaiaij
i=0

Itis straightforward to show that the MS polynomial has the linearity property:
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Theorem 8 If ¢(x) = a(x) + b(x), thenC(z) = A(z) + B(2).

Lemma 9

Y ol =0 (10)

Proof. « # 1 by definition. Thus
n—1
dd=(1-0"/1-a)=0
i=0

Q.E.D.

Let g(y) be any polynomial, and denote by(ly)],, the remainder whegp(y)
is divided byy" — 1. Define thecomponentwise produgt(y) * A(y) of two
polynomials

n—1 n—1
g =) &y and h(y)=) hy'
i=0 i=0

to be
n—1

g xh(y) =) gihiy'
i=0

The following two theorems can be proved by direct substitution and use of
(10).

Theorem 10 (Inversion formula)

n—1
a(x) = % ; Ale)x! . (11)

Theorem 11 (i) ¢c(z) = [a(x)b(x)], if and only if C(z) = A(z) * B(z). (ii)
c(x) =a(x)xb(x)ifand only ifC(z) = ;[A(Z)B(Z)]n.

Note that the denominator in Theorems 10 and 11 should be reduced
modulop. For the most popular case pf= 2, 1/n = 1 modulop (» must be
odd if it is to be relatively prime tp = 2).
A(z) is also referred to as thdscrete Fourier transfornof a(x). a(x) and
A(z) are transform pairs, as one can be recovered from the other by (9) and (11).
For any polynomiag (y), itseffective degreé.« (g) is defined to be dag) —
i, wherei is the smallest number such that the coefficignf y’ is nonzero.
Obviously der(g) < degg). Consider a transform palu(x), A(z)}, where
both are of degree — 1. Lets = der(A). ThenA(z) hass nonzero roots in
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Z , which meansA(z) has no more thamroots in{1, «, . . ., «"~1}. From the
inversion formula (11) we see thatx) has at most zero coefficients, or it has

at least: — s nonzero coefficients. We summarize the above discussion in the
following theorem.

Theorem 12 If a has MS polynomiali (z), then the weight od satisfies
w(@) = n — deff(A) . (12)

(12) is a slightly improved version of Corollary 27 in Chapter 8 of [13].

3 Trellises for the (32, 26) and (32, 21) BCH Codes

This section focuses on the construction and implementation of trellis decoders
for the (32, 26, 4) and the(32, 21, 6) extended BCH codes. In Section 3.1 we
construct the minimum-edge trellis for the (32, 26) code. We note that this code
can be viewed within the context of the extended Hamming codes. Bounds on
the number of edges and vertices for trellises for the entire class of extended
Hamming codes are derived. A simple construction algorithm for minimum-
edge and minimum-vertex trellises is then presented. Section 3.2 begins with
the construction of a tight lower bound on the edge complexity of the minimum-
edge trellis for thg32, 21, 6) code. A subcode analysis technique is used to
substantially improve the previous bound. Atrellisis then described that satisfies
the bound with equality.

3.1 Minimum Edge Trellises for Hamming Codes
and Extended Hamming Codes

We start with the (31, 26, 3) Hamming code. A parity check matrix can be
constructed by selecting as columns all 31 distinct, nonzero binary 5-tuples.
The extended Hamming code is obtained by adding a parity bit to each code
word. The following parity check matrix is a typical result. Since we are not
distinguishing among equivalent codes, we will refer to this as “the” parity
check matrix for the (32, 26, 4) extended Hamming code.

 00000000000000001111111111111711
000000001111111100000000111111/11
He—m | 00001111000011110000111100001111 (13)
— (226 = | 00110011001100110011001100110q11
01010101010101010101010101010101

| 11111111111111111111111111111311

One objective in the search for a minimum-edge trellis forank) code is
the minimization of the number of independent rowsghfand H,,_; for each
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i = 1,...,n/2, whereH; and H,_; are the matrices consisting of the first
i columns and the lagt— i columns of the parity check matr#{, respectively.
The rational is as follows. The dimensignof the vertex spac¥; is

s; = rank(H;G}) < min{rank(G,), rank(H;)} < rank H;) = p*' , (14)

whereG; is the matrix formed by the firstcolumns of the generator matrix.

The first equality in (14) follows from the fact that each verte¥ijns a linear
combination of the columns if; G, as indicated in (1). Ip*' is made small,
thens; will be small, thus reducing the number of vertices and edges. A similar
argument can be made fgr-! = rank(H,_;). For the extended codes we have
the following lemma.

Lemma 12 Let H be a parity check matrix for an extended Hamming ¢ode

where one row off is the all I's vector. Thenfoi =0,1,...,n —1,
p*' = [logyil+1 (15)
f > Tlog,(n —i)] +1 . (16)
Proof. Let uy, ..., u,. be a basis forPL’ in which u is the all 1’s vector.

Since the basis consists of linearly independent rows, one of which is constant-
valued, any column i7; is completely determined by its~ — 1 bits in rows

Uz, ..., U,u. Since all of the columns i; are distinct, the number of bits
determining columr has to be no less thditog, i1, or p** — 1 > [log,i].
Equation (16) can be proved similarly. Q.E.D.

An examination of (13) reveals that the equality is satisfied in (15) for the left
half of H. For the right half oftf, we observe that it is identical to the left half
except for the first row (by adding the last row to the first row, we can exchange
the left and the right halves). The permutatid®, 31), (17, 30), ..., (23, 24)
then mirrors the left and the right halves. Adding the first row to the last row,
we get the permuted in its minimal-span form (for the properties of the
minimal-span form, see [18]):

[ 00000000000000001111111111111711
00000000111111111111111100000400
P _ 1 00001111000011111111000011110Q00
(3226 — | 00110011001100111100110011001100
010101010101010110101010101014¢10
111171111111111110000000000000000

It can be seen that both equations (15) and (16) are satisfied, andﬂﬂégg@
minimizesp*’ and £+ for everyi. The dimensiong; and f; can be read off
directly from the corresponding generator maﬂ@zyza) in its minimal-span
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form. We list half of the dimension profiles along with= 26 — p; — f; and
b; = 26 — p; — f;11. The other half follows by symmetry.

i: 01234567 8 910111213141516
pi- 000011234456 73891011
fi12625242322212019181716151413121111
5i: 012 3344445555505 54
bi:' 123 445555666666 55

The total number of edges i€| = 2Y1°,2"% = 1180. This equals the
lower bound on the number of edges for aB, 26) code, as established in
[4]. The trellis obtained here is a minimum-edge trellis. Doliatal. found a
minimum-edge trellis for the extend€82, 26, 4) BCH code using a heuristic
algorithm [4]. The minimum-edge trellis of any extended Hamming code can
be constructed in the manner used above fof32e26, 4) code. First, a lower
bound is derived fos;.

Lemma 13 For the (2", 2" — m — 1, 4) extended Hamming code

S,_{pi", i=01,..,2"1-1

fHi=2mten 2 (17)

Proof. We haves; = s = k — f* — pi = pt" — pi. Since the weight
distribution of the dual code 8By = Bon = 1, Bon1 = 2™+1 — 2}, it follows

thatp; = 0fori =0,1,...,2" 1 —1. The second result can be proved in the
same way. Q.E.D.
Corollary 14

s; > flogyil+1 i=1,...,2"1-1 (18)

s; > [log,(2" — i) +1 i=2"141...,2"-1 (19)

s2m—l Z m — 1 . (20)

Proof. Equations (18) and (19) are direct consequences of Lemmas 12 and
13. Equation (20) is obtained by observing that: = pt2"" — Pyns =
m — 1. Q.E.D.

The parity check matrix of th&2” — 1, 2" —m — 1, 3) Hamming code has
as columns the set of all distinct, nonzero, binaryuples. By introducing an
m-bit zero column and adding an all-one row, we get the parity check matrix
H,, for the extended code. The following algorithm gives the permuted parity
check matrixH ”:

1. Sorting: Identify each column of4,, with anm-bit integer. Arrange the
columns in ascending order.



532 X. Wang, S. B. Wicker

2. Column Exchange:Exchange columns"2?! +i and 2 — 1 — i of the
rearranged matrix for=0,1,...,2" 1 — 1.
3. Minimal-Span Form (optional): Add the top row to the bottom row.

Form =5, the above algorithm give8, = H 3, ,6 . By reading offs;- = s;
from H”, it can be seen that all the equalities are satisfied in equations (18),
(19) and (20). Thus th& ” has a minimum-vertex trellis. The next result shows
that the trellis ofH ? is also minimum-edge.

Theorem 15 The trellisT = (V, E) of the Hn’j is both minimum-vertex and
minimum-edge. Furthethe number of vertices and the number of edges are
given by

V| = (22"t1 —9.2"-1 1 10)/3

|E| — (22m+2 —9. 2m+1 + 20)/3

respectively.

Proof.We have seen thdt is minimum-vertex. To see thdtis also minimum-
edge, we show tha; is minimized for each. For0<i < 2" 1 —1,b; =k —
pi— fiv1 = si+1—(pi,—p;iH) = si+1—p; . The only possible position for a
nonzerop;, ,isati = 2"'—1,andindeeg,.-» = 1. Thusp;, , is maximized,
which means thag; is minimized, and so i;. For 21 < < 2" — 1, note
thatb; = s;41 + 1 — (f+ — f7,) and apply the same argument ffr

To compute the number of vertices, note that the tré&llis symmetric, so
one need only consider half of the trellis. Using Equations (18) and (20) with
equalities, we have

1
V] =22142 % 2
i=0 S
— szl + 2(1+ 2+ Z 217221 + (2m72 _ 1)2171

=2
= (21— 9. 2141 10)/3 .

The expression fofE| can be obtained by noting that = s; + 1 fori =
0,1,...,22"" — 2 bpwiq = smiq, and thus|E| = 2|V| — 2"
—omtl Q.E.D.

3.2 The Minimum-edge Trellis for the (32, 21, 6) BCH Code

Let C’ be the(31, 21, 5) BCH code, and lef be the extension af’ obtained
by adding a parity bit. Their dual codes are denoted'ByandC+ respectively.
Givena € C andb € C*, leta andb’ be the restrictions o& andb on C’
and C'* respectively. Note that faa € C, eithera = (&,0) ora = (@, 1).
Forb e Ct, however, eitheb = (b’, 0) orb = 1+ (¢, 0) for somec’ € C'+,
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wherel is the all-one code word af*. Let 1’ be the all-one vector obtained
by removing the parity check bit frorh

The polynomial representations are used exclusively here for code words
in C’ andC'*. For examplega(x) is the polynomial ofa’ € C’, nota € C.
When we speak of the zeros (nonzerosaaf C, we actually mean the zeros
(nonzeros) ofz(x). We usem;(x) to denote the minimal polynomial whose
roots lie in conjugate clags and%; to denote the index set of conjugate class
i (i.e. the associated cyclotomic coset). In our case, we have

mo(x) =x+1

my(x) = x° 4+ x2 4+ 1 = x®m15(1/x)

ma(x) = x5+ x* + x3 + x2 4+ 1 = x%m7(1/x)
ms(x) = x° + x* + x3 4+ x + 1= x®mp(1/x) ,

and
%o = {0}
¢ =1{1,2,4,8, 16} %3 =1{3,6,12 24,17}
%s =1{5,10,20,9,18 ¥; = {7, 14,28, 25, 19}
%11 = {11, 22,13, 26, 21} ¥15 = {15, 30, 29, 27, 23} .

We also use the notation such that = 4; if j = (2¢i mod 3)) for somek,
e.g.,‘g_7 = b4 = Cs.

The generator polynomial used to represéhts g(x) = my(x)ms(x) =
1104 x% + x84 x84+ x5+ x34 1. The only other polynomial that will generate a
BCH codeC” with the same parametersig (x)mis(x). HoweverC’ andC” are
equivalent; in fact, the code polynomials of one are the reciprocals of the code
polynomials of the other. This justifies allusions to {84, 21, 5) BCH code.

The weight distributions of” andC’* have been found to be [13]

i: 0 5 6 7 8 9
W/ 1 186 806 2635 7905 18190
i: 10 11 12 13 14 15

W!: 44392 85560 142600 195300 251100 301971

and )
i: 0 12 16 20

Wt 1 310 527 186

respectively, wher&;, . = W/fori =0,1,...,15. The weight distributions
of C andC+ follow immediately:

i: 0 6 8 10 12 14 16
W;: 1 992 10540 60152 228160 446400 603942

and
i: 0 12 16 20 32
Wﬁ 1 496 1054 496 1

whereWso_; = W; fori =0,1,...,15.
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To find a minimum-edge trellis fo€, start with a lower bound developed
in [4] that states that for atx, k) code,

pi < pf=min{K(i,d),i — (n—k)+ K@n —i,d")) (21)
fi<fr=min{K(n—i,d),k—i+K(,d") (22)

for any permutations of the code. In (21) and (223ndd+ are the minimum
distances of the code in consideration and its dual respectivelyK&hd) is
the largest possible dimension for a binary linear code of lengtidl minimum
distancel. The exact value oK (i, d) or a bound can be found in the tables of
[3] for n < 127. The bounds in (21) and (22) can be derived from

pi=i—m—k+f
fi=k—i+p} ’
which can be obtained through (3), and (5)—(7).
In the case at handy, k, d, d+) = (32,21, 6, 12). Since the bounds are

symmetric, we list half profiles of the bounds along with the derived lower
boundss andb} ons; andb;:

(23)

i: 01 2 3 45 6 7 8 9101112 13 14 15 16
pf: 0000001112233 45156
fF:2120 19 18 17 16 15 14 13 12 11 10 10 9 8 7 6
s 0 1 2 3 4556 7 7 8 88 88 9 9
b¥: 1 2 3 456 6 7 8 8 9 8 9 9 91010
(24)
The lower bound on the edge count is then given by

15
E*= 2" =8316 (25)

i=0

The heuristic algorithm in [4] finds a trellis of 17,340 edges. We now show that
the lower bound profile in (24) is not achievable, as is the lower bound on the
edge count in (25). We begin by noting that

Lemma 16 C'*+ ¢ C’ and henceC+ c C.

Proof. The generator polynomiakx) of C'* hasg(x) as a factor: withh = 31
andk = 21 we have
h(x) =xF(x™ +1)/g(x71)
= xms(x Hm7(x " Hmy(x " Hmys(x Hmo(x )
= my1(x)mz(x)ms(x)my(x)mo(x)
= my1(x)ms(x)mo(x)g(x)

Q.E.D.
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Theorem 17 The profile bound ir§24) is not achievable.

Proof. Suppose that we have a permutation that achieves the profile in (24).
Since f12 = 10, usingp;" = f; — (k — i), we havep;, = 10— (21— 12) =1,
andp =0, for 0 < i < 11. Thus inC* (possibly permuted), there is a code
word ¢; of weight 12 with all of its 1's packed in the first 12 bits. By Lemma 1,
ciisalsoinC. But this would make1, = p11+1, which contradictpi, = p1o

in the assumption. Q.E.D.

An alternative proof of Theorem 17 uses the fact #iatcontains the all-
ones wordL. If the bound in (24) is achieved, then by symmefry, containsc;
as well ax, of weight 12, with 1's packed in the last 12 bits. But then the word
1—c; — ¢, liesinC+. This word has weight 32 12— 12 = 8, a contradiction
ofdt =12.

A tighter lower bound on the edge count than (25) will now be established.

A trellis will then be described that satisfies the improved bound with equality.
The following is a subcode analysis that identifies a “critical” subcode, and
then uses the containment of this subcode in past subcodes to derive bounds
on the dimension of the past subcodes. These bounds on dimension are used to

improve the profile bound in Equation (24).

Definition. Two code wordsandb are said to beaonoverlappingf w(a+b) =
w(a) + w(b).

Lemma 18 Leta = (ap, a1, ..., as1) be a code word inC+ of weight12,
DefineC(a) = {(cg, c1, ..., c31) € C : (agco, aica, .. ., aziczy) € C} (C(Q)
is said to begeneratedy a). ThenC(a) is a subcode of® and contains two
nonoverlapping code words ifi of weight6.

Proof. ObviouslyC; is a subcode of. Let I be the index set of the nonzero
components 0. By Lemma 16ais also inC, then

> hi=0
iel

Since the rank of the parity check mateiksz 21y is 11 and /| = 12, there must

be an/; c I such that
Zh,. = Z h; =0

iel iel\I

Hence, both binary vectors with and’\ I; as their index sets of the nonzero
components are code words®©@f and must have weight 6. Q.E.D.

Lemma 18 says that a subcode generated bags at least dimension 2. It
will now be shown that such a subcode has exactly dimension 2.

Consider the se of all code words of weight 12 ic*. For a code word
a € Q, eithera = (&, 0) for somea € C'*, ora = 1+ (b, 0) for some
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b e C’*+ with weight 20. Based on this observation, we partitidmto ©2; and
Qo, whereQ2; consists of ala € Q of the form(a, 0), andQ2, = Q\Q;. Let
Q' be the sef2 restricted onC’+; that is, the set of all code words & with
the parity bit removed; and,, are similarly defined. Thus all code words
(of C'*) in Q] have weight 12 and all code wordsg, have weight 11.

Lemma 19 Fora, b’ e @', ifa’ + b’ ¢ @', thenw(@ + b’) > 15.

Proof. The three possible weights for code wordsdft are 12, 16 and 20.
Eithera' +b’ € C'* ora + b’ = 1' + ¢ for somec’ e C'* by the definition of
Q', andw(c) < 20. In the former case we must hawéa’ + b’) > 16, and in
the latter casew(a’ + b") > 15. Q.E.D.

Lemma 20 Leta € ;. Then the nonzeros afare either the zeros ofi7(x)
or the zeros ofin7(x)m5(x).

Proof. From the proof of Lemma 16, we have

3 1= h(x)m7(x)mas(x) .

Sincea’ e C'*, it follows thati (x) dividesa(x), and there are only three possi-
bilities for the nonzeros . (i) the zeros ofn7(x), (i) the zeros ofn7(x)m15(x)

and (iii) the zeros ofn15(x). In the last case, the nonzero-coefficient terms of
the MS polynomialA(z) of a are{z3¥7,i € %15} = {z, 2%, 2%, 28, z*5}. Thus
deii[A(z)] is 15. By Theorem 12 in Section 2.4(a) > 31— 15= 16, contra-
dictinga € Q;. Q.E.D.

Corollary 21 Leta € 2;. Then the nonzero-coefficient terms of its MS poly-
nomial A(z) are either{z’,i € 4_7U%_15 = ¢3U%1}or{z',i € 6_7 = %3).

Lemma 22 Leta € ©,. Then the nonzeros afare the zeros ofig(x)m7(x)
m1s(x) or the zeros ofing(x)m7(x).

Proof. Sincea = 1+ (b’, 0) for someb’ € C'*,

x31 41
x+1

30
a(x) = in +b(x) = +b(x) .
i=0

Thusthe nonzeros afare the nonzeros é{x) and1 € GF(2°). The conclusion
follows from the argument in the proof of Lemma 20. Q.E.D.

Lemma 23 Leta € Q5. Then the nonzero-coefficient terms of its MS polyno-
mial A(z) are either{z,i € ¥oU %3 U 1} or {z',i € €oU €1).
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Lemma 24 Let0 # o € GF(2%). Then the equation® + «® = 0 has only one
rootx = « in GF(2°).

Proof. x3 4+ o = (x + a)(x? + ax + «?). Supposes € GF(2%) is a root of
x% + ax + o?. Certainly # 0 andB # «. Sincep? + af + «® = 0, or
(B/a)? + (B/a) +1 = 0, it follows that8/« is in bothGF(2%) and GF(2%).
However,GF(2%) does not have common elements W@F(2°) other than 0
and 1, a contradiction. Q.E.D.

Leta = (ag, a1, ..., a,_1) andb = (bg, b1, ..., b,_1). Define thecompo-
nentwise producdf a andb to be

ab = (GObOs Cllbj_, cee an—lbn—l)

If A(z) and B(z) are the MS polynomials o& andb respectively, then by
Theorem 11 of Section 2.4, the MS polynomialadifis given by

AB(Z) = [A(Z)B(Z)]n

Lemma 25 Foranya, b’ € @', ab’ ¢ C'.

Proof.We need to consider three casesa(jp’ € Q}; (ii) a' € Q7,b’ € Q} and
(i) &, b’ € Q5. Case (i). By Corollary 21, the nonzero-coefficient terma f)
OrB(Z) are eithel{z, ZZ, Z3, Z4, ZG, Z8, 212’ ZlG, Zl7, Z24} or {Z3, ZG, le, 217, Z24}-
It is straightforward to verify that the coefficient g’ in A(z) B(z) is always
(AB)31-27 = (AB)4 = A7Bag+ A2gB7. SinceAzs = a(a?®) = a((@’)*) =
(a(a”))* = A% and similarlyBys = B, we have(AB)s = A7B7(A3 + B3).
Either (AB)4 is zero or not. If(AB), is not zero, them* is not a root ofa’b’,
thusa’b’ ¢ C'. If (AB)4 = 0, then(A3 + B3) = 0. By Lemma 24, this only
happens wheAd; = B7,or (A+ B); = A7+ B7 = 0. By Corollary 214 + b’
is not in ', which implies, in the light of Lemma 19, that(a’ + b’) > 15.
Hencew(a'b') = [w(@) + w’) — w(@ + b')]/2 < 4. Again,a’b’ cannot be
in C’. Cases (ii) and (iii) can be proved using similar arguments, along with
Corollaries 21 and 23. Q.E.D.

The next corollary expands the result of Lemma 25 to the extended code.

Corollary 26 Foranya,b e Q,ab¢ C.

Proof. Consider two cases: (i) eithar= (a’, 0) orb = (b’, 0). In this caseab
is a’b’ with the addition of a zero parity bit; (ia # (&, 0) andb # (b/, 0). In
this caseab is a’b’ with the one parity bit. In either case, sing®’ ¢ C’ by
Lemma 25ab ¢ C. Q.E.D.

Let.#*? be the set of all subcodes 6fgenerated by code words of weight
12 inC*. The following theorem characterizes the structure of such subcodes.
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Theorem 27 Any subcode € #*?is a (12, 2, 6) code.

Proof. Leta andb be in2. b does not belong to the the subcodes generated by
a, otherwise we would have = ac for somec € C, soab = aac= ac = b,
contradicting Corollary 26. Thus there are 496 subcodeg’ify generated by
496 code words if. Sincew(ab) < 6, no code word it of weight 6 belongs

to both subcodes generatedadgndb by Corollary 26. Since a subcodedfit?
contains at least two weight-6 code wordgolfy Lemma 18, all 496 subcodes
contain at least 49& 2 = 992differentweight-6 code words of . But there
are exactly 992 weight-6 code wordgintherefore each subcode has exactly 2
(nonoverlapping) weight-6 code words@f Consequently there are only four
code words in the subcode, with a weight distributign= Wy, = 1, Wg = 2,
making it a(12, 2, 6) code. Q.E.D.

Lemma 28 An (n, 3) subcode of which contains a subcode §fe %2 must
haven > 14.

Proof. Let S5 be such a subcode afd € #*? be contained irf3. Leta be the
weight-12 code word i§; and letb be a code word i3 but not inS,. Clearly
n = w(a) + w(b) — w(ab). We prove the result by showing thatab), and
hencen, is even.

Case (i): botre’ andb’ have odd weights. By Corollary 23, the (possible)
nonzero-coefficient terms df(z) are{z’, i € ¥oU%1U%3}. Since the generator
polynomial of C” is m1(x)ms(x), the (possible) nonzero-coefficient terms of
B(z) are{z’,i € oU%1U%3U%5U%11). Note thatdg = By = 1. Thenitcan
be verified by expanding (z) B(z) that the constant termm{odulo(z3* — 1))
in A(z)B(z) is 1, meaning tha&’'b’ has an odd weight. Since the parity bits of
botha andb are 1, we have thab(ab) = w(a@b’) + 1 is even. Case (ii): at
least one of th&’ andb’ has an even weight. The possible nonzero-coefficient
terms ofa’ andb’ are exactly the same as in case (i) except that at least one of
the A(z) andB(z) does not have the constant term. Similarly we can verify that
there is no constant terrmpdulo(z3! — 1)) in A(z) B(z), and it follows that
w(ab) = w(@b’) is even. Q.E.D.

A subcodes,, of lengthn, which contains a subcod®_,, has a dimension
k(S,) at mostk(S,_1) + 1. This proves the following corollary.

Corollary 29 An (n, 4) subcode of” containing a subcode of € .#*? must
haven > 15. An(n, 5) subcode of” containing a subcode of € %12 must
haven > 16.

Leti; be such thap): = 1andp;" =0fori =0,1,...,i;— 1. Obviously
i1 > 12. Combining the constraints posed by (23) and (24), Theorem 27,
Lemma 28 and Corollary 29, bounds on the half profiles of the (32, 21) code
forip = 12,13, 14 and 15 can be written as follows.
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i: 0123456 7 8 910111213141516
P700000011111122345 .4
fi:21201918171615141312111010 9 8 7 6

s;i: 01234556 7 8 910 910101010

bi: 1234566 7 8 9101010111111
i1=13:

i: 0123456 7 8 910111213141516
p700000011111122345 .,
fi:212019181716151413121110 9 9 8 7 6

s;i: 01234556 7 8 9101010101010

bi: 123 4566 7 8 9101110111111

i1 =14

i: 0123456 7 8 910111213141516
pi00000011122222345(28)
f;:212019181716151413121110 9 8 8 7 6

si: 01234556 7 7 8 91011101010

b;: 12345667 88 91011111111

i1 =15:

i: 0123456 7 8 910111213141516
pi.00000011122333345(29)
f;:212019181716151413121110 9 8 7 7 6

s;i: 012345567 7 88 910111010

b;: 12345667 889 910111111

539

In the case of; = 15, the existing constraints allow that, < 4. Suppose that
p1a = 4. The fact that; = 15 means that we have a code word’ih hence in
C with all of its nonzero bits in the first 15 bits, which makgeg = p14+1 = 5.

This contradicts Corollary 29. We then hawg, < 3 as shown in (29).

Fori; = 16, we have a code wordn C+ hence inC with all of its nonzero
bits in the first 16 bits, but now there are two possibilitiesu((jp) = 12 and
(i) w(a) = 16. For case (i), we can write the half profile bound as follows:

i1=16, w(a) =12:

i: 0123456 7 8 910111213141516
pi: 0000001112233 3445
fi:212019181716151413121110 9 8 7 6 6
5;: 012345567788 910111110
bi:' 12345667 88 9 910111111

(30)

For case (ii), we consider the subcasief length 16 generated kay Letk(S)
be the dimension of th&. The dual codes* of S is then{ab : b € C*}. Since

w@+b) =w(@ + w(b) - 2w(@b) = 16+ w(b) — 2w(ab) < 20 ,
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we have

w(@b) > [w(b) —4]/2> (12— 4)/2=4 .

The minimum distancé(S+) of S+ is at least 4 (in fact, it is exactly 4). This
implies that forS*, f-(S) = 0,i = 13, 14, 15 and 16, from which we get

pi=pi(S)=k(S)+ f-+i—-16=k(S)+i—16,

fori = 13, 14, 15 and 16. We can also get a bound fgg from d(S+) > 4. In
this case we must ha\gfq%L <1, and

pru=k(S)+ fi3+11-16<k(S) — 4 .

Sincepis = k(S) < 6 by (24), we have obtained the following profile bound:

i1 =16 w@) =16:

i: 012345678 910111213141516
pi:00000011122233456 4,
£:212019181716151413121110 9 8 7 6 6
;701234556778 910101010 9
bi:1234566 788 91010111110

Fori; > 16, f; is strictly decreasing withfor i < 16, giving us the following
profile bound.

i1 > 16:

i: 0123456 7 8 910111213141516
pi200000011122334556(32)
fi:212019181716151413121110 9 8 7 6 5

s;: 0123455677889 9 91010

b;:' 12345667 889 910101011

We are now able to compute the lower bouﬂi;fléon the edge count for the half
profiles for various possiblg. From Equations (26)—(29) and (32), we have

EN =10302 Ef=12350 EI =10558
Eff=8510 Ell_ 5 =6,974 (33)

Ef can be obtained by considering both (30) and (31). (30) gives an edge count
of 7,998 and (31) gives 8,510. Therefore

EH = 7998 (34)
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A lower bound on the edge count over all possible permutations can be obtained
immediately from (33) and (34):

E > 2min{Ef,, Ef, Ef EfL ELL, E(’f.l .16} = 13,948 (35)

Note that the half profile which gives this lower bound is (32). This new bound
is a significant improvement over the bound given by (25) on one hand, but on
the other hand it limits further reductions in trellis complexity. Better yet (or
worse yet), the bound given in (35) can be further tightened.

A profile withits left half as (32) cannot be symmetric (ig.~= f32—i, fi =
p32—i)- Therefore we cannot have a full profile in which both halves are identical
to (32). Note that if we decreagge = 6 to p1s = 5 in (32), the edge count
remains unchanged. Itis possible to construct a symmetric profile based on this
modified half profile. This can be done by using the symmetric mapping

pi = fao—i» fi = P3-i (36)

to map the modified left half profile to the right half, and concatenating the two
halves. The complete profile is given by (37). The profile gives an edge count of
2E{! 16 = 13,948. We will show, however, that this bound is not attainable.
Some preliminary results are necessary for the proof.

i: 0123456 7 8 910111213141516
pi:00000011122334555
fi:212019181716151413121110 9 8 7 6 5
s;: 0123455677889 9 91010
bj:1 23 45667 8389 91010101111

37)
i:1617 18 1920 21 22 23 24 25 26 27 28 29 30 31 32
pi: 56 7 8 91011121314151617 18192021
fim55543322111000000
5;:1110 9 9 9 8 8 7 7 6 5
b; 11101010 9 9 8 8 7 6 6

Lemma 30 If p14 = 5,thenfi4=7.

Proof. p14 = 5 implies thati; > 14, since otherwise we would hayg, = 3
by Corollary 29. Thugf; is strictly decreasingf; = f;_1 — 1fori < 14, which
givesfis = 7. Q.E.D.

Lemma 30 shows that the future coflg, is an (18, 7, 6) code if the past
codePy4is a(14, 5, 6) code. We now consider the dual coderaf, which is
the future projection subcode-** of F*.
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Lemma 31 If py4 = 5, then the minimum distance 614 is at least3.

Proof. Leta € C*. Leta” e F11% be the projection of on F*'4 Case
(i): w(@ = 12. We must havev(a”) > 3 since otherwise we would have a
subcode of dimension 6 and length not larger than 16 consistify,atinda,
a contradiction to Corollary 29. Case (iiy(a) = 16. Again,w(a”) > 3, since
the only other possibility is thab(a”) = 2, in which case there would be a
(16, 6, 6) subcode generated lay This subcode containB,4, which violates
(31). Finally, case (iii)w(a) = 20. In this case we have(a”) > 6. We
conclude thaiw(a”) > 3 for alla” e F14, Q.E.D.

Theorem 32 If p14 = 5, then there is n@14, 5, 6) subcode inF 4,

Proof. Since the minimum distance @'* is at least 3 by Lemma 31, any
subcode of length 4 af 14 has a dimension of at most 1. This givg$(F14) =
fra(F+% < 2. Applying the duality identities td14 and F+%4, we have

p14(F1a) = fia(F1a) + 14+ k(F1a) — n(F1a) <5

wheren(F14) = 18 andk(Fy4) = 7 by Lemma 30. This proves the theorem.
Q.E.D.

Theorem 33 There are no nonoverlapping.4, 5, 6) subcodes.

Proof. This is a direct consequence of Theorem 32. Q.E.D.

Theorem 34 The edge count > 13,948

Proof. Previous lemmas, theorems and corollaries have shown that (37) is the
only possible profile to achieve (35). Note that in (37)4 = fis = 5, S0 we

have two(14, 5, 6) subcodes, one on the first 14 bits and the other one on the
last 14 bits. This contradicts Theorem 33. Q.E.D.

Having precluded the profile in (37), a new lower bound on the edge count
can be obtained by considering the following two cases. (i) Both half profiles
havei; > 16 when considered as left half profiles. The best left half profiles
with respect to the edge count are given in (32) and (37). The “second best” half
profile in this case will have to havye 4 = 4 under the constraint that the other
half profile already hag14 = 5. The resulting full profile will be the same as
(37), but with eithep4 or f13 being changed to 4. Such a profile gives an edge
count of 14,972. (ii) One half profile hag < 16. An examination of (33) and
(34) shows that the combination of the profiles in (30) and (32) gives the lowest
edge count in this case, which is again 14,972. Thus we have established the
following
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Theorem 35 The edge count > 14,972

A computer search was devised that used several of the above theorems,
lemmas, and corollaries to limit the search space. A permutation which gives a
trellis with 14,972 edges was found. Theorem 35 can thus be reexpressed as an
exact value for the minimal edge complexity for the extended B82121, 6)
code.

Consider the following parity check matris; 21 in a standard form,

10010100100111101010110000000G00
11011110110100011111101000000000
11111011111101100101000100000000
01111101111110110010100010000¢00
101010100110001100111000010004Q00

H3z221) = | 11000001101011110011000000100¢00 (38)
01100000110101111001100000010d00
10100100111101010110000000001G00
01010010011110101011000000000100
00101001001111010101100000000410

| 11100111000101001100100000000d01

The permutation

(0, 26, 16, 10, 13, 4, 7, 14, 3, 19, 5, 1, 25, 30, 29, 27, 21, 6, 17)
(2,23, 15, 28,22, 8, 11, 24, 18)(9, 20)(12)(31)

yields a matrix with an associated trellis that satisfies the bound in Theorem 35
with equality. The permuted parity check matrix is given by

-00001101010010100101011110000000
00010101111110100110001101101700
00000000011101110110010111111100
0000000111011101011110111011000
00000001101101110010001010001d10

Hl3p 1, = | 00000001110000110001010010111d01
0010010011010100000001111010100
00000001110111111000010101000000
0100010100110001010100011010100
0000001010000101001101110101100

| 10000100001011100000011101110d00

The profile of the resulting trellis is the same as (37) but withbeing changed
to 4.

From the implementation perspective it is sometimes desirable to have a
symmetric trellis (that isp; = f,_;, /i = p._i for an(n, k) code). It is not
difficult to see, from the arguments for Theorem 35, that the number of edges
for symmetric trellises is lower bounded by the edge count of the following
profile:
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i: 0123456 7 8 910111213141516
pi: 0000001112233 4455
fi:212019181716151413121110 9 8 7 6 5
5;: 0123455677889 9 91010
bj: 123 45667 8389 91010101111

(39)
i:1617 18 1920 21 22 23 24 25 26 27 28 29 30 31 32
pi: 56 7 8 91011121314151617 18192021
fim55443322111000000
5;:1110 9 9 9 8 8 776 5543210
b; 11101010 9 9 8 8 7 6 6 54 3 21

The only difference between (37) and (39) is thaj and fig are 4 in (39)
rather than 5in (37). The edge countin (39) is 15,996. Again, the profile in (39)
is achievable. For example, the following permutation yields a trellis with the
desired profile.

(0, 26,17, 2,16, 27, 22,9, 29, 28, 23,12, 3, 15
(1,21,7,18, 25,20, 11, 5,13, 4, 14) (40)
(6,24, 19,10)(8)(30)(3D)

The permuted parity check matrix is given by (41).

-01101101100110010000100101000000
00110001101111110000101011110000
0000110010101111010111101010100
00011011100111100101111101000700
00011001001001010111001011000q00

Hby, = | 10011101100000110001010110000400  (41)

0011110010000010110010101100000

00010101100100010101101000100100

0010100101101010000110111000000

00010100000001000101110111100010

| 00100100001100110100110001100001

4 Conclusions

This paper focused on the construction of minimum-edge trellises for some
BCH codes, and in particular, th@2, 26, 4) and (32, 21, 6) extended BCH
codes, which have been considered or employed in wireless paging systems.

The minimum-edge trellises provide the most efficient structures for
maximum-likelihood decoding using the Viterbi algorithm. The construction
of such a trellis for the32, 26, 4) extended BCH code was presented in the
paper and generalized to the entire class of(f#fe 2" — m — 1, 4) extended
Hamming codes, which is a subclass of the extended BCH codes.
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A subcode analysis was developed to show that the minimal edge count for
the trellis for the(32, 21, 6) extended BCH code is 14,948. A trellis with this
edge complexity was identified. The analysis means developed in the paper can
be applied to the construction of minimum-edge trellises for the variants of the
(32, 21) BCH code, such as th&0, 18) shortened BCH code used in ERMES,
and for other BCH codes as well.

The trellises developed for the (32, 26) and (32, 21) codes are highly ir-
regular, i.e. the constituents of their vertex sets change significantly with trellis
depth. This creates a problem with the implementation, for it can require a
separate lookup table at each trellis deptht has been shown by one of the
authors [24] that a mapping technique can be used to pack the vertices at depth
i into the sef0, 1, ..., 2% — 1}, wheres; is the dimension of the vector space
formed by the vertex set at depthThe map is described by a single matrix,
which requires far less storage capacity thatistinct lookup tables.

The primary applications of interest for this work involve small mobile
devices that are typically used in a fading environment. It has been shown
elsewhere [21] that the performance of the SDD’s developed here are superior
to that of the standard HDD’s over a Rayleigh fading channel. The (32, 21)
SDD provides substantial coding gain relative to the (32, 21) HDD, while the
(32, 26) SDD is comparable to the (32, 21) HDD. The (32, 21) SDD thus offers
the opportunity for improved performance, while the (32, 26) SDD offers an
increase in data throughput through a reduction in overhead.
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