1. UC/FS Documentation 4.07.00 HOMEot e e e e e e e 6

LI UC/FS USEr ManUAlottt e e e e e e e e e e e e e e 6
L1 INtrOdUCHION . .ot e e e e e 6
L.1.2 PCIFES ArCNItECIUNE . . o o e e e e 7
1.1.3 UC/FS Directories and Fileso e e 9
1.1.4 Useful INformation e 23
1.1.5Devices and VOIUMESo e e 27

1.1.5.1 DeVICE OPEIALIONS oot ittt et e e et et et e e e e e e 28
1.1.5.2USING DBVICES . . . oottt e 28
1.1.5.3Using ReMOVvAbIe DEVICESot e e e e e e 29
1154 Raw DeviCe 110 . . 30
L1155 PartitioNS 30
1.1.5.6 VOIUME OPEratiONS . . . oottt ettt e et et et e e e e e e 32
L1157 USING VOIUMES . . . oot e e e e e 33
1.1.5.8UsSINg VOIUME CaCheo e e e e e e 34

L L B RIS 36
1.1.6.1 File System File ACCESS FUNCLIONS ottt e e e e e e e e e e e e e e 36
1.1.6.1.1 OpeniNg Files . ..o 37
1.1.6.1.2 Getting Information About @ File 38
1.1.6.1.3 Configuring a File BUfer 38
1.1.6.1.4 File Error FUNCLIONS oo e e e e e 39
1.1.6.1.5 Atomic File Operations Using File LOCK e i e 39

1.1.6.2 File System Entry ACCESS FUNCLIONSot et e e e e e 40
1.1.6.2.1 File and Directory AUNDULESo e 40
1.1.6.2.2 Creating New Files and DireCtOrieSttt e 41
1.1.6.2.3 Deleting Files and DIreCIONESottt e e e 42

L1.1.7 DIFECIOMIES . . oottt et e ettt e e e e e 42
L L8 POS X APl 43
1.1.8.1 Supported FUNCHONS - POSIX e e e e e e e 43
1.1.8.2 Working Directory FUNCHONS - POSIX e 44
1.1.8.3 File Access FUNCHONS - POSIX 44
1.1.8.3.1 Opening, Reading and Writing Files - POSIX e 45
1.1.8.3.2 Getting or Setting the File Position - POSIX e 47
1.1.8.3.3 Configuring a File Buffer - POSIX 48
1.1.8.3.4 Diagnosing a File Error - POSIX 49
1.1.8.3.5 Atomic File Operations Using File LOCK - POSIX i e 49

1.1.8.4 Directory AcCess FUNCHIONS - POSIX e e e 50
1.1.8.5 Entry ACCesS FUNCHIONS - POSIX . ..o e 52
L1.1.9 DeVICE DIIVEIS . oo 52
1.1.9.1 Provided DeViCe DIIVEISt e e 52
1.1.9.1.1 Driver Characterizationt 53

1.1.9.2 Drivers COMPANISON . . . oottt ettt et e e e e e et e e e e e e e e e e e e e e 54
1120 FAT File Sy S oM o e 54
1.1.10.1 Why Embedded Systems Use FAT e 54
1.1.10.2 Organization of @ FAT VoIUMEo e e 54
1.1.10.2.1 Organization of Directories and Directory Entries e 55
1.1.10.3 Organization of the File Allocation Table e 56
1.1.00.3. L FAT L2/ FAT LG/ FAT B2 ottt e e e e e e e e e 57
1.1.10.3.2 Short and Long File Nameso e e e 57
1.1.00.4 FOrMAMING . . oottt e et e e e e e e e e e e e e e e 58
1.1.10.5 Types of Corruption in FAT VOIUMESot e e e e e 59
1.1.10.6 Optional Journaling SYSteMot e e e 59
1.1.10.6.1 What Journaling GUAraNteESttt ittt e e e e e e e e 59
1.1.10.6.2 How Journaling WoOrKSo e e 59
1.1.10.6.3 HOW TO USE JOUINAIING . . . ottt it e e e e e e e e e e e e e e e e e e e 60
1.1.10.6.4 Limitations of JOUrN@liNgot e e 60
1.1.20.7 LICENSING ISSUBS . . . oottt ettt e et e e e e e e e 61
1111 RAM DSk DIIVEI . . 61
1.1.11.1 Files and Directories - RAM DiSK 62
1.1.11.2 Using the RAM Disk DIVlo e e e e e 62
1112 SDIMMC DIIVEIS . .ottt et e e et e e e e e e e 64
1.1.12.1 Files and Directories - SDIMMC 66
1.1.12.2 Using the SD/MMC CardMode DIIVEr e e e e e 66
1.1.12.2.1 SD/MMC CardMode COmMmMUNICALIONottt e 69
1.1.12.2.2 SD/MMC CardMode Communication Debugging 71
1.1.12.2.3 SD/MMC CardMode BSP OVEIVIEWo 75
1.1.12.3 Using the SD/IMMGC SPI DIIVEEot e e e e e e e e e e e e 76
1.1.12.3.1 SD/MMC SPI COMMUNICALIONottt et et et e e e 78
1.1.12.3.2 SD/MMC SPI Communication Debuggingttt e 79
1.1.12.3.3 SD/IMMC SPIBSP OVEIVIEWot e e e e e 81

L1LA3 NAND Flash DriVer . .. e e e e e 82

1.1.13.1 Getting Startedot e 82

1.1.13.2 ArChiteCtUre OVEIVIEW . . .ttt e e e e e e e e e e e e 87

1.1.13.3 NAND Translation Layert e e e e e e e e e 88
1.1.13.3.1 Translation Layer Configurationttt e e 89
1.1.13.3.2 Translation Layer SOUrce Files e e 92

1.1.13.4 CoNntroller LAylottt e e 93
1.1.13.4.1 Generic Controller Layer Implementation e 93

1L A3 D Part LAY I ..ot te ee 94

1.1.13.6 Board SUpport Package 96

1.1.13.7 Performance Considerationsttt 97

1.1.13.8 Development GUIEttt e e e e e e e e 98
1.1.13.8.1 BSP Development Guide - Generic Controller e 98
1.1.13.8.2 Generic Controller Extension Development GUIde e 99
1.1.13.8.3 ECC Module Development GUIAEttt e 100
1.1.13.8.4 Controller Layer Development GUIAE i e e e e 101

L1114 NOR Flash Driver ... e e e e e 103

1.1.14.1 Files and Directories - NOR Flash e 104

1.1.14.2 NOR Driver and Device CharacteristiCs e 104

1.1.14.3 Using a Parallel NOR DEVICEottt e e e e e e e e e e e e e e 106
1.1.14.3.1 Driver Architecture - Parallel NOR 109
1.1.14.3.2 Hardware - Parallel NOR 110
1.1.14.3.3 NOR BSP OVEIVIEWottt e et e e e e e e e e e 111

1.1.14.4 Using @ Serial NOR DEVICEottt e e e e e e e e 111
1.1.14.4.1 Hardware - Serial NOR 112
1.1.14.42 NOR SPIBSP OVEIVIEW . . . oottt ittt et et e e e e e e e e e e e 112

1.1.14.5 PhysiCal-Layer DIIVEISttt et e e e e e e e e e e e 113
1.1.14.5.1 FSDev_NOR_AMD_1x08 & FSDeV_NOR_AMD_IX16\ttt 113
1.1.14.5.2 FSDeV_NOR_INEI_IX16 ottt e e e e e e e 113
1.1.14.5.3 FSDEV_NOR _SST 3 ..\ttt et 113
1.1.14.5.4 FSDEV_NOR _STM25 ..t e 114
1.1.14.5. 5 FSDEV_NOR _SST 25t 114

LAAS MSC DIIVEI . ottt e e e 114
1.1.15.1 Files and Directories - MSC i 114
1.1.15.2 USiNG the MSC DIIVEI . . . oottt e e e e e e e e e e e e 115

LAA6 IDE/CE DIiVEr . ottt 116

1.1.16.1 Files and Directories - IDE/CF 116

1.1.16.2 Using the IDE/CF DIVot e e e e e e e e e e e 117
1.1.16.2.1 ATA (True IDE) COMMUNICALIONottt ettt e e e e e e e e e e e e et e e i 119
1.1.16.2.2 IDE BSP OVEIVIEW . . .ottt e et et e e e e e e e 121

1.2 UCIFS ReferenCe GUIEot e e e e e e e e e e e e e e e e e e e 123

1.2 1 HCIFS APL REfEIBNCE . . .o e 124

1.2.1.1 General File SyStem FUNCHONSt e e e e e e e e e 124
1.2.1. 1.3 FS_DeVDIVAAU() . . oottt e 125
12,002 FS INIt() « vttt et e e 126
1.2.1. 1.3 FS_VerSiONGEL() . . oottt ettt e e e 126
1.2.1.1.4 FS_WOrKIiNGDIrGEL() . . o ottt et e et e e e e e e e e 126
1.2.1.1.5 FS_WOrKINGDIrSE() . . . oottt et et e e e e e e e 127

1.2.1.2 PosiXx AP FUNCLIONSo e e e e e e e 128
1.2.0.2.0 fS_@SCUME_F() .« ot ottt e e e 131
1.2.0.2.2 5 _Chdir() ..ot 131
1.2.0.2.3 1S _Cle@arerr() . ..ot e 132
1.2.1.2.4FS_ClOSEAIN() . . v oottt e e e e 132
12,0, 2.5 18 ClIME_I() . e ettt e e e 132
1.2.0.2.6 fS_fCIOSE() . . v oottt e 133
1,20, 2.7 5 fEOf () . ot ot 133
1.2.0.2.8 1S _f@ITON() . . ottt e 134
1.2.0.2.9 s _flluSh() ..ot 134
1.2.1.2.00 fS_fOOIPOS() -« o o v et e e e e 135
1.2.1.2.21 f5_flOCKAIE() . . oo ot 136
1.2.0.2.02 S _fOPEN() . . v oottt e e 136
1.2.1.2.23FS_fre@ad() . .. v oot e 137
1.2.0.2.04 68 _fSEEK() .« . . v oottt e 137
1.2.0.2.05 5 _fSELPOS() .« oottt e e e 138
12,0206 fs_ftell() oo 139
1.2.1.2.07 fS_frUNCALE() oot e e 139
1.2.1.2.28 fs_ftrylockfile() oot e 140
1.2.1.2.29 fs_funlockfile()o 140
1.2.0.2.20 fS_fWIItB() .+ . ottt et 140
1.2.1.2.21 fS_QEICWA() .« « o oottt e e e e e e 141
1.2.1.2.22 f5_10CaIIME_T() . . oottt e e 142
1.2.0.2.23F5_ MKAIN() .« . oottt 142
1.2.1.2.24 f5 _MKUME() . . oottt e e e 143

1.2.1.2.25S_0PENAIN() . . oottt e e e 143

1.2.1.2.26 fS_r€addir_F()o ittt e e 144

1.2.0.2.27 fS_TEMOVE() .« oottt et e e e e e e e e e e e 144
1.2.1.2.28 fS_r€NAME() . . oottt et e e e e 145
1.2.1.2.29 fS_re@WINA() . . v oottt et e e e e e 146
1.2.2.2.30 fS_IMAIr() .« o oot e e e 147
1.2.0.2.31 5 _Sethuf() . ..o 147
1.2.1.2.32 5 _SetVhUT() . . oo e 148
1.2.1.3 DEVICE FUNCHONS . . . ottt ettt e et et e e e e e e 149
1.2.1.3.1 FSDEV_ACCESSLOCK() « v o vt ittt et e e e e 151
1.2.1.3.2 FSDeV_ACCESSUNIOCK() . . . ottt e e e e 151
1.2.1.3.3 FSDEV_ClOSE() . vt ittt et e e 152
1.2.1.3.4 FSDEV_GetDEVCNL() . . oottt et et e e e e e 153
1.2.1.3.5 FSDeV_GetDEVCNIMAX() . .« o vttt e et e e e e e e e e e 153
1.2.1.3.6 FSDeV_GetDEVNAME()ottt it e e e e 153
1.2.1.3.7 FSDeVv_GetNDrPartitionS()ottt e e e e 154
1.2.1.3.8 FSDev_Invalidate()ttt e 154
1.2.1.3.9 FSDEV_OPEN() .+ o vttt e et e e e e e e e e e e e 155
1.2.1.3.10 FSDev_PartitionAdd()ot e 156
1.2.1.3.11 FSDev_PartitionFind()t e 157
1.2.1.3.12 FSDev_PartitionInit()ot e 158
1.2.1.3. 13 FSDEV_QUEIY() - v oottt e e e et e e e e e e e e 159
1.2.0.3. 14 FSDEV_RU() .+« ot ottt ettt e e 160
1.2.1.3.15 FSDeV_Refresh() 161
12,036 FSDEV _WI() o .o v ittt ettt e e e e 161
1.2.1.4 Directory ACCESS FUNCHIONSottt ittt e e e e e e e e e e e e e e e e e e e 162
1.2.0.4. 0 FSDIN_ClOSE() .« o vttt ettt et e e e e 163
1.2.1.4.2 FSDIN_ISOPEN() . . vt ittt e et e e e e e e 163
1.2.1.4.3 FSDIr_OPEN() - v oottt et e e e e e e e e e e 164
12,044 FSDIr_RA() .« . vttt 165
1.2.1.5 ENtry ACCESS FUNCHIONS . . . oottt et i et et e e e e e e e e e e e e e e e e e 166
1.2.1.5.1 FSENtry_ADSEt()ot e 167
1.2.1.5.2 FSENIY_COPY() - v v vt et et e e e e e e e e e e e e e 168
1.2.1.5.3 FSENIY_Create()ttt ittt et e e e e e e e e 169
1.2.1.5.4 FSENY_Del() . ..ot 170
1.2.1.5.5 FSENIY_QUEIY() . .ttt it e e e e e e e e e e e e e e e 171
1.2.1.5.6 FSENtry_ReNAME() . .. oottt 172
1.2.1.5.7 FSENY_TIMESEL() . . . oottt et et e e e e e e e e e e 174
1.2. 1.6 File FUNCHONS .. . e e e e e e e e 175
1.2.1.6.1 FSFile_BUFASSIGN() . . . oottt et e e 177
1.2.1.6.2 FSFile_BUFFIUSN() . ..ot 178
1.2.0.6.3 FSFIlE_ClOSE() . ..ottt ettt 179
1.2.0.6.4 FSFIlE_CIrEIT() . ..ot ittt e e e e e e e e e 179
1.2.0.6.5 FSFIlE_ISEOR() ..ottt e 180
1.2.0.6.6 FSFIlE_ISEIT() . . oottt e e e e e e e e e 181
1.2.0.6.7 FSFIlE_ISOPEN() . . .t i ettt 182
1.2.1.6.8 FSFile_LOCKACCEPL() . . oottt e 182
1.2.1.6.9 FSFIle_LOCKGEI() . ..ottt et e e e e e 183
1.2.1.6.10 FSFile_LOCKSEL() . ..o\ o vttt ettt e e e e 184
1.2.1.6.01 FSFIlE_OPEN() . . vt ittt e e e 185
1.2.1.6. 02 FSFile_POSGEI() . ..ottt ittt 186
1.2.1.6.13 FSFIlE_POSSEU() . . .ottt ettt e e 187
1.2.0.6.04 FSFIle_QUEIY() . . oottt e e e e e e e e e e 188
1.2.0.6. 05 FSFle_RA() ..o\ttt 189
1.2.1.6.16 FSFIle_TruncCate()ottt e e e e e e e e e e 190
1.2.0.6.07 FSFIE _WI() oottt e 190
1.2.1.7Volume FUNCHIONS e e e e e e e 191
1.2 0.7 0 FSVOL_CIOSE() .« o vttt e et et e e e e e e 193
1.2.0.7.2 FSVO L FME() . oottt 193
1.2.1.7.3 FSVOl_GetDItVOINAME()ot e 194
1.2.1.7.4 FSVOL_GEtVOICNT() . ..t ottt et e e e e e e e e e e 195
1.2.1.7.5 FSVOL_GEetVOICNIMAX() . . . v ottt it e e e e e e e e e 195
1.2.1.7.6 FSVOIL_GetVoINaME() . . .ottt e e 195
1.2.0.7.7 FSVOLISDAII() . o v ottt 196
1.2.1.7.8 FSVOL_ISMOUNTEA() . . .ottt et et e e e e e e 196
1.2.1.7.9 FSVol_LabelGet() 197
1.2.1.7.00 FSVOI_LabelSet()ot 198
1.2 0.7 0L FSVO _OPEN() ettt et e e 199
1.2.0.7.02 FSVO L _QUEIY() - . v oottt e e e e e e e 200
1.2.0.7. 03 FSVOIL_RA() .ot ottt 201
1.2 0.7 LA FSVO I) ot 202
1.2.1.8 Volume Cache FUNCLONS e e e 203

1.2.1.8.1 FSVOI_CaCheASSIgN() .. .ottt e 203

1.2.1.8.2 FSVol_CacheFIush() e 204

1.2.1.8.3 FSVol_Cachelnvalidate () e 205
1.2.1.9 SD/IMMC Driver FUNCHIONSt e e e e et e e e e e e 206
1.2.1.9.1 FSDeV_SD_XXX_QUEIYSD() . ..ottt e 207
1.2.1.9.2 FSDeV_SD_XXX_RACID() . ..ttt e e e e 208
1.2.1.9.3 FSDeV_SD_XXX_RACSD()ttt ettt ettt e e e et e e e 209
1.2.1.10 NAND Driver FUNCHIONSot e e e e e e e e e e e 210
1.2.1.10.1 FSDeV_NAND_LOWFME()ottt ettt et e e e e e e e e e e 210
1.2.1.10.2 FSDeV_NAND_LOWMOUNE() . . .ottt ettt e 211
1.2.1.10.3 FSDev_NAND_LOWUNMOUNE()ottt e e et et e e e e e e e e e e e e e e 212
1.2.1.11 NOR Driver FUNCHONS . . .ot e e e e e e e e e e e 213
1.2.1.11.1 FSDeV_NOR_LOWCOMPACH() -+« v v ot ettt e e e e e e e e e e e e e e e e e e e 214
1.2.1.11.2 FSDeV_NOR_LOWDETTAG() . -+« « v ottt e e e e e e e e e e e e e e e 215
1.2.1.11.3 FSDeV_NOR_LOWFME() . . .ottt it e e e e e e e e e e e e e e e e e e e 216
1.2.1.11.4 FSDeV_NOR_LOWMOUNE() . . . ottt ittt e 216
1.2.1.11.5 FSDeVv_NOR_LOWUNMOUNE()t o ettt e 217
1.2.1.11.6 FSDev_NOR_PhyEraseBIK() e e 218
1.2.1.11.7 FSDev_NOR_PhyEraseChip()ottt e e e e e e e 219
1.2.1.11.8 FSDEV_NOR_PRYRA() - . oottt ettt et e e e e e e e 220
1.2.1.11.9 FSDEeV_NOR _PRYWI() . .ottt e e e e e e 221
1.2.1.12 FAT System Driver FUNCHONSo e e e e e e e e e e 222
1.2.1.12. 1 FS_FAT_JoUrnalCloSe() . ..t v ittt e e e e e e e e e e e 223
1.2.1.12.2 FS_FAT_JournalOpen()o ottt e e e e e e e e e e 223
1.2.1.12.3 FS_FAT_JoUrnalStart()ottt e e e e e 224
1.2.1.12.4 FS_FAT_JoUrnalStop() . .« o v et it e e e e e 224
1.2.0.02.5 FS_FAT_VOIChK() ..ottt e e e e 225
122 HCIFES EITOr COUBS . . ottt ettt et e e e e e e e e e e e e e 226
1.2.3 UCIFS Porting ManUalo e e e 232
1.2.3.1 Date/Time Managementttt ittt e e e e e e e e e 234
12,32 CPU POrt oottt 234
1.2.3.3 OS Kernel .. 234
1.2.3.4 DEVICE DIIVEI . .o 239
1.2.3.4.1 CloSe() - DEVICE DIIVEIottt e e e e e e e e e e e 239
1.2.3.4.21nit() - DEVICE DIIVEI . . . oo 240
1.2.3.4.3 10_Ctrl() - DEVICE DIIVEI . . . ot e e e e e e e e e 240
1.2.3.4.4 NameGet() - DeVICE DriVer 241
1.2.3.4.50p€eN() - DEVICE DIIVEIottt e e e e e e 242
1.2.3.4.6 QUEry() - DeVICE DIiVEI . . . oo 243
1.2.3.4.7 RA() - DEVICE DIIVEI . . .t ot e e e e e e e e e e e 243
1.2.3.4.8 Wr() - DEVICE DIIVEI . . .o ottt e e e e e e e e e 244
1.2.3.5 SD/MMC Cardmode BSP 245
1.2.3.5.1 FSDev_SD_Card_BSP_CmdDataRd()ttt 247
1.2.3.5.2 FSDev_SD_Card_BSP_CmdDataWr()ttt 249
1.2.3.5.3 FSDev_SD_Card_BSP_CmdStart()ttt 251
1.2.3.5.4 FSDev_SD_Card_BSP_CmdWaitENd()ttt e 255
1.2.3.5.5 FSDev_SD_Card_BSP_GetBIKCNtMaX()ttt et e e e e e 258
1.2.3.5.6 FSDev_SD_Card_BSP_GetBusWidthMax()« ..ttt e i 258
1.2.3.5.7 FSDev_SD_Card_BSP_LoCk/UNIOCK() ot 259
1.2.3.5.8 FSDeVv_SD_Card_BSP_OPeNn()ottt e e 259
1.2.3.5.9 FSDev_SD_Card_BSP_SetBusWidth()« ..ot e 259
1.2.3.5.10 FSDev_SD_Card_BSP_SetCIKFreq()ottt e e 260
1.2.3.5.11 FSDev_SD_Card_BSP_SetTimeoutData()ttt 260
1.2.3.5.12 FSDev_SD_Card_BSP_SetTimeoUtRESP()« ottt ettt e e e e 261
1.2.3.6 SDIMMC SPIMOE BSP 261
12,37 SPI B OP .t 261
1.2.3.7.1 ChipSelEn() / ChipSelDis() - SPI BSP e 263
1.2.3.7.2 CloSe() - SPI BSP ..ot 264
1.2.3.7.3 Lock() / UnloCK() - SPI BSPt 264
1.2.3.7.4 0PEN() - SPI BSP . .ot 264
1.2.3.7. 5 RA() - SPI BSP . 265
1.2.3.7.6 SEtCIKFreq() - SPI BSP . .. i 265
1,237 7 Wr() - SPI B SP . 266
1.2.3.8 NAND Flash Physical-Layer DIVEr e e e e e e e e e 266
1.2.3.9 NOR Flash Physical-Layer DriVer e e e e e e e 266
1.2.3.9.1 Close() - NOR FIash DriVer e e e e e e 268
1.2.3.9.2 EraseBIk() - NOR Flash Driver e e e 268
1.2.3.9.310_Ctrl() - NOR Flash Driver e e e e e e e 269
1.2.3.9.40pen() - NOR Flash DriVer e e e e e e 269
1.2.3.9.5 Rd() - NOR FIash Driver e e e e e e e e 270
1.2.3.9.6 Wr() - NOR Flash Driver e e e e e e e e 271
1.2.3. 10 NOR Flash BSP ... e e e e e 272

1.2.3.10.1 FSDEV_NOR_BSP_CIOSE() . . .« ottt ettt e e e e e e e e e e 272

1.2.3.10.2 FSDEV_NOR _BSP _OPEN() . . ot ittt et e e e e e e e e e e 272

1.2.3.10.3 FSDEeV_NOR_BSP_RU_XX() '+ vt o ettt ettt et e e e e e 273
1.2.3.10.4 FSDeV_NOR_BSP_RAWOIA_XX() -+ttt ottt ettt et e e e e e e e e e 274
1.2.3.10.5 FSDev_NOR_BSP_WaitWhileBUusY()ot e e 274
1.2.3.10.6 FSDeV_NOR_BSP_WIWOrd_XX() . ..ottt ettt et ettt e e e e e 275
1.2.3. 11 NOR FIash SPI BS P . .o e e e 276
1.2.4 UCIFS TyPeS @Nnd SHUCKIUIES o ottt et et e e et e e e e e e e e e e e e e e e e e e e 276
O S T O 276
1.2.4.2 FS DEV _INFO ot 277
1243 FS DEV_NOR_CFG ...ttt e e e e e 278
1.24.4FS DEV_RAM_CFG ...ttt e e e e e 279
1.2.45 FS_DIR_ENTRY (Struct fS_dir€nt)o e e e e e e 280
1,248 FS _ENTRY _INFO ..ttt e e e 280

1 2. 4.7 FS AT _SY S CFG .ttt ittt e e 281
1.2.4.8 FS_PARTITION _ENT RY .ttt e e e e e e e e 282
12,49 FS VOL INFO o 282
1.2.5 PCIFS CoNfIQUIAtioONottt e e et e e e e e e 284
1.2.5.1 File System Configuration 284
1.2.5.2 Feature Inclusion Configuration 285
1.2.5.3 Name Restriction Configuration 287
1.2.5.4 Debug Configuration e 287
1.2.5.5 Argument Checking Configuration 287
1.2.5.6 File System Counter Configurationt 288
1.2.5.7 FAT CoNnfiQUIationttt e e e e e e e 288
1.2.5.8 SD/IMMC SPI Configuration e e e e e 288
1.2.5.9 Trace Configurationottt e e e e e e e e 288
1.2.6 Shell Commands 289
1.2.6.1 Files @and DIr€CIONESottt ittt e et et e e e e e e 289
1.2.6.2 Using the Shell Commandst 290
1.2.6.3 COMMANGS . ..ottt et e e 293
22 T8 70 R £ o - | 293

1. 2.6.3.2 18 OO oot 294
2 0 R £ o o T 294

1. 2.6.3.4 18 Al ... e e 295
12,63 5 sl oo 295
12,636 18IS oo 296
1.2.6.3. 7 fs MKAIr .o 297
1.2.6.3.8 f5 _MKIS . 297
1.2.6.3.9 18 MOUNL . . e e e e 297
1.2.6.3. 00 S MV .ottt 298
1.2.6.3. 1L f8 00 ..ot t 298
1.2.6.3. 02 f8 PWO . ottt 299

1. 2.6.3. 03 08 M oot 299
1.2.6.3. 04 1S IMAIr . . e e e 300
1.2.6.3.05 f8 tOUCKh ... e e 300
1.2.6.3.06 TS UMOUNL . ..t e e e 301

L 2.6.3. 07 fS W C .ottt e e e 301

1.2.6.4 CoNfIGUIALIONottt e e e e e e e e 301
12,7 BibliOgrapnyo e e 302
L3 UC/FS ReleaSE NOIES . . .ottt e e e e e 302
1.4 UC/FS MiIgration GUITEo ottt e e et e e e e e e e e e e e e e e e 308

1.5 HC/FS LICeNSING POICY . . ot e e e e 310

UC/FS Documentation 4.07.00 Home

TM C/FS is a compact, reliable, high-performance and thread-safe
p embedded file system for microprocessors, microcontrollers and
| DSPs.

The Embedded File System

(D This documentation is also available in PDF version: uC-FS User Manual V40700.pdf

Note that this PDF-exported version of the documentation has formatting issues and the use of the online version is recommended.

UC/FS User Manual

Version 4.07.00

UC/FS can access multiple storage media through a clean, simple API. It supports the FAT file system for interoperability with all major operating
systems. An optional journaling component provides fail-safe operation, while maintaining FAT compatibility.

C/FS is based on clean, consistent ANSI C source code, with extensive comments describing most global variables and all functions.

The memory footprint of C/FS can be adjusted at compile time based on required features and the desired level of run-time argument checking.
For applications with limited RAM, features such as cache and read/write buffering can be disabled; for applications with sufficient RAM, enabling
these features improves performance.

Device drivers are available for all common media types. Each of these is written with a layered structure so that it can easily be ported to your
hardware. The device driver structure is simple, so that a new driver can be developed easily for a new medium.

Introduction

About File Systems
About Storage Media
UC/FS Architecture
UC/FS Directories and Files
Useful Information
Devices and Volumes
Files

Directories

POSIX API

Device Drivers

FAT File System
RAM Disk Driver
SD/MMC Drivers
NAND Flash Driver
NOR Flash Driver
MSC Driver

IDE/CF Driver
Logical Device Driver

Introduction

Files and directories are common abstractions, which we encounter daily when sending an e-mail attachment, downloading a new application or
archiving old information. Those same abstractions may be leveraged in an embedded system for similar tasks or for unique ones. A device may
serve web pages, play or record media (images, video or music) or log data. The file system software which performs such actions must meet the
general expectations of an embedded environment—a limited code footprint, for instance—uwhile still delivering good performance.

uC/FS

UC/FS is a compact, reliable, high-performance file system. It offers full-featured file and directory access with flexible device and volume
management including support for partitions.

Source Code: UC/FS is provided in ANSI-C source to licensees. The source code is written to an exacting coding standard that emphasizes
cleanness and readability. Moreover, extensive comments pepper the code to elucidate its logic and describe global variables and functions.
Where appropriate, the code directly references standards and supporting documents.

Device Drivers: Device drivers are available for most common media including SD/MMC cards, NAND flash, NOR flash. Each of these is written
with a clear, layered structure so that it can easily be ported to your hardware. The device driver structure is simple—basically just initialization,

https://doc.micrium.com/display/fsdoc/About+File+Systems
https://doc.micrium.com/display/fsdoc/About+Storage+Media
https://doc.micrium.com/display/fsdoc/Logical+Device+Driver
https://doc.micrium.com/download/attachments/10753193/uC-FS%20User%20Manual%20V40700.pdf?version=1&modificationDate=1411767660000&api=v2

read and write functions—so that uC/FS can easily be ported to a new medium.

Devices and Volumes: Multiple media can be accessed simultaneously, including multiple instances of the same type of medium (since all
drivers are re-entrant). DOS partitions are supported, so more than one volume can be located on a device. In addition, the logical device driver
allows a single volume to span several (typically identical) devices, such as a bank of flash chips.

FAT: All standard FAT variants and features are supported including FAT12/FAT16/FAT32 and long file names, which encompasses Unicode file
names. Files can be up to 4-GB and volumes up to 8-TB (the standard maximum). An optional journaling module provides total power fail-safety
to the FAT system driver.

Application Programming Interface (API): uC/FS provides two APIs for file and directory access. A proprietary API with parallel argument
placement and meaningful return error codes is provided, with functions like FSFi | e_W (), FSFi | e_Rd() and FSFi | e_PosSet () .
Alternatively, a standard POSIX-like API is provided, including functions like fs_fwite(),fs_fread() andfs_f set pos() that have the
same arguments and return values as the POSIX functions fwrite(),fread() andfsetpos().

Scalable: The memory footprint of pC/FS can be adjusted at compile-time based on the features you need and the desired level of run-time
argument checking. For applications with limited RAM, features such as cache and read/write buffering can be disabled; for applications with
sufficient RAM, these features can be enabled in order to gain better performance.

Portable: pC/FS was designed for resource-constrained embedded applications. Although PC/FS can work on 8- and 16-bit processors, it will
work best with 32- or 64-bit CPUs.

RTOS: uC/FS does not assume the presence of a RTOS kernel. However, if you are using a RTOS, a simple port layer is required (consisting of
a few semaphores), in order to prevent simultaneous access to core structures from different tasks. If you are not using a RTOS, this port layer
may consist of empty functions.

Typical Usages

Applications have sundry reasons for non-volatile storage. A subset require (or benefit from) organizing data into named files within a directory
hierarchy on a volume—basically, from having a file system. Perhaps the most obvious expose the structure of information to the user, like
products that store images, video or music that are transferred to or from a PC. A web interface poses a similar opportunity, since the URLs of
pages and images fetched by the remote browser would resolve neatly to locations on a volume.

Another typical use is data logging. A primary purpose of a device may be to collect data from its environment for later retrieval. If the information
must persist across device reset events or will exceed the capacity of its RAM, some non-volatile memory is necessary. The benefit of a file
system is the ability to organize that information logically, with a fitting directory structure, through a familiar API.

A file system can also store programs. In a simple embedded CPU, the program is stored at a fixed location in a non-volatile memory (usually
flash). If an application must support firmware updates, a file system may be a more convenient place, since the software handles the details of
storing the program. The boot-loader, of course, would need to be able to load the application, but since that requires only read-only access, no
imposing program is required. The ROM boot-loaders in some CPUs can check the root directory of a SD card for a binary in addition to the more
usual locations such as external NAND or NOR flash.

Why FAT?

File Allocation Table (FAT) is a simple file system, widely supported across major OSs. While it has been supplanted as the format of hard drives
in Windows PCs, removable media still use FAT because of its wide support. That is suitable for embedded systems, which would often be
challenged to muster the resources for the modern file systems developed principally for large fixed disks.

UC/FS supports FAT because of the interoperability requirements of removable media, allowing that a storage medium be removed from an
embedded device and connected to a PC. All variants and extensions are supported to specification.

A notorious weakness of FAT (exacerbated by early Windows system drivers) is its non-fail safe architecture. Certain operations leave the file
system in an inconsistent state, albeit briefly, which may corrupt the disk or force a disk check upon unexpected power failure. pC/FS minimizes
the problem by ordering modifications wisely. The problem is completely solved in an optional journaling module which logs information about
pending changes so those can be resumed on start-up after a power failure.

UC/FS Architecture

UC/FS was written from the ground up to be modular and easy to adapt to different CPUs (Central Processing Units), RTOSs (Real-Time
Operating Systems), storage media and compilers. Figure - uC/FS architecture in the pC/FS Architecture page shows a simplified block diagram
of the different uC/FS modules and their relationships.

Notice that all of the pC/FS files start with ‘f s_". This convention allows you to quickly identify which files belong to pC/FS. Also note that all
functions and global variables start with ‘FS’, and all macros and #def i nes start with ‘FS_".

Your Application pc-Lie
fv_efeh lib_def'h
-t L lib_ascii. ®
lib_mem. *
lib_str*
i)
Y
v UCFS
POSIX API Layer
Ss_api.*
FS Layer
f5* Ji_dev® [s_partition. ®
S5_buf * Sa_dir* S5 _sys.*
[fs_cache.® Si_entry ® I5_tvpeh
fs_cfg fs.h Si_ernh f5_unicode *
fs_eteh S_file.® S5 util*
Sfs_defCh Si_inc.h fs_vol ®
A [
Y

File System Driver Layer MC-CRC
f5_fat* S5 fat_fatl2 * fs5 fat sfn* edc_cre.®
fs_fat_dir* B far_jarl6.* fs_jat_typeh ecc_hamming. *

B fat_entrv® fs fa_fat32 % f5 fat_journal * ecc.h
I5_fat_file ® fs_fat_ifn.* cre_util. *
r *
|
h 4 r v
Device Driver Layer
RAM Disk so/mmc NOR IDE UsSB MsC
5 _dev_ram.* f5_dev_sd.* f5_dev_nor* f5_dev_ide * Si_dev_mse *
v v v v
MC-CPU MC-CIk Layer Device Driver BSP RTOS Layer
Cpu_dLasm ket fs_dev_<driver>_bsp.c f5_os.cth
cpih
cpu_def h
CcPU Time Device RTOS
management

Figure - uC/FS architecture

Architecture Components

UC/FS consists of a set of modular software components. It also requires a few external components (provided with the release) be compiled into

the application and a few configuration and BSP files be adapted to the application.

Your Application

Your application needs to provide configuration information to pC/FS in the form of one C header file named f s_cf g. h.

Some of the configuration data in f s_cf g. h consist of specifying whether certain features will be present. For example, LFN support, volume
cache and file buffering are all enabled or disabled in this file. In all, there are about 30 #def i ne to set. However, most of these can be set to

their default values.

MC/Lib (Libraries)

Because PC/FS is designed to be used in safety critical applications, all ‘standard’ library functions like st r cpy() , menset (), etc., have been

re-written to follow the same quality as the rest of the file system software.

POSIX API Layer

Your application interfaces to uC/FS using the well-known st di 0. h API (Application Programming Interface). Alternately, you can use uC/FS’s
own file and directory interface functions. Basically, POSIX API layer is a layer of software that converts POSIX file access calls to pC/FS file
access calls.

FS Layer

This layer contains most of the CPU-, RTOS- and compiler-independent code for uC/FS. There are three categories of files in this section:

1. File system object-specific files:

® Devices (f s_dev. *)
Directories (f s_dir. *)
Entries (fs_entry. *)
Files (fs_file.*)
Partitions (f s_parti tion. *)
Volumes (f s_vol . *)
2. Support files:

® Buffer management (f s_buf . *)

® Cache management (f s_cache. *)
® Counter management (f s_ctr. h)
L]
L]
°

File system driver (f s_sys. *)
Unicode encoding support (f s_uni code. *)
Utility functions (fs_util.*)
3. Miscellaneous header files:
Master uC/FS header file (f s. h)
Error codes (fs_err. h)
Aggregate header file (fs_inc.h)
Miscellaneous data types (f s_t ype. h)
Miscellaneous definitions (f s_def . h)
Configuration definitions (fs_cfg_fs. h)

File System Driver Layer

The file system driver layer understands the organization of a particular file system type, such as FAT. The current version of uC/FS only supports
FAT file systems. f s_f at *. * contains the file system driver which should be used for FAT12/FAT16/FAT32 disks with or without Long File Name
(LFN) support.

Device Driver Layer

Devi ce drivers (or just drivers) are low-level functions that translate logical block operations into physical I/O operations on storage device
controlled by the device drivers. There is one driver type for each type of storage device: SD/MMC card, NAND flash, NOR flash, etc.

Device drivers hide all details about the storage device (e.g., the size of the physical block (or, on magnetic disk, the sector), whether physical
blocks/pages must be erased before they can be overwritten) from the higher layers in the file system, and therefore from the application as well.

The vendor of the file system may provide generic drivers.

Vendors of boards and board support packages may provide drivers for specific evaluation boards.

HC/CPU

UC/FS can work with either an 8, 16, 32 or even 64-bit CPU, but needs to have information about the CPU you are using. The pC-CPU layer
defines such things as the C data type corresponding to 16-bit and 32-bit variables, whether the CPU is little- or big-endian and, how interrupts
are disabled and enabled on the CPU, etc.

CPU specific files are found in the ..\ uC- CPU directory and, in order to adapt pC/FS to a different CPU, you would need to either modify the cpu*
. * files or, create new ones based on the ones supplied in the uC-CPU directory. In general, it's much easier to modify existing files because you
have a better chance of not forgetting anything.

RTOS Layer

UC/FS does not require an RTOS. However, if UC/FS is used with an RTOS, a set of functions must be implemented to prevent simultaneous
access of devices and core UC/FS structures by multiple tasks.

UC/FS is provided with a no-RTOS (which contains just empty functions), a C/OS-Il and a pC/OS-lll interface. If you use a different RTOS, you
can use the f s_os. * for u.C/OS-Il as a template to interface to the RTOS of your choice.

HUC/FS Directories and Files

® Application Code
® Board Support Package (BSP)

UC/CPU Specific Source Code

UC/Lib Portable Library Functions

UC/CIk Time/Calendar Management

UC/CRC Checksums and Error Correction Codes
UC/FS Platform-Independent Source Code
UC/FS FAT Filesystem Source Code

UC/FS Memory Device Drivers

UC/FS Platform-Specific Source Code

UC/FS OS Abstraction Layer

UC/FS is fairly easy to use once you understand which source files are needed to make up a pC/FS-based application. This chapter will discuss
the modules available for uC/FS and how everything fits together.

Figure - uC/FS Architecture in the pC/FS Directories and Files page shows the uC/FS architecture and its relationship with the hardware. Memory
devices may include actual media both removable (SD/MMC, CF cards) and fixed (NAND flash, NOR flash) as well as any controllers for such
devices. Of course, your hardware would most likely contain other devices such as UARTs (Universal Asynchronous Receiver Transmitters),
ADCs (Analog to Digital Converters) and Ethernet controller(s). Moreover, your application may include other middleware components like an OS
kernel, networking (TCP/IP) stack or USB stack that may integrate with pC/FS.

A Windows™-based development platform is assumed. The directories and files make references to typical Windows-type directory structures.
However, since UC/FS is available in source form then it can certainly be used on Unix, Linux or other development platforms. This, of course,
assumes that you are a valid uC/FS licensee in order to obtain the source code.

The names of the files are shown in upper case to make them ‘stand out’. The file names, however, are actually lower case.

(13) (1)
HC/FS Configuration Application Code

HC/FS (8) uC/LIB (5)

Platform Independent Libraries

(9)
HC/FS
Filesystem Driver
UC/FS (10) ucrrs (12)
0S Specific
F5_0S5.C/H
(11) (4) (3) (2)
HC/FS uC/CPU BSP CcPU
Platform Specific CPU Specific Board Support Package
_BsE. BSP.C/H
Software / Firmware
Hardware
Memory Interrupt
Devices GPU Controller

Figure - uC/FS Architecture

1)

The application code consist of project or product files. For convenience, we simply called these app. ¢ and app. h but your application can
contain any number of files and they do not have to be called app. *. The application code is typically where you would find mai n() .

@

Quite often, semiconductor manufacturers provide library functions in source form for accessing the peripherals on their CPU (Central Processing
Unit) or MCU (Micro Controller Unit). These libraries are quite useful and often save valuable time. Since there is no naming convention for these
files, *.c and *.h are assumed.

©)
The Board Support Package (BSP) is code that you would typically write to interface to peripherals on your target board. For example you can
have code to turn on and off LEDs (light emitting diodes), functions to turn on and off relays, and code to read switches and temperature sensors.

4
UC/CPU is an abstraction of basic CPU-specific functionality. These files define functions to disable and enable interrupts, data types (e.g., CPU_
I NTO8U, CPU_FP32) independent of the CPU and compiler and many more functions.

(5)

UC/LIB consists of a group of source files to provide common functions for memory copy, string manipulation and character mapping. Some of
the functions replace stdlib functions provided by the compiler. These are provided to ensure that they are fully portable from application to
application and (most importantly) from compiler to compiler.

(6)
UC/Clk is an independant clock/calendar management module, with source code for easily managing date and time in a product. pC/FS uses the
date and time information from pC/Clk to update files and directories with the proper creation/modification/access time.

@)

UC/CRC is a stand-alone module for calculating checksums and error correction codes. This module is used by some of uC/FS device drivers.

(8
This is the uC/FS platform-independent code, free of dependencies on CPU and memory device. This code is written in highly-portable ANS| C
code. This code is only available to HC/FS licensees.

9)

This is the uC/FS system driver for FAT file systems. This code is only available to uC/FS licensees.

(10)

This is the collection of device drivers for uC/FS. Each driver supports a certain device type, such as SD/MMC cards, NAND flash or NOR flash.
Drivers are only available to uC/FS licensees.

(11)

This is the uC/FS code that is adapted to a specific platform. It consists of small code modules written for specific drivers called ports that must

be adapted to the memory device controllers or peripherals integrated into or attached to the CPU. The requirements for these ports are
described in Appendix C, Porting Manual.

12)
UC/FS does not require an RTOS. However, if uUC/FS is used with an RTOS, a set of functions must be implemented to prevent simultaneous
access of devices and core uC/FS structures by multiple tasks.

(13)
This uC/FS configuration file defines which uC/FS features (f s_cf g. h) are included in the application.

Application Code

When Micrigm provides you with example projects, we typically place those in a directory structure as shown below. Of course, you can use
whatever directory structure suits your project/product.

\Mcrium

\ Sof t war e

\ Eval Boar ds

\ <manuf act ur er >
\ <board name>

\ <conpi l er>

\ <proj ect name>
o

\Mcrium

This is where we place all software components and projects provided by Micrium. This directory generally starts from the root directory of your
computer.

\ Sof t war e

This sub-directory contains all the software components and projects.

\ Eval Boar ds

This sub-directory contains all the projects related to the evaluation boards supported by Micripm.

\ <manuf act ur er >

Is the name of the manufacturer of the evaluation board. The ‘<’ and >’ are not part of the actual name.
\ <board name>

This is the name of the evaluation board. A board from Micripm will typically be called uC-Eval-xxxx where ‘xxxx’ will represent the CPU or MCU
used on the evaluation board. The ‘<’ and ‘>’ are not part of the actual name.

\ <conpi l er>

This is the name of the compiler or compiler manufacturer used to build the code for the evaluation board. The ‘<’ and >’ are not part of the actual
name.

\ <proj ect name>

This is the name of the project that will be demonstrated. For example a simple uC/FS project might have a project name of ‘FS-Ex1’. The -Ex1’
represents a project containing only uC/FS. A project name of FS-Probe-Ex1 would represent a project containing uC/FS as well as uC/Probe.
The ‘<’ and ‘>’ are not part of the actual name.

\ * . *
These are the source files for the project/product. You are certainly welcomed to call the main files APP*.* for your own projects but you don’t

have to. This directory also contains the configuration file FS_CFG. Hand other files as needed by the project.

Board Support Package (BSP)

The BSP is generally found with the evaluation or target board because the BSP is specific to that board. In fact, if well written, the BSP should be
used for multiple projects.

\Mcrium

\ Sof t war e

\ Eval Boar ds

\ <manuf act ur er >

\ <boar d name>

\ <conpi l er>

\ BSP

* %

\Mcrium

This is where we place all software components and projects provided by Micrium.
\ Sof t war e

This sub-directory contains all the software components and projects.

\ Eval Boar ds

This sub-directory contains all the projects related to evaluation boards.

\ <manuf act ur er >

Is the name of the manufacturer of the evaluation board. The ‘<’ and >’ are not part of the actual name.
\ <boar d name>

This is the name of the evaluation board. A board from Micripum will typically be called uC Eval xxxx where ‘xxxx’ will be the name of the CPU or
MCU used on the evaluation board. The ‘<’ and >’ are not part of the actual name.

\ <conpi l er>

This is the name of the compiler or compiler manufacturer used to build the code for the evaluation board. The ‘<’ and ‘>’ are not part of the actual
name.

\ BSP
This directory is always called BSP.

*x

These are the source files of the BSP. Typically all the file names start with BSP_ but they don’t have to. It's thus typical to find bsp. ¢ and bsp. h
in this directory. Again, the BSP code should contain functions such as LED control functions, initialization of timers, interface to Ethernet
controllers and more.

nC/CPU Specific Source Code

UC/CPU consists of files that encapsulate common CPU-specific functionality as well as CPU- and compiler-specific data types.
\Mcrium
\ Sof t war e
\uC- CPU
\ CPU_CORE. C
\ CPU_CORE. H
\ CPU_DEF. H
\ Cf g\ Tenpl ate
\ CPU_CFG H
\ <archi tecture>
\ <conpi l er>
\CPU. H
\ CPU_A. ASM
\CPU_C.C
\Mcrium
This directory contains all software components and projects provided by Micripm.
\ Sof t war e
This sub-directory contains all the software components and projects.
\uC CPU
This is the main uC/CPU directory.

cpu_cor e. ¢ contains C code that is common to all CPU architectures. Specifically, this file contains functions to measure the
interrupt disable time of the CPU_CRI TI CAL_ENTER() andCPU_CRI TI CAL_EXI T() macros, a function that emulates a count
leading zeros instruction and a few other functions.

cpu_cor e. h contains the function prototypes of the functions provided in cpu_cor e. ¢ as well as allocation of the variables used by
this module to measure interrupt disable time.

cpu_def . h contains miscellaneous #define constants used by the pC/CPU module.
\ Cf g\ Tenpl at e

This directory contains a configuration template file (cpu_cf g. h) that you will need to copy to your application directory in order to
configure the uC/CPU module based on your application requirements.

cpu_cf g. h determines whether you will enable measurement of the interrupt disable time, whether your CPU implements a count
leading zeros instruction in assembly language or whether it will need to be emulated in C and more.

\ <archi tecture>
This is the name of the CPU architecture for which uC/CPU was ported to. The ‘<’ and ‘>’ are not part of the actual name.
\ <conpi l er>

This is the name of the compiler or compiler manufacturer used to build the code for the uC/CPU port. The ‘<’ and ‘>’ are not part of the
actual name.

The files in this directory contain the uC/CPU port.

cpu. h contains type definitions to make pC/FS and other modules independent of the CPU and compiler word sizes. Specifically,
you will find the declaration of the CPU_I NT16U,CPU_I NT32U, CPU_FP32 and many other data types. Also, this file specifies
whether the CPU is a big- or little-endian machine and contains function prototypes for functions that are specific to the CPU
architecture and more.

cpu_a. asmcontains the assembly language functions to implement the code to disable and enable CPU interrupts, count leading
zeros (if the CPU supports that instruction) and other CPU specific functions that can only be written in assembly language. This file
could also contain code to enable caches, setup MPUs and MMU and more. The functions provided in this file are accessible from C.

cpu_c. ¢ contains C code of functions that are specific to the specific CPU architecture but written in C for portability. As a general
rule, if a function can be written in C then it should, unless there are significant performance benefits by writing it in assembly
language.

MC/Lib Portable Library Functions

UC/LIB consists of library functions that are meant to be highly portable and not tied to any specific compiler. This was done to facilitate third party
certification of Micripm products.

\Mcrium
\ Sof t war e
\uCGLIB
\lib_ascii.C

\lib_ascii.H

\lib_def.H
\lib_math. C
\lib_math. H

\lib_memC
\lib_memH
\lib_str.C
\lib_str.H
\ Cf g\ Tenpl ate
\lib_cfg.H
\Ports
\ <archi tecture>
\ <conpi l er>
\l'ib_mema.asm
\Mcrium
This directory contains all software components and projects provided by Micrium.
\ Sof t war e
This sub-directory contains all the software components and projects.
\uCGLIB
This is the main pC/LIB directory.
\ Cf g\ Tenpl ate

This directory contains a configuration template file (I i b_cf g. h) that must be copied to the application directory to configure the uC/LIB
module based on application requirements.

I'i b_cf g. h determines whether to enable assembly-language optimization (assuming there is an assembly-language file for the
processor, i.e. | i b_nem a. asn) and a few other #defines.

HC/Clk Time/Calendar Management

UC/CIk consists of functions that are meant to centralize time management in one independant module. This way, the same time info can be
easily shared across all Micrium products.

\Mcrium
\ Sof t war e
\uCG d k
\Cfg
\ Tenpl at e
\clk_cfg.h
\ oS
\ <rtos_name>
\clk_os.c
\ Sour ce
\clk.c
\clk.h
\Mcrium
This directory contains all software components and projects provided by Micrium.
\ Sof t war e
This sub-directory contains all the software components and projects.
\uG d k
This is the main pC/Clk directory.
\ Cf g\ Tenpl at e

This directory contains a configuration template file (cl k_cf g. h) that must be copied to the application directory to configure the uC/Clk
module based on application requirements.

cl k_cf g. h determines whether clock will be managed by the RTOS or in your application. A few other #defines are used to
enable/disable some features of uC/Clk and to configure some parameteres, like the clock frequency.

\ oS
This is the main OS directory.
\ <rtos_name>

This is the directory that contains the file to perform RTOS abstraction. Note that the file for the selected RTOS abstraction layer must
always be named cl k_os. c.

UC/CIk has been tested with pC/OS-II, pC/OS-Ill and the RTOS layer files for these RTOS are found in the following directories:
\M crium Sof tware\uC- C k\ S\ uCGs- I I\ cl k_os. ¢
\Mcrium Software\uC-d k\ S\ uCGCs-I11\clk_os.c
\ Sour ce
This directory contains the CPU-independant source code for uC/Clk. All file in this directory should be included in the build (assuming the

presence of the source code). Features that are not required will be compiled out based on the value of #define constants in cl k_cf g. h.

HC/CRC Checksums and Error Correction Codes

UC/CRC consists of functions to compute different error detection and correction codes. The functions are speed-optimized to avoid the important
impact on performances that these CPU-intensive calcutions may present.

\Mcrium
\ Sof t war e

\uG CRC

\Cfg
\ Tenpl at e
\crc_cfg.h
\Ports
\ <architecture>
\ <conpi | er >
\ ecc_hanmi ng_a. asm
\edc_crc_a.asm
\ Sour ce
\edc_crc.h
\edc_crc.c
\ ecc_hammi ng. h
\'ecc_hanmmi ng. c
\ecc.h
\crc_util.h
\crc_util.c
\Mcrium
This directory contains all software components and projects provided by Micrium.
\ Sof t war e
This sub-directory contains all the software components and projects.
\uC-CRC
This is the main pC/CRC directory.
\ Cf g\ Tenpl ate

This directory contains a configuration template file (cr c_cf g. h) that must be copied to the application directory to configure the pC/CRC
module based on application requirements.

cr c_cf g. h determines whether to enable assembly-language optimization (assuming there is an assembly-language file for the
processor) and a few other #defines.

\ <archi tecture>
The name of the CPU architecture that u.C/CRC was ported to. The ‘<’ and ‘>’ are not part of the actual name.
\ <conpi l er>
The name of the compiler or compiler manufacturer used to build code for the pC/CRC port. The ‘<’ and >" are not part of the actual name.
ecc_hanm ng_a. asmcontains the assembly language functions to optimize the calculation speed of Hamming code.
edc_cr c_a. asmcontains the assembly language functions to optimize the calculation speed of CRC (cyclic redundancy checks).
\ Sour ce

This is the directory that contains all the CPU independent source code files. of uC/CRC.

HC/FS Platform-Independent Source Code

The files in these directories are available to HC/FS licensees (see Appendix H, Licensing Policy).
\Mcrium

\ Sof t war e

\uC-FS

\ APP\ Tenpl at e
\fs_app.c
\fs_app.h

\ Cf g\ Tenpl ate
\fs_cfg.h

\ OS\ Tenpl at e
\fs_os.c
\fs_os.h

\ Sour ce

\fs ¢

\fs.h
\fs_api.c
\fs_api.h
\fs_buf.c
\fs_buf.h
\fs_cache.c
\fs_cache. h
\fs_cfg_fs.h
\fs_ctr.h
\fs_def.h
\fs_dev.c
\fs_dev.h
\fs_dir.c
\fs_dir.h
\fs_entry.c
\fs_entry.h
\fs_err.h
\fs_ file.c
\fs file.h
\fs_inc.h
\fs_partition.c
\fs_partition.h
\fs_sys.c
\fs_sys.h
\fs_type.h

\ fs_uni code. c
\fs_unicode. h
\fs_ util.c
\fs_util.h

\fs_vol.c

\fs_vol.h
\Mcrium
This is where we place all software components and projects provided by Micripm.
\ Sof t war e
This sub-directory contains all the software components and projects.
\uC-FS
This is the main uC/FS directory.
\ APP\ Tenpl at e
This directory contains a template of the code for initializing the file system.

\ Cf g\ Tenpl at e

This directory contains a configuration template file (I i b_cf g. h) that is required to be copied to the application directory to configure the
HC/FS module based on application requirements.

fs_cf g. h specifies which features of uC/FS you want in your application. If uC/FS is provided in linkable object code format then this file
will be provided to show you what features are available in the object file. See Appendix B, HC/FS Configuration Manual.

\ Sour ce

This directory contains the platform-independent source code for pC/FS. All the files in this directory should be included in your build
(assuming you have the source code). Features that you don’t want will be compiled out based on the value of #define constants in f s_cf

g. h.

f s. ¢/ h contains core functionality for uC/FS including FS_I ni t () (called to initialize pC/FS) and FS_Wor ki ngDi r Set () /FS_Wor
ki ngDi r Get () (used to get and set the working directory).

fs_api . c/ h contains the code for the POSIX-compatible API. See Chapter x, API for details about the POSIX-compatible API.
f s_buf . ¢/ h contains the code for the buffer management (used internally by pC/FS).

fs_dev. c/ h contains code for device management. See Chapter x, Devices for details about devices.

fs_dir. c/ h contains code for directory access. See Chapter x, Directories for details about directory access.

fs_entry. c/ h contains code for entry access. See Chapter x, Entries for details about entry access.

fs_file.c/h contains code for file access. See Chapter X, Files for details about file access.

fs_i nc. his a master include file that includes all other include files.

f s_sys. ¢/ h contains the code for system driver management (used internally by uC/FS).

fs_uni code. ¢/ h contains the code for handling Unicode strings (used internally by uC/FS).

HUC/FS FAT Filesystem Source Code

The files in these directories are available to HC/FS licensees (see Appendix H, Licensing Policy).
\Mcrium

\ Sof t war e

\uCG FS

\ FAT

\fs_fat.c

\fs_fat.h

\fs_fat_dir.c

\fs fat_dir.h

\fs_fat_entry.c

\fs_fat_entry.h

\fs_fat_fatl2.c
\fs fat_fatl2.h
\fs_fat_fatl6.c
\fs_fat_fat16.h
\fs_fat_fat32.c
\fs fat_fat32.h
\fs_fat_file.c
\fs_fat_file.h
\fs_fat_journal.c
\fs_fat_journal.h
\fs_fat_Ifn.c
\fs fat_Ifn.h
\fs_fat_sfn.c
\fs fat_sfn.h
\fs_fat_type.h
\Mcrium
This is where we place all software components and projects provided by Micrium.
\ Sof t war e
This sub-directory contains all the software components and projects.
\uCFS
This is the main uC/FS directory.
\ FAT
This directory contains the FAT system driver for uC/FS. All the files in this directory should be included in your build (assuming you have

the source code).

HC/FS Memory Device Drivers
These files are generic drivers to use with differenty memory devices.
\Mcrium

\ Sof t war e

\uCFS

\ Dev

\ MsC

\fs_dev_nsc.c

\fs_dev_nsc. h

\ NAND

\fs_dev_nand. c

\fs_dev_nand. h

\Ctrilr

\fs_dev_nand_ctrlr_gen.c
\fs_dev_nand_ctrlr_gen.h

\ GenExt

\fs_dev_nand_ctrlr_gen_soft_ecc.c
\fs_dev_nand_ctrlr_gen_soft_ecc.h
\fs_dev_nand_ctrlr_gen_m cron_ecc.c
\fs_dev_nand_ctrlr_gen_m cron_ecc.h
\ Part

\fs_dev_nand_part_static.c
\fs_dev_nand_part_static.h
\fs_dev_nand_part_onfi.c
\fs_dev_nand_part_onfi.h

\ Cf g\ Tenpl at e

\fs_dev_nand_cfg.h

\ BSP\ Tenpl at e
\fs_dev_nand_ctrlr_gen_bsp.c

\ NOR

\fs_dev_nor.c

\fs_dev_nor.h

\ PHY

\fs_dev_nor_and_1x08.c
\fs_dev_nor_and_1x08. h
\fs_dev_nor_and_1x16.c
\fs_dev_nor_and_1x16. h
\fs_dev_nor_intel.c
\fs_dev_nor_intel.h
\fs_dev_nor_sst25.c
\fs_dev_nor_sst25. h
\fs_dev_nor_sst39.c
\fs_dev_nor_sst39. h
\fs_dev_nor_stnR5.c
\fs_dev_nor_stnR5. h
\fs_dev_nor_stnR9 1x08.c
\fs_dev_nor_stnR9_1x08. h
\fs_dev_nor_stnR9 1x16.c
\fs_dev_nor_stnR9 1x16. h

\ Tenpl at e

\fs_dev_nor_tenplate.c
\fs_dev_nor_tenplate.h

\ BSP\ Tenpl at e

\fs_dev_nor_bsp.c

\ BSP\ Tenpl ate (SPI GPI O

\fs_dev_nor_bsp.c

\ BSP\ Tenpl ate (SPI)
\fs_dev_nor_bsp.c
\ RAMDi sk
\fs_dev_ramc
\fs_dev_ramh
\ SD
\fs_dev_sd.c
\fs_dev_sd. h
\ Card
\fs_dev_sd_card.c
\fs_dev_sd_card. h
\ BSP\ Tenpl at e
\fs_dev_sd_card_bsp.c
\ SPI
\fs_dev_sd_spi.c
\fs_dev_sd_spi.h
\ BSP\ Tenpl at e
\fs_dev_sd_spi.bsp.c
\ Tenpl at e
\fs_dev_tenplate.c
\fs_dev_tenplate.h
\Mcrium
This directory contains all software components and projects provided by Micripm.
\ Sof t war e
This sub-directory contains all the software components and projects.
\uC-FS
This is the main uC/FS directory.
\ Dev
This is where you will find the device driver files for the storage devices you are planning on using.
\ MsC
This directory contains the MSC (Mass Storage Class - USB drives) driver files.
fs_dev_nsc. * are device driver for MSC devices. This driver is designed to work with uC/USB host stack.
For more details on this driver, please refer to MSC Driver.
\ NAND
This directory contains the NAND driver files.

fs_dev_nand. * are the device driver for NAND devices. These files require a set of controller-layer functions (defined in a file named f s_
dev_nand_ctrl r_<type>. *) as well as BSP functions specific to particular hardware and associated with chosen controller-layer (to be
defined in a file named f s_dev_nand_ctr | r_<type>_bsp. c).

Note that in the case of the “generic” controller-layer implementation, some controller extensions files (defined in files named f s_dev_nan
d_ctrlr_<ext_nanme>. *) may also be required.

For more details on this driver, please refer to NAND Flash Driver.

\ NOR
This directory contains the NOR driver files.

fs_dev_nor. * are the device driver for NOR devices. These files require a set of physical-layer functions (defined in a file name f s_dev
_nor _<physi cal type>.*)as well as BSP functions (to be defined in a file named f s_dev_nor _bsp. c) to work with a particular
hardware setup.

For more details on this driver, please refer to NOR Flash Driver.
\ RAMDi sk

This directory contains the RAM disk driver files.

fs_dev_randi sk. * constitue the RAM disk driver.

For more details on this driver, please refer to RAM Disk Driver.
\ SD

This directory contains the SD/MMC driver files.

fs_dev_sd. * are device driver for SD devices. Theses files require to be used with either the f s_dev_sd_spi . * (for SPl/one-wire
mode) or f s_dev_sd_card. * (for Card/4-wires mode) files. These files require a set of BSP functions to be defined in a file named either
fs_dev_sd_spi _bsp.corfs_dev_sd_card_bsp. c towork with a particular hardware setup.

For more details on this driver, please refer to SD/MMC Drivers.

HC/FS Platform-Specific Source Code

These files are provided by the uC/FS device driver developer. See Chapter 17, Porting uC/FS. However, the uC/FS source code is delivered with
port examples.

\Mcrium
\ Sof t war e
\uGFS
\ Exanpl es
\ BSP
\ Dev
<menory type>
<manuf act urer >
<board name>
\fs_dev_<menory type>_bsp.c
\Mcrium
This directory contains all software components and projects provided by Micrium.
\ Sof t war e
This sub-directory contains all the software components and projects.
\uGFS
This is the main uC/FS directory.
\ Exanpl es
This is where you will find the device driver BSP example files.
\ Dev\ <nenory type>

This is where you will find the examples BSP for one memory type. The ‘<’ and ‘>’ are not part of the actual name. The memory types
supported by uC/FS are the following: NAND, NOR, SD\CARD, SD\SPI.

\ <manuf act ur er >

The name of the manufacturer of the evaluation board. The ‘<’ and ‘>’ are not part of the actual name.

HC/FS OS Abstraction Layer

This directory contains the RTOS abstraction layer which allows the use of uC/FS with nearly any commercial of in-house RTOS, or without any
RTOS at all. The abstraction layer for the selected RTOS is placed in a sub-directory under OS as follows:

\Mcrium
\ Sof t war e
\uCG FS
\Cs
\ <rt os_nane>
\fs_os.c
\fs_os.h
\Mcrium
This directory contains all software components and projects provided by Micripm.
\ Sof t war e
This sub-directory contains all the software components and projects.
\uC-FS
This is the main uC/FS directory.
\ oS
This is the main OS directory.
\ <rtos_nane>

This is the directory that contains the files to perform RTOS abstraction. Note that files for the selected RTOS abstraction layer must always
be named fs_os. *.

UC/FS has been tested with uC/OS-I1I, pC/OS-IIl and without an RTOS. The RTOS layer files are found in the following directories:
\'M crium Sof t war e\ uC- d k\ CS\ None\fs_os. *
\'M crium Sof tware\ uC- C k\ OS\ Tenpl ate\fs_os. *
\'M crium Sof t war e\ uC-C k\ S\ uCGs- | I\ fs_os. *

\'M crium Sof tware\uC-C k\ OS\uCGCs- | | I\ fs_os. *

Useful Information

Nomenclature

UC/FS Device and Volume Names

UC/FS File and Directory Names and Paths
UC/FS Name Lengths

Resource Usage

Nomenclature

This manual uses a set of terms to consistently describe operation of uC/FS and its hardware and software environment. The following is a small
list of these terms, with definitions.

A file system suite is software which can find and access files and directories. Using “file system suite” rather than “file system” eliminates any
need for disambiguation among the second term’s several meanings, which include “a system for organizing directories and files”, “a collection of
files and directories stored on a drive” and (commonly) the software which will be referred to as a file system suite. The term file system wiill
always mean a collection of files and directories stored on a drive (or, in this document, volume).

A device driver (or just driver) is a code module which allows the general-purpose file system suite to access a specific type of device. A device
driver is registered with the file system suite.

A device is an instance of a device type that is accessed using a device driver. An addressable area (typically of 512 bytes) on a device is a
sector. A sector is the smallest area that (from the file system suite’s point of view) can be atomically read or written.

Several devices can use the same device driver. These are distinguished by each having a unique unit number. Consequently, <DEVI CE
NAME>: <UNI T NUMBER>: is a unique device identifier if all devices are required to have unique names. That requirement is enforced in this file
system suite.

A logical device is the combination of two or more separate devices. To form a logical device, the sector address spaces of the constituent
devices are concatenated to form a single continuous address space.

A device can be partitioned, or subdivided into one or more regions (called partitions) each consisting of a number of consecutive sectors.
Typically, structures are written to the device instructing software as to the location and size of these partitions. This file system suite supports DO
S partitions.

A volume is a device or device partition with a file system. A device or device partition must go through a process called mounting to become a
volume, which includes finding the file system and making it ready for use. The name by which a volume is addressed may also be called the
volume’s mount point.

A device or volume may be formatted to create a new file system on the device. For disambiguation purposes, this process is also referred to as
high-level formatting. The volume or device will automatically be mounted once formatting completes.

For certain devices, it is either necessary or desirable to perform low-level formatting. This is the process of associating logical sector numbers
with areas of the device.

A file system driver is a code module which allows the general-purpose file system suite to access a specific type of file system. For example,
this file system suite includes a FAT file system driver.

FAT (File Allocation Table) is a common file system type, prevalent in removable media that must work with various OSs. It is named after its
primary data structure, a large table that records what clusters of the disk are allocated. A cluster, or group of sectors, is the minimum data
allocation unit of the FAT file system.

UC/FS Device and Volume Names

Devices are specified by name. For example, a device can be opened:

FSDev_Qpen(“sd: 0:”, (void *)0, &err);

In this case, “sd: 0: " is the device name. It is a concatenation of:

sd The name of the device driver
A single colon
0 The unit number

A final colon

The unit number allows multiple devices of the same type; for example, there could be several SD/MMC devices connected to the CPU: “sd: 0: "
,“sd:17, “sd: 2.,

The maximum length of a device name is FS_CFG_MAX_DEV_NAME_LEN; this must be at least three characters larger than the maximum length
of a device driver name, FS_CFG_MAX_DEV_DRV_NAME_LEN. A device name (or device driver name) must not contain the characters:

\

Volumes are also specified by name. For example, a volume can be formatted:

FSVol _Fnt (“vol :”, (void *)0, &err);

Here, “vol : " is the volume name. uC/FS imposes no restrictions on these names, except that they must end
with a colon ('), must be no more than FS_CFG_MAX_ VOL_NAME _LEN characters long, and must not contain
either of the characters ‘\' or ‘/’:

It is typical to name a volume the same as a device; for example, a volume may be opened:

FSVol _Open(“sd: 0:” (a)
“sd: 0:” (b)
(void *)O0,
&err);

In this case, the name of the volume (@) is the same as the name as the device (b). When multiple volumes exist in the same application, the
volume name should be prefixed to the file or directory path name:

fs fopen(“sd:0:\\dir01\fileOl.txt”, “w'); [/ File on SD card
fs fopen(“ramO0:\\dirO1\fileOl.txt”, “w'); // File on RAM di sk

p_file
p_file

MC/FS File and Directory Names and Paths

Files and directories are identified by a path string; for example, a file can be opened:

p_file = fs_fopen(“\\test\\file001l.txt”, “wW);

In this case, “\\test\\fil e001. t xt " is the path string.

An application specifies the path of a file or directory using either an absolute or a relative path. An absolute path is a character string which
specifies a unique file, and follows the pattern:

<vol _name>:<... Path ...><File>
where
<vol _nanme> is the name of the volume, identical to the string specified in FSVol_Open().
<... Path ...> is the file path, which must always begin and end with a ‘\'.
<File> is the file (or leaf directory) name, including any extension.
For example:
p_file = fs_fopen(“sd: 0:\\file.txt”, “wW); (a)
p file = fs_fopen(“\\file.txt”, “w); (b)
p_file = fs_fopen(“sd: 0:\\dirO1\\fileOl.txt”, “w); (c)
p_file = fs_opendir(“sd: 0:\\") (d)
p_file = fs_opendir(“\\") (e)
p_file = fs_opendir(“sd:0:\\dir01\\") (f)

Which demonstrate (a) opening a file in the root directory of a specified volume; (b) opening a file in the root directory on a default volume; (c)
opening a file in a non-root directory; (d) opening the root directory of a specified volume; (e) opening the root directory of the default volume; (f)
opening a non-root directory.

Relative paths can be used if working directories are enabled (FS_CFG _WORKI NG_DI R_ENis DEF_ENABLED — see Feature Inclusion
Configuration). A relative path begins with neither a volume name nor a ‘\ *:

<... Relative Path ...><File>
where
<... Relative Path ...> is the file path, which must not begin with a ‘\' but must end with a ‘\".
<File> is the file (or leaf directory) name, including any extension.
Two special path components can be used. “. . " moves the path to the parent directory. “. " keeps the path in the same directory (basically, it

does nothing).

A relative path is appended to the current working directory of the calling task to form the absolute path of the file or directory. The working
directory functions, f s_chdi r () and f s_get cwd(), can be used to set and get the working directory.

HC/FS Name Lengths

The configuration constants FS_CFG_MAX_PATH_NAME_LEN, FS_CFG_MAX_FI LE_NAVE_LENand FS_CFG_MAX VOL_NAME_LENinfs_cfg. h
set the maximum length of path names, file names and volume names. The constant FS_CFG_MAX_FULL_NAME_LENis definedinfs_cfg_fs.
h to describe the maximum full name length. The path name begins with a path separator character and includes the file name; the file name is
just the portion of the path name after the last (non-final) path separator character. The full name is composed of an explicit volume name
(optional) and a path name; the maximum full name length can be calculated:

Ful | NanmeLenmax = Vol NanmeLenmax + Pat hNanmelLenmax

Figure - File, path and volume name lengths in the Useful Information page demonstrates these definitions.

Figure - File, path and volume name lengths

No maximum parent name length is defined, though one may be derived. The parent name must be short enough so that the path of a file in the
directory would be valid. Strictly, the minimum file name length is 1 character, though some OSs may enforce larger values (eleven on some
Windows systems), thereby decreasing the maximum parent name length.

Par ent NaneLenmax = Pat hNameLennmax - Fil eNaneLenmin - 1

The constants FS_CFG_MAX_DEV_DRV_NAME_LENand FS_CFG_MAX_DEV_NAME_LENIn f s_cf g. h set the maximum length of device driver
names and device names, as shown in Figure - Device and device driver name lengths in the Useful Information page. The device name is
between three and five characters longer than the device driver name, since the unit number (the integer between the colons of the device name)
must be between 0 and 255.

Figure - Device and device driver name lengths

Each of the maximum name length configurations specifies the maximum string length without the NULL character. Consequently, a buffer which
holds one of these names must be one character longer than the define value.

Resource Usage

UC/FS resource usage, of both ROM and RAM, depends heavily on application usage. How many (and which) interface functions are referenced
determines the code and constant data space requirements. The greater the quantity of file system objects (buffers, files, directories, devices and
volumes), the more RAM needed.

Table - ROM Requirements in the Useful Information page gives the ROM usage for the file system core, plus additional components that can be
included optionally, collected on IAR EWARM v6.40.1. The ‘core’ ROM size includes all file system components and functions (except those
itemized in the table); this is significantly larger than most installations because most applications use a fraction of the API.

Component ROM, Thumb Mode ROM, ARM Mode
High Size Opt High Speed Opt High Size Opt High Speed Opt

Core* 43.4 kB 58.2 kB 67.7 kB 90.5 kB

0S port (UC/OS-III) 1.3 kB 1.4 kB 1.8 kB 2.2kB

LFN support 4.3 kB 5.6 kB 7.0 kB 8.8 kB
Directories 1.6 kB 1.9kB 2.7kB 3.1kB
Partitions 1.3 kB 2.6 kB 2.3kB 3.9kB
Journaling 5.0 kB 7.1kB 7.9 kB 10.7 kB

Table - ROM Requirements
*Includes code and data for all file system components and functions except those itemized in the table.

RAM requirements are summarized in Table - RAM characteristics in the Useful Information page. The total depends on the number of each
object allocated and the maximum sector size (set by values passed to FS_I ni t () in the file system configuration structure), and various name
length configuration parameters (see Name Restriction Configuration, “FS_CFG_MAX_PATH_NAME_LEN?").

Item RAM (bytes)

Core 932

Per device 40 + FS_CFG_MAX_DEV_NAME_LEN

Per volume 148 + FS_CFG_MAX VOL_NAME_LEN

Per file 140

Per directory 98

Per buffer 34 + MaxSector Si ze

Per device driver 8 bytes

Working directories ((FS_CFG_MAX_PATH NAME LEN * 2) + 8) * TaskCnt§

Table - RAM characteristics
§ The number of tasks that use relative path names

See also Driver Characterization for ROM/RAM characteristics of file system suite drivers.

Devices and Volumes

To begin reading files from a medium or creating files on a medium, that medium (hereafter called a device) and the driver which will be used to
access it must be registered with the file system. After that, a volume must be opened on that device (analogous to “mounting”). This operation
will succeed if and only if the device responds and the file system control structures (for FAT, the Boot Parameter Block or BPB) are located and
validated.

In this manual, as in the design of uC/FS, the terms ‘device’ and ‘volume’ have distinct, non-overlapping meanings. We define a ‘device’ as a
single physical or logical entity which contains a continuous sequence of addressable sectors. An SD/MMC card is a physical device.

We define a ‘volume’ as a collection of files and directories on a device.

These definitions were selected so that multiple volumes could be opened on a device (as shown in Figure - Device and volume architecture in
the Devices and Volumes page) without requiring ambiguous terminology.

ide:0:

partition

ide:0:

Figure - Device and volume architecture

Device Operations

ide:1:

partition1 | partition2 Device layer

ide:1a: ide:1b: Volume layer

The ultimate purpose of a file system device is to hold data. Consequently, two major operations that can occur on a device are the reading and
writing of individual sectors. Five additional operations can be performed which affect not just individual sectors, but the whole device:

® A device can be opened. During the opening of a device, it is initialized and its characteristics are determined (sector size, number of

sectors, vendor).

® A device can be partitioned. Partitioning divides the final unallocated portion of the device into two parts, so that a volume could be
located on each (see Partitions).

® A device can be low-level formatted. Some device must be low-level formatted before being used.

® A device can be (high-level) formatted. (High-level) formatting writes the control information for a file system to a device so that a
volume on it can be mounted. Essentially, (high-level) formatting is the process of creating a volume on an empty device or partition.

® A device can be closed. During the closing of a device, it is uninitialized (if necessary) and associated structures are freed.

These operations and the corresponding API functions are discussed in this section. For information about using device names, see UC/FS

Device and Volume Names.

Function
FSDev_AccessLock()
FSDev_AccessUnlock()
FSDev_d ose()
FSDev_Get Nor Partitions()
FSDev_Invalidate()
FSDev_I O Cirl ()
FSDev_Open()
FSDev_Partiti onAdd()
FSDev_Partiti onFi nd()
FSDev_Partitionlnit()
FSDev_Query()
FSDev_Rd()
FSDev_Refresh()
FSDev_W ()

Table - Device API functions
Using Devices

A device is opened with FSDev_Qpen() :

Description

Acquire exclusive access to a device.
Release exclusive access to a device.
Remove device from file system.

Get number of partitions on a device.
Invalidate files and volumes open on a device.
Perform device 1/O control operation.

Add device to file system.

Add partition to device.

Find partition on device and get information about partition.
Initialize partition on device.

Get device information.

Read sector on device.

Refresh device in file system.

Write sector on device.

FSDev_Open((CPU_CHAR *)“ide: 0:", /* <-- (a) device nane */
(void *) 0, /* <-- (b) pointer to configuration */
(FS_ERR *)&err); /* <-- (c) return error */

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSDeviceandVolumeNames
https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSDeviceandVolumeNames

The parameters are the device name (a) and a pointer to a device driver-specific configuration structure (b). If a device driver requires no
configuration structure (as the SD driver does not), the configuration structure (b) should be passed a NULL pointer. For other devices, like RAM

disks, this must point to a valid structure.

/x_ _ _‘“xf—a\l

_ Device Object Pool ™

Device closed

Device
niot
present

Device
could not be
initialized

All
references
released

Closed

e
rerm
unr

Format Present

Valid

Device
low level
formatted

Figure - Device state transition

Prior to FSDev_Open() being called (a), software is ignorant of the presence, state or characteristics of the particular device. After all references
to the device are released (b), this ignorance again prevails, and any buffers or structures are freed for later use.

The return error code from this functions provides important information about the device state:

® |f the return error code is FS_ERR_NONE, then the device is present, responsive and low-level formatted; basically, it is ready to use.

® |f the return error code is FS_ERR_DEV_| NVALI D_LOW FMT, then the device is present and responsive, but must be low-level formatted.
The application should next call FSDev_NOR_Lowrnt () for the NOR flash.

® |f the return error code is FS_ERR_DEV_NOT_PRESENT, FS_ERR DEV_| Oor FS_ERR DEV_TI MEQUT, the device is either not present or
did not respond. This is an important consideration for removable devices. It is still registered with the file system suite, and the file
system will attempt to re-open the device each time the application accesses it.

® |f any other error code is returned, the device is not registered with the file system. The developer should examine the error code to

determine the source of the error.
Using Removable Devices

UC/FS expects that any call to a function that accesses a removable device may fail, since the device may be removed, powered off or suddenly
unresponsive. If uC/FS detects such an event, the device will need to be refreshed or closed and re-opened. FSDev_Ref r esh() refreshes a

device:

chngd = FSDev_Refresh((CPU_CHAR *)“ide:0:”, [* <-- device name */
(FS_ ERR *)&err); [* <-- return error */

There are several cases to consider:

® |f the return error is FS_ERR_NONE and the return value is DEF_YES, then a new device (e.g., SD card) has been inserted. All files and
directories that are open on volumes on the device must be closed and all volumes that are open on the device must be closed or
refreshed.

® |f the return error is FS_ERR_NONE and the return value is DEF_NO, then the same device (e.g., SD card) is still inserted. The application
can continue to access open files, directories and volumes.

® |f the return error is neither FS_ERR_NONE nor FS_ERR _DEV_| NVALI D_LOW FMT, then no functioning device is present. The device
must be refreshed at a later time.

A device can be refreshed explicitly with FSDev_Ref r esh() ; however, refresh also happens automatically. If a volume access (e.g., FSVol _Fnt
(), FSVol _Rd()), entry access (FSEntry_Create(), fs_renmove()), file open (f s_f open() or FSFi | e_Open()) or directory open (f s_ope
ndi r () or FSDi r _Open()) is initiated on a device that was not present at the last attempted access, UC/FS attempts to refresh the device
information; if that succeeds, it attempts to refresh the volume information.

Files and directories have additional behavior. If a file is opened on a volume, and the underlying device is subsequently removed or changed, all
further accesses using the file API (e.g., FSFi | e_Rd()) will fail with the error code FS_ERR_DEV_CHNGD; all POSIX API functions will return error
values. The file should then be closed (to free the file structure).

Similarly, if a directory is opened on a volume, and the underlying device is subsequently removed or changed, all further FSDi r _Rd() attempts
will fail with the error code FS_ERR_DEV_CHNGD; f s_r eaddi r _r () will return 1. The directory should then be closed (to free the directory
structure).

Raw Device I/O

Opened devices can be accessed directly at the sector level, completely bypassing the file system. Such read and write operations on raw
devices are accomplished by using FSDev_Rd() and FSDev_W () to respectively read and write one or more sector at a time. However, doing
so may have the unwanted side-effect of corrupting an existing file system on the device and as such, should be done carefully.

Applications wishing to use both the high level file system API of uC/FS and raw device access concurrently may acquire a global lock to a device
with FSDev_AccessLock() . While the application has ownership of a device’s access lock all higher level operations such as the FSFi | e_ and
FSEnt ry_ type of functions will wait for the lock to be released. The lock can then be released using FSDev_AccessUnl ock() to give back
access to the device.

When raw device operations are used to make changes on opened files and volumes it is generally required to invalidate them to prevent uC/FS
from performing inconsistent operations on the file system. A call to FSDev_Invalidate() will make every operations on files and volumes opened
on a device fail with an FS_ERR_DEV_CHNGD error. Affected files and volumes will then have to be closed and re-opened to continue, similarly to
a removable media change.

Partitions

A device can be partitioned into two or more regions, and a file system created on one or more of these, each of which could be mounted as a
volume. uC/FS can handle and make DOS-style partitions, which is a common partitioning system.

The first sector on a device with DOS-style partitions is the Master Boot Record (MBR), with a partition table with four entries, each describing a
partition. An MBR entry contains the start address of a partition, the number of sectors it contains and its type. The structure of a MBR entry and
the MBR sector is shown in Figure - Partition entry format in the Partitions page and Figure - Master boot record in the Partitions page.

4 i) 12

Flag| Start CHS Addr |Type| End CHS Addr Start LBA Addr Size in Secto

Figure - Partition entry format

Boot Code

e 1 Entry
464 9 Ertry
480 e
f 4™ Entry -«+—— Signature (0x

Figure - Master boot record

An application can write an MBR to a device and create an initial partition with FSDev_Parti ti onl ni t (). For example, if you wanted to create
an initial 256-MB partition on a 1-GB device “i de: 0: ™:

FSDev_Partitionlnit((CPU_CHAR *)“ide:0:", /[* <-- (a) device name */
(FS_SEC QTY) (512 * 1024), [/* <-- (b) size of partition */
(FS_ERR *)&err); /[* <-- (c) return error */

Listing - Example FSDev_Partitionlnit() call

The parameters are the device name (a) and the size of the partition, in sectors (b). If (b) is 0, then the partition will take up the entire device. After
this call, the device will be divided as shown in Figure - Device after partition initialization in the Partitions page. This new partition is called a prim
ary partition because its entry is in the MBR. The four circles in the MBR represent the four partition entries; the one that is now used ‘points to’

Primary Partition 1.

M

B

R o

® Pa:lt?{ilg,? 1 Unallocated space
0O {256 MB) (768 ME)

O

Q

Figure - Device after partition initialization

More partitions can now be created on the device. Since the MBR has four partition entries, three more can be made without using extended
partitions (as discussed below). The function FSDev_PartitionAdd() should be called three times:

FSDev_Partiti onAdd((CPU CHAR *)“ide:0:", [* <-- (a) device nane */
(FS_SEC QIY)(512 * 1024), [* <-- (b) size of partition */
(FS_ERR *)&err); /[* <-- (c) return error */

Again, the parameters are the device name (a) and the size of the partition, in sectors (b). After this has been done, the device is divided as
shown in Figure - Device after four partitions have been created in the Partitions page.

M

B

R Primary
® Partition 1
Py (256 MB)
L

L

Primary
Partition 2
(256 MB)

Primary
Partition 3
(256 MB)

Primary
Partition 4
(256 MB)

Figure - Device after four partitions have been created

When first instituted, DOS partitioning was a simple scheme allowing up to four partitions, each with an entry in the MBR. It was later extended for
larger devices requiring more with extended partitions, partitions that contains other partitions. The primary extended partition is the extended

partition with its entry in the MBR; it should be the last occupied entry.

An extended partition begins with a partition table that has up to two entries (typically). The first defines a secondary partition which may contain
a file system. The second may define another extended partition; in this case, a secondary extended partition, which can contain yet another
secondary partition and secondary extended partition. Basically, the primary extended partition heads a linked list of partitions.

.

l

Figure - Device with five partitions

Y
M
B
R o s B
Primary 25 g =5 % Primary
® Partition 1 EEw|EEw Extended Partition
° (256 MB) o E o é.t“’ s (512 MB)
@
]
Secondary Secondary
® Partition Extended
O| (Partition 4) Partition
ol (256 MB) (256 MB)

OO0 e

Secondary
Partition
(Partition 5)
(256 MB)

Reading secondary partitions in existing preformatted devices is supported in uC/FS. For the moment, the creation of extended and secondary

partitions is not supported in uC/FS.

Volume Operations

Five general operations can be performed on a volume:

® A volume can be opened (mounted). During the opening of a volume, file system control structures are read from the underlying device,
parsed and verified.

® Files can be accessed on a volume. A file is a linear data sequence (‘file contents’) associated with some logical, typically
human-readable identifier (‘file name’). Additional properties, such as size, update date/time and access mode (e.qg., read-only, write-only,
read-write) may be associated with a file. File accesses constitute reading data from files, writing data to files, creating new files,
renaming files, copying files, etc. File access is accomplished via file module-level functions, which are covered in Files.

® Directories can be accessed on a volume. A directory is a container for files and other directories. Operations include iterating through
the contents of the directory, creating new directories, renaming directories, etc. Directory access is accomplished via directory
module-level functions, which are covered in Directories.

® A volume can be formatted. (More specifically, high-level formatted.) Formatting writes the control information for a file system to the
partition on which a volume is located.

® A volume can be closed (unmounted). During the closing of a volume, any cached data is written to the underlying device and
associated structures are freed.

For information about using volume names, see pC/FS Device and Volume Names. For FAT-specific volume functions, see FAT File System.

Function Description Valid for Unmounted Volume?
FSVol_CacheAssign() Assign cache to volume. Yes
FSVol_Cachelnvalidate() Invalidate cache for volume. No
FSVol_CacheFlush() Flush cache for volume. No
FSVol_Close() Close (unmount) volume. Yes
FSVol_Fmt() Format volume. Yes
FSVol_IsMounted() Determine whether volume is mounted. Yes
FSVol_LabelGet() Get volume label. No
FSVol_LabelSet() Set volume label. No
FSVol_Open() Open (mount) volume. e
FSVol_Query() Get volume information. Yes
FSVol_Rd() Read sector on volume. No
FSVol_Refresh() Refresh a volume. No
FSVol_Wr() Write sector on volume. No

Table - Volume API functions
Using Volumes

A volume is opened with FSVol _Open() :

FSVol _Open((CPU_CHAR *)“ide:0:", [* <-- (a) volune nane */
(CPU_CHAR *)“ide:0:", [* <-- (b) device nane */
(FS_PARTI TION_NBR *) 0, [* <-- (c) partition nunber */
(FS_ERR *)&err); [* <-- (d) return error */

Listing - Example FSVol_Open() call

The parameters are the volume name (a), the device name (b) and the partition that will be opened (c). There is no restriction on the volume
name (a); however, it is typical to give the volume the same name as the underlying device. If the default partition is to be opened, or if the device
is not partitioned, then the partition number (c) should be zero.

The return error code from this function provides important information about the volume state:

® |f the return error code is FS_ERR_NONE, then the volume has been mounted and is ready to use.

® |f the return error code is FS_ERR_PARTI TI ON_NOT_FOUND, then no valid file system could be found on the device, or the specified
partition does not exist. The device may need to be formatted (see below).

® |f the return error code is FS_ERR DEV, FS_ERR DEV_NOT_PRESENT, FS_ERR DEV_| Oor FS_ERR _DEV_TI MEQUT, the device is either

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSDeviceandVolumeNames

not present or did not respond. This is an important consideration for removable devices. The volume is still registered with the file
system suite, and the file system will attempt to re-open the volume each time the application accesses it (see Using Devices for more

information).
® If any other error code is returned, the volume is not registered with the file system. The developer should examine the error code to

determine the source of the error.

FSVol _Fnt () formats a device, (re-)initializing the file system on the device:

FSVol _Fnt ((CPU_CHAR *)“ide:0:”, [* <-- (a) volume nane */
(void *) 0, /[* <-- (b) pointer to system configuration */
(FS_ERR *)&err); [* <-- (c) return error */

Listing - Example FSVol_Fmt() call

The parameters are the volume name (a) and a pointer to file system-specific configuration (b). The configuration is not required; if you are willing
to accept the default format, a NULL pointer should be passed. Alternatively, the exact properties of the file system can be configured by passing
a pointer to a FS_FAT_SYS_CFGstructure as the second argument. For more information about the FS_FAT_SYS_CFG structure, see FS_FAT_S

YS_CFG.
Using Volume Cache

® Choosing Cache Parameters
® Other Caching and Buffering Mechanisms

File accesses often incur repeated reading of the same volume sectors. On a FAT volume, these may be sectors in the root directory, the area of
the file allocation table (FAT) from which clusters are being allocated or data from important (often-read) files. A cache wedged between the
system driver and volume layers (as shown in Figure - Volume cache architecture in the Using Volume Cache page) will eliminate many
unnecessary device accesses. Sector data is stored upon first read or write. Further reads return the cached data; further writes update the cache
entry and, possibly, the data on the volume (depending on the cache mode).

FAT System Driver
fs_sys.*
fs_fat*.®

— Y _ Y_

Cache

v

Volume
fs vol.*

Figure - Volume cache architecture

A cache is defined by three parameters: size, sector type allocation and mode. The size of the cache is the number of sectors that will fit into it at
any time. Every sector is classified according to its type, either management, directory or file; the sector type allocation determines the
percentage of the cache that will be devoted to each type. The mode determines when cache entries are created (i.e., when sectors are cached)
and what happens upon write.

Cache Mode Description Cache Mode #define
Read cache Sectors cached upon read; never cached upon write. FS_VOL_CACHE_MODE_RD
Write-through Sectors cached upon read and write; data on volume always updated upon FS_VOL_CACHE_MODE_WR_THROUGH

cache write.

Write-back cache Sectors cached upon read and write; data on volume never updated upon FS_VOL_CACHE_MODE_WR_BACK
write.

Table - Cache types

Choosing Cache Parameters

Listing - Cache in the Using Volume Cache page is an example using the cache for the volume “sdcard:0:". The cache is used in write back mode,
and the cache parameters are:

25% of cache size is used for management sector, 15% is used for directories sectors and the remaining (60%) is used for file sectors.

FSVol _CacheAssi gn ((CPU_CHAR *)"sdcard: 0: ", [* <-- vol ume nane
*/

(FS_VOL_CACHE_API *) NULL, /* <-- pointer to
vol cache APl */

(void *) &CACHE_BUF[0] , /* <-- pointer to
the cache buf */

(CPU_I NT32U) CACHE_BUF_LEN, /* <-- cache buf
size in bytes */

(CPU_I NTO8U) 25, (1)

(CPU_I NTO8U) 15, (2)

(FS_FLAGS) FS VO._CACHE MODE WR BACK, /* <-- cache node
*/

(FS_ERR *)&err); /* <-- used for error
code */

if (err 1= FS_ERR_NONE) {
APP_TRACE INFO ((" Error : could not assign Volune cache"));
return;

}

pfile = FSFile_QOpen(“sdcard: 0:\\file.txt"”,
FS_FI LE_ACCESS_MXDE_WR |
FS_FI LE_ACCESS MODE_CACHED,

&err);
if (pFile == (FS_FILE *)0) {
return;
}
/*
DO THE WRI TE OPERATI ONS TO THE FI LE
*/

FSFile _C ose (pFile, &err);

FSVol _CacheFl ush ("sdcard: 0:", &err); /* <-- Flush vol une cache.
*/

Listing - Cache
@)

Percent of cache buffer dedicated to management sectors.

@

Percent of cache buffer dedicated to directory sectors.

The application using C/FS volume cache should vary the third and fourth parameters passed to FSVol _CacheAssi gn(), and select the values
that give the best performance.

For an efficient cache usage, it is better to do not allocate space in the cache for sectors of type file when the write size is greater than sector size.

When the cache is used in write back mode, all cache dirty sectors will be updated on the media storage only when the cache is flushed.

Other Caching and Buffering Mechanisms

Volume cache is just one of several important caching mechanisms, which should be balanced for optimal performance within the bounds of
platform resources. The second important software mechanism is the file buffer (see Configuring a File Buffer), which makes file accesses more
efficient by buffering data so a full sector’s worth will be read or written.

Individual devices or drivers may also integrate a cache. Standard hard drives overcome long seek times by buffering extra data upon read (in
anticipation of future requests) or clumping writes to eliminate unnecessary movement. The latter action can be particularly powerful, but since it
may involve re-ordering the sequence of sector writes will eliminate any guarantee of fail-safety of most file systems. For that reason, write cache
in most storage devices should be disabled.

A driver may implement a buffer to reduce apparent write latency. Before a write can occur to a flash medium, the driver must find a free (erased)
area of a block; occasionally, a block will need to be erased to make room for the next write. Incoming data can be buffered while the long erase
occurs in the background, thereby uncoupling the application’s wait time from the real maximum flash write time.

The ideal system might use both volume cache and file buffers. A volume cache is most powerful when confined to the sector types most subject
to repeated reads: management and directory. Caching of files, if enabled, should be limited to important (often-read) files. File buffers are more
flexible, since they cater to the many applications that find small reads and writes more convenient than those of full sectors.

Files

An application stores information in a file system by creating a file or appending new information to an existing file. At a later time, this information
may be retrieved by reading the file. Other functions support these capabilities; for example, the application can move to a specified location in the
file or query the file system to get information about the file. These functions, which operate on file structures (FS_FI LEs), are grouped under file
access (or simply file) functions. The available file functions are listed in Table - File API functions in the File System File Access Functions page.

A separate set of file operations (or entry) functions manage the files and directories available on the system. Using these functions, the
application can copy, create, delete and rename files, and get and set a file or directory’s attributes and date/time. The available entry functions
are listed in Table - Entry API functions in the File System Entry Access Functions page

The entry functions and the FSFi | e_QOpen() function accept full file paths. For information about using file and path names, see uC/FS File and
Directory Names and Paths.

The functions listed in Table - File API functions in the File System File Access Functions page and Table - Entry API functions in the File System
Entry Access Functions page the are core functions in the file access module (FSFi | e_####() functions) and entry module (FSEnt ry_ ####()
functions). These are matched, in most cases, by API level functions that correspond to standard C or POSIX functions. The core and API
functions provide basically the same functionality; the benefits of the former are enhanced capabilities, a consistent interface and meaningful
return error codes.

File System File Access Functions

The file access functions (listed in Table - File API functions in the File System File Access Functions page) provide an API for performing a
sequence of operations on a file located on a volume’s file system. The file object pointer returned when a file is opened is passed as the first
argument of all file access functions (a characteristic which distinguishes these from the entry access functions), and the file object so referenced
maintains information about the actual file (on the volume) and the state of the file access. The file access state includes the file position (the next
place data will be read/written), error conditions and (if file buffering is enabled) the state of any file buffer.

Function

FSFi | e_Buf Assi gn()
FSFi | e_Buf Fl ush()
FSFi | e_C ose()
FSFile_drErr()
FSFi | e_I SEOF()
FSFile_IsErr()

FSFi | e_l sOpen()
FSFi | e_LockGet ()
FSFi | e_LockSet ()
FSFi | e_LockAccept ()
FSFi | e_Open()

FSFi | e_PosGet ()

Description

Assign buffer to a file.

Write buffered data to volume.

Close a file.

Clear error(s) on afile.

Determine whether a file is at EOF.
Determine whether error occurred on a file.
Determine whether a file is open or not.
Acquire task ownership of a file.

Release task ownership of a file.

Acquire task ownership of a file (if available).
Open a file.

Get file position.

https://doc.micrium.com/display/fsdoc/File+System+File+Access+Functions#FileSystemFileAccessFunctions-Table-FileAPIfunctions
https://doc.micrium.com/display/fsdoc/File+System+Entry+Access+Functions#FileSystemEntryAccessFunctions-Table-EntryAPIfunctions
https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths
https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths
https://doc.micrium.com/display/fsdoc/File+System+File+Access+Functions#FileSystemFileAccessFunctions-Table-FileAPIfunctions
https://doc.micrium.com/display/fsdoc/File+System+Entry+Access+Functions#FileSystemEntryAccessFunctions-Table-EntryAPIfunctions

FSFi | e_PosSet () Set file position.

FSFi | e_Query() Get information about a file.
FSFi | e_Rd() Read from a file.

FSFi | e_Truncat e() Truncate a file.

FSFile W () Write to a file.

Table - File API functions

Opening Files

When an application needs to access a file, it must first open it using f s_f open() or FSFi | e_Open() . For most applications, the former with its
familiar interface suffices. In some cases, the flexibility of the latter is demanded (see Listing - Example FSFile_Open() usage in the Opening Files
page).

file ptr --> p_file = FSFile_Open (“\\file.txt”, [* file nane */
FS FILE ACCESS MODE RD, /* access nobde */
&err); /* return error */

if (p_file == (FS_FILE *)0) {
/* $$$$ Handl e error */

Listing - Example FSFile_Open() usage

The return value of FSFi | e_Qpen() should always be verified as non-NULL before the application proceeds to access the file. The second
argument to this function is a logical OR of mode flags:

FS_FI LE_ACCESS_MODE_RD
File opened for reads.
FS_FI LE_ACCESS_MOXDE_WR
File opened for writes.
FS_FI LE_ACCESS_MODE_CREATE
File will be created, if necessary.
FS_FI LE_ACCESS_MODE_TRUNC
File length will be truncated to 0.
FS_FI LE_ACCESS_MODE_APPEND
All writes will be performed at EOF.
FS_FI LE_ACCESS_MODE_EXCL
File will be opened if and only if it does not already exist.
FS_FI LE_ACCESS MODE_CACHED
File data will be cached.
For example, if you wanted to create a file to write to if and only if it does not exist, you would use the flags
FS_FI LE_ACCESS MODE VR | FS_FI LE_ACCESS MODE_CREATE | FS_FI LE_ACCESS MODE_EXCL
It is impossible to do this in a single, atomic operation using f s_f open() .

Table - fopen() mode strings and mode equivalents in the Opening Files page lists the mode flag equivalents of the f s_f open() mode strings.

“r"oor “rp” FS_FI LE_ACCESS_MODE_RD

“Woor “wb” FS FI LE_ACCESS_MODE_WR
FS_FI LE_ACCESS_MODE_CREATE
FS FI LE_ACCESS_MODE_TRUNC

“a” or “ab” FS_FI LE_ACCESS MODE_WR
FS_FI LE_ACCESS MODE_CREATE
FS_FI LE_ACCESS_MODE_APPEND

“r47 or “rb+ or “r+b” FS_FI LE_ACCESS_MODE_RD
FS FI LE_ACCESS_MODE_WR

“WHT Or “wb+” or “wb” FS_FI LE_ACCESS_MODE_RD
FS_FI LE_ACCESS_MODE_WR
FS_FI LE_ACCESS_MODE_CREATE FS_FI LE_ACCESS_MODE_TRUNC

“a+” or “ab+” or “a+b” FS_FI LE_ACCESS MODE_RD
FS_FI LE_ACCESS MIDE WR
FS_FI LE_ACCESS MODE_CREATE
FS_FI LE_ACCESS_MODE_APPEND

Table - fopen() mode strings and mode equivalents
Getting Information About a File

Detailed information about an open file, such as size and date/time stamps, can be obtained using the FSFi | e_Query() function (see Listing -
Example FSFile_Query() usage in the Getting Information About a File page).

FS_ENTRY_I NFO i nf o;

FSFile Query(p_file, [* file pointer */
& nf o, /* pointer to info structure */
&err); /* return error */

Listing - Example FSFile_Query() usage
The FS_ENTRY_I NFOstructure has the following members:

At tri b contains the file attributes (see File and Directory Attributes).

Si ze is the size of the file, in octets.

Dat eTi meCr eat e is the creation timestamp of the file.

Dat eAccess is the access timestamp (date only) of the file.

Dat eTi neW is the last write (or modification) timestamp of the file.

Bl kCnt is the number of blocks allocated to the file. For a FAT file system, this is the number of clusters occupied by the file data.
Bl kSi ze is the size of each block allocated in octets. For a FAT file system, this is the size of a cluster.

Dat eTi neCr eat e, Dat eAccess and Dat eTi neW are structures of type CLK_TS_SEC.
Configuring a File Buffer

The file module has functions to assign and flush a file buffer that are equivalents to POSIX API functions (see Listing - File Module Function i
n the Configuring a File Buffer page and Listing - POSIX API Equivalent in the Configuring a File Buffer page); the primary difference is the
advantage of valuable return error codes to the application.

int fs_setvbuf (FS_FILE *stream
char *puf ,
i nt node,
fs_size t size);

int fs fflush (FS FILE *strean);

Listing - POSIX API Equivalent

https://doc.micrium.com/display/fsdoc/File+and+Directory+Attributes#FileandDirectoryAttributes-title-text

voi d FSFi | e_Buf Assign (FS_FILE

*p_file,

voi d
*p_buf,

FS _FLAGS
node,

CPU SIZE T
si ze,

FS ERR
*p_err);

voi d FSFil e Buf Flush (FS_FILE
*p_file,

FS ERR
*p_err);

Listing - File Module Function

For more information about and an example of configuring a file buffer, see Configuring a File Buffer - POSIX.

File Error Functions

The file module has functions get and clear a file’s error status that are almost exact equivalents to POSIX API functions (see Listing - File
Module Function in the File Error Functions page and Listing - POSIX API Equivalent in the File Error Functions page); the primary difference
is the advantage of valuable return error codes to the application.

voi d FSFile drErr(FS_FILE void fs_clearerr (FS_FILE *stream;
*p_file,

FS ERR int fs ferror (FS_FILE *stream;
*p_err);
CPU_BOOLEAN FSFile_lskErr (FS_FILE int fs_feof (FS_FILE *stream;
*p_file,

FS_ERR
*p_err);
CPU_BOOLEAN FSFil e_I sEOF (FS_FI LE Listing - POSIX API Equivalent
*p_file,

FS_ERR
*p_err);

Listing - File Module Function

For more information about this functionality, see Diagnosing a File Error - POSIX.

Atomic File Operations Using File Lock

The file module has functions lock files across several operations that are almost exact equivalents to POSIX API functions (see Listing - File
Module Function in the Atomic File Operations Using File Lock page and Listing - POSIX API Equivalent in the Atomic File Operations Using
File Lock page); the primary difference is the advantage of valuable return error codes to the application.

void fs_flockfile (FS_FILE
*file);

int fs_ftrylockfile (FS_FILE
*file);

void fs_funlockfile (FS FILE
*file);

https://doc.micrium.com/display/fsdoc/Configuring+a+File+Buffer+-+POSIX#ConfiguringaFileBuffer-POSIX-title-text
https://doc.micrium.com/display/fsdoc/Diagnosing+a+File+Error+-+POSIX#DiagnosingaFileError-POSIX-title-text

Listing - POSIX API Equivalent

void FSFi | e_LockGCet (FS_FILE
*p_file,

FS ERR
*p_err);
voi d FSFil e_LockAccept (FS_FILE
*p_file,

FS ERR
*p_err);
voi d FSFil e_LockSet (FS_FILE
*p_file,

FS ERR
*p_err);

Listing - File Module Function

For more information about and an example of using file locking, see Atomic File Operations Using File Lock - POSIX.

File System Entry Access Functions

The entry access functions (listed in Table - Entry API functions in the File System Entry Access Functions page) provide an API for performing
single operations on file system entries (files and directories), such as copying, renaming or deleting. Each of these operations is atomic;
consequently, in the absence of device access errors, either the operation will have completed or no change to the storage device will have been
made upon function return.

One of these functions, FSEnt ry_Quer y (), obtains information about an entry (including the attributes, date/time stamp and file size). Two
functions set entry properties, FSEntry_Attri bSet () and FSEntry_Ti meSet (), which set a file’s attributes and date/time stamp. A new file
entry can be created with FSEnt ry_Cr eat e() or an existing entry deleted, copied or renamed (with FSEnt ry_Del (), FSEntry_Copy() or FS
Entry_Renane()).

Function Description

FSEntry_Attri bSet () Set a file or directory's attributes.
FSEntry_Copy() Copy a file.

FSEntry_Create() Create a file or directory.

FSEntry_Del () Delete a file or directory.
FSEntry_Query() Get information about a file or directory.
FSEntry_Renane() Rename a file or directory.
FSEntry_Ti meSet () Set a file or directory's date/time.

Table - Entry API functions
File and Directory Attributes

The FSEnt ry_Quer y() function gets information about file system entry, including its attributes, which indicate whether it is a file or directory,
writable or read-only, and visible or hidden (see Listing - Example FSEntry _Query() usage in the File and Directory Attributes page).

FS _FLAGS attrib;
FS_ENTRY_I NFO i nfo;
FSEntry_Query(*“pat h_name”, [* pointer to full path nane */
& nf o, /* pointer to info */
&err); /[* return error *

attrib = info.Attrib;

Listing - Example FSEntry_Query() usage
The return value is a logical OR of attribute flags:

FS_ENTRY_ATTRI B_RD

https://doc.micrium.com/display/fsdoc/Atomic+File+Operations+Using+File+Lock+-+POSIX#AtomicFileOperationsUsingFileLock-POSIX-title-text

Entry is readable.
FS_ENTRY_ATTRI B_WR
Entry is writable.
FS_ENTRY_ATTRI B_HI DDEN
Entry is hidden from user-level processes.
FS_ENTRY_ATTR B DI R
Entry is a directory.
FS_ENTRY_ATTRI B_ROOT_DI R
Entry is a root directory.
If no error is returned and FS_ENTRY_ATTRI B_DI Ris not set, then the entry is a file.
An entry can be made read-only (or writable) or hidden (or visible) by setting its attributes:

The second argument should be the logical OR of relevant attribute flags.

attrib = FS_ENTRY_ATTRI B_RD;

FSEntry AttribSet(“path_nanme”, [/* pointer to full path name */
attrib, /* attributes */
&err); /[* return error */

FS_ENTRY_ATTRI B_RD
Entry is readable.
FS_ENTRY_ATTRI B_WR
Entry is writable.
FS_ENTRY_ATTRI B_HI DDEN
Entry is hidden from user-level processes.

If a flag is clear (not OR’d in), then that attribute will be clear. In the example above, the entry will be made read-only (i.e., not writable) and will be
visible (i.e., not hidden) since the WR and HI DDEN flags are not setin att ri b. Since there is no way to make files write-only (i.e., not readable),

the RD flag should always be set.
Creating New Files and Directories

A new file can be created using FSFi | e_Open() or fs_f open(), if opened in write or append mode. There are a few other ways that new files
can be created (most of which also apply to new directories).

The simplest is the FSEnt ry_Cr eat e() function, which just makes a new file or directory:

FSEntry_Create(“\\file.txt”, /[* file nane */
FS_ENTRY_TYPE_FI LE, /* nmeans entry will be a file */
DEF_NO, /* DEF_NO neans creation NOT exclusive */
&err); [* return error *

If the second argument, entry_t ype, is FS_ENTRY_TYPE_DI Rthe new entry will be a directory. The third argument, excl , indicates whether
the creation should be exclusive. If it is exclusive (excl is DEF_YES), nothing will happen if the file already exists. Otherwise, the file currently
specified by the file name will be deleted and a new empty file with that name created.

Similar functions exist to copy and rename an entry:

FSEntry_ Copy(“\\dir\\src.txt”, /* source file nane */

“\N\dir\\dest.txt », /* destination file nane */

DEF_NO, /* DEF_NO neans creation not exclusive */

&err); /* return error */
FSEntry_Renane (“\\dir\\oldnane.txt”, /* old file nane */
“\\dir\\newnane.txt”, /* new file nane */

DEF_NO, /* DEF_NO neans creation not exclusive */

&err); /* return error */

FSEnt ry_Copy() can only be used to copy files. The first two arguments of each of these are both full paths; the second path is not relative to
the parent directory of the first. As with FSEnt ry_Cr eat e() , the third argument of each, excl, indicates whether the creation should be
exclusive. If it is exclusive (excl is DEF_YES), nothing will happen if the destination or new file already exists.

Deleting Files and Directories

A file or directory can be deleted using FSEntry_Del () :

FSEntry_Del (“\\dir”, /* entry nane */
FS ENTRY_TYPE DIR, /* nmeans entry nust be a dir */
&err); /* return error */

The second argument, entry_type, restricts deletion to specific types. If itis FS_ENTRY_TYPE_DI R, then the entry specified by the first argument
must be a directory; if it is a file, an error will be returned. If it is FS_ENTRY_TYPE_FI LE, then the entry must be afile. If itis FS_ENTRY_TYPE_A
NY, then the entry will be deleted whether it is a file or a directory.

Directories

An application stores information in a file system by creating a file or appending new information to an existing file. At a later time, this
information may be retrieved by reading the file. However, if a certain file must be found, or all files may be listed, the application can iterate
through the entries in a directory using the directory access (or simply directory) functions. The available directory functions are listed in
Table - Directory API functions in the Directories page.

A separate set of directory operations (or entry) functions manage the files and directories available on the system. Using these functions,
the application can create, delete and rename directories, and get and set a directory’s attributes and date/time. More information about the
entry functions can be found in Table - File API functions in the File System File Access Functions page.

The entry functions and the directory Open() function accept one or more full directory paths. For information about using file and path
names, see UC/FS File and Directory Names and Paths.

The functions listed in Table - Directory API functions in the Directories page are core functions in the directory access module (FSDi r _###
#() functions). These are matched by API level functions that correspond to standard C or POSIX functions. More information about the
API-level functions can be found in POSIX API. The core and API functions provide basically the same functionality; the benefits of the former
are enhanced capabilities, a consistent interface and meaningful return error codes.

Directory Access Functions

The directory access functions provide an API for iterating through the entries within a directory. The FSDi r _Open() function initiates this
procedure, and each subsequent call to FSDi r _Rd() (until all entries have been examined) returns a FS_DI RENT which holds information
about a particular entry. The FSDi r _C ose() function releases any file system structures and locks.

Function Description

FSDi r _Open() Open a directory.

FSDi r _d ose() Close a directory

FSDi r _Rd() Read a directory entry.

FSDi r _I sOpen() Determine whether a directory is open or not.

Table - Directory API functions

These functions are almost exact equivalents to POSIX API functions (see Listing - Directory Module Function in the Directories page and List

https://doc.micrium.com/display/fsdoc/File+System+File+Access+Functions#FileSystemFileAccessFunctions-Table-FileAPIfunctions
https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths
https://doc.micrium.com/display/fsdoc/POSIX+API#POSIXAPI-title-text

ing - POSIX API Equivalent in the Directories page); the primary difference is the advantage of valuable return error codes to the application.

FS DIR *FSDi r _Open (CPU_CHAR FS DIR *fs_opendir (const char
*p_nanme_full, *di rname) ;
FS_ERR
*p_err);
i nt fs_closedir (FS_D R
voi d FSDi r _C ose(FS_DIR *dirp);
*p_dir,
FS_ERR
*p_err); i nt fs_readdir_r(FS_D R
*dirp,
voi d FSDir Rd (FS DR struct
*p_dir, fs dirent *entry,
FS_DI R_ENTRY struct
*p_dir_entry, fs_ dirent **result);
FS_ERR
*p_err);

Listing - POSIX API Equivalent

Listing - Directory Module Function

For more information about and an example of using directories, see Directory Access Functions - POSIX.

POSIX API

The best-known API for accessing and managing files and directories is specified within the POSIX standard (IEEE Std 1003.1). The basis of
some of this functionality, in particular buffered input/output, lies in the ISO C standard (ISO/IEC 9899), though many extensions provide new
features and clarify existing behaviors. Functions and macros prototyped in four header files are of particular importance:

st di 0. h. Standard buffered input/output (f open(), f read() , etc), operating on FILE objects.

di rent. h. Directory accesses (opendi r (), readdi r (), etc), operating on DIR objects.

uni st d. h. Miscellaneous functions, including working directory management (chdi r (), getcwd()), ftruncate() andrndir().
sys/ stat. h. File statistics functions and nkdi r () .

UC/FS provides a POSIX-like API based on a subset of the functions in these four header files. To avoid conflicts with the user compilation
environment, files, functions and objects are renamed:

¢ All functions begin with ‘fs_'. For example, f open() is renamed f s_f open(), opendi r () is renamed fs_opendi r (), getcwd() is
renamed f s_get cwd() , etc.

® All objects begin with ‘FS_". So f s_f open() returns a pointer to a FS_FI LE and f s_opendi r () returns a pointer to a FS_DI R

® Some argument types are renamed. For example, the second and third parameters of f s_fread() are typed f s_si ze_t to avoid
conflicting with other si ze_t definitions.

1 Important warning about the POSIX API

The uC/FS implementation of the POSIX API is not 100% compliant. Most notably, the er r no error flag isn't set when an error occurs
and thus it is recommended to use the PC/FS proprietary AP| (FSFi | e_####() , FSDi r _####(), FSEnt ry_####() , etc.).

Supported Functions - POSIX

The supported POSIX functions are listed in Table - POSIX API functions in the Supported Functions - POSIX page. These are divided into four
groups. First, the functions which operate on file objects (FS_FI LEs) are grouped under file access (or simply file) functions. An application stores
information in a file system by creating a file or appending new information to an existing file. At a later time, this information may be retrieved by
reading the file. Other functions support these capabilities; for example, the application can move to a specified location in the file or query the file
system to get information about the file.

A separate set of file operations (or entry) functions manage the files and directories available on the system. Using these functions, the
application can create, delete and rename files and directories.

The entries within a directory can be traversed using the directory access (or simply directory) functions, which operate on directory objects (FS_D
I Rs). The name and properties of the entries are returned within a struct f s_di r ent structure.

The final group of functions is the working directory functions. For information about using file and path names, see uC/FS File and Directory
Names and Paths.

https://doc.micrium.com/display/fsdoc/Directory+Access+Functions+-+POSIX#DirectoryAccessFunctions-POSIX-text-title
https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths
https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths

Function

fs_asctinme_r()

POSIX Equivalent

asctinme_r()

Function

fs_ftruncate()

POSIX Equivalent

ftruncate()

fs_chdir() chdir () fs_ftrylockfile() ftrylockfile()
fs_clearerr() clearerr() fs_funlockfile() funl ockfile()
fs_closedir() closedir() fs_ fwite() fwite()
fs_ctime_r() ctinme_r() fs_getcwd() get cwd()
fs_fclose() fclose() fs_localtime_r() localtime_r()
fs_feof() f eof () fs_nkdir() nkdi r ()

fs ferror() ferror() fs_mktinme() mkti me()
fs_fflush() fflush() fs_rew nd() rew nd()
fs_fgetpos() f get pos() fs_opendir() opendi r ()
fs_flockfile() flockfile() fs_readdir_r() readdir_r()
fs_fopen() f open() fs_renove() remove()
fs_fread() fread() fs_renane() renane()
fs_fseek() fseek() fs_rmdir() rdir ()
fs_fsetpos() fsetpos() fs_sethbuf() set buf ()
fs_fstat() fstat() fs_setvbuf () set vbuf ()
fs_ftell() ftell() fs_stat() stat ()

Table - POSIX API functions
Working Directory Functions - POSIX

Normally, all file or directory paths must be absolute, either on the default volume or on an explicitly-specified volume:

p_filel = fs_fopen(“\\file.txt”, “r"); /* File on default volune */
p_file2 = fs_fopen(“sdcard: O:\\file.txt”, “r"); /* File on explicitly-specified
vol une */

If working directory functionality is enabled, paths may be specified relative to the working directory of the current task:

p file2 = fs fopen(“file.txt”, “r”)
p_filel = fs_fopen(“. . \\file.txt”, “r”)
directory */

/* File in working directory */
/* File in parent of working

The two standard special path components are supported. The path component “..” moves to the parent of the current working directory. The path
component “.” makes no change; essentially, it means the current working directory.

fs_chdir () is used to set the working directory. If a relative path is employed before any working directory is set, the root directory of the default
volume is used.

The application can get the working directory with f s_get cwd() . A terminal interface may use this function to implement an equivalent to the
standard pwd (print working directory) command, while calling f s_chdi r () to carry out a cd operation. If working directories are enabled, the
UC/Shell commands for uC/FS manipulate and access the working directory with f s_chdi r () and f s_get cwd() (see also Shell Commands).

File Access Functions - POSIX

The file access functions provide an API for performing a sequence of operations on a file located on a volume'’s file system. The file object
pointer returned when a file is opened is passed as an argument of all file access function, and the file object so referenced maintains information
about the actual file (on the volume) and the state of the file access (see Figure - File state transitions in the File Access Functions - POSIX page)
. The file access state includes the file position (the next place data will be read/written), error conditions and (if file buffering is enabled) the state
of any file buffer.

https://doc.micrium.com/display/fsdoc/Shell+Commands#ShellCommands-title-text

As data is read from or written to a file, the file position is incremented by the number of bytes transferred from/to the volume. The file position
may also be directly manipulated by the application using the position set function (f s_f set pos()), and the current absolute file position may be
gotten with the position get function (f s_f get pos()), to be later used with the position set function.

Must be
Closed

/Claar |ITor

Open =

Reading {fle at EOF}

Figure - File state transitions

The file maintains flags that reflect errors encountered in the previous file access, and subsequent accesses will fail (under certain conditions
outlined here) unless these flags are explicitly cleared (using f s_cl ear err ()). There are actually two sets of flags. One reflects whether the file
encountered the end-of-file (EOF) during the previous access, and if this is set, writes will not fail, but reads will fail. The other reflects device
errors, and no subsequent file access will succeed (except file close) unless this is first cleared. The functions fs_ferror () andfs_feof () ca
n be used to get the state of device error and EOF conditions, respectively.

If file buffering is enabled (FS_CFG_FI LE_BUF_ENis DEF_ENABLED), then input/output buffering capabilities can be used to increase the
efficiency of file reads and writes. A buffer can be assigned to a file using f s_set buf () or f s_set vbuf () ; the contents of the buffer can be
flushed to the storage device using fs_f fl ush().

If a file is shared between several tasks in an application, a file lock can be employed to guarantee that a series of file operations are executed
atomically. f s_f 1 ockfil e() (orits non-blocking equivalentfs_ftryl ockfil e()) acquires the lock for a task (if it does not already own it).
Accesses from other tasks will be blocked until a f s_f unl ockfi | e() is called. This functionality is available if FS_CFG_FI LE_LOCK_ENis DEF
_ENABLED.

Opening, Reading and Writing Files - POSIX

When an application needs to access a file, it must first open it using fs_fopen():

p_file = fs_fopen(“\\file.txt”, /* file nane

*/

CWHT) /* nmode string */

if (p_file == (FS_FILE *)0) {
[* $$$$ Handl e error */

The return value of this function should always be verified as non-NULL before the application proceeds to access the file. The first argument of
this function is the path of the file; if working directories are disabled, this must be the absolute file path, beginning with either a volume name or a
‘\" (see UC/FS File and Directory Names and Paths). The second argument of this function is a string indicating the mode of the file; this must be
one of the strings shown in Table - fs_fopen() mode strings interpretations in the Opening, Reading and Writing Files - POSIX page. Note that in

all instances, the ‘b’ (binary) option has no affect on the behavior of file accesses.

fs_fopen() Mode String Read?
“r" or “rb” Yes
“w” or “wb” No

“a” or “ab” No
“r+” or “rb+” or “r+b” Yes
“w+” or “wb+” or “w+b” Yes
“a+” or “ab+” or “at+b” Yes

Table - fs_fopen() mode strings interpretations

Write?

No

Yes

Yes

Yes

Yes

Yes

Truncate?

No

Yes

No

No

Yes

No

Create?
No

Yes
Yes

No

Yes

Yes

Append?
No

No

Yes

No

No

Yes

After a file is opened, any of the file access functions valid for that its mode can be called. The most commonly used functions are fs_fread() a

ndfs_fwite(), which read or write a certain number of ‘items’ from a file:

cnt = fs_fread(p_buf, /* pointer to buffer */
1, /* size of each item */
100, /* nunber of itens

p_file); /* pointer to file

The return value, the number of items read (or written), should be less than or equal to the third argument. If the operation is a read, this value
may be less than the third argument for one of two reasons. First, the file could have encountered the end-of-file (EOF), which means that there is
no more data in the file. Second, the device could have been removed, or some other error could have prevented the operation. To diagnose the

cause, the f s_f eof () function should be used. This function returns a non-zero value if the file has encountered the EOF.

Once the file access is complete, the file must be closed; if an application fails to close files, then the file system suite resources such as file

objects may be depleted.

An example of reading a file is given below:

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths

void App_Fnct (void)

{
FS FI LE *p_file;
fs_size_t cnt;
unsi gned char buf [50];
p_file = fs_fopen(“\\file.txt”, “r”); /* COpen file.
*/
if (p_file!= (FS_FILE *)0) { [* 1f file is opened ...
*/
[* ... read fromfile.
*/
do {
cnt = fs_fread(&uf[0], 1, sizeof(buf), p_file);
if (cnt > 0) {
APP_TRACE | NFQ((“Read % bytes.\r\n”, cnt));
}
} while (cnt >= sizeof (buf));
eof = fs_feof (p_file); [* Chk for ECF.
*/
if (eof '=0) { (1)
APP_TRACE_I NFO((“ Reached EOF.\r\n"));
} else {
err = fs_ferror(p_file); /* Chk for error.
*/
if (err '=0) { (2)
APP_TRACE | NFO((“Read error.\r\n"));
}
}
fs_fclose(p_file); /* Close file.
*/
} else {
APP_TRACE | NFQ((“Coul d not open \"\\file.txt\”.\r\n"));
}
}

Listing - Example file read

@

To determine whether a file read terminates because of reaching the EOF or a device error/removal, the EOF condition should be checked using
fs_feof ().

@
In most situations, either the EOF or the error indicator will be set on the file if the return value of f s_f r ead() is smaller than the buffer size.
Consequently, this check is unnecessary.

Getting or Setting the File Position - POSIX

Another common operation is getting or setting the file position. The f s_f get pos() and fs_f set pos() allow the application to ‘store’ a file
location, continue reading or writing the file, and then go back to that place at a later time. An example of using file position get and set is given in
Listing - Example file position set and get in the Getting or Setting the File Position - POSIX page

void App_Fnct (void)

{
FS FI LE *p_file;
fs_fpos_t pos;
int err;
p_file = fs_fopen(“\file.txt”, “r"); /* Open file ...
*/
if (p_file == (FS_FILE *)0) {
APP_TRACE | NFQ((“Coul d not open file.”));
return;
}
/* ... read fromfile.
*/
err = fs_fgetpos(p_file, &pos); /* Save file position ...
*/
if (err 1'=0) {
APP_TRACE | NFQ((“Coul d not get file position.”));
return;
}
/[* ... read sonme nore fromfile.
*/
err = fs_fsetpos(p_file, &pos); /* Set file to saved position ...
*/
if (err '=0) {
APP_TRACE | NFQ((“Coul d not set file position.”));
return;
}
/* ... read sonme nore fromfile.
*/
FS fclose(p_file); /* When finished, close file.
*/
}

Listing - Example file position set and get
Configuring a File Buffer - POSIX

In order to increase the efficiency of file reads and writes, input/output buffering capabilities are provided. Without an assigned buffer, reads and
writes will be immediately performed within fs_fread() andfs_fwrite().Once abuffer has been assigned, data will always be read from or
written to the buffer; device access will only occur once the file position moves beyond the window represented by the buffer.

fs_setbuf () and fs_set vbuf () assign the buffer to a file. The contents of the buffer can be flushed to the storage device with fs_f f1 ush()
. If a buffer is assigned to a file that was opened in update (read/write) mode, then a write may only be followed by a read if the buffer has been
flushed (by calling f s_f f1 ush() or a file positioning function). A read may be followed by a write only if the buffer has been flushed, except
when the read encountered the end-of-file, in which case a write may happen immediately. The buffer is automatically flushed when the file is
closed.

File buffering is particularly important when data is written in small chunks to a medium with slow write time or limited endurance. An example is
NOR flash, or even NAND flash, where write times are much slower than read times, and the lifetime of device is constrained by limits on the

number of times each block can be erased and programmed.

static CPU_INT32U App_FileBuf[512 / 4]; /* Define file buffer.
*/

void App_Fnct (void)

{
CPU_I NTO8U datal[50];
p_file = FS fopen(“\\file.txt”, “w);
if (p_file!= (FS_FILE *)0) { (1)
/* Set buffer.
*/
fs_setvbuf(p_file, (void *)App_FileBuf, FS | OFBF, sizeof (App_FileBuf));
: (2)
fs_fflush(p_file); /* Make sure data is witten to
file. */
fs_fclose(p_file); /* Wen finished, close file.
*/
}
}
Listing - Example file buffer usage
@
The buffer must be assigned immediately after opening the file. An attempt to set the buffer after read or writing the file will fail.
@

While it is not necessary to flush the buffer before closing the file, some applications may want to make sure at certain points that all previously
written data is stored on the device before writing more.

Diagnosing a File Error - POSIX

The file maintains flags that reflect errors encountered in the previous file access, and subsequent accesses will fail (under certain conditions
outlined here) unless these flags are explicitly cleared (using f s_cl ear err ()). There are actually two sets of flags. One reflects whether the file
encountered the end-of-file (EOF) during the previous access, and if this is set, writes will not fail, but reads will fail. The other reflects device
errors, and no subsequent file access will succeed (except file close) unless this is first cleared. The functions fs_ferror () andfs_feof () ca
n be used to get the state of device error and EOF conditions, respectively.

Atomic File Operations Using File Lock - POSIX

If a file is shared between several tasks in an application, the file lock can be employed to guarantee that a series of file operations are executed
atomically. f s_f 1 ockfil e() (orits non-blocking equivalentfs_ftryl ockfil e()) acquires the lock for a task (if it does not already own it).
Accesses from other tasks will be blocked until f s_f unl ockfi | e() is called.

Each file actually has a lock count associated with it. This allows nested calls by a task to acquire a file lock; each of those calls must be matched
with a call to f s_f unl ockfi | e(). Listing - Example file lock usage in the Atomic File Operations Using File Lock - POSIX page shows how the
file lock functions can be used.

void App_Fnct (void)

{
unsi gned char datal[50];
unsi gned char data2[10];
if (App_FilePtr !'= (FS_FILE *)0) { (1)
fs flockfile(App_FilePtr); /* Lock file.
*
/
/* W data atom cally.
*/
fs_ fwite(datal, 1, sizeof(datal), App_FilePtr);
fs fwite(data2, 1, sizeof(datal), App_FilePtr);
fs_funlockfile(App_FilePtr); /* Unlock file.
*
/
}
}

Listing - Example file lock usage

)

fs_flockfile() will block the calling task until the file is available. If the task must write to the file only if no other task is currently accessing it,
the non-blocking function f s_f unl ockfi | e() can be used.

Directory Access Functions - POSIX

The directory access functions provide an API for iterating through the entries within a directory. The f s_opendi r () function initiates this
procedure, and each subsequent call to f s_r eaddi r _r () (until all entries have been examined) returns information about a particular entry in a
struct fs_dirent. The f s_cl osedi r () function releases any file system structures and locks.

Listing - Directory listing example code in the Directory Access Functions - POSIX page gives an example using the directory access functions to
list the files in a directory.

void App_Fnct (void)

{
FS DIR *p_dir;
struct fs_dirent dirent;
struct fs_dirent *p_dirent;
char str[50];
char *p_cwd_pat h;
fs_time_t ts;
p_dir = fs_opendir(p_cwd_path); /[* Open dir.
*/
if (p_dir '= (FS_DR*)0) {
(void)fs_readdir_r(pdir, &irent, &p_dirent); /[* Rd first dir entry.
*/
if (p_dirent == (FS_DI RENT *)0) { [* If NULL ... dir is
enpty. */
APP_TRACE I NFO((“Enmpty dir: 9%.\r\n”, p_cwd_path));
} else { /* Fmt info for each entry.
*/

Str_Copy(str, "-r--r—-- : ")

*/
if (DEF_BIT_IS SET(dirent.Info.Attrib, FS_ENTRY_ATTRIB DIR) ==
DEF_YES) ({
str[0] = ‘d’;
}
[* Chk if file is rd only.
*/
if (DEF_BIT_ IS SET(dirent.Info.Attrib, FS_ENTRY_ATTRI B_WR) == DEF_YES)
{
str[2] ="'w;
str[5] = ‘w;
str[8] = "‘w;
}
[* CGet file size.
*/
if (p_dirent->Info.Size == 0) {
if (DEF_BIT_IS CLR(dirent.Info.Attrib, FS_ENTRY_ATTRIB DI R) ==
DEF_YES) {
Str_Copy(&str[11]," 0");
}
} else {
Str_Fmt Nor _I nt 32U(di rent. I nfo. Si ze,
10, 10, ‘0, DEF_NO, DEF_NO, &str[11]);
}
/* CGet file date/tine.
*/
if (p_dirent->Info.DateTineCreate. Month = 0) {
Str_Copy(&str[22],
(CPU_CHAR *) App_Mont hNanes[di rent . I nf o. Dat eTi neCreate. Month -
1]);
Str_Fnt Nor _I nt 32U(di rent. I nfo. Dat eTi meW . Day,
2, 10, * ', DEF_NO, DEF_NO, &str[26]);
Str_Fmt Nor _I nt 32U(di rent . | nf o. Dat eTi meW . Hour,
2, 10, * ', DEF_NO, DEF_NO, &str[29]);
Str_Fnt Nor _I nt 32U(di rent. | nfo. Dat eTi neW . M nut e,
2, 10, * ', DEF_NO, DEF_NO, &str[32]);
}
/[* Qutput info for entry.
*/
APP_TRACE | NFOQ((“%%s\r\n", str, dirent.Nane));
/* Rd next dir entry.
*/
(void)fs_readdir_r(pdir, &irent, & _dirent);
}
}
fs_closedir(p_dir); /* Close dir.
*/
/[* 1f dir could not be
opened ... */
} else { /* ... dir does not exist.
*/

while (p_dirent !'= (struct dirent *)0) {

[* Chk if fileis dir.

APP_TRACE I NFQ((“Dir does not exist: 9%.\r\n”, p_cwd_path));

Listing - Directory listing example code

An example result of listing a directory is shown in the figure below.

10000000 -. H HNEW.TST

Figure - Example directory listing

The second argument f s_r eaddi r _r (), is a pointer to a struct f s_di r ent , which has two members. The first is Name, which holds the name
of the entry; the second is Info, which has file information. For more information about the struct f s_di r ent structure, see FS_DIR_ENTRY
(struct fs_dirent).

Entry Access Functions - POSIX

The entry access functions provide an API for performing single operations on file system entries (files and directories), such as renaming or
deleting a file. Each of these operations is atomic; consequently, in the absence of device access errors, either the operation will have completed
or no change to the storage device will have been made upon function return.

A new directory can be created with f s_nkdi r () or an existing file or directory deleted or renamed (with f s_r enove() or fs_renane()).

Device Drivers

The file system initializes, controls, reads and writes a device using a device driver. A uC/FS device driver has eight interface functions, grouped
into a FS_DEV_DRV structure that is registered with the file system (with FS_DevDr vAdd()) as part of application start-up, immediately following
FS_Init().

Several restrictions are enforced to preserve the uniqueness of device drivers and simplify management:

® Each device driver must have a unique name.
® No driver may be registered more than once.
® Device drivers cannot be unregistered.

® All device driver functions must be implemented (even if one or more is ‘empty’).

Provided Device Drivers

Portable device drivers are provided for standard media categories:

®* RAM disk driver. The RAM disk driver supports using internal or external RAM as a storage medium.

® SD/MMC driver. The SD/MMC driver supports SD, SD high-capacity and MMC cards, including micro and mini form factors. Either
cardmode and SPI mode can be used.

®* NAND driver. The NAND flash driver support parallel (typically ONFI-compliant) NAND flash devices.

®* NOR driver. The NOR flash driver support parallel (typically CFI-compliant) and serial (typically SPI) NOR flash devices.

® MSC driver. The MSC (Mass Storage Class) driver supports USB host MSC devices (i.e., thumb drives or USB drives) via pC/USB-Host.

https://doc.micrium.com/pages/viewpage.action?pageId=12856941#FS_DIR_ENTRY(structfs_dirent)-title-text
https://doc.micrium.com/pages/viewpage.action?pageId=12856941#FS_DIR_ENTRY(structfs_dirent)-title-text

The table below summarizes the drivers, driver names and driver API structure names. If you require more information about a driver, please
consult the listed chapter.

Driver Driver Name Driver API Structure Name Reference

RAM disk “ram” FSDev_RAM RAM Disk Driver
SD/MMC “sd:” [“sdcard:” FSDev_SD SPI / FSDev_SD Card SD/MMC Driver
NAND “nand: ” FSDev_NAND NAND

NOR “nor:” FSDev_NOR NOR

MSC “mec:” FSDev_MSC MSC

Table - Device driver API structures

If your medium is not supported by one of these drivers, a new driver can be written based on the template driver. The Device Driver page
describes how to do this.

Driver Characterization

Typical ROM requirements are summarized in the table below. The ROM data were collected on IAR EWARM v6.40 with high size optimization.

Driver ROM, Thumb Mode ROM, ARM Mode
RAM disk 0.4 kB 0.6 kB
SD/MMC CardMode* 3.9kB 6.2 kB
SD/MMC SPI* 4.7 kB 7.3 kB
NOR*** 5.7 kB 9.1 kB
MSC** 0.6 kB 0.9kB

Table - Driver ROM requirements

* Not including BSP
**Not including pC/USB
***Jsing the generic controller and software ECC, not including BSP

Typical RAM requirements are summarized in the table below.

Driver RAM (Overhead) RAM (Per Device)
MSC* 12 bytes 32 bytes

NOR*** 4 bytes --- bytes

RAM disk 4 bytes 24 bytes
SD/MMC CardMode 4 bytes 64 bytes
SD/MMC SPI 4 bytes 52 byte

Table - Driver RAM requirements

*Not including uC/USB
***See NOR Driver and Device Characteristics.

Performance can vary significantly as a result of CPU and hardware differences, both as well as file system format. All test were compiled using
IAR EWARM 6.40.1 using high speed optimization. The table below lists results for two general performance tests:

® Read file test. Read a file in 4-kB and 64kB chunks. The time to open the file is not included in the time.
® Write file test. Write a file in 4-kB and 64kB chunks. The time to open (create) the file is not included in the time.

Driver CPU Media Performance (kB/s)
4k Read 64k Read

4k Write 64k Write

https://doc.micrium.com/display/PORTSDRIVERS/NAND
https://doc.micrium.com/NOR_Flash_Driver.xhtml#ww1046405
https://doc.micrium.com/MSC_Driver.xhtml#ww1046405
https://doc.micrium.com/display/fsdoc/Device+Driver#DeviceDriver-text-title
https://doc.micrium.com/display/fsdoc/NOR+Driver+and+Device+Characteristics#NORDriverandDeviceCharacteristics-title-text

RAM Disk

RAM Disk

SD/MMC CardMode

SD/MMC SPI

SD/MMC SPI

NAND

NAND (auto-sync)

NOR (parallel)

NOR (serial)

MSC

ST STM32F207IGH6
120Mhz

Atmel AT91SAM9IM10
400-Mhz

ST STM32F207IGH6
120-MHz, 4-bit mode
ST STM32F107VvVC
72-Mhz

ST STM32F107VC
72-MHz (W/CRC)
Atmel AT91SAM9M10
400-Mhz

Atmel AT91SAM9IM10
400-Mhz

ST STM32F103ZE
72-MHz

ST STM32F103VE
72-MHz

Atmel AT91SAM9IM10

400-MHz

Table - Driver performance (file test)
Drivers Comparison

NAND flash is a low-cost on-board storage solution. Typically, NAND flash have a multiplexed bus for address and data, resulting in a much lower
pin count than parallel NOR devices. Their low price-per-bit and relatively high capacities often makes these preferable to NOR, though the higher

IS61WV102416BLL-10MLI

16Mbit 10-ns SRAM

MT47H64M8CF-3-F DDR2 2x8bit 2 banks interleaved

Nokia 64 MB SMS064FF SD Card

Nokia 64 MB SMS064FF SD Card

Nokia 64 MB SMS064FF SD Card

Micron MT29F2G08ABDHC 2Gb NAND flash

Micron MT29F2G08ABDHC 2Gb NAND flash

ST M29W128GL 16MB NOR flash

ST M25P64 serial flash

64-GB SanDisk Cruzer

16 622 kB/s
10 839 kB/s
27 478 kBls
18 858 kB/s
5 333 kB/s
661 kB/s
947 kB/s
444 kB/s
759 kB/s
388 kB/s

9 039 kB/s
1950 kB/s
9 039 kB/s
1 336 kB/s
2 750 kB/s
158 kB/s
691 kB/s
55 kB/s
613 kB/s
153 kB/s

31186 kB/s
26 473 kB/s
96 866 kB/s
84 121 kB/s
8 595 kB/s
1607 kB/s
1 010kB/s
793 kB/s
800 kB/s
655 kB/s
10 732 kB/s
4 332 kB/s
10 732 kB/s
2 695 kB/s
3810 kB/s
310 kB/s
---- kB/s
---- kB/s

2 301kB/s
883 kB/s

absolute cost (because the lowest-capacity devices are at least 128-Mb) reverses the logic for applications requiring very little storage.

FAT File System

Microsoft originally developed FAT (File Allocation Table) as a simple file system for diskettes and then hard disks. FAT originally ran on very
early, very small microcomputers, e.g., IBM PCs with 256 KB of memory. Windows, Mac OS, Linux, and many Unix-like systems also use FAT as

a file interchange format.

FAT was designed for magnetic disks, but today supports Flash memory and other storage devices.

UC/FS is an implementation of FAT that supports FAT12, FAT16, and FAT32. By default, u.C/FS supports only short (8.3) file names. To enable
long file names (LFNs), you must set a configuration switch. By setting this switch, you agree to contact Microsoft to obtain a license to use LFNs.

Why Embedded Systems Use FAT

Since FAT's inception, it has been extended multiple times to support larger disks as well as longer file names. However, it remains simple
enough for the most resource-constrained embedded system.

Because FAT is supported by all major operating systems, it still dominates the removable storage market. USB flash drives are embedded
systems, and most are formatted in FAT. Cameras, MP3 players, and other consumer electronics that depend on easy file transfer to and from
the device also normally use FAT. FAT is also widely used in embedded systems, especially ones that run on microcontrollers.

Organization of a FAT Volume

As shown in Figure - FAT volume layout in the Organization of a FAT Volume page a FAT volume (i.e., a logical disk) contains several areas:

Reserved 15t FAT 2nd FAT Root
FAT12/16 Area Area Area Directory Datahrea
FAT32 Reserved 15t FAT 2nd FAT Data Area
Area Area Area

Figure - FAT volume layout

1. Reserved area. The reserved area includes the boot sector, which contains basic format information, like the number of sectors in the
volume.

2. File allocation table area. The FAT file system is named after the file allocation table, a large table with one entry for each cluster in the
volume. This area must contain at least one FAT area; for redundancy, it may also contain one or more additional FAT areas.

3. Root directory area. FAT 12 and FAT 16 volumes contain a fixed amount of space for the root directory, In FAT32 volumes, there is no
area reserved for the root directory; the root directory is instead stored in a fixed location in the data area.

4. Data area. The data area contains files and directories. A directory (or folder) is a special type of file.

FAT supports only four attributes for its files and directories: Read-Only, Hidden, System, and Archive.
Organization of Directories and Directory Entries

In the FAT file system, directories are just special files, composed of 32-byte structures called directory entries. The topmost directory, the root
directory, is located using information in the boot sector.

The normal (short file name) entries in this directory and all other directories follow the format shown in figure below (long file names are
discussed a little further on in Short and Long File Names.

One Directory Entry

(1) (2) |G (8) [(7) | (8) | (9) | (10) | (11) [(12)

Byte: 1 9 12 13 14 15 17 19 21 23 25 27
Figure - The entry for a file in a FAT directory
@)
Filename is the 8-character short file name (SFN). Eight bytes.
)
File extension is the three-character file name extension. Three bytes
3
File Attributes are the attributes of the entry, indicating whether it is a file or directory, writable or read-only and visible or hidden. One byte.
4
Reserved area. One byte.
)
Created Time (milliseconds) and is the fraction of the second of the date and time the file was created. One byte.
(6)
Created Time is the hour, minute, and second the file was created. Two bytes.
™
Created Date is the day, month, and year the file was created. Two bytes.
®

Last Accessed Day is the day, month, and year the file was last accessed. Two byte.

https://doc.micrium.com/display/fsdoc/Short+and+Long+File+Names#ShortandLongFileNames-text-title

9)
Extended Attribute Index. In FAT16, this field is used for extended attributes for some operating systems. In FAT32, this field contains the high
two bytes of the cluster address. Two bytes.

(10
Last Modified Time is hour, minute, and second when the file was last modified. Two bytes.

(11)
Last Modified Date is the day, month, and year when the file was last modified. Two bytes.

(12)
Cluster address is the address of the first cluster allocated to the file (i.e., the first cluster that contains file data). In FAT16, this field contains the
entire cluster address. In FAT32, this field contains the low two bytes of the cluster address. Two bytes.

(13)
File Size is the size of the file, in octets. If the entry is a directory, this field is blank. Four bytes.

Organization of the File Allocation Table

The File Allocation Table is a map of all the clusters that make up the data area of the volume. The FAT does not “know” the location of the first
cluster that has been allocated to a given file. It does not even know the name of any files. That information is stored in the directory.

As described in the section above, the directory entry for each file contains a value called a cluster address. This is a pointer to the first entry in
the File Allocation Table for a given file. This FAT entry in turn points to the first cluster in the volume’s data area that has been allocated to the
file.

If the file has been allocated more than one cluster, then the FAT table entry will contain the address of the second cluster (which is also the index
number of the second cluster’s entry in the FAT table). The second cluster entry points to the third, and so forth. A FAT entry like this forms a
linked list commonly called a cluster chain.

Figure - File Allocation Table and Directory Entry relationship in the Organization of the File Allocation Table page illustrates the relationship
between the directory entry and the FAT.

One Directory Entry

32 bytes
/ e |
File Name Start-of-File Cluster File S
(example: file.dat) (example: 40) (example:

v
37 38 39 40 41 42 43 44 45 46 47 48

File Allocation Table

.. | 00 J OO | 41] 46 | 43 |EOF| 00 | O0 JEOF] 00 | 00
4 bytes per entry

Figure - File Allocation Table and Directory Entry relationship

In the figure above, the directory entry for a file points to the 40th entry in the FAT table. The 40th entry points to the 41st, the 41st to the 46th; the
46th is not a pointer, as the entry contains a special end-of-cluster-chain marker. This means that the 41st cluster is the final cluster allocated to
the file.

Other entries in the FAT area illustrated in the figure above are either not allocated to a file, or allocated to a file whose cluster chain is terminated
by the 43rd entry.

To summarize, a cluster’s entry in the File Allocation Table typically contains a pointer to the entry for the next cluster in a file’s cluster chain.
Other values that can be stored in a cluster’s entry in the FAT are special markers for:

® End-of-cluster-chain: this cluster is the final cluster for a file.
® Cluster-not-allocated (free cluster mark): no file is using this cluster.

® Damaged-cluster: this cluster cannot be used.

NOTE: Updating the FAT table is time consuming, but updating it frequently is very important. If the FAT table gets out of sync with its files, files
and directories can become corrupted, resulting in the loss of data (see Optional Journaling System).

FAT12 / FAT16 / FAT32

The earliest version of FAT, the file system integrated into MS-DOS, is now called FAT12, so-called because each cluster address in the File
Allocation Table is 12 bits long. This limits disk size to approximately 32 MB. Extensions to 16- and 32-bit addresses (i.e., FAT16 and FAT32),
expand support to 2 GB and 8 TB, respectively (see Table - FAT 12/16/32 characteristics in the FAT12 / FAT16 / FAT32 page).

FAT version Pointer size (Table entry size) Max. size of disk Free cluster marker Damaged cluster marker End of cluster chain marker

FAT12 12 bits 32 MB 0 Oxff7 0xff8
FAT16 16 bits 2GB 0 Oxfff7 0xfff8
FAT32 32 bits 8TB 0 OxOfff fff7 OxOfff ff8

Table - FAT 12/16/32 characteristics

In uC/FS, you can enable support for FAT12, FAT16 and FAT32 individually: this means that you can enable only the FAT version that you need
for your embedded system (see Appendix E, “C/FS Configuration”.

FAT32 introduced some innovations:

® The root directory in the earlier systems was a fixed size; i.e., when the medium is formatted, the maximum number of files that could be
created in the root directory (typically 512) is set. In FAT32, the root directory is dynamically resizable, like all other directories.

® Two special sectors have been added to the volume: the FS info sector and the backup boot sector. The former stores information
convenient to the operation of the host, such as the last used cluster. The latter is a copy of the first disk sector (the boot sector), in case
the original is corrupted.

Short and Long File Names

In the original version of FAT, files could only carry short “8 dot 3" names, with eight or fewer characters in the main name and three or fewer in its
extension. The valid characters in these names are letters, digits, characters with values greater than OxFF and the following:

$% - _@~-" ! (){}"#&

In uC/FS, the name passed by the application is always verified, both for invalid length and invalid characters. If valid, the name is converted to
upper case for storage in the directory entry. Accordingly, FAT file names are not case-sensitive.

Later, in a backwards-compatible extension, Microsoft introduced long file names (LFN). LFNs are limited to 255 characters stored as 16-bit
Unicode in long directory entries. Each LFN is stored with a short file name (SFN) created by truncating the LFN and attaching a numeric “tail” to
the original; this results in names like “file~1.txt". In addition to the characters allowed in short file names (SFN), the following characters are
allowed in LFNs:

+.5 =101

As described in section E-7 “FAT Configuration”, support for LFNs can be disabled, if desired. If LFNs are enabled, the application may choose to
specify file names in UTF-8 format, which will be converted to 16-bit Unicode for storage in directory entries. This option is available if FS_CFG_UT
F8_ENis DEF_ENABLED (see Feature Inclusion Configuration).

Entries for files that have long file names

To allow FAT to support long file names, Microsoft devised the LFN directory entry, as shown in Figure - LFN directory entry in the Short and
Long File Names page.

https://doc.micrium.com/display/fsdoc/Optional+Journaling+System#OptionalJournalingSystem-title-text
https://doc.micrium.com/display/fsdoc/Feature+Inclusion+Configuration#FeatureInclusionConfiguration-title-text

4 8 12
Chk
Ord Char 1 Char 2 Char 3 Char 4 Char5 Jox0F|0x00 S Ch:
Char 7 Char 8 Char 9 Char 10 Char 11 0x0000 Char 12 Cha
4 8 12
i -y i Chk
Ox42 : o] 4] 0x0Q000 OxFFFF 0x0F|0x00 OxF
sum
0xFFFF 0xFFFF 0xFFFF 0xFFFF OxEFEFF Dx0000 OxFFFF OxF
0x01 ‘a' ‘b' ' 'd’ ‘e’ 0x0F]0x00 Chk ;
sum
‘g' n i) i k' O0x0000 T n
[¥ i 1 i £ i i [¥ E, i"‘_ E 1 i ¥ E L] Cn CrEE
a b c d e f 1 o p 0x00]0x00 ms Tir
H i | i |
Creation Access 1 Qluster write Time | Write Date 1% Cluster File Size
Date Date High Low

Figure - LFN directory entry

An LFN entry is essentially a workaround to store long file names in several contiguous 32-byte entries that were originally intended for short file

names.

A file with an LFN also has a SFN this is derived from the LFN. The last block of an LFN stores the SFN that corresponds to the LFN. The two or
more preceding blocks each store parts of the LFN. The figure above shows four “blocks”

® The first block shows the names for the fields in an LFN entry; the actual LFN entry is shown in the next three blocks.

® The middle two blocks show how FAT stores the LFN for a file named “abcdefghijkim.op” in two 32-byte FAT table entries.

® The final block shows how FAT stores the SFN derived from the LFN. In this case, the SFN is “abcdef~1.0p” Note that the “. ” of an 8.3
filename is not actually stored.

The final 32 bytes for an LFN entry has the same fields as the 32-byte entry for (in this example) a file with a SFN of “abcdef~1.o0p”.
Accordingly, it is able to store, in addition to the file’'s SFN, the properties (creation date and time, etc.) for file “abcdefghijkim.op”.

® Together, the three blocks make up one LFN directory entry, in this case the LFN entry for file “abcdefghijkim.op”.

A long file name is stored in either two or three 32-bit entries of a directory table:

® |f three entries are needed to store the long file name, byte 0 of the entries carry order numbers of 0x43, 0x02 and 0x01, respectively.
(Byte 0 is labelled “Ord” in the figure above). None of these, are valid characters (which allows backward compatibility).

® |f two entries are needed (as in figure above), byte 0 of the entries carry order numbers of 0x43 and 0x01, respectively.

® In entries that store part of a LFN, byte 11, where the Attributes value is stored in a SFN, is always 0xOF; Microsoft found that no

software would modify or use a directory entry with this marker.

® In entries that store part of a LFN, byte 13 contains the checksum, which is calculated from the SFN. FAT's file system software
recalculates the checksum each time it parses the directory entries. If the stored checksum is not the same as the recalculated
checksum, FAT's file system software knows that the SFN was modified (presumably by a program that is not LFN-aware).

Formatting

A volume, once it is open, may need to be formatted before files or directories can be created. The default format is selected by passing a NULL

pointer as the second parameter of FSVol _Fnt () . Alternatively, the exact properties of the file system can be configured with a FS_FAT_SYS _C
FG structure. An example of populating and using the FAT configuration is shown in Listing - Example device format in the Formatting page. If the
configuration is invalid, an error will be returned from FSVol _Fnt () . For more information about the FS_FAT_SYS_CFGstructure, see FS_FAT_

SYS_CFG.

https://doc.micrium.com/display/fsdoc/FS_FAT_SYS_CFG#FS_FAT_SYS_CFG-title-text
https://doc.micrium.com/display/fsdoc/FS_FAT_SYS_CFG#FS_FAT_SYS_CFG-title-text

void App_InitFS (void)

{

FS ERR err;

FS FAT_SYS CFG fat_cfg;

fat_cfg. CusSi ze = 4; /* Cluster size =4 * 512-B
= 2-kB.*/

fat_cfg. RsvdAreaSi ze = 1; /* Reserved area = 1 sector.
*/

fat_cfg. RootDirEntryCnt = 512; /* Entries in root dir = 512.
*/

fat_cfg. FAT_Type = 12; /* FAT type = FAT12.
*/

fat_cfg. Nor FATs = 2; /* Nunber of FATs = 2.
*/

FSVol _Fnt(“ram 0:”, &fat_cfg, &err);

if (err '= FS_ERR_NONE) {

APP_TRACE _DEBUQ (“Format failded.\r\n"));

}

}

Listing - Example device format

Types of Corruption in FAT Volumes

Errors can accrue on a FAT volume, either by device removal during file system modifications, power loss, or by improper host operation. Several
types of corruption are common:

® Cross-linked files. If a single cluster becomes linked to two different files, then it is called “cross-linked.” The only way to resolve this is by
deleting both files; if necessary, they can be copied first so that the contents can be verified.

® Orphaned directory entries. If LFNs are used, a single file name may span several directory entries. If a file deletion is interrupted, some
of these entiries may be left behind or “orphaned” to be deleted later.

® Invalid cluster. The cluster specified in a directory entry or linked in a chain can become invalid. The only recourse is to zero the cluster (if
in a directory entry) or replace with end-of-cluster (if in a chain).

® Chain length mismatch. Too many or too few clusters may be linked to a file, for its size. If too many, the extra clusters should be freed. If
too few, the file size should be adjusted.

® Lost cluster. When a cluster is marked as allocated in the FAT, but is not linked to any file, it is considered lost. Optionally, lost cluster
chains may be recovered to a file.

Optional Journaling System

UC/FS’s FAT journaling module (optional feature) provides protection against unexpected power-failures that may occur during file system
operations.

Since cluster allocation information is stored separately from file data and meta data (directory entries), even file operations that make a simple
change to one file (e.g., adding data to the end of a file, updating data in place) are non-atomic. An atomic operation is an operation that will either
complete or not happen at all, but never halfway in between.

The repercussions of this can be innocuous — wasted disk space, for example — or very serious — corrupted directories, corrupted files, and data
loss.

In order to prevent such corruption, you can use UC/FS’s optional journaling module.
What Journaling Guarantees

In short, journaling guarantees file system consistency. Journaling prevents the directory hierarchy, file names, file metadata and cluster allocation
information from becoming corrupted in case of an untimely interruption (such as a power failure or application crash). However, while journaling
protects the integrity of the file system, it does not necessarily protect your data integrity (i.e., the file contents). For example, if the application
crashes while a write operation is being performed, the data could end up only partially written on the media (see Journaling API level atomicity).

How Journaling Works

https://doc.micrium.com/display/fsdoc/Limitations+of+Journaling#LimitationsofJournaling-JournalingandAPIlevelatomicity

In order to understand how the journaling module works, you should first understand how API-level operations relate to the underlying FAT layer
operations. As seen in Figure - Relation between API and FAT layer operations in the How Journaling Works page, an API level operation is
made of one or more top-level FAT operations which, in turn, are made of one or more low-level FAT operations.

-

fi5 File/Dir operation
S, |
FAT (top-level) Top-level operation Top-level ope
A B
FAT (low-level) Lo w-leuelxﬂperatinn an-levelvoperation Lo w-leuelzﬂpe

Figure - Relation between API and FAT layer operations

Take a file rename operation, for example. The API-level rename operation involves one top-level FAT rename operation and the following
low-level FAT sub-operations:

1. Create a directory entry that accommodates the new file name.
2. Update the newly created directory entry so that it reflects the original one.
3. Remove the original directory entry.

Without journaling, a failure occurring during the rename operation can leave the file system in any of the following corrupted states:

1. The original directory entry is intact but orphaned LFN entries remain due to a partial directory entry creation.

2. The new directory entry now exists (creation has been completed) but orphaned LFN entries remain due to an uncompleted original
directory entry deletion.

3. Two directory entries (both pointing to the same data) now exist: one containing the original name and another one containing the new
name.

Using the journaling module, any of the previous corrupted states would be either rolled back or completed upon volume remounting. This is
made possible because, prior to performing any low-level FAT operation, the journaling system logs recovery information in a special file called
the journal file. By reverting or completing successive underlying low-level FAT operations, the journaling module also allows top-level FAT
operations to be reverted or completed, thus making them atomic (see Optional Journaling System). In our previous example, the journaled
rename operation could only have on of the two following outcomes:

1. The original directory entry is intact and everything appears as if nothing had happened.
2. The new directory entry has been created and the original one has been completely deleted, so that the file has been cleanly renamed.

How To Use Journaling

The journaling system can be started on a per-volume basis, by calling FS_FAT_Jour nal Open() followed by FS_FAT_Jour nal Start () (after
the volume has been mounted but prior to any file system modifications). Likewise, the journal can be stopped with FS_FAT_Jour nal St op() an
d closed with FS_FAT_Jour nal C ose() . It is important to note that the journaling module should not be stopped unless you want to unmount a
journaled volume. Likewise, the journaling module should be started as soon as the volume is mounted. If any modifications were to be made on
the file system after the journaling module has been stopped or before it has been started, the file system could become corrupted.

Limitations of Journaling
When properly used, the journaling system provides reliable protection for the file system metadata. To ensure proper operation, though, you

should understand certain limitations, and follow the corresponding recommendations. A failure to observe these recommendations could spoil
the benefits of using the journaling system and lead to file system corruption.

Journaling and cached FILE access mode

FS_FI LE_ACCESS_MODE_CACHED should be avoided on a journaled volume. Using the FS_FI LE_ACCESS_MODE_CACHED file access mode
prevents the journaling module from effectively ensuring file meta data consistency since it might lead to a mismatch between the file’s size and
its allocated storage space, resulting in a waste of storage space.

Journaling and FAT16/32 removable media

The journaling module recovery process is based on the assumption that the file system has not been modified since the failure occurred.
Therefore, mounting a journaled volume on a host (including accesses through USB Mass Storage Class) should be avoided as much as
possible. If it must be done, you must first make sure that the volume has been cleanly unmounted from the embedded host.

https://doc.micrium.com/display/fsdoc/Optional+Journaling+System#OptionalJournalingSystem-title-text

Journaling and FAT12 removable media

It is strongly discouraged to mount a FAT12 journaled volume on another host. It is important to note that, unlike the FAT16 and FAT32 cases, it
is not enough to cleanly unmount the volume on the embedded host to ensure proper journaling module behavior.

Journaling and cache

Since they do not affect disk write operations, read cache (FS_VOL_CACHE_MODE_RD) and write-through cache (FS_VOL_CACHE_WR_THROUGH)
can be safely used along with journaling. However, the combination of write-back cache (FS_VOL_CACHE_WR_BACK) and journaling should be
avoided at all cost.

Journaling and API level atomicity

While the journaling system does provide top-level FAT layer operation atomicity, it does not necessarily provide API-level operation atomicity.
Most of the time, one API-level file system operation will result in a single top-level FAT operation being performed (see How Journaling Works).
In that case, the API-level operation is guaranteed to be atomic. For instance, a call to FSEnt ry_Renane() will result in a single FAT rename
operation being performed (assuming that renaming is not cross-volume). Therefore, the API-level rename operation is guaranteed to be atomic.
On the other hand, a call to FSFi | e_Truncat e() will likely result in many successive top-level FAT operations being performed. Therefore, the
API-level truncate operation is not guaranteed to be atomic. Non-atomic API level operations, along with the possible interruption side effects, are
listed in Table - Non-atomic API level operations in the Limitations of Journaling page.

API level API level function Possible interruption side effects
operation

Entry copy FSEntry_Copy() or FSEntry_Rename() with The destination file size could end up being less than the source file size.
the destination being on a different volume than

source.

File write FSFi | e_Fi | eW () with file buffers enabled. The file size could be changed to any value between the original file size and
the new file size.

(data

appending)

File write FSFi | e_Fi | eW () with or without file buffers. If existing data contained in a file is overwritten with new data, data at
overwritten locations could end up corrupted.

(data

overwriting)

File FSFil e_Truncate() orFSFile_PosSet () The file size could be changed to any value between the original file size and

extension with position set beyond file size. the new file size. Also, unwritten file space could contain uninitialized on-disk

data.
Table - Non-atomic API level operations

Journaling and device drivers

Data can be lost in case of unexpected reset or power-failure in either the File System Layer or in the Device Driver Layer. Your entire system is
fail-safe only if both layers are fail-safe. The journaling add-on makes the file system layer fail-safe. Some of uC/FS’s device drivers are
guaranteed to provide fail-safe sector operations. It is the case of the NOR and NAND flash drivers. For other drivers, the fail-safety of the sector
operations depends on the underlying hardware.

Licensing Issues

There are licensing issues related to FAT, particularly relating to Microsoft patents that deal with long file names (LFNSs).

Licences for Long File Names (LFNSs)

Microsoft announced on 2003-12-03 that it would be offering licenses for use of its FAT specification and "associated intellectual property". The
royalty for using LFNs is US $0.25 royalty per unit sold, with a maximum of US $250,000 per license agreement.

Micrium pPC/FS is delivered with complete source code for FAT; this includes source code for LFNs. To enable long file names (LFNs), you must
set a configuration switch. By setting this switch, you agree to contact Microsoft to obtain a license to use LFNs.

Extended File Allocation Table (exFAT)

Microsoft has developed a new, proprietary file system: exFAT, also known as FAT64. exFAT was designed to handle very large storage media.
Microsoft requires a license to make or distribute implementations of exFAT.

Micrium does not offer exFAT in uC/FS at this time.

RAM Disk Driver

https://doc.micrium.com/display/fsdoc/How+Journaling+Works#HowJournalingWorks-title-

The simplest device driver is the RAM disk driver, which uses a block of memory (internal or external) as a storage medium.

Files and Directories - RAM Disk

The files inside the RAM disk driver directory are outlined in this section; the generic file-system files, outlined in uC/FS Directories and Files, are
also required.

\'M cri um Sof t war e\ uG FS\ Dev
This directory contains device-specific files.
\' M cri um Sof t war e\ uG FS\ Dev\ RAMDI sk
This directory contains the RAM disk driver files.

fs_dev_ramdi sk. * constitute the RAM disk device driver.

Using the RAM Disk Driver

To use the RAM disk driver, two files, in addition to the generic FS files, must be included in the build:

® fs_dev_randi sk. c.
® fs_dev_randi sk. h.

The file f s_dev_r andi sk. h must also be #included in any application or header files that directly reference the driver (for example, by
registering the device driver). The following directory must be on the project include path:

® \ M crium Sof t war e\ uC- FS\ Dev\ RAMDI sk

A single RAM disk is opened as shown in Listing - Opening a RAM disk volume in the Using the RAM Disk Driver page. The file system
initialization (FS_I ni t ()) function must have previously been called.

ROM/RAM characteristics and performance benchmarks of the RAM disk driver can be found in Driver Characterization. For more information
about the FS_DEV_RAM CFGstructure, see FS_DEV_RAM_CFG.

#define APP_CFG FS_RAM SEC Sl ZE 512 (1)

#define APP_CFG FS_RAM NBR_SECS (48 * 1024)
static CPU_INT32U App_FS RAM Di sk[APP_CFG FS RAM SEC SI ZE * APP_CFG _FS_RAM NBR_SECS
!/ 4];
CPU_BOOLEAN App_FS_AddRAM (voi d)
{

FS ERR err;

FS DEV_RAM CFG cfg;

FS DevDr vAdd((FS_DEV_API *) &FSDev_RAM (2)

(FS_ERR *)&err);

if ((err '= FS_ ERR NONE) && (err != FS ERR DEV_DRV_ALREADY_ADDED)) {
return (DEF_FAIL);

}

ram cfg. SecSi ze = APP_CFG FS _RAM SEC Sl ZE; (3)

ram cfg. Si ze APP_CFG FS RAM NBR_SECS;

ram cfg. Di skPtr (void *)&App_FS RAM Di sk[0] ;

(4)
FSDev_QOpen((CPU_CHAR *)*“ram 0: ", (a)
(void *) & am cf g, (b)

(FS_ERR *)&err);
if (err '= FS_ERR NONE) {
return (DEF_FAIL);

}
(5)
FSVol _Open((CPU_CHAR *)“ram0: ", (a)
(CPU_CHAR *)“ram0: ", (b)
(FS_PARTITION.NBR) O, (c)
(FS_ERR *)&err);
switch (err) {
case FS_ERR NONE:
APP_TRACE_DBG((" ...opened volune (nounted).\r\n"));
br eak;
case FS ERR PARTI TI ON_NOT_FOUND: /* Vol une error. */
APP_TRACE DB (" ...opened device (not formatted).\r\n"));
FSvol _Fnt("ram0:", (void *)0, &err); (6)
if (err '= FS_ERR _NONE) {
APP_TRACE_DBE (" ...format failed.\r\n"));
return (DEF_FAIL);
}
br eak;
defaul t: /* Device error. */
APP_TRACE_DBG((" ...opening volune failed werr = 9%.\r\n\r\n", err));

return (DEF_FAIL);

}
return (DEF_OK);

Listing - Opening a RAM disk volume

(1)

The sector size and number of sectors in the RAM disk must be defined. The sector size should be 512, 1024, 2048 or 4096; the number of
sectors will be determined by your application requirements. This defines a 24-MB RAM disk (49152 512-B sectors). On most CPUs, it is
beneficial to 32-bit align the RAM disk, since this will speed up access.

2
Register the RAM disk driver FSDev_RAM

©)

The RAM disk parameters—sector size, size (in sectors) and pointer to the disk—should be assigned to a FS_DEV_RAM _CFG structure.

4

FSDev_Open() opens/initializes a file system device. The parameters are the device name
(4a)

and a pointer to a device driver-specific configuration structure

(4b)

. The device name

(4a)

is composed of a device driver name (“ram”), a single colon, an ASCII-formatted integer (the unit number) and another colon.
)

FSVol _Open() opens/mounts a volume. The parameters are the volume name

(5a)

, the device name

(5b)

and the partition that will be opened

(5¢)

. There is no restriction on the volume name

(52)

; however, it is typical to give the volume the same name as the underlying device. If the default partition is to be opened, or if the device is not
partition, then the partition number

(5¢)

should be zero.

(6)
FSVol _Fnt () formats a file system volume. If the RAM disk is in volatile RAM, it have no file system on it after it is opened (it will be
unformatted) and must be formatted before a volume on it is opened.

If the RAM disk initialization succeeds, the file system will produce the trace output as shown in Figure - RAM disk initialization trace output in the
Using the RAM Disk Driver page (if a sufficiently high trace level is configured). See Trace Configuration about configuring the trace level.

Terminal I/0

Ohuatpt: Log file:
RAM DISE FOUMND: Sec Si=ze: 512 bytes
Size : 32768 secs
FS FAT Fmt () : CREATITNG FILE SY3ITEMWM: Type : FATI16
Sec smjize: 512 B
Clus size: 2 sec
Vol smilze: 32767 a8
Clu=s = 16303
FAT= : 2
F3 FAT Open(): FILE 3SY3STEHNM FOUND: Type : FAT16
sec size: S12 B
Clus si=ze: 2 sec
Vol Si=ze: 32767 sec
Clus=s : 16302
FATs : 2
lrypat: Citrl codes Inp
| Buffer zize: (1]

Figure - RAM disk initialization trace output

SD/MMC Drivers

SD (Secure Digital) cards and MMCs (MultiMedia Cards) are portable, low-cost media often used for storage in consumer devices. Six variants,
as shown in Table - SD/MMC devices in the SD/MMC Drivers page, are widely available to electronic retail outlets, all supported by SD/MMC
driver. The MMCplus and SD or SDHC are offered in compatible large card formats. Adapters are offered for the remaining devices so that these
can fit in standard SD/MMC card slots.

Two further products incorporating SD/MMC technology are emerging. First, some cards now integrate both USB and SD/MMC connectivity, for

increased ease-of-access in both PCs and embedded devices. The second are embedded MMC (trademarked eMMC), fixed flash-based media

addressed like MMC cards.

Card Size Pin Count Description
MMCPlus 32x24x1.4mm 13 Most current MMC cards can operate with 1, 4 or 8 data lines,
though legacy media were limited to a single data line. The
maximum clock frequency is 20 MHz, providing for maximum
theoretical transfer speeds of 20 MB/s, 80 MB/s and 160 MB/s
for the three possible bus widths.
MMCmobile 18x24x1.4 13
mm
Smobile
EE HC
MMCmicro 14x12x1.1 13
mm
SD or 32x24x1.4 9 SD cards can operate in cardmode with 1 or 4 data lines or in
SDHC mm SPI mode. The maximum clock frequency is 25 MHz, providing
for maximum theoretical transfer speeds of 25 MHz and 50
MHz for the two possible bus widths.
SDmini 215x20x1.4 11

mm

SDmicro 15x11x1.0 8
mm

Table - SD/MMC devices

SD/MMC cards can be used in two modes: card mode (also referred to as MMC mode and SD mode) and SPI mode. The former offers up to 8
data lines (depending on the type of card); the latter, only one data line, but the accessibility of a communication bus common on many
MCUs/MPUs. Because these modes involve different command protocols, they require different drivers.

Files and Directories - SD/MMC

The files inside the SD/MMC driver directory is outlined in this section; the generic file-system files, outlined in uC/FS Directories and Files, are
also required.

\'M cri um Sof t war e\ uG FS\ Dev
This directory contains device-specific files.
\' M cri um Sof t war e\ uG FS\ Dev\ SD
This directory contains the SD/MMC driver files.
fs_dev_sd. * contain functions and definitions required for both SPI and card modes.
\' M cri um Sof t war e\ uC- FS\ Dev\ SD\ Car d
This directory contains the SD/MMC driver files for card mode.

fs_dev_sd_card. * are device driver for SD/MMC cards using card mode. This file requires a set of BSP functions be defined in a
file named f s_dev_sd_car d_bsp. ¢ to work with a certain hardware setup.

.\BSP\ Tenpl at e\ fs_dev_sd_car d_bsp. c is a template BSP. See section C-5 “SD/MMC Cardmode BSP” for more information.
\'M cri um Sof t war e\ uC- FS\ Dev\ SD\ SPI
This directory contains the SD/MMC driver files for SPI mode.

fs_dev_sd_spi . * are device driver for SD/MMC cards using SPI mode. This file requires a set of BSP functions be defined in a file
named f s_dev_sd_spi _bsp. ¢ to work with a certain hardware setup.

.\ BSP\ Tenpl at e\ f s_dev_sd_spi _bsp. c is a template BSP. See section C-6 “SD/MMC SPI mode BSP” for more information.

.\BSP\ Tenpl ate (GPI O \fs_dev_sd_spi _bsp. c is atemplate GPIO (bit-banging) BSP. See section C-6 “SD/MMC SPI mode
BSP” for more information.

\'M cri um Sof t war e\ uC- FS\ Exanpl es\ BSP\ Dev\ SD\ Car d
Each subdirectory contains an example BSP for a particular platform. These are named according to the following rubric:
<Chi p Manuf acturer>\<Board or CPU>\fs_dev_sd_card_bsp.c
\'M crium Sof t war e\ uC- FS\ Exanpl es\ BSP\ Dev\ SD\ SPI
Each subdirectory contains an example BSP for a particular platform. These are named according to the following rubric:
<Chi p Manuf act urer>\<Board or CPU>\fs_dev_sd_spi _bsp.c
Using the SD/MMC CardMode Driver
To use the SD/MMC cardmode driver, five files, in addition to the generic file system files, must be included in the build:

® fs_dev_sd.c.
® fs_dev_sd. h.
® fs_dev_sd_card.c.
® fs_dev_sd_card. h.

® fs_dev_sd_card_bsp.c.

The file f s_dev_sd_car d. h must also be #included in any application or header files that directly reference the driver (for example, by
registering the device driver). The following directories must be on the project include path:

® \Mcrium Sof t war e\ uC- FS\ Dev\ SD
® \Mcrium Sof t war e\ uC- FS\ Dev\ SD\ Car d

A single SD/MMC volume is opened as shown in Listing - Opening a SD/MMC device volume in the Using the SD/MMC CardMode Driver page.
The file system initialization (FS_I ni t ()) function must have previously been called.

ROM/RAM characteristics and performance benchmarks of the SD/MMC driver can be found in Driver Characterization. The SD/MMC driver also
provides interface functions to get low-level card information and read the Card ID and Card-Specific Data registers (see FAT System Driver
Functions).

CPU BOOLEAN App_FS_AddSD Card (voi d)

{
FS ERR err;

FS DevDr vAdd((FS_DEV_API *)&FSDev_SD Card, (1)
(FS_ERR *)&err);
if ((err '= FS_ ERR NONE) && (err != FS ERR DEV_DRV_ALREADY_ADDED)) {
return (DEF_FAIL);
}
(2)

FSDev_QOpen((CPU_CHAR *)“sdcard: 0: ", (a)

(void *) 0, (b)

(FS_ERR *)&err);

switch (err) {
case FS_ERR_NONE:
br eak;

case FS_ERR DEV:
case FS_ERR DEV_I O
case FS_ERR DEV_TI MEQOUT:
case FS _ERR DEV_NOT_PRESENT:
return (DEF_FAIL);
defaul t:
return (DEF_FAIL);
}
(3)
FSVol _Open((CPU_CHAR *)“sdcard: 0: ", (a)
(CPU_CHAR *)“sdcard: 0: ", (b)
(FS_PARTITION.NBR) O, (c)
(FS_ERR *)&err);

switch (err) {

case FS _ERR NONE:
APP_TRACE DB (" ...opened volune (nounted).\r\n"));
br eak;

case FS_ERR DEV:

case FS ERR DEV I O

case FS_ERR DEV_TI MEQOUT:

case FS_ERR _DEV_NOT_PRESENT:

case FS_ERR _PARTI TI ON_NOT_FOUND:
APP_TRACE_DBGE (" ...opened device (unmounted).\r\n"));
return (DEF_FAIL);

defaul t:
APP_TRACE_DBG((" ...opening volune failed werr = %l.\r\n\r\n", err));
return (DEF_FAIL);

}
return (DEF_OK);

Listing - Opening a SD/MMC device volume

@
Register the SD/MMC CardMode device driver FSDev_SD _Car d.

%)

FSDev_QOpen() opensl/initializes a file system device. The parameters are the device name
(1a)

and a pointer to a device driver-specific configuration structure

(1b)

. The device name

(1a)

is composed of a device driver name (“sdcard”), a single colon, an ASCII-formatted integer (the unit number) and another colon. Since the
SD/MMC CardMode driver requires no configuration, the configuration structure

(1b)

should be passed a NULL pointer.

Since SD/MMC are often removable media, it is possible for the device to not be present when FSDev_QOpen() is called. The device will still be
added to the file system and a volume opened on the (not yet present) device. When the volume is later accessed, the file system will attempt to
refresh the device information and detect a file system (see Using Devices for more information).

(3

FSVol _Open() opens/mounts a volume. The parameters are the volume name
(33)

, the device name

(3b)

and the partition that will be opened

(3c)

. There is no restriction on the volume name

(33)

; however, it is typical to give the volume the same name as the underlying device. If the default partition is to be opened, or if the device is not
partitioned, then the partition number

(3c)

should be zero.

If the SD/MMC initialization succeeds, the file system will produce the trace output as shown in Figure - SD/MMC detection trace output in the Usi
ng the SD/MMC CardMode Driver page (if a sufficiently high trace level is configured). See Trace Configuration about configuring the trace level.

Figure - SD/MMC detection trace output
SD/MMC CardMode Communication

In card mode, seven, nine or thirteen pins on the SD/MMC device are used, with the functions listed in the table below. All cards start up in “1 bit”
mode (upon entering identification mode), which involves only a single data line. Once the host (the MCU/MPU) discovers the capabilities of the
card, it may initiate 4- or 8-bit communication (the latter available only on new MMCs). Some card holders contain circuitry for card detect and
write protect indicators, which the MCU/MPU may also monitor.

Pin Name Type Description

1 CD/DAT3 110 Card Detect/Data Line (Bit 3)
2 CMD I/O Command/Response

3 Vssl S Supply voltage ground

4 VDD S Supply voltage

5 CLK | Clock

6 VSS2 S Supply voltage ground
7 DATO 1/0 Data Line (Bit 0)

8 DAT1 110 Data Line (Bit 1)

9 DAT2 I/O Data Line (Bit 2)

10 DAT4 I/O Data Line (Bit 4)*

11 DATS I/O Data Line (Bit 5)*

12 DAT6 I/0 Data Line (Bit 6)*

13 DAT7 I/0 Data Line (Bit 7)*

*Only present in MMC cards.
Table - SD/MMC pinout (Card mode)

Exchanges between the host and card begin with a command (sent by the host on the CMD line), often followed by a response from the card
(also on the CMD line); finally, one or more blocks data may be sent in one direction (on the data line(s)), each appended with a CRC.

Host-to-card Card-to-host
CMD - Command |- Respose
(3) (6) Card-to-host (read)
Host-to-card (write) (write only)
1 Q
O
(2) (3) (4)
Figure - SD/MMC communication sequence
@
When no data is being transmitted, data lines are held low.
2
Data block is preceded by a start bit (‘0’); an end bit (‘1’) follows the CRC.
(3
The CRC is the 16-bit CCITT CRC.
4
During the busy signaling following a write, DATO only is held low.
(®)
See Figure - SD/MMC command and response formats in the SD/MMC CardMode Communication page for description of the command format.
(6)

See Figure - SD/MMC command and response formats in the SD/MMC CardMode Communication page for description of the command format.

Start bit

Transmission bit End bit
Command 01 Cmd ix Argument CRC 1
format 8 bits 32 bits 7 bits
Start bit
Transmission bit End bit
Response olo| cmdix Responss CRC |1
format B bits 32 or 128 bits 7 bits

(1) (2)
Figure - SD/MMC command and response formats

@

Command index is not valid for response formats R2 and R3.

@)

CRC is not valid for response format R3.

When a card is first connected to the host (at card power-on), it is in the ‘inactive’ state, awaiting a GO_| DLE_STATE command to start the
initialization process, which is dependent on the card type. During initialization, the card starting in the ‘idle’ state moves through the ‘ready’ (as
long as it supports the voltage range specified by the host) and ‘identification’ states (if it is assigned an address by or is assigned an address)
before ending up in ‘standby’. It can now get selected by the host for data transfers. Figure - Simplified SD/MMC cardmode initialization and state
transitions in the SD/MMC CardMode Communication Debugging page flowcharts this procedure.

SD/MMC CardMode Communication Debugging

The SD/MMC cardmode driver accesses the hardware through a port (BSP). A new BSP developed according to MCU/MPU documentation or by
example must be verified step-by-step until flawless operation is achieved:

1 Initialization (1-bit). Initialization must succeed for a SD/MMC card in 1-bit mode.

2 Initialization (4- or 8-bit). Initialization must succeed for a SD/MMC card in 4 or 8-bit mode.

3 Read data. Data must be read from card, in both single- and multiple-block transactions.

4 Write data. Data must be written to the card, in both single and multiple-block transactions, and subsequently verified (by reading the
modified sectors and comparing to the intended contents).

The (1-bit) initialization process reveals that commands can be executed and responses are returned with the proper bits in the correct byte-order.
Example responses for each step in the sequence are given in Figure - Command responses (SD card) in the SD/MMC CardMode
Communication Debugging page and Figure - Command responses (MMC card) in the SD/MMC CardMode Communication Debugging page.
The first command executed, GO _| DLE_STATE, never receives a response from the card. Only V2 SD cards respond to SEND_| F_COND,
returning the check pattern sent to the card and the accepted voltage range. The OCR register, read with SD_SEND_OP_COND or SEND_OP_COND
, assumes basically the same format for all card types. Finally, the CID (card ID) and CSD (card-specific data) registers are read—the only times
‘long’ (132-bit) responses are returned.

Multiple-bit initialization (often 4-bit) when performed on a SD card further confirms that the 8-byte SCR register and 64-byte SD status can be
read and that the bus width can be set in the BSP. Though all current cards support 4-bit mode operation, the SD_BUS_W DTHS field of the SCR
is checked before configure the card bus width. Afterwards, the 64-byte SD status is read to see whether the bus width change was
accomplished. When first debugging a port, it may be best to force multi-bit operation disabled by returning 1 from the BSP function FSDev_SD _C
ard_BSP_Get BusW dt hMax() .

https://doc.micrium.com/pages/viewpage.action?pageId=12855791#SD/MMCCardModeCommunicationDebugging-Figure-SimplifiedSD/MMCcardmodeinitializationandstatetransitions
https://doc.micrium.com/pages/viewpage.action?pageId=12855791#SD/MMCCardModeCommunicationDebugging-Figure-SimplifiedSD/MMCcardmodeinitializationandstatetransitions

Power On

|

GO_IDLE STATE (1)
Invalid L Valid
command command
SEND_IF_ COND
(2)
Invalid ¥ h J
cofiMa? | SD_SEND OP_COND SD_SEND_OP_COND
(3) (3)
L 4
v
SEND OF COND
- - READ OCR
(4)
L A L 2
READ OCR
1 lt’ﬁJ
MmMC V1.x Standard V2.0+ Standard
Capacity SD card Capacity SD card
v
SEND_CID (6)
r
SEND_CSD (7)

Figure - Simplified SD/MMC cardmode initialization and state transitions

V2.0+ High
Capacity SD card

Command Response
GO IDLE STATE
= = No response
Fig 15-6 (1)
Response only for SD V2 cards ____ Voltaga
/ range
SEND_IF_COND Reserved Check pattern
Fig 15-6 (2) 0x00000 0x1 OxhAS
20 bits 4 bits 8 bits
Card power May not be 1 on initial
up status reading(s)
Card Capacity 1 = High capacity
Status 0 = Standard capacity
SD_SEND_OF_COND Reserved VDD Voltage Window
Fig 156 (3 1% 0x00 OxFFROO0
914 6 bils 24 bits
"'\--.______ ______..-"
OCR
Example
127 MID oID | feans
PNM Ox03534
Oxd443032
63| PRV PSN =
OxBO0Z21A
MDT | cre [
OxB83008B
ALL SEND CID
e = MID = Manufacturer ID = (=03
Fig 15-6 (5) o
OID = OEM/Application 1D = (x5344
PMM = Product name = (0x5344303247 ="5D02G"
PRV = Product revision = (=xB0=8.0
P3SN = Product serial number = 0x021ATCES
MDT = Manufacturing date = 0=x008
Examples
& 0x400E0Q
g ; 0x5B5900
% “\\\“\ 0x1E5CTF
SeHD_CeD z il _cre [oxonso40
Fig 15-6 (B)
% NSAC |[TRAN_SPEED| 0x002600
C_SIZE Ox5F5AEB3
: . x
3 | 0x3EFBCF
7 [[B cre 0x928040

Figure - Command responses (SD card)

Command

Response

GO_IDLE_STATE

Mo response

Fig 15-6 {1)
Card power May not be 1 oninitial
up status reading(s)
BRI Reserved VDD Voltage Window
Fig 15-6 (4) 1| oxo0 0xFFA000
7 bits 24 bits
"--.______ ______..-"
OCR
Example
127 MID oD | .
—rr Ux1EFFFF
Ox4D4320
63 PRV PSN
0x20105E
MDT | CRC
Ox21BASE
ALL SENWND CID
= = MID = Manufacturer ID = (x1E
Fig 15-6 {5) :
OID = OEM/Application ID = {xFFFF
PNM = Product name = 0x4D4D43202020 =*MMC "
PRV = Product revision = 0x10 =1.0
PSN = Product serial number = 0x5ER0Z1BA
MDT = Manufacturing date = Ox5B
Examples
127 | m TAAC NSAC |TRAN_SPEED| (x402F00
ST D cce | [TE csz= 0x1F5A83
Fig 15-6 {6) s | | | 0x6DB7OF
A 0 O L[[cre 0x968000

Figure - Command responses (MMC card)

Figure - SD SCR register

— SD_BUS_WIDTHS
Bit 0 = 1-bit
Bit 2 = 4-bit

— DAT_BUS_WIDTH 0x0000 = Regular rd/wr card

00b = 1-bit
01b = 4-bit
511 . . SD_CARD_TYPE
SIZE_OF_PROTECTED_AREA
447, CLASS ERASE_
SIZE
383

SPEED_CLASS o000 =Class0

Figure - SD status

0x0l = Class 2
0x02 = Class 3

0x03 = Class 4

SD/MMC CardMode BSP Overview

A BSP is required so that the SD/MMC cardmode driver will work on a particular system. The functions shown in the table below must be

implemented. Pleaser refer to SD/MMC Cardmode BSP for the details about implementing your own BSP.

Function

FSDev_SD Card_BSP_Open()
FSDev_SD Card_BSP_d ose()
FSDev_SD_Card_BSP_Lock()

FSDev_SD _Car d_BSP_Unl ock()
FSDev_SD Card_BSP_CndStart ()
FSDev_SD Car d_BSP_CndWai t End()
FSDev_SD_Car d_BSP_CnuDat aRd()
FSDev_SD_Car d_BSP_CndDat aw ()
FSDev_SD Card_BSP_GCet Bl kCnt Max()
FSDev_SD Card_BSP_Get BusW dt hMax()
FSDev_SD Car d_BSP_Set BusW dt h()
FSDev_SD_Car d_BSP_Set Cl kFreq()
FSDev_SD Card_BSP_Set Ti meout Dat a()

FSDev_SD Card_BSP_Set Ti neout Resp()

Table - SD/MMC cardmode BSP functions

Description

Open (initialize) SD/MMC card interface.
Close (uninitialize) SD/MMC card interface.
Acquire SD/MMC card bus lock.

Release SD/MMC card bus lock.

Start a command.

Wait for a command to end and get response.
Read data following command.

Write data following command.

Get max block count.

Get maximum bus width, in bits.

Set bus width.

Set clock frequency.

Set data timeout.

Set response timeout

The Open() /A ose() functions are called upon open/close or medium change; these calls are always matched. The status and information
functions (Get Bl kCnt Max (), Get BusW dt hMax(), Set BusW dt h(), Set Cl kFreq(), Set Ti neout Dat a(), Set Ti neout Resp()) help
configure the new card upon insertion. Lock() and Unl ock() surround all card accesses.

The remaining functions (CndSt ar t () , CndWai t End() , CndDat aRd() , CdDat aW ()) constitute the command execution state machine (see
Figure - Command execution in the SD/MMC CardMode BSP Overview page). A return error from one of the functions will abort the state
machine, so the requisite considerations, such as preparing for the next command or preventing further interrupts, must be first handled.

Error

- returned
Start command execution 2 Rt
FSDev_SD Card BSP CmdStart()
¥ Error
Wait for command to execute and returned o
response to be returned —H[Retu
FSDev_SD Card BSP CmdWaitEnd() i

Write Read
Data?
¥ \ / l
FSDev SD Card BSP CmdDataWr () FSDev SD Card BSP CmdDataRd(
— ‘r —

r.-"

A Return |

L5 .

Figure - Command execution

Using the SD/MMC SPI Driver

To use the SD/MMC SPI driver, five files, in addition to the generic file system files, must be included in the build:

fs_dev_sd.c
fs_dev_sd. h
fs_dev_sd_spi.c
fs_dev_sd_spi.h
fs_dev_sd_spi _bsp.c

The file f s_dev_sd_spi . h must also be #included in any application or header files that directly reference the driver (for example, by registering
the device driver). The following directories must be on the project include path:

® \Mcrium Sof t war e\ uC- FS\ Dev\ SD
® \Mcrium Sof t war e\ uC- FS\ Dev\ SD\ SPI

A single SD/MMC volume is opened as shown in Listing - Opening a SD/MMC device volume (SPI mode) in the Using the SD/MMC SPI Driver pa
ge. The file system initialization (FS_I ni t ()) function must have previously been called.

ROM/RAM characteristics and performance benchmarks of the SD/MMC driver can be found in Driver Characterization. The SD/MMC driver also
provides interface functions to get low-level card information and read the Card ID and Card-Specific Data registers (see FAT System Driver
Functions).

FS_ERR App_FS_AddSD SPI (voi d)

{
FS_ERR

err;

FS DevDr vAdd((FS_DEV_APl *)&FSDev_SD SPI, (1)

if ((err

}

(FS_ERR *)&err);

= FS_ ERR NONE) && (err != FS_ERR DEV_DRV_ALREADY_ADDED)) {
return (DEF_FAIL);

(2)

FSDev_Open((CPU_CHAR *)*“sd: 0: "7, (a)

(void *) 0, (b)
(FS_ERR *)&err);

switch (err) {

case

case
case
case
case

FS_ERR_NONE:
br eak;

FS_ERR_DEV:
FS_ERR DEV_I O
FS_ERR_DEV_TI MEOUT:
FS_ERR DEV_NOT PRESENT:
return (DEF_FAIL);

defaul t:

}

return (DEF_FAIL);

(3)

FSVol _Open((CPU_CHAR *)“sd: 0: ", (a)

(CPU_CHAR *)“sd: 01", (b)
(FS_PARTI TION_NBR) O, (c)
(FS_ERR *)&err);

switch (err) {

case

case
case
case
case
case

FS_ERR NONE:

APP_TRACE_DBGE (" ...opened volune (nounted).\r\n"));

br eak;

FS_ERR_DEV:

FS_ERR DEV_| O

FS_ERR _DEV_TI MEOUT:
FS_ERR_DEV_NOT_PRESENT:
FS_ERR_PARTI TI ON_NOT_FOUND:

APP_TRACE DB (" ...opened device (unmounted).\r\n"));

return (DEF_FAIL);

defaul t:

}

APP_TRACE_DBGE (" ...opening volune failed werr
return (DEF_FAIL);

return (DEF_OK);

Listing - Opening a SD/MMC device volume (SPI mode)

@

Register the SD/MMC SPI device driver FSDev_SD_SPI .

@)

FSDev_QOpen() opensl/initializes a file system device. The parameters are the device name

(1a)

and a pointer to a device driver-specific configuration structure

(1b)

od. \r\n\r\n",

err));

. The device name

(1a)

is composed of a device driver name (“sd”), a single colon, an ASCII-formatted integer (the unit number) and another colon. Since the SD/MMC
SPI driver requires no configuration, the configuration structure

(1b)

should be passed a NULL pointer.

Since SD/MMC are often removable media, it is possible for the device to not be present when FSDev_QOpen() is called. The device will still be
added to the file system and a volume opened on the (not yet present) device. When the volume is later accessed, the file system will attempt to
refresh the device information and detect a file system (see Using Devices for more information).

(3

FSVol _Open() opens/mounts a volume. The parameters are the volume name
(33)

, the device name

(3b)

and the patrtition that will be opened

(3c)

. There is no restriction on the volume name

(39)

; however, it is typical to give the volume the same name as the underlying device. If the default partition is to be opened, or if the device is not
partition, then the partition number

(3c)

should be zero.

If the SD/MMC initialization succeeds, the file system will produce the trace output as shown in Figure - SD/MMC detection trace output in the Usi
ng the SD/MMC SPI Driver page (if a sufficiently high trace level is configured). See Trace Configuration about configuring the trace level.

Figure - SD/MMC detection trace output
SD/MMC SPI Communication

SPI is a simple protocol supported by peripherals commonly built-in on CPUs. Moreover, since the communication can easily be accomplished by
software control of GPIO pins (“software SPI” or “bit-banging”), a SD/MMC card can be connected to almost any platform. In SPI mode, seven
pins on the SD/MMC device are used, with the functions listed in Table - SD/MMC pinout (SPI mode) in the SD/MMC SPI Communication page.
As with any SPI device, four signals are used to communicate with the host (CS, Dataln, CLK and DataOut). Some card holders contain circuitry
for card detect and write protect indicators, which the MCU/MPU may also monitor.

Pin Name Type Description

1 CSs | Chip Select

2 Dataln | Host-to-card commands and data
3 Vssl S Supply voltage ground

4 VDD S Supply voltage

https://doc.micrium.com/Using_Devices.xhtml#ww1046535

5 CLK | Clock
6 VSS2 S Supply voltage ground

7 DataOut (@) Card-to-host data and status

Table - SD/MMC pinout (SPI mode)

The four signals connecting the host (or master) and card (also known as the slave) are named variously in different manuals and documents.
The Dataln pin of the card is also known as MOSI (Master Out Slave In); it is the data output of the host CPU. Similarly, the DataOut pin of the
card is also known as MISO (Master In Slave Out); it is the data input of the host CPU. The CS and CLK pins (also known as SSEL and SCK) are
the chip select and clock pins. The host selects the slave by asserting CS, potentially allowing it to choose a single peripheral among several that
are sharing the bus (i.e., by sharing the CLK, MOSI and MISO signals).

When a card is first connected to the host (at card power-on), it is in the ‘inactive’ state, awaiting a GO_| DLE_STATE command to start the
initialization process. The card will enter SPI mode (rather than card mode) because the driver holds the CS signal low while executing the GO_| D
LE_STATE command. The card now in the ‘idle’ state moves through the ‘ready’ (as long as it supports the voltage range specified by the host)
before ending up in ‘standby’. It can now get selected by the host (using the chip select) for data transfers. Figure - Simplified SD/MMC SPI mode
initialization and state transitions in the SD/MMC SPI Communication Debugging page flowcharts this procedure.

SD/MMC SPI Communication Debugging

The SD/MMC SPI driver accesses the hardware through a port (SPI BSP) as described in SD/MMC SPI Mode BSP. A new BSP developed
according to MCU/MPU documentation or by example must be verified step-by-step until flawless operation is achieved:

® 1 Initialization. Initialization must succeed.

® 2 Read data. Data must be read from card, in both single- and multiple-block transactions.

® 3 Write data. Data must be written to the card, in both single and multiple-block transactions, and subsequently verified (by reading the
modified sectors and comparing to the intended contents).

Start bit
Transmission bit End bit
Command 01| Cmd ix Argument CRC 1
format 8 bits 32 bits 7 bits
Start bit
Transmission bit End bit
Response olo| cmdix Responss CRC |1
format 8 bits 32 or 128 bits 7 bits

(1) (2)
Figure - SD/MMC SPI mode communication sequence

@)

When no data is being transmitted, DataOut line is held high.

@

During busy signaling, DataOut line is held low.

3)
The CRC is the 16-bit CCITT CRC. By default, this is optional and dummy bytes may be transmitted instead. The card only checks the CRC if CR
C_ON_OFF has been executed.

https://doc.micrium.com/pages/viewpage.action?pageId=12855794#SD/MMCSPICommunicationDebugging-Figure-SimplifiedSD/MMCSPImodeinitializationandstatetransitions
https://doc.micrium.com/pages/viewpage.action?pageId=12855794#SD/MMCSPICommunicationDebugging-Figure-SimplifiedSD/MMCSPImodeinitializationandstatetransitions

Start bit

Transmission bit End bit
Command 0/1] Cmdix Argument CRC
format 6 bils 32 bits 7 bits
Start bit
Address Out Of Range/Block Length Error
Address Misalign
Erase Sequence Error
Com CRC Error
llegal Command/Switch Error
—— Erase Resat
In Idle State
Response o Additional
format ponse (if an
M b i
R1 Response

Figure - SD/MMC SPI mode command and response formats

Power On

GO_IDLE STATE | (1)

Invalid r Walid
command command

Invalid r ¥
command

(5)

v
MMC V1.x Standard V2.0+ Standard V2.0+ High
Capacity SD card Capacity SD card Capacity SD card
h J
SEND_CID (6)
1
SEND_CSD (7)

Figure - Simplified SD/MMC SPI mode initialization and state transitions

The initialization process reveals that commands can be executed and proper responses are returned. The command responses in SPI mode are
identical to those in cardmode (see Figure - Command responses (SD card) in the SD/MMC CardMode Communication Debugging page and Fig
ure - Command responses (MMC card) in the SD/MMC CardMode Communication Debugging page), except each is preceded by a R1 status
byte. Obvious errors, such as improper initialization or failed chip select manipulation, will typically be caught here. More subtle conditions may
appear intermittently during reading or writing.

SD/MMC SPI BSP Overview

An SPI BSP is required so that the SD/MMC SPI driver will work on a particular system. For more information about these functions, see SPI BSP

https://doc.micrium.com/pages/viewpage.action?pageId=12855791#SD/MMCCardModeCommunicationDebugging-Figure-Commandresponses(SDcard)
https://doc.micrium.com/pages/viewpage.action?pageId=12855791#SD/MMCCardModeCommunicationDebugging-Figure-Commandresponses(MMCcard)
https://doc.micrium.com/pages/viewpage.action?pageId=12855791#SD/MMCCardModeCommunicationDebugging-Figure-Commandresponses(MMCcard)

Function Description

FSDev_SD _SPI _BSP_SPI _Open() Open (initialize) SPI
FSDev_SD_SPI _BSP_SPI _Cl ose() Close (uninitialize) SPI
FSDev_SD SPI _BSP_SPI _Lock() Acquire SPI lock
FSDev_SD SPI _BSP_SPI _Unl ock() Release SPI lock
FSDev_SD _SPI _BSP_SPI _Rd() Read from SPI
FSDev_SD SPI_BSP_SPI _W () Write to SPI
FSDev_SD_SPI _BSP_SPI _Chi pSel En() Enable chip select
FSDev_SD SPI _BSP_SPI _Chi pSel Di s() Disable chip select
FSDev_SD SPI _BSP_SPI _Set d kFreq() Set SPI clock frequency

Table - SD/MMC SPI BSP functions

NAND Flash Driver

Standard storage media (such as hard drives) and managed flash-based devices (such as SD/MMC and CF cards) require relatively simple
drivers that convert the file system’s request to read or write a sector into a hardware transaction. In comparison, the driver for a raw NAND flash
is more complicated. Flash is divided into large blocks (often 16-kB to 512-kB); however, the high-level software (for example a FAT file system)
expects to read or write small sectors (512-bytes to 4096-bytes) atomically. The driver implements a NAND block abstraction to conceal the
device geometry from the file system. To aggravate matters, each block may be subjected to a finite number of erases. A wear-leveling algorithm
must be employed so that each block is used equally. All these mechanisms are grouped in the main layer of the driver, called the NAND
translation layer.

The NAND flash driver included in pC/FS has the following features:

Dynamic wear-leveling: Using logical block addressing, the driver is able to change the physical location of written data on the NAND flash, so
that a single memory location does not wear early while other locations are not used.

Fail-safe to unexpected power-loss: The NAND flash driver was designed so that write transactions are atomic. After an unexpected
power-down, the NAND flash’s low-level format will still be consistent, the device will be remounted as if the transaction never occurred.

Scalable: Various configuration options (see Translation Layer Configuration) are available for you to adjust the memory footprint; the speed and
the wear-leveling performance of the driver.

Flexible controller layer: You can provide your own implementation of the controller layer to take advantage of hardware peripherals and reduce
CPU usage. However, a generic controller driver that is compatible with most parallel NAND flash devices and micro-controllers is provided.

Error correction codes (ECC) management: Error correction codes are used to eliminate the bit read errors typical to NAND flash. It is easy to
provide a software implementation of an ECC scheme or to interface to a hardware engine for each device used. It is then possible to configure
the size of the codewords and the level of protection required to suit the needs of your application.

Wide support for different NAND flashes: Most NAND flash memories are compatible with the driver, including large pages, small pages, SLC
and MLC (single and multiple level cells) flash memory. Please contact Micrium to inquire about pC/FS’s compatibility with specific NAND
devices.

Getting Started

The following section shows an example on how to get started in a typical case comprising the following:

The generic controller layer implementation (included with the NAND driver)
The 1-bit software ECC implementation (included with the NAND driver)
The static part layer implementation (included with the NAND driver)

Your BSP layer implementation to adapt the driver to your specific platform

In case you need additional information and details regarding the different layers, please refer to the Architecture Overview.
To use the NAND driver, you must include the following ten files in the build, in addition to the generic file system files:

fs_dev_nand.c (\ M cri um Sof t war e\ uC- FS\ Dev\ NAND.)

fs_dev_nand. h \ M cri um Sof t war e\ uC- FS\ Dev\ NAND.)
fs_dev_nand_ctrlr_gen.c (\Mcrium Softwar e\ uC- FS\ Dev\ NAND\ Ctrlr)
fs_dev_nand_ctrlr_gen.h (\Mcrium Software\uC- FS\ Devi NAND\ Ctrlr)
fs_dev_nand_part_static.c (\M crium Sof t war e\ uC FS\ Dev\ NAND\ Part)
fs_dev_nand_part_static.h(\Mcrium Sof t war e\ uC- FS\ Dev\ NAND\ Par t)
ecc_hammi ng. ¢ (\ M cri um Sof t war e\ uCG- CRC\ Sour ce)

ecc_hammi ng. h \ M cri um Sof t war e\ uCG- CRC\ Sour ce)

® ecc. h (\M crium Sof t war e\ uC- CRC\ Sour ce)
® Your BSP layer implementation (derived from fs_dev_nand_ctrlr_gen_bsp. cin \ M cri um Sof t war e\ uC- FS\ Dev\ NAND\ BSP\
Tenpl at e).

The example in Listing - Opening a NAND device volume in the Getting Started page shows how to open a single NAND volume. The file system
initialization function (FS_I ni t ()) must have previously been called.

#i ncl ude <ecc_hanm ng. h>
#i nclude <fs.h>
#include <fs_ err.h>
#include <fs_vol.h>
#i nclude <fs_dev_nand. h>
#include <fs_dev_nand_ctrlr_gen. h>
#include <fs_dev_nand_ctrlr_gen_soft_ecc. h>
#include <fs_dev_nand_part_static. h>
FS_NAND FREE SPARE MAP App_SpareMap[2] ={ { 1, 63},
{_ 1, - 1} })
static CPU_BOOLEAN App_FS AddNAND (voi d)
{
(1)
FS_NAND CFG cfg_nand = FS_NAND Df | t Cf g;
FS_NAND_CTRLR_GENERI C_CFG cfg_ctrlr = FS_NAND CtrlrGen_DfltCfg;
FS_NAND CTRLR_GEN_SOFT_ECC CFG cfg_soft_ecc = FS_NAND CtrlrGen_SoftEcc_DfltCfg;
FS_NAND_PART_STATI C_CFG cfg_part = FS_NAND PartStatic_DfltCfg;
FS_ERR err;
FS DevDr vAdd((FS_DEV_API *)&FS NAND, (2)
&err);

if ((err '= FS_ ERR NONE) &&
(err = FS_ERR DEV_DRV_ALREADY_ADDED)) {
APP_TRACE_DBE (" ...could not add driver werr = %\r\n\r\n", err));
return (DEF_FAIL);

}

(3)
cfg_part. Bl kCnt = 2048;
cfg_part. PgPer Bl k = 64;
cfg_part.PgSi ze = 2048;
cfg_part. SpareSi ze = 64;
cfg_part. Support sRndPgPgm = DEF_NG,
cf g_part. Nor PgnPer Pg = 4,
cfg_part.BusWdth = 8;
cfg_part.ECC NorCorrBits = 1;
cfg_part. ECC CodewordSi ze = 512 + 16;

DEFECT_SPARE_L_1 PG 1_OR N ALL_0;

cfg_part. Def ect Mar kType

cfg_part.MaxBadBl kCnt = 40;
cfg_part. MaxBl kEr ase = 100000;
cfg_part. FreeSpareMap = &spare_nap[0];

(4)
&FS NAND Ctrlr Gen_Sof t ECC
&soft_ecc_cfg;

cfg ctrlr.CtrlrExt
cfg_ctrlr.CrlrExtCfg

(5)
cfg_soft_ecc. ECC_ Modul ePtr = (ECC_CALC *) &Hanm ng_ECC;

(6)
cfg_nand. BSPPt r = (void *) &S _NAND_BSP_SAMDMLO;
cfg_nand. CtrlrPtr (FS_NAND_CTRLR_API *)&FS NAND CtrlrGeneric;
cfg_nand. CtrlrCfgPtr &cfg_ctrlr;

cfg_nand. Part Ptr

(FS_NAND_PART APl *)&FS_NAND Part Stati c;

cfg_nand. Part Cf gPtr = &cfg_part;
cf g_nand. SecSi ze = 512;

cf g_nand. Bl kCnt = 2038u;
cfg_nand. Bl kI xFi r st = 10u;

cf g_nand. UB_Cnt Max = 10u;

cf g_nand. RUB_MaxAssoc = 2u;

cf g_nand. Avai | Bl kTbl Ent ryCnt Max = 10u;

(7
FSDev_Open("nand: 0: ", (a)
(void *)&cfg_nand, (b)
&err);
switch (err) {
case FS_ERR_NONE:
APP_TRACE DB (" ...opened device.\r\n"));
br eak;
case FS_ERR DEV_| NVALI D_LOW FM:
case FS_ERR DEV_| NCOVPATI BLE _LOW PARANS:
case FS_ERR DEV_CORRUPT_LOW FMr:
APP_TRACE_DBG((" ...opened device (not lowlevel formatted).\r\n"));
#if (FS_CFG_RD _ONLY_EN == DEF_ENABLED)
FS_NAND LowFnt ("nand: 0:", &err); (8)
if (err '= FS_ERR NONE) {
APP_TRACE_DBE (" ...lowlevel format failed.\r\n"));
return 0;
}
#el se
APP_TRACE_DBG((" ...opening device failed werr = 9%.\r\n\r\n", err));
return O;
#endi f
br eak;
case FS _ERR DEV_ALREADY_OPEN:
br eak;
case FS_ERR DEV:
case FS ERR DEV_I O
case FS ERR DEV_TI MEQUT:
case FS_ERR DEV_NOT_PRESENT:
defaul t:
APP_TRACE_DBGE (" ...opening device failed werr = %l.\r\n\r\n", err));
return (DEF_FAIL);
}
(9)
FSVol _Open("nand: 0: ", (a)
"nand: 0: ", (b)
0, (c)
&err);*/
switch (err) {
case FS ERR NONE:
APP_TRACE_DBGE (" ...opened volune (mounted).\r\n"));
br eak;
case FS ERR PARTI TI ON_NOT_FOUND: /* Vol une error. */
APP_TRACE_DBGE (" ...opened device (not formatted).\r\n"));

#f (FS_CFG RD ONLY_EN == DEF_DI SABLED)

FSVol _Fnt ("nand: 0:", (void *)0, &err); (10)

#el se

#endi f

case
case
case
case

if (err '= FS_ERR NONE) {
APP_TRACE_DBE (" ...format failed.\r\n"));
return (DEF_FAIL);

}

APP_TRACE_DBG((" ...opening device failed werr = 9%. \r\n\r\n",
return O;

br eak;

FS_ERR_DEV: /* Device error.

FS_ERR DEV_I O

FS_ERR DEV_TI MEQOUT:

FS_ERR_DEV_NOT_PRESENT:

APP_TRACE_DBG((" ...opened volume (unmounted).\r\n"));
return (DEF_FAIL);

defaul t:

APP_TRACE_DBG (" ...opening volune failed werr = 9%.\r\n\r\n",

return (DEF_FAIL);

err));

*/

err));

return (DEF_OK);

Listing - Opening a NAND device volume

)

Declare and initialize configuration structures. Structures should be initialized to allow for forward compatibility in case some new fields in those
structures are added in future pC/FS versions.

@
Register the NAND device driver FS_NAND.

©)
The NAND part layer configuration structure should be initialized. For more information about these parameters, see Statically configured part
layer.

“

The NAND controller layer configuration structure should be initialized. For more information about these parameters, see Generic Controller
Layer Implementation. Please note that you might need to use a different controller layer. If this is the case, the configuration might be different
(see Controller Layer).

(5)

The NAND generic controller software ECC extension should be initialized. For more information about these parameters, see Listing - NAND
translation layer configuration structure in the Generic Controller Layer Implementation page. Please note that if you are using a different
controller layer implementation, there probably won't be a controller extension layer. Also, if using the generic controller, you might need to use a
different extension. Refer to Table - Generic controller layer extensions provided in the Generic Controller Layer Implementation page for a list of
available controller extensions.

(6)

The NAND translation layer structure should be initialized. For more information about these parameters, see Translation Layer Configuration.

)

FSDev_Open() openslinitializes a file system device. The parameters are the device name (a) and a pointer to a device driver-specific
configuration structure (b). The device name (a) is composed of a device driver name (“nand”), a single colon, an ASClI-formatted integer (the unit
number) and another colon.

®)
FS_NAND_LowFnt () low-level formats a NAND. If the NAND has never been used with uC/FS, it must be low-level formatted before being used.
Low-level formatting will create and initialize the low-level driver metadata on the device.

9

FSVol _Open() opens/mounts a volume. The parameters are the volume name (a), the device name (b) and the index of the partition that will be
opened (c). There is no restriction on the volume name (a); however, it is typical to give the volume the same name as the underlying device. If
the default partition is to be opened, or if the device is not partition, then the partition number (c) should be 0.

(10)
FSVol _Fnt () formats a file system device. If the NAND has just been low-level formatted, there will be no file system on the corresponding
volume after it is opened (it will be unformatted). The volume must be formatted before files can be created or accessed.

If the NAND initialization succeeds, the file system traces (if a sufficiently high trace level is configured) will produce an output similar to Listing -
NAND detection trace output in the Getting Started page. See section Trace Configuration about configuring the trace level.

https://doc.micrium.com/display/fsdoc/Part+Layer#PartLayer-Staticallyconfiguredpartlayer
https://doc.micrium.com/display/fsdoc/Part+Layer#PartLayer-Staticallyconfiguredpartlayer
https://doc.micrium.com/display/fsdoc/Generic+Controller+Layer+Implementation#GenericControllerLayerImplementation-Listing-NANDtranslationlayerconfigurationstructure
https://doc.micrium.com/display/fsdoc/Generic+Controller+Layer+Implementation#GenericControllerLayerImplementation-Listing-NANDtranslationlayerconfigurationstructure
https://doc.micrium.com/display/fsdoc/Generic+Controller+Layer+Implementation#GenericControllerLayerImplementation-Table-Genericcontrollerlayerextensionsprovided

Addi ng/ openi ng NAND vol une "nand: 0:"...
NAND Ctrlr Gen: found NAND manuf id=2c, dev id=aa.
FS NAND Open(): Using default blk cnt (all blocks): 2048.
FS_NAND Open(): Default nunmber of entries in avail blk thl.

NAND FLASH FOUND: Nane : "nand: 0:"
Sec Size : 2048 bytes
Si ze : 127360 sectors

Update bl ks: 10
FS_NAND LowMbunt Handl er (): Low | evel nount succeeded.
...opened devi ce.
FSPartition_RdEntry(): Found possible partition: Start: 0 sector
Size : 0 sectors
Type : 00
FS _FAT_Vol Open(): File system found: Type : FAT16
Sec size: 2048 B
Clus size: 4 sec
Vol size: 127360 sec
Clus : 31822
FATs D2
...opened vol une (nounted).
...init succeeded.

Listing - NAND detection trace output

Handling different use-cases

If the above example does not apply to your situation, we strongly recommend you read the sections about the different layers. This will help you
determine if other existing implementations are suitable for you, or if you need to develop your own implementation of some of those layers.

Architecture Overview

The NAND driver comprises multiple layers, as depicted in Figure - NAND driver architecture in the Architecture Overview page.

Interface with filesystem
and/or application

L

Part layer NAND Driver
J& dev nand. *
Obtain (ina |, S dev_nand cfoh
static or Provides generic driver interface (e.g.,
dynamic init, read, write) and performs wear-
manner) &l leveling so all blocks are used equally.
parameters | L~ "] e

for generic centatler

of the 1_

specific part/
chip. Controller layer

Controller extension
5 dev nand civlr gen sofi ecc

-

£

L}

B

i

]

I

]

[
" L]
5 dev nand ctrlr gen ™] :
ghtte sy = L) f5 dev nand ctrlr_gen micron e

F

Implements particular controller/data
bus and manages ECC correction.

.

i | Manages ECC calculation and
BSP i

:

i

correction

ECC Module
ece hamming. ¥

Su_dev_nand xxxx_bspoe i
i Software implementation of EC

Access NAND device via bus interface or

GPIO. Interface specific to controller layer
implementation. far zoiiware EC0 oxl

o i g e i g S i o it
| L]
T

NAND

calculation and correction.

Figure - NAND driver architecture
The generic NAND translation layer provides sector abstraction and performs wear-leveling (to ensure all blocks are used equally).

The controller layer driver interfaces with the NAND translation layer at the physical level (block erase, sector write/read, spare area write/read
operations). The controller layer is also responsible for the placement of sectors and metadata within a NAND page. Interfacing at this level allows
more flexibility: if your micro-controller has dedicated hardware like an ECC calculation engine or a NAND flash memory controller, you can
interface directly with it by providing your own controller layer implementation instead of using the generic implementation (see Generic Controller
Layer Implementation) included with the NAND driver.

The controller extension layer is specific to the generic controller implementation (f s_dev_nand_ctr | r_gen. *). It provides an interface that
allows different types of ECC calculation and correction schemes to be used while avoiding duplication of the generic controller code.
Implementations for software ECC and some Micron on-chip ECC devices (including MT29F1G08ABADA) are provided with the NAND flash
driver.

The BSP layer will implement code that depends on your platform and application for the specific controller layer implementation chosen. In most
cases, you will need to develop your own implementation of the BSP layer.

The part layer is meant to provide the specifics for each part/chip you use in your design to the controller and NAND translation layers. This layer
implementation will typically be chosen from the implementations included with the NAND driver. This implementation can either rely on statically
defined parameters or values read directly from the device (for an ONFI compliant part).

The ECC layer provides code calculation and error correction functions. For performance reasons, only a 1-bit ECC software module based on
Hamming codes is provided (part of the uC/CRC product bundled with uC/FS). If a more robust ECC correction scheme is required, it is strongly
recommended to use hardware engines. Since the ECC-specific code of the generic controller driver is implemented in generic controller
extension modules, it can easily be adapted if the micro-controller or NAND flash device can handle ECC automatically.

NAND Translation Layer

The NAND translation layer is the main layer of the driver, implemented by the files f s_dev_nand. c and f s_dev_nand. h. This layer contains
most of the algorithms necessary to overcome the following limitations of NAND flash technology:

Write operations can only change a bit state from ‘1’ to ‘0’. Only erase operations can revert the bit state, from ‘0’ to ‘1’.

Erase operations are only performed on large sections of the memory called blocks (typically between 16 kB and 512 kB).

Write operations are performed on a sub-section of a block, called a page (typically between 512 and 8192 octets).

Some devices support partial page programming (splitting the operation to write a full page into multiple operations that each write a

sub-section of the page). Other devices can only have their pages written in a single operation before they are erased.

Some devices must write the pages of a block in a sequential manner (page 0, page 1, page 2, etc.).

® Blocks can only be erased a limited number of times (typically 10k to 100k) before the integrity of the memory is compromised.

® Some device blocks can’t be used reliably and are considered bad blocks. These blocks are either marked at the factory or become bad
during the device’s life.

® Electric disturbance can cause read errors. An error correction mechanism must be used to decrease the bit error rate.

The role of the translation layer is to translate those NAND flash specific requirements into a disk interface, based on sector access. This disk
interface allows the NAND driver to be used with traditional sector-based file systems like FAT, which is used by pC/FS.

The translation layer implementation provided with the NAND driver is inspired by the KAST (K-Associative Sector Translation) as proposed by
Cho (see Bibliography).

In the provided implementation, three types of blocks are present on the device. The data blocks typically occupy the major portion of the storage
space. Data blocks are used to contain the data written to the device by the application or file system. A mapping between the logical addresses
of the blocks and their physical locations is used to enable wear-leveling.

This mapping, as well as other metadata, is contained in metadata blocks. Typically, only one block is used to store metadata. This block is also
moved around for wear-leveling reasons.

The third type of blocks are update blocks. All data written on the device must first be written through update blocks. Under specific circumstances
(including an update block becoming full), the contents of an update block are folded onto data blocks. The folding operation roughly consists of
three steps. The first step is to find an unused block and erase it. Secondly, the contents of the corresponding data block must be merged with the
more recent, but incomplete data contained in the update block. This merged data is written in the recently-erased block. Once this operation is
complete, metadata must be updated: the old data block and the update block are marked as free to erase and use, and the block mapping must
be updated to point to the new data block.

In this implementation, it is possible to specify how many different data blocks pointed to by a single update block. This specification is called
maximum associativity (see the configuration field . RUB_MaxAssoc in Translation Layer Configuration). If this value is greater than one, the
merge operation must be performed for each data block associated with the update block being folded.

Each update block can be of one of the two sub-types: random update blocks (RUBs) and sequential update blocks (SUBs). Sequential update
blocks can only refer to a single data block (associativity is always 1). Also, they must use the same exact layout as a data block (i.e. logical
sector 0 written at physical sector 0, logical sector 1 written at physical sector 1, etc.). The advantage of SUBs is that they have a much lower
merge cost. They can be converted into data blocks in-place by copying missing sectors from the associated data block and updating some
metadata. Random update blocks, on the other hand, can contain sectors from multiple data blocks. Those sectors can be written at any location
in the RUB since it contains additional metadata to map each sector to an appropriate location in a data block, resulting in an increased merge
cost but allowing for better wear-leveling since it leads to better block usage in the case of random writes.

Another important functionality of the translation layer is to keep track of the number of erase operations performed on each block. The erase
count is critical for two reasons. First, the erase count can be used to efficiently drive the wear-leveling algorithm, allowing seldom erased blocks
to be preferred over frequently erased blocks, when a new block is required. Secondly, the erase count allows the translation layer to detect the
blocks that have reached their erase limit.

Since the erase count information is stored in each block, each erase count must be backed-up somewhere else in the device prior to erasing a
block. Blocks that have their erase count backed-up are called available blocks. When the translation layer needs a new block, it will always be
taken from the available blocks table to make sure its erase count is not lost in the case of an unexpected power-down.

All this functionality is embedded within the translation layer. Using the software itself does not require a deep understanding of the mechanisms
as they are all abstracted into a simpler, easier to understand disk interface. However, understanding the internals can be useful to efficiently
configure the translation layer.

Translation Layer Configuration

The configuration of the NAND translation layer (f s_dev_nand. *) must be done through two mechanisms. First, you need to specify driver-wide
configuration options in the configuration file (f s_dev_nand_cf g. h). Then, you need to configure the device-specific options passed to the
function FSDev_Qpen() through a structure pointer. You need to call FSDev_Qpen() for each device you want to access and provide a proper
device-specific configuration for each of them.

Driver configuration file

The driver configuration file for the NAND translation layer is f s_dev_nand_cf g. h. A template for this file is located in the following path:
\'M cri um Sof t war e\ uC- FS\ Dev\ NAND\ Cf g\ Tenpl at e\

The driver configuration #def i nes available in the configuration file are listed below.

FS_NAND CFG AUTO _SYNC EN

This #def i ne determines if, for each operation on the device (i.e. each call to the device’s API), the metadata should be synchronized.
Synchronizing at the end of each operation is safer; it ensures the device can be remounted and appear exactly as it should. Disabling

automatic synchronization can result in a large write speed increase, as the metadata won't be committed automatically, unless triggered by
the application. If a power down occurs between a device operation and a sync operation, the device will appear as it was in a prior state
when remounted. Device synchronization can be forced with a call to FSDev_Sync() .

Note that using large write buffers will reduce the metadata synchronization performance hit, as fewer calls to the device API will be
needed.

FS NAND CFG UPDATE BLK_META CACHE EN

This #def i ne determines if, for each update block, the metadata will be cached. Enabling this will allow searching for a specific updated
sector through data in RAM instead of accessing the device, which would require additional read page operations.

More RAM will be consumed if this option is enabled, but write/read speed will be improved.

RAM usage =
<Nbr update bl ks> x
(1 og2(<Max associativity>) + |og2(<Nbr secs per blk>)) /
8 octets.

The result should be rounded up.
FS_NAND_CFG_DI RTY_NMAP_CACHE_EN

This #def i ne determines if the dirty blocks map will be cached. With this feature enabled, a copy of the dirty blocks map on the device is
cached. It is possible then to determine if the state “dirty” of a block is committed on the device without the need to actually read the device.

With this feature enabled, overall write and read speed should be improved. Also, robustness will be improved for specific cases. However,
more RAM will be consumed.

RAM usage =
<Nbr of blks on device>/ 8 octets

The result should be rounded up.

FS_NAND_CFG_UPDATE_BLK_TBL_SUBSET_S| ZE

This #def i ne controls the size of the subsets of sectors pointed by each entry of the update block tables. The value must be a power of 2
(or 0).

If, for example, the value is 4, each time a specific updated sector is requested, the NAND translation layer must search the sector in a
group of four sectors. Thus, if the update block metadata cache (FS_NAND_CFG_UPDATE_BLK_META_CACHE_EN) is disabled, four sectors
must be read from the device to find the requested sector. The four entries will instead be read from the cache, if it is enabled. If the value
is set to 0, the table will be disabled completely, meaning that all sectors of the block might have to be read before the specified sector is
found. If the value is 1, the table completely specifies the location of the sector, and thus no search must be performed. In that case,
enabling the update block metadata cache will yield no performance benefit.

RAM usage =
<Nbr update bl ks> x
(1 og2(<Nor secs per blk>) - |o0g2(<Subset size>) x
<Max associativity> /
8 octets

The result should be rounded up.

FS_NAND_CFG RSVD AVAI L_BLK_CNT

This #def i ne indicates the number of blocks in the available blocks table that are reserved for metadata block folding. Since this
operation is critical and must be done before adding blocks to the available blocks table, the driver needs enough reserved blocks to make
sure at least one of them is not bad so that the metadata can be folded successfully. When set to 3, probability of the metadata folding
operation failing is almost null. This value is sufficient for most applications.

FS_NAND_CFG_MAX_RD RETRI ES
This #def i ne indicates the maximum number of retries performed when a read operation fails. It is recommended by most manufacturers
to retry reading a page if it fails, as successive read operations might be successful. This number should be at least set to 2 for smooth

operation, but might be set higher to improve reliability. Please be aware that a high number of retries will reduce the response time of the
system when it tries to read a defective sector.

FS_NAND _CFG_MAX_SUB_PCT

This #def i ne indicates the maximum allowed number of sequential update blocks (SUB). This value is set as a percentage of the total
number of update blocks. SUBs will improve the performance for large transactions on the file system (ex: copying multi-MB files). Small

files or small iterative changes to large files are best handled by RUBs. It is important to note that the translation layer will automatically
determine what type of update block is the best depending on the parameters of the transaction itself. This parameter is only to limit the
number of update blocks that can be SUBs.

Advanced configuration OPTIONs

The following configuration #def i nes should be left at their default values. Advanced understanding of the wear-leveling and block abstraction
algorithms is necessary to set these configurations.

FS_NAND CFG TH_PCT_MERGE_RUB_START_SUB

This #def i ne indicates the minimum size (in sectors) of the write operation needed to create a sequential update block (SUB) when a
random update block (RUB) already exists. SUBs offer a substantial gain in merge speed when a large quantity of sectors are written
sequentially (within a single or multiple write operations). However, if many SUBs are created and merged early, the device will wear faster
(less sectors written between block erase operations).

This threshold is set as a percentage (relative to the number of sectors per block).
Set higher than default for better overall wear leveling and lower than default for better overall write speed.
FS_NAND_CFG TH_PCT_CONVERT_SUB_TO_RUB

This #def i ne indicates the minimum size (in sectors) of free space needed in a sequential update block (SUB) to convert it to a random
update block (RUB). RUBs have more flexible write rules, at the expense of a longer merge time. If the SUB’s usage is over the threshold,
the SUB will be merged and a new RUB will be started, instead of performing the conversion from SUB to RUB.

This threshold is set as a percentage (relative to number of sectors per block).
Set higher than default for better overall write speed and lower than default for better overall wear leveling.

To take advantage of this threshold, it must be set higher than the value of FS_NAND_CFG TH_PCT_PAD_SUB. Otherwise, this threshold
won't have any effect.

FS_NAND_CFG TH_PCT_PAD SUB

This #def i ne indicates the maximum size (in sectors) that can be skipped in a sequential update block (SUB). Since each sector of a
SUB must be written at a single location (sector physical index == sector logical index), it is possible to allow small gaps in the sequence.
Larger gaps are more flexible, and can improve the overall merge speed, at the cost of faster wear, since some sectors are left empty
between erase operations.

This threshold is set as a percentage (relative to number of sectors per block).
Set higher than default for better overall write speed and lower than default for better overall wear leveling
FS_NAND_CFG_TH_PCT_MERGE_SUB

This #def i ne indicates the maximum size (in sectors) of free space needed in a sequential update block (SUB) to merge it to allocate
another update block. If the threshold is exceeded, a random update block (RUB) will be merged instead. This threshold must be set so that
SUBs with a lot of free space are not merged. Merging SUBs early will generate additional wear.

This threshold is set as a percentage (relative to number of sectors per block).
FS_NAND CFG TH SUB M N_| DLE_TO FOLD

This #def i ne indicates the minimum idle time (specified as the number of driver accesses since the last access that has written to the
SUB) for a sequential update block (SUB) to be converted to a random update block (RUB). This threshold must be set so that “hot” SUBs
are not converted to RUBs.

Device configuration

You must configure the NAND translation layer for each device you use in your project. This configuration is made through a structure of type FS_
NAND_CFG. A pointer to this structure is then passed to the function FSDev_QOpen() . Each NAND device will need to be initialized by calling FSDe
v_Open() and passing it a unique structure pointer of the type FS_NAND_CFG.

Note that the FS_NAND_Df | t Cf g constant should be used to initialize the FS_NAND_CFG structure to default values. This will ensure all fields will
automatically be set to sane default values.

typedef struct fs_nand_cfg {

voi d *BSPPt r; (1)
FS_NAND_CTRLR_API *CtrlrPtr; (2)
voi d *CtrlrCigPtr; (3)
FS_NAND_PART_API *Part Ptr; (4)
voi d *Part CfgPtr; (5)
FS_SEC Sl ZE SecSi ze; (6)
FS_NAND BLK_QTY Bl kCnt ; (7)
FS_NAND BLK_QrY Bl kI xFi rst; (8)
FS_NAND_UB_QTY UB_Cnt Max; (9)
CPU_| NTO8U RUB_MaxAssoc; (10)
CPU_| NTO8U Avai | Bl kTbl Ent r yCnt Max; (11)

} FS_NAND CFG

Listing - NAND translation layer configuration structure

(1)

This field must be set to a pointer to the controller-specific BSP layer implementation’s API you want the controller layer to use (see Board
Support Package). If you use a different controller layer implementation, that field might not be needed.

@

This field must be set to a pointer to the controller layer implementation’s API you wish to use (see Controller Layer).

©)

This field must be set to a pointer to the configuration structure for the specified controller layer implementation.

4)

This field must be set to a pointer to the part layer implementation’s API you wish to use (see API structure type for generic controller extension)

®)

This field must be set to a pointer to the configuration structure specific to the chosen part layer implementation.

(6)
This field must contain the sector size for the device (care must be taken when choosing sector size: see Performance Considerations). The
value FS_NAND_CFG_DEFAULT instructs the translation layer to use the page size reported by the part layer as its sector size.

(")
This field must contain the number of blocks you want uC/FS to use. This can be useful if you want to reserve blocks for data to be used outside
the file system (by a bootloader, for example). The value FS_NAND_CFG_DEFAULT instructs the translation layer to use the number of blocks

reported by the part layer.
®

This field must contain the index of the first block you want uC/FS to use. This can be useful if you want to reserve blocks for data to be used
outside the file system (by a bootloader, for example).

9)

This field must be set to the maximum number of update blocks you want the NAND translation layer to use. A greater number can improve
performance but will also reduce available space on the device and consume RAM. You are encouraged to experiment with different values to
evaluate which one suits your application best.

(10

This field must be set to the maximum associativity of the random update blocks (RUB). The update blocks temporarily contain sectors from data
blocks until they are merged (copied to respective data blocks). The associativity specifies the number of data blocks from which a single RUB
can contain sectors. A high setting will usually lead to better overall write and read speeds and will reduce wear. However, a low setting will lower
the time of execution of the worst-case write operation.

(11

This field must be set to the size of the available blocks table. Available blocks are ready to be erased and used as update or data blocks. The
table must, at least, be large enough to contain the reserved available blocks (see FS_NAND_CFG_RSVD_AVAIL_BLK_CNT) and a few more for
general operations. The value FS_NAND_CFG_DEFAULT instructs the translation layer to use 10 or (1 + FS_NAND_CFG_RSVD_AVAI L_BLK_CNT)
entries, whichever is larger.

Translation Layer Source Files

The files relevant to the NAND translation layer are outlined in this section; the generic file-system files, outlined in uC/FS Directories and Files,
are also required.

\'M cri um Sof t war e\ uC- FS\ Dev\ NAND

This directory contains the NAND driver files.

https://doc.micrium.com/display/fsdoc/Generic+Controller+Extension+Development+Guide#GenericControllerExtensionDevelopmentGuide-Listing-APIstructuretypeforgenericcontrollerextension

\fs_dev_nand. *
These files compose the NAND translation layer. These following source files contain the code for the NAND translation layer.
\ Cf g\ Tenpl ate\ fs_dev_nand_cfg. h

This is a template file that is required to be copied to the application directory to configure the uC/FS NAND driver based on application
requirements.

Controller Layer

The controller-layer implementations distributed with the NAND driver (see Table - Controller-layer implementations provided in the Controller
Layer page) support a wide variety of flash devices from major vendors.

Driver API Files Description

FS NAND CtrlrGen fs_dev_nand_ctrlr_gen.* Supports most parallel flash devices interfaced on an MCU'’s external
) memory bus.
in

/Micrium/Software/uC-FS/Dev/INAND/Ctrir

Table - Controller-layer implementations provided

Of course, it is possible that your specific device and/or micro-controller requires a different controller layer implementation, or that a different
implementation could take advantage of hardware modules (like a memory controller on a MCU). Please refer to the Controller Layer
Development Guide for the details on how to implement your own controller layer.

Generic Controller Layer Implementation

The generic controller layer driver is an implementation of the controller layer that is compatible with most parallel NAND devices and most simple
memory controllers. It has the following features:

® Supports multiple sector per page

® Packs out-of-sector (OOS) metadata around reserved spare area zones

® Extensible through extensions that provides multiple hooks to allow for different ECC protection schemes (an extension for software ECC
is provided)

® Supports reading ONFI parameter pages through aits | O_Ctrl () function

® Supports both 8-bit and 16-bit bus devices

The generic controller driver imposes a specific page layout: the sectors are stored sequentially in the main page area and OOS metadata zones
are stored sequentially in the spare area, packed in the free spare zones specified by the . Fr eeSpar eMap field of the associated FS_PART_DAT
A data structure. An example layout is shown below for a device with 2048 octets pages, using 512 bytes sectors.

zZlomlo o
Sector 1 Sector 2 Sector 3 Sector 4 221912 K2
g = = g P e
(=R
o b T o g)
G & & P S SRS

Figure - Example generic controller driver page layout

To determine if the generic controller driver is compatible with your hardware, you can study its BSP interface, described in BSP Development
Guide - Generic Controller.

Generic Controller Extension Layer

The generic controller extension layer extends the functionality of the generic controller, mostly with regards to ECC. It allows for the reuse of the
generic controller code, enabling easy customizations of the controller layer. The NAND driver ships with two generic controller extensions:

Extension API Files Description

FS NAND CtrlrGen_Soft ECC fs_dev_nand_ctrlr_gen_soft_ecc.* in Supports software ECC calculation and correction
/Micrium/Software/uC-FS/Dev/NAND/Ctrir through pC/CRC ECC modules.

FS_NAND CtrlrGen_M cronECC fs_dev_nand_ctrlr_gen_micron_ecc.* in Supports on-chip ECC hardware for some Micron
/Micrium/Software/uC-FS/Dev/NAND/Ctrlr parts (ex: MT29F01GO8ABADA).

Table - Generic controller layer extensions provided

The software ECC generic controller extension (FS_NAND_Ct r | r Gen_Sof t ECC) uses pC/CRC’s ECC
modules for the ECC codewords calculation and data correction. The extension is configurable through a FS_N
AND_CTRLR_GEN_SOFT_ECC_CFGtype structure. It should be initialized to the value FS_NAND Ctrlr Gen_S
of t Ecc_Df | t Cf g before its fields are overridden to the appropriate values for your application.

typedef struct fs_nand_cfg {
const ECC_CALC *ECC Modul ePtr; (1)
} FS_NAND_CFG

Listing - NAND translation layer configuration structure

1

Pointer to an ECC_CALC API structure that will be used to provide software ECC calculation and correction. Refer to ECC Module Development
Guide and HC/CRC'’s user manual for more information on ECC modules.

The Micron ECC generic controller extension (FS_NAND_Ct r | r Gen_M cr onECC) allows the use of internal
on-chip hardware ECC engines for some Micron NAND flash parts. The extension has been designed as an
example for the Micron MT29F1GO08ABADA, but should function properly with other similar Micron devices with
internal ECC hardware modules. This module doesn't have any configuration options, you should use DEF_NU
LL as the generic controller extension configuration pointer (. Ct r | r Ext Cf g field of the FS_NAND_CTRLR_GE

N_CFGstructure).
Part Layer

® Statically configured part layer
® ONFI part layer

There are two different part-layer implementations distributed with the NAND driver (Table - Part-layer implementations provided in the Part Layer
page).
Driver API Files Description

FS_NAND Part Static fs_dev_nand_part_static.* in Manually configure the parameters of each NAND flash device you
IMicrium/Software/uC-FS/Dev/INAND/Part use.

FS_NAND_Par t ONFI fs_dev_nand_part_onfi.* in Use the parameters automatically obtained by reading the parameter
/Micrium/Software/uC-FS/Dev/INAND/Part page of ONFI-compliant NAND flash devices.

Table - Part-layer implementations provided

It is mandatory to use one part-layer implementation for the NAND driver to work. It is recommended to use
one of the provided implementations.

Statically configured part layer

This part-layer implementation is the basic one. It lets you set all the physical characteristics of the device through a configuration structure of type
FS_NAND_PART_STATI C_CFG Typically, the pointer to the configuration structure is then assigned to the field . Part Cf gPt r of the translation
layer configuration structure (see NAND Translation Layer). The pointer to the translation layer configuration structure can then be passed as an
argument to the function FSDev_Open() . Refer to Getting Started for an example of configuration. The part configuration structure should be
initialized to FS_NAND_Part St ati c_Df | t Cf g to ensure upward compatibility with future versions. The configuration fields available for the
static part layer are described in Listing - NAND static part layer configuration structure in the Part Layer page:

typedef struct fs_nand_part_static_cfg {

FS_NAND BLK_QryY Bl kCnt ; (1)
FS_NAND_PG PER BLK_QrY PgPer Bl k; (2)
FS_NAND PG Sl ZE PgSi ze; (3)
FS_NAND_PG_SI ZE Spar eSi ze; (4)
CPU_| NTO8U Nor PgrPer Pg; (5)
CPU_| NTO8U BusW dt h; (6)
CPU_I NTO8U ECC NorCorrBits; (7)
FS_NAND_PG_SI ZE ECC_Codewor dSi ze; (8)
FS_NAND_DEFECT_MARK_TYPE Def ect Mar kType; (9)
FS_NAND_BLK_QryY MaxBadBI kCnt ; (10)
CPU_I NT32U MaxBl KEr ase; (11)
FS_NAND FREE_SPARE_DATA *FreeSpar eMap; (12)

} FS_NAND PART STATI C_CFG

Listing - NAND static part layer configuration structure

)

Number of blocks in your device.

@

Number of pages per block in your device.

@)

Page size (in octets) of your device.

4)

Size of the spare area (in octets) of your device.

®)
Number of partial page programming allowed before an erase operation (for example, it would be set to 4 if a device with 2048 octets pages
could be written in 4 accesses of 512 octets).

(6)

Number of input/output lines of the device’s bus.

@)

Minimum required number of correctable bits per codeword for the ECC.

®
Codeword size required for ECC. The codeword size corresponds to the maximum data size (in octets) that must be sent to the ECC calculation
module to get a single error correction code.

©

Factory defect mark type. This determines how the translation layer can detect if a block factory is marked as a defect block. The possible values
are listed below. Unless otherwise specified, any unset bit in the defect mark indicates a defective block. A byte refers to an 8-bit value, a word
refers to a 16-bit value and a location is a bus width wide value (byte for 8-bit bus and word for 16-bit bus).

DEFECT_SPARE_L_1_PG 1_OR_N_ALL_O: the defect mark is in the first location of the spare area (first byte or first word, depending on bus
width) of the first or last page. If the mark reads 0, the block is defective.

DEFECT_SPARE_ANY_PG 1_OR_N_ALL_O: any location in the spare area or the first or last page equal to 0 indicates a defective block.

or second page.

DEFECT_SPARE L_1 PG 1_OR 2:the defect mark is the first location in the spare area of the first or second page.

the first page.
DEFECT_PG L_1_OR N PG 1_OR 2:the defect mark is the first or last location of the page area in the first or second page.

(10)
Maximum number of bad blocks within a single device during its lifetime.

1y
Maximum number of erase operations that can be performed on a single block.

(12)
Pointer to the map of the free regions in the spare area (see listing below).

Listing - NAND configuration structure for free regions of the spare area in the Part Layer page shows the data type used to specify the
contiguous regions of the spare area that are available for the NAND driver to write. The map of the free regions is an array of FS_NAND_FREE_S
PARE_DATA values. Each free contiguous section of the spare area will use one index of the array. There must also be a last entry setto {- 1,

- 1} for the driver to know when to stop parsing the table. Note that the factory defect mark should be excluded of the free regions. You can also
refer to the example (see Getting Started).

typedef struct fs_nand_free_spare_data {
FS NAND PG SI ZE Cctet Off set; (1)
FS_NAND PG SI ZE Cctet Len; (2)
} FS_NAND FREE_SPARE_DATA,

Listing - NAND configuration structure for free regions of the spare area

@

Offset (in octets) of a free region.

@)
Length (in octets) of a free region.

ONFI part layer

The ONFI part layer implementation is able to obtain from ONFI compliant devices all the parameters necessary for the NAND driver to operate.
The different parameters are extracted from the device parameter page. Table - ONFI parameter page support for different ONFI versions in the P
art Layer page lists the versions of the ONFI standard for which automatic parameter page parsing is supported. If your device does not respect
this standard, it should be used with a different implementation o f the part layer.

ONFI version Supported parameter page
ONFI 3.0 YES
ONFI 2. 3a YES
ONFI 2.2 YES
ONFI 2.1 YES
ONFI 2.0 YES
ONFI 1.0 YES

Table - ONFI parameter page support for different ONFI versions

The ONFI part layer implementation does not have a lot of configuration options since most parameters are read from the device's parameter
page. The part configuration structure should be initialized to FS_NAND_Par t ONFI _Df | t Cf g to ensure upward compatibility with

future versions. The configuration fields available for the ONFI part layer implementation are described in Listing - NAND ONFI part layer
configuration structure in the Part Layer page:

typedef struct fs_nand_part_onfi_cfg {
FS NAND FREE SPARE DATA *FreeSpar eMap; (1)
} FS_NAND PART_ONFI _CFG

Listing - NAND ONFI part layer configuration structure
(1)

Pointer to the map of the free regions in the spare area (see listing above).

Board Support Package

Generic Controller

If you use the generic controller layer implementation, you will have to provide a board support package to interface with your board layout and
hardware. The board support package must be provided in the form of an API pointer of the type FS_NAND_CTRLR_GEN_BSP_API , like shown in
Listing - BSP API type for the generic controller layer implementation in the Board Support Package page.

typedef struct fs_nand_ctrlr_gen_bsp_api {

void (*Open) (FS_ERR *p_err);

void (*C ose) (voi d);

void (*ChipSel En) (voi d);

void (*ChipSel D s) (void);

void (*CrdW) (CPU_I NTO8U *p_cnd,
CPU SIZE T cnt,
FS_ERR *p_err);

void (*AddrW) (CPU_I NTO8U *p_addr,
CPU SIZE T cnt,
FS_ERR *p_err);

void (*DataWw) (void *p_src,
CPU SIZE T cnt,
CPU_I NTO8U wi dt h,
FS ERR *p_err);

void (*DataRd) (void *p_dest,
CPU SIZE T cnt,
CPU_I NTO8U wi dt h,
FS ERR *p_err);

void (*WaitWileBusy) (void *pol | _fcnt_arg,
CPU BOOLEAN (*poll _fent)(void *arg),
CPU_|I NT32U to_us,
FS_ERR *p_err);

} FS_NAND CTRLR GEN BSP_API ;

Listing - BSP API type for the generic controller layer implementation

Typically, you will provide the board support package implementation. See BSP Development Guide - Generic Controller for details on how to
implement the BSP layer.

Other Controllers

If you use a different controller layer implementation than the generic, you will typically need a BSP layer implementation identical or mostly
similar. Please refer to Generic Controller unless there is a section of this page dedicated to your BSP.

Performance Considerations

Several performance aspects can be considered when using the NAND driver. Depending on your priorities, you will need to configure and use
the NAND driver in a proper way so that your specific goals are met. The different performance metrics include the write and read/speed, the
RAM usage, the data safety level and the worst-case locking time.

Choosing an appropriate sector size

It is important to choose carefully the sector size for each device. Unless your device supports partial page programming, it is mandatory for the
sector size to be identical to the page size or larger.

If your device supports partial page programming, it is possible for you to set a sector size smaller than the page size as long as it does not force
the driver to exceed the maximum number of partial page programs. If this is not respected, the driver will fail the initialization phase and return an
error code.

One of the advantages of choosing a sector size smaller than the page size is to reduce the RAM usage. The size of the buffers in the file system
are based on the sector size. A large sector size implies large buffers.

For the best performance, the sector size should be in the ballpark of a typical transaction. If most of your write operations are a couple of octets,
you should, if possible, choose a small sector size (typically 512 octets). On the other hand, if you want to obtain good transfer rates and you have
large application buffers (with multimedia applications, for example), then the sector size should be set higher. The optimal choice will almost
always be the same as the page size (512, 2048, 4096 octets).

Choosing error correction codes

Each device needs an error correction codes (ECC) module able to correct a minimal number of bits per codeword. Choosing a module that
satisfies the minimum required level of error correction is often the best option if you want to avoid the extra calculation time of modules with
enhanced bit error correction.

To reduce the calculation load on your CPU, it is recommended to consider using a hardware ECC module. This is especially true with parts that

require more than 1 bit per codeword of error correction. These hardware ECC engines are often found in MCU and in NAND flash devices.
Consult their datasheets to determine if you have access to such a feature.

If data safety is a concern, you can consider using an ECC module with better correction capacity. For most applications, the recommended level
of correction is sufficient. However, using an ECC engine that can correct more bit-errors can improve long-term readability of the data, especially
for cold data (that never or rarely changes). Another option is to reduce the codeword size. The same number of bit errors can be corrected, but
since codewords are smaller, the bit error rate will be smaller. While those design choices will slightly improve reliability, they will also increase the
overhead and hence reduce the read/write speed and increase the worst-case locking time.

Configure the translation layer

The configuration of the translation layer is complicated. Take the time needed to read carefully each description, and make sure you choose a
configuration that is appropriate for your application. When, in most cases, the basic configuration will be enough, optimizing it will help you to
reach your goals, whether they are about CPU usage, footprints, reliability or speed.

The translation layer configuration options are described in Translation Layer Configuration.

Considering another controller layer

Some MCUs have advanced peripherals that interface with NAND flash devices. If this is the case, consider using or developing a specialized
controller layer implementation to take advantage of those peripherals and save some CPU time or increase performances.

Development Guide

This section describes the code you might need to implement to adapt the driver to your specific hardware and application. Typically, you will only

need to implement the BSP layer for an available controller layer implementation. In other cases, you might need to provide an implementation for
the ECC module and/or the controller layer.

BSP Development Guide - Generic Controller

If you use the generic controller layer implementation, a BSP is required so that it will work for a particular board, micro-controller or application.
Other controller layer implementations might require a similar BSP layer.

The BSP must declare an instance of the BSP API type (FS_NAND_CTRLR_GEN_BSP_API) as a global variable within the source code. The API
structure is an ordered list of function pointers used by the generic controller layer implementation. The BSP API type is shown in Listing - BSP
API type for the generic controller layer implementation in the Board Support Package page.

An example of a BSP API structure definition is shown in the listing below:

const FS_NAND CTRLR GEN BSP_API FS_NAND BSP_Exanpl e = {

Open, (1)
Cl ose, (2)
Chi pSel En, (3)
Chi pSel D s, (4)
CndW , (5)
Addr W, (6)
Dat aW , (7)
Dat aRd, (8)
i t Whi | eBusy (9)

Listing - Example BSP API structure for generic controller

A proper BSP should implement all of these functions. The \ M cri um Sof t war e\ uC- FS\ Dev\ NAND\ BSP\ Tenpl at e\ fs_dev_nand_ctrlr
_gen_bsp. c file, which contains a definition of API structure along with empty functions, is provided as a template to implement your BSP.

Open/Close functions (1, 2)

The Open() and d ose() functions will be called respectively by FSDev_Open() and FSDev_d ose() . Typically, FSDev_Open() is called
during initialization and FSDev_Cl ose() is never called — closing a fixed device doesn’t make much sense. When implementing the Open() fun
ction of the BSP layer, you should add all necessary code for the hardware initialization. That might include setting up the memory controller
general settings and timings for the bank associated with the NAND device, configuring the chip select and ready/busy through either the memory
controller or GPIO, configuring the memory controller clock, configuring the memory controller I/O pins, etc. The T ose() function is typically left

empty.
Chip selection functions (3, 4)

The Chi pSel En() and Chi pSel Di s() are called (in pairs) each time the device must be accessed. In these functions, you should implement
any chip selection mechanism needed.

https://doc.micrium.com/display/fsdoc/Board+Support+Package#BoardSupportPackage-Listing-BSPAPItypeforthegenericcontrollerlayerimplementation
https://doc.micrium.com/display/fsdoc/Board+Support+Package#BoardSupportPackage-Listing-BSPAPItypeforthegenericcontrollerlayerimplementation

If the bus and/or hardware is shared with more than one task, the chip selection functions should also implement proper locking. If the shared bus
and/or hardware must be configured differently when used outside the NAND driver, the configuration changes must be done within the Chi pSel
En() and Chi pSel Di s() functions.

Command write function (5)

The CmdW () function must write cnt octets on the bus with the CLE (Command Latch Enable) pin asserted.

Address write function (6)

The Addr W () function must write cnt octets on the bus with the ALE (Address Latch Enable) pin asserted.

Data write function (7)

The DataWr() function must write cnt octets on the bus with both ALE and CLE not asserted. Bus writes must be wi dt h bits wide.

Data Read function (8)

The Dat aRd() function must read cnt octets from the bus and store it, starting from the p_sr c address. The ALE and CLE signals must not be
asserted. Bus reads must be wi dt h bits wide.

Wait while busy function (9)

This function should block until the ready pin of the NAND device is in the appropriate state. If for any reason this pin is not accessible, you should
call the pol | _f cnt () with the pol | _f cnt _ar g as argument. This poll function will verify if the NAND device is ready by polling the NAND
device status instead. Once the poll function returns DEF_YES, the Wi t Whi | eBusy() can return without setting an error code. If the time out
limit is reached, the function should return with an error code set to FS_ERR_DEV_TI MEQUT.

Generic Controller Extension Development Guide
The generic controller extension layer allows extending the generic controller through a number of hook functions that are used by the generic
controller, when flexibility in handling a specific operation is desirable. A generic controller extension is defined through a structure of type FS_NA

ND_CTRLR_GEN_EXT, described in Listing - API structure type for generic controller extension in the Generic Controller Extension Development
Guide page. Note that all unused function pointers should be set to DEF_NULL.

typedef struct fs_nand_ctrlr_gen_ext {

voi d (*Init) (FS_ERR *p_err); (1)
voi d *(*Open) (FS_NAND _CTRLR_GEN DATA *p_ctrlr_data, (2)
voi d *p_ext _cfg,
FS ERR *p_err);
voi d (*d ose) (void *p_ext _data); (3)
FS NAND PG SIZE (*Setup) (FS_NAND CTRLR _GEN DATA *p_ctrlr_data, (4)
voi d *p_ext _data,
FS_ERR *p_err);
voi d (*RdSt at usChk) (void *p_ext _data, (5)
FS ERR *p_err);
voi d (*ECC_Cal c) (void *p_ext _data, (6)
voi d *p_sec_buf,
voi d *p_oos_buf,
FS_NAND PG Sl ZE 00s_si ze,
FS_ERR “p_err);
voi d (*ECC Verify) (void *p_ext _data, (7)
voi d *p_sec_buf,
voi d *p_oos_buf,
FS_NAND PG SI ZE 00S_si ze,
FS_ERR *p_err);

} FS_NAND_CTLRR GEN EXT;

Listing - API structure type for generic controller extension

@

The I ni t () funtion provides an opportunity to initialize an extension. This will be called only once, when the extension is registered with the
generic controller (during FSDev_QOpen()). If multiple generic controller instances are configured with the same extension, the I ni t () function
will still be called only once.

@
The Open() function is called by the generic controller's own Open() function. This function will also receive the controller extension
configuration pointer.

®)
The d ose() function might be called by the generic controller's own C ose() function and allow the extension to release its resources. Cl ose
() will typically never be called.

“

The Set up() function is called during the generic controller's own Set up() function and provides an opportunity to setup some internal
parameters according to the generic controller’s operating conditions. The generic controller’s instance data is provided as an argument to this
function. The function must return the amount of required OOS storage space, in octets (ECC data, for example).

®)
The RdSt at usChk() function is called after a sector read operation, by the generic controller's SecRd() function. It should determine if a read
error has occurred and return an error accordingly.

6
The ECC_Cal c() function is called before a sector is written to the NAND device by the generic controller's SecW () function, and provides an
opportunity to calculate the ECC data and to append it to the OOS metadata.

(")

The ECC_Veri fy() function is called after a sector is read from the NAND device by the generic controller's SecRd() function. It should read
the ECC data from the OOS metadata, verify the sector and OOS data integrity, and correct any errors found if possible. It should return an
appropriate error code if ECC errors are found.

ECC Module Development Guide

Before undertaking the task of writing a software ECC module, or a software interface to a hardware ECC module, you should evaluate whether
or not modifications to the controller layer are needed as well. Some hardware ECC modules integrated within a NAND device or a
micro-controller's memory controller can be handled through a generic controller extension module.

However, if your ECC module can be interfaced with the software ECC generic controller extension, you could limit the code to be developed to
the ECC layer only. If this is the case, you will need to provide the implementation of the APl as shown in Listing - ECC API type definition in the E
CC Module Development Guide page:

typedef struct ecc_calc {

CPU SIZE T Buf LenM n; (1)
CPU_SIZE T Buf LenMax; (2)
CPU_I NTO8U ECC Len; (3)
CPU_| NTO8U Nor Correct abl eBi t's; (4)
ECC_CALC_FNCT Cal c; (5)
ECC_CHK_FNCT Chk; (6)
ECC_CORRECT_FNCT Correct; (7)
} ECC_CALC

Listing - ECC API type definition
@

Minimum buffer length that the ECC module can handle.

@)

Maximum buffer length that the ECC module can handle.

@)

Length, in octets, of the code for a single buffer.

Q)

Number of bits the module can correct for each buffer.

®)

Pointer to the code calculation function.

(6)

Pointer to the error detection function.

@)

Pointer to the error correction function.

For more details on the implementation, please refer to the uC/CRC User Manual.
Controller Layer Development Guide

To fully take advantage of advanced peripherals (for example, NAND flash controllers), you might decide to provide your own implementation of
the controller layer. The controller layer is one level above the BSP layer. Its interface is more flexible, but is also more complex to implement. If
you choose that route, it is strongly recommended to use the provided implementations as an example. Listing - Controller API type definition in
the Controller Layer Development Guide page describes the API that must be implemented for the controller layer.

typedef struct fs_nand_ctrlr_api {

voi d *(*Open) (FS_NAND PART_API *p_part_api,
voi d *p_bsp_api,
voi d *p_ctrlr_cfg,
FS_ERR *p_err);

voi d (*d ose) (void *p_ctrlr_data);

FS_NAND_PART_DATA *(*PartDataCet) (void *p_ctrlr_data);

FS_NAND PG SI ZE (*Set up) (void *p_ctrlr_data,
FS_NAND PG Sl ZE sec_si ze,
FS_ERR *p_err);

voi d (*SecRd) (void *p_ctrlr_data,
voi d *p_dest,
voi d *p_dest _oos,
FS_SEC _NBR sec_i x_phy,
FS ERR *p_err);

voi d (* OOSRdRaw) (void *p_ctrlr_data,
voi d *p_dest _oos,
FS SEC NBR sec_nbr _phy,
FS_NAND_PG SI ZE of f set,
FS_NAND_PG SI ZE | engt h,
FS ERR *p_err);

voi d (*SpareRdRaw) (void *p_ctrlr_data,
voi d *p_dest _oos,
FS_SEC QrY pg_nbr _phy,
FS_NAND_PG SI ZE of f set,
FS_NAND_PG SI ZE | engt h,
FS_ERR *p_err);

voi d (*SecW) (void *p_ctrlr_data,
voi d *p_src,
voi d *p_src_spare,
FS_SEC _NBR sec_nbr _phy,
FS ERR *p_err);

voi d (*BI kEr ase) (void *p_ctrlr_data,
CPU_| NT32U bl k_nbr _phy,
FS ERR *p_err);

voi d (*rocrl) (void *p_ctrlr_data,
CPU_I NTO8U cnd,
voi d *p_buf,
FS ERR *p_err);

} FS_NAND_CTRLR API ;

Listing - Controller API type definition

Before implementing the following functions, it is important to understand the difference between out-of-sector (OOS) data and the spare area. In
a NAND device, each page has a spare area, typically used to store metadata and error correction codes (ECC). The spare area also contains a
factory defect mark and, optionally, reserved sections. In the implementation of the uC/FS NAND driver, the OOS data is metadata sent to the
controller layer by the translation layer. It must be stored in the spare area, wit.hout overwriting the bad block mark and without writing to the
reserved section. It must also be protected by ECC. The OOS data is only a part of what is inside the spare area. It doesn't include the factory
defect marks, the reserved sections and the ECC data. Also, if the sector size is not equal to the page size, the OOS data will be associated to a
single sector, while the spare area will be associated to a single page. In that case, multiple OOS sections would be fit in a single spare area.

Open/Close functions

The Open() and d ose() function will be called respectively by FSDev_Open() and FSDev_C ose() . Typically, FSDev_QOpen() is called
during initialization and FSDev_Cl ose() is never called. When implementing the Open() function of the controller layer, you should typically add
all necessary code for the bus/controller initialization (or call the Open() function of the BSP layer). You should also allocate the necessary
memory and perform all the operations that need to be done a single time only, when opening the device. The O ose() function is typically left

empty.
Part data get function

The Par t Dat aGet () function should return an instance of the type FS_NAND_PART_DATA associated to a particular device.

Setup function

The Set up() function is called a single time, after the Qpen() function. It must perform the proper calculation to make sure that the out-of-sector
data (OOS) and the error correction codes (ECC) can fit in the spare area.

Sector read function

The Sect or Rd() function must copy the data found at the physical sector sec_i x_phy into the p_dest buffer. It must also copy the
out-of-sector data (OOS - the section of the spare area, excluding ECC, bad block marks and unused sections) into the p_dest _oos buffer.
Before returning successfully, the function should check for errors and correct them, if needed (with ECC).

Out-Of-sector (OOS) raw read function

The OOSRdRaw() function must copy | en octets from the of f set octet in the OOS of the sector sec_i x_phy into the p_dest _oos buffer. This
function should not perform error correction.

Spare area raw read function

The Spar eRdRaw() function must copy | en octets from the of f set octet in the spare area of the page pg_i x_phy into the p_dest _spar e bu
ffer. This function should not perform error correction.

Sector write function

The Sect or W () function must write the data found in the p_sr ¢ buffer into the physical sector sec_i x_phy of the NAND device. It must also
write the out-of-sector data (OOS - the section of the spare area, excluding ECC, bad block marks and unused sections) found in the p_sr c_oos
buffer into the spare area. It should also store error correction codes (ECC) in the spare area.

Block erase function

The Bl kEr ase() function should erase the block bl k_i x_phy of the device.

10 control function

The | O_Ctrl () function body can be left empty. It was created to perform device or controller specific commands without the need of a custom
API. It can simply return the FS_ERR_DEV_| NVALI D_| O_CTRL error code.

Note that the ONFI part layer implementation makes use of the FS_DEV_| O_CTRL_NAND_PARAM PG_RD I/O control operation. In order to retain
compatibility with the ONFI part layer implementation, your controller implementation must support that operation.

NOR Flash Driver

NOR flash is a low-capacity on-board storage solution. Traditional parallel NOR flash, located on the external bus of a CPU, offers extremely fast
read performance, but comparatively slow writes (typically performed on a word-by-word basis). Often, these store application code in addition to
providing a file system. The parallel architecture of traditional NOR flash restricts use to a narrow class of CPUs and may consume valuable PCB
space. Increasingly, serial NOR flash are a valid alternative, with fast reads speeds and comparable capacities, but demanding less of the CPU
and hardware, being accessed by SPI or SPI-like protocols. Table - NOR flash devices in the NOR Flash Driver page briefly compares these two
technologies; specific listings of supported devices are located in Physical-Layer Drivers.

Device Typical Packages Manufacturers Description

Category

Parallel TSOP32, TSOP48, AMD (Spansion) Intel Parallel data (8- or 16-bit) and address bus (20+ bits). Most devices have
NOR BGA48, TSOP56, (Numonyx) SST ST CFl ‘query’ information and use one of several standard command sets.

Flash BGA56 (Numonyx)

Serial SOIC-8N, SOIC-8W, Atmel SST ST (Numonyx) SPI or multi-bit SPI-like interface. Command sets are generally similar.
NOR SOIC-16, WSON,
Flash USON

Table - NOR flash devices
Files and Directories - NOR Flash

The files inside the NOR flash driver directory are outlined in this section; the generic file-system files, outlined in uC/FS Directories and Files, are
also required.

\' M cri um Sof t war e\ uG FS\ Dev

This directory contains device-specific files.
\' M cri um Sof t war e\ uC- FS\ Dev\ NOR

This directory contains the NOR driver files.
fs_dev_nor.*

These files are device driver for NOR flash devices. This file requires a set of BSP functions be defined in a file named f s_dev_nor _bsp.
¢ to work with a certain hardware setup.

.\ BSP\ Tenpl at e\ f s_dev_nor _bsp. c
This is a template BSP for traditional parallel NOR devices. See NOR Flash BSP for more information.
.\BSP\ Tenpl ate (SPI)\fs_dev_nor_bsp.c
This is a template BSP for serial (SPI) NOR devices. See NOR Flash BSP for more information.
.\BSP\ Tenpl ate (SPI GPIO\fs_dev_nor_bsp.c
This is a template BSP for serial (SPI) NOR devices using GPIO (bit-banging). See NOR Flash BSP for more information.
.\ PHY
This directory contains physical-level drivers for specific NOR types:
fs_dev_nor_and_1x08. *
CFl-compatible parallel NOR implementing AMD command set (1 chip, 8-bit data bus)
fs_dev_nor_and_1x16. *
CFl-compatible parallel NOR implementing AMD command set (1 chip, 16-bit data bus)
fs_dev_nor_intel.*
CFl-compatible parallel NOR implementing Intel command set (1 chip, 16-bit data bus)
fs_dev_nor_sst39.*
SST SST39 Multi-Purpose Flash
fs_dev_nor_stnR5. *
ST STM25 serial flash
fs_dev_nor_sst25.*
SST SST25 serial flash
\'M cri um Sof t war e\ uC- FS\ Exanpl es\ BSP\ Dev\ NOR
Each subdirectory contains an example BSP for a particular platform. These are named according to the following rubric:
<Chi p Manuf act urer>\<Board or CPU>\fs_dev_nor_bsp.c

NOR Driver and Device Characteristics

NOR devices, no matter what attachment interface (serial or parallel), share certain characteristics. The medium is always organized into units
(called blocks) which are erased at the same time; when erased, all bits are 1. Only an erase operation can change a bit from a 0 to a 1, but any
bit can be individually programmed from a 1 to a 0. The C/FS driver requires that any 2-byte word can be individually accessed (read or
programmed).

The driver RAM requirement depends on flash parameters such as block size and run-time configurations such as sector size. For a particular
instance, a general formula can give an approximate:

if (secs_per_blk < 255) {
tenmpl = ceil (blk_cnt_used / 8) + (blk_cnt_used * 1);
} else {
templ = ceil (bl k_cnt_used / 8) + (blk_cnt_used * 2);
}
if (sec_cnt < 65535) {
tenp2 = sec_cnt * 2;
} else {
tenmp2 = sec_cnt * 4,
}
tenp3 = sec_si ze;
TOTAL = tenpl + tenp2 + tenp3;

where
secs_per_bl k
The number of sectors per block.
bl k_cnt _used
The number of blocks on the flash which will be used for the file system.
sec_cnt
The total number of sectors on the device.
sec_si ze

The sector size configured for the device, in octets.

secs_per_bl k and sec_cnt can be calculated from more basic parameters :

secs_per_blk = floor(blk_size / sec_size);
sec_cnt = secs_per_blk * bl k_cnt_used;

where
bl k_si ze

The size of a block on the device, in octets

Take as an example a 16-Mb NOR that is entirely dedicated to file system usage, with a 64-KB block size, configured with a 512-B sector. The
following parameters describe the format :

bl k_cnt _used = 32;

bl k_size = 65536;

sec_si ze = 512;

secs_per_blk = 65536 / 512 = 128;
sec_cnt = 128 * 32 = 4096;

and the RAM usage is approximately

templ = (32 / 8) + (32 * 2)
tenp2 = 4096 * 2 = 8192;
tenp3 512;

TOTAL 68 + 8192 + 512 = 8772;

68;

In this example, as in most situations, increasing the sector size will decrease the RAM usage. If the sector size were 1024-B, only 5188-B would
have been needed, but a moderate performance penalty would be paid.

Using a Parallel NOR Device

To use the NOR driver, five files, in addition to the generic file system files, must be included in the build:

® fs_dev_nor.c.

® fs_dev_nor. h.

® fs_dev_nor_bsp. c (located in the user application or BSP).

® A physical-layer driver (e.g., as provided in \ M cr i um Sof t war e\ uG- FS\ Dev\ NOR\ PHY)

The file f s_dev_nor . h must also be #included in any application or header files that directly reference the driver (for example, by registering the
device driver). The following directories must be on the project include path:

® \Mcrium Sof t war e\ uC- FS\ Dev\ NOR
® \Mcrium Sof t war e\ uC- FS\ Dev\ NOR\ PHY

A single NOR volume is opened as shown in Listing - Opening a NOR device volume in the Using a Parallel NOR Device page. The file system
initialization (FS_I ni t ()) function must have previously been called.

ROM characteristics and performance benchmarks of the NOR driver can be found in Driver Characterization. The NOR driver also provides
interface functions to perform low-level operations (see FAT System Driver Functions).

CPU BOOLEAN App_FS_AddNOR (voi d)

{
FS _DEV_NOR_CFG nor _cfg;
FS_ERR err;
FS _DevDr vAdd((FS_DEV_API *) &FSDev_Nor , (1)
(FS_ERR *)&err);

if ((err '= FS_ERR_NONE) && (err !'= FS_ERR DEV_DRV_ALREADY_ADDED)) {
return (DEF_FAIL);

}

(2)
nor _cf g. Addr Base = APP_CFG_FS_NOR_ADDR_BASE;
nor _cfg. Regi onNor = APP_CFG_FS_NOR REG ON_NBR;
nor _cfg. Addr St art = APP_CFG FS NOR ADDR_START;

nor _cfg. DevSi ze

nor _cfg. SecSi ze

nor _cfg. Pct Rsvd

nor _cfg. Pct RsvdSecAct i ve
nor_cfg. EraseCntDi ffTh

APP_CFG FS_NOR DEV_SI ZE;

APP_CFG FS_NOR _SEC SI ZE;

APP_CFG FS_NOR_PCT_RSVD;

APP_CFG FS_NOR PCT_RSVD_SEC ACTI VE;
APP_CFG FS_NOR ERASE_CNT DI FF_TH;

nor _cfg. PhyPtr = (FS_DEV_NOR _PHY_API *)APP_CFG FS _NOR PHY_PTR
nor _cfg. BusWdth = APP_CFG_FS_NOR BUS W DTH,;
nor _cf g. BusW dt hiax = APP_CFG FS NOR BUS W DTH_MAX;
nor _cfg. PhyDevCnt = APP_CFG_FS_NOR_PHY_DEV_CNT;
nor _cf g. MaxC kFr eq = APP_CFG_FS_NOR_MAX_CLK_FREQ
(3)

FSDev_Open((CPU_CHAR *)“nor:0:", (a)

(void *) &nor _cf g, (b)

(FS_ERR *)&err);

switch (err) {
case FS_ERR_NONE:
APP_TRACE DBG((" ...opened device.\r\n"));
br eak;

case FS_ERR DEV_| NVALI D_LOW FMT: /* Low fnt invalid. */

APP_TRACE_DBG((" ...opened device (not lowlevel formatted).\r\n"));
FSDev_NOR_LowFnt ("nor:0:", &err); (4)
if (err '= FS_ERR_NONE) {
APP_TRACE_DBG (" ...lowlevel format failed.\r\n"));
return (DEF_FAIL);
}
br eak;
defaul t: /* Device error. */
APP_TRACE_DBG((" ...opening device failed werr = 9%.\r\n\r\n", err));
return (DEF_FAIL);
}
(5)
FSVol _Open((CPU_CHAR *)“nor:0:", (a)
(CPU_CHAR *)“nor:0:", (b)
(FS_PARTITION.NBR) O, (c)
(FS_ERR *)&err);
switch (err) {
case FS_ERR NONE:
APP_TRACE_DBG((" ...opened volune (nounted).\r\n"));
br eak;
case FS ERR PARTI TI ON_NOT_FOUND: /* Vol une error. */
APP_TRACE DBG (" ...opened device (not formatted).\r\n"));
FSvol _Fnt("nor:0:", (void *)0, &err); (6)
if (err !'= FS_ERR_NONE) {
APP_TRACE_DBE (" ...format failed.\r\n"));
return (DEF_FAIL);
}
br eak;
defaul t: /* Device error. */
APP_TRACE_DBGE (" ...opening volune failed werr = 9%l.\r\n\r\n", err));

return (DEF_FAIL);

return (DEF_CK);

Listing - Opening a NOR device volume

1)

Register the NOR device driver FSDev_NOR.

(2

The NOR device configuration should be assigned. For more information about these parameters, see FS_DEV_NOR_CFG.
(3

FSDev_Open() opensl/initializes a file system device. The parameters are the device name

(39)

and a pointer to a device driver-specific configuration structure

(3b)

. The device name

(39)

s composed of a device driver name (“nor”), a single colon, an ASCII-formatted integer (the unit number) and another colon.
4

FSDev_NOR_LowFnt () low-level formats a NOR. If the NOR has never been used with pC/FS, it must be low-level formatted before being used.
Low-level formatting will associate logical sectors with physical areas of the device.

®)

FSVol _Open() opens/mounts a volume. The parameters are the volume name
(5a)

, the device name

(5h)

and the partition that will be opened

(5¢)

. There is no restriction on the volume name

(5a)

; however, it is typical to give the volume the same name as the underlying device. If the default partition is to be opened, or if the device is not
partition, then the partition number

(5¢)

should be zero.

(6)
FSvol _FI’Tt () formats a file system device. If the NOR has just been low-level format, it will have no file system on it after it is opened (it will
be unformatted) and must be formatted before files can be created or accessed.

If the NOR initialization succeeds, the file system will produce the trace output as shown in Figure - NOR detection trace output in the Using a
Parallel NOR Device page (if a sufficiently high trace level is configured). See Trace Configuration about configuring the trace level.

COMT - PullY

O :

Figure - NOR detection trace output
Driver Architecture - Parallel NOR

When used with a parallel NOR device, the NOR driver is three layered, as depicted in the figure below. The generic NOR driver, as always,
provides sector abstraction and performs wear-leveling (to make certain all blocks are used equally). Below this, the physical-layer driver
implements a particular command set to read and program the flash and erase blocks. Lastly, a BSP implements function to initialize and
unitialize the bus interface. Device commands are executed by direct access to the NOR, at locations appropriately offset from the configured
base address.

NOR Driver

15 _dev_nor.cih

Provides generic driver interface (e.g.
init, read, write) and performs wear-
leveling so all blocks are used equally.

L

Physical-Layer Driver

fx_dev_rnor_omd IxI16.*

f5_dev_nor_cfi_intel *
B5_dev_nor cfi ssr30.#
Implements particular NOR flash

command set; accesses NOR directly
on bus interface.

Bus interface

BSP NOR
f5_dev_mor_bsp.c

Initialize/uninitial-
ize bus interface.

Figure - NOR driver architecture (parallel NOR flash)
Hardware - Parallel NOR

Parallel NOR devices typically connect to a host MCU/MPU via an external bus interface (EBI), with an 8- or 16-bit data lines and 20 or more
address lines (depending on the device size). Many silicon vendors offer parallel NOR product lines; most devices currently marketed are
conformant to the Common Flash Interface (CFl). A set of query information allows the C/FS NOR driver physical-layer drivers to interface with
almost any NOR flash without configuration or modification. The standard query information provides the following details:

® Command set. Three different command sets are common: Intel, AMD and SST. All three are supported.

® Geometry. A device is composed of one or more regions of identically-sized erase blocks. Uniform devices contain only one region.
Boot-block devices often have one or two regions of small blocks for code storage at the top or bottom of the device. All of these are
supported by the NOR driver.

Offset Length (Bytes) Contents

0x10 1 Query string “Q”

0x11 1 Query string “R”

0x12 1 Query string “Y”

0x13 2 Command set

0x27 1 Device size, in bytes = 2n

O0x2A 2 Maximum number of bytes in multi-byte write = 2N
0x2C 1 Number of erase block regions = m

0x2D 2 Region 1: Number of erase blocks = x + 1

Ox2F 2 Region 1: Size of each erase block =y * 256 (bytes)
0x31 2 Region 2: Number of erase blocks = x + 1

0x33 2 Region 2: Size of each erase block =y * 256 (bytes)

0x2D + (m1) * 4 2 Region m: Number of erase blocks = x + 1

Ox2F + (m1) * 4 2 Region m: Size of each erase block =y * 256 (bytes)

Table - CFI query information

Table - CFI query information in the Hardware - Parallel NOR page gives the format of CFI query information. The first three bytes should
constitute the marker string “QRY”, by which the retrieval of correct parameters is verified. A two-byte command set identifier follows; this must
match the identifier for the command set supported by the physical-layer driver. Beyond is the geometry information: the device size, the number
of erase block regions, and the size and number of blocks in each region. For most flash, these regions are contiguous and sequential, the first at
the beginning of the device, the second just after. Since this is not always true (see FSDev_NOR_SST39 for an example), the manufacturer’'s
information should always be checked and, for atypical devices, the physical-layer driver copied to the application directory and modified.

Command Set Identifier Description
0x0001 Intel

0x0002 AMD/Spansion
0x0003 Intel

0x0102 SST

Table - Common command sets

NOR BSP Overview

A BSP is required so that a physical-layer driver for a parallel flash will work on a particular system. The functions shown in the table below must
be implemented. Pleaser refer to NOR Flash BSP for the details about implementing your own BSP.

Function Description
FSDev_NOR_BSP_Open() Open (initialize) bus for NOR.
FSDev_NOR BSP_d ose() Close (uninitialize) bus for NOR.
FSDev_NOR_BSP_Rd_XX() Read from bus interface.
FSDev_NOR_BSP_RdWor d_XX() Read word from bus interface.
FSDev_NOR_BSP_W Wor d_XX() Write word to bus interface
FSDev_NOR_BSP_Wai t Wi | eBusy/() Wait while NOR is busy.

Table - NOR BSP functions

The Open() /Cl ose() functions are called upon open/close; these calls are always matched.

The remaining functions (Rd_XX() , RdWor d_XX() , W Wor d_XX()) read data from or write data to the NOR. If a single parallel NOR device will
be accessed, these function may be defined as macros to speed up bus accesses.

Using a Serial NOR Device

When used with a serial NOR device, the NOR driver is three layered, as depicted in the figure below. The generic NOR driver, as always,
provides sector abstraction and performs wear-leveling (to make certain all blocks are used equally). Below this, the physical-layer driver

implements a particular command set to read and program the flash and erase blocks. Lastly, a BSP implements function to communicate with
the device over SPI. Device commands are executed though this BSP.

NOR Driver

J5_dev_norclh

]

Provides generic driver interface (e.g.
init, read, write) and performs wear-
leveling so all blocks are used equally.

il

Physical-Layer Driver
5 _dev_nor_stm23®

J5_dev_nor_ssf25.*
% _dev_nor_micron_npig.*
Implements particular serial NOR flash

command set; accesses NOR through
SPIl interface.

SPI BSP

J&_dev_nov_hspoe

Implements SPI communication for a
particular MCU/MPU.

Figure - NOR driver architecture (serial NOR flash)
Hardware - Serial NOR

Serial NOR devices typically connect to a host MCU/MPU via an SPI or SPI-like bus. Eight-pin devices, with the functions listed in Table - NOR
SPI BSP functions in the NOR SPI BSP Overview page, or similar, are common, and are often employed with the HOLD and WP pins held high
(logic low, or inactive), as shown in Table - NOR SPI BSP functions in the NOR SPI BSP Overview page . As with any SPI device, four signals are
used to communicate with the host (CS, SI, SCK and SO).

MCU/MPU SERIAL NOR —] I
cs M TS VCC
MISO M SO HOLD
MOSI WP oY —
SCK .|||— VSS SI —

Figure - Typical serial NOR connections

NOR SPI BSP Overview

An NOR BSP is required so that a physical-layer driver for a serial flash will work on a particular system. For more information about these
functions, see NOR Flash SPI BSP.

Function Description

FSDev_NOR _BSP_SPI _Open() Open (initialize) SPI.

https://doc.micrium.com/display/fsdoc/NOR+SPI+BSP+Overview#NORSPIBSPOverview-Table-NORSPIBSPfunctions
https://doc.micrium.com/display/fsdoc/NOR+SPI+BSP+Overview#NORSPIBSPOverview-Table-NORSPIBSPfunctions
https://doc.micrium.com/display/fsdoc/NOR+SPI+BSP+Overview#NORSPIBSPOverview-Table-NORSPIBSPfunctions

FSDev_NOR _BSP_SPI _C ose() Close (uninitialize) SPI.

FSDev_NOR_BSP_SPI _Lock() Acquire SPI lock.
FSDev_NOR_BSP_SPI _Unl ock() Release SPI lock.
FSDev_NOR _BSP_SPI _Rd() Read from SPI.
FSDev_NOR _BSP_SPI _W () Write to SPI.
FSDev_NOR_BSP_SPI _Chi pSel En() Enable chip select.
FSDev_NOR_BSP_SPI _Chi pSel Di s() Disable chip select.
FSDev_NOR _BSP_SPI _Set C kFreq() Set SPI clock frequency.

Table - NOR SPI BSP functions

Physical-Layer Drivers

The physical-layer drivers distributed with the NOR driver (see the table below) support a wide variety of parallel and serial flash devices from
major vendors. Whenever possible, advanced programming algorithms (such as the common buffered programming commands) are used to

optimize performance. Within the diversity of NOR flash, some may be found which implement the basic command set, but not the advanced

features; for these, a released physical-layer may need to be modified. In all cases, the manufacturer’s reference should be compared to the

driver description below.

Driver API Files Description

FSDev_NOR_AMD_1x08 fs_dev_nor_and_1x08. * Supports CFl-compatible devices with 8-bit data bus implementing AMD
command set.

FSDev_NOR_AMD 1x16 fs_dev_nor_and_1x16.* Supports CFl-compatible devices i with 16-bit data bus mplementing AMD
command set.

FSDev_NOR I ntel _1x16 fs_dev_nor_intel.* Supports CFl-compatible devices i with 16-bit data bus mplementing Intel
command set.

FSDev_NOR_SST39 fs_dev_nor_sst39.* Supports various SST SST39 devices with 16-bit data bus.
FSDev_NOR_STM29_1x08 fs_dev_nor_stn29 _1x08.* Supports various ST M29 devices with 8-bit data bus.
FSDev_NOR _STM29_1x16 fs_dev_nor_stnR9_1x16.* Supports various ST M29 devices with 16-bit data bus.
FSDev_NOR_STM25 fs_dev_nor_stn5. * Supports various ST M25 serial devices.
FSDev_NOR_SST25 fs_dev_nor_sst25.* Supports various SST SST25 serial devices.

Table - Physical-layer drivers

FSDev_NOR_AMD_1x08 & FSDev_NOR_AMD_1x16

FSDev_NOR_AMD_1x08 and FSDev_NOR_AMD 1x16 support CFI NOR flash implementing AMD command set, including:

® Most AMD and Spansion devices
® Most ST/Numonyx devices
® Others

The fast programming command “write to buffer and program”, supported by many flash implementing the AMD command set, is used in this
driver if the “Maximum number of bytes in a multi-byte write” (in the CFI device geometry definition) is non-zero.

Some flash implementing AMD command set have non-zero multi-byte write size but do not support the “write to buffer & program” command.
Often these devices will support alternate fast programming methods. This driver must be modified for those devices, to ignore the multi-byte write
size in the CFI information. Define NOR_NO_BUF_PGMto force this mode of operation.

FSDev_NOR Intel 1x16

FSDev_NOR | nt el _1x16 supports CFl NOR flash implementing Intel command set, including

® Most Intel/Numonyx devices
® Some ST/Numonyx M28 device
® Others

FSDev_NOR_SST39

https://doc.micrium.com/display/PORTSDRIVERS/NOR_STM29_1x08
https://doc.micrium.com/display/PORTSDRIVERS/NOR_STM29_1x16
https://doc.micrium.com/display/PORTSDRIVERS/NOR_STM25
https://doc.micrium.com/display/PORTSDRIVERS/NOR_SST25

FSDev_NOR_SST39 supports SST's SST39 Multi-Purpose Flash memories, as described in various datasheets at SST (http://www.sst.com).
SST39 devices use a modified form of the AMD command set. A more significant deviation is in the CFI device geometry information, which

describes two different views of the memory organization—division in to small sectors and division into large blocks—rather than contiguous,
separate regions. The driver always uses the block organization.

FSDev_NOR_STM25

FSDev_NOR_STM25 supports Numonyx/ST’s M25 & M45 serial flash memories, as described in various datasheets at Numonyx (http://www.nu
monyx.com). This driver has been tested with or should work with the devices in the table below.

The M25P-series devices are programmed on a page (256-byte) basis and erased on a sector (32- or 64-KB) basis. The M25PE-series devices
are also programmed on a page (256-byte) basis, but are erased on a page, subsector (4-KB) or sector (64-KB) basis.

Manufacturer Device Capacity Block Size Block Count
ST M25P10 1 Mb 64-KB 2
ST M25P20 2 Mb 64-KB 4
ST M25P40 4 Mb 64-KB 8
ST M25P80 8 Mb 64-KB 16
ST M25P16 16 Mb 64-KB 32
ST M25P32 32 Mb 64-KB 64
ST M25P64 64 Mb 64-KB 128
ST M25P128 128 Mb 64-KB 256
ST M25PE10 1 Mb 64-KB 2
ST M25PE20 2 Mb 64-KB 4
ST M25PE40 4 Mb 64-KB 8
ST M25PE80 8 Mb 64-KB 16
ST M25PE16 16 Mb 64-KB 32

Table - Supported M25 serial flash

FSDev_NOR_SST25

FSDev_NOR_SST25 supports SST's SST25 serial flash memories, as described in various datasheets at Numonyx (http://www.numonyx.com).
This driver has been tested with or should work with the devices in the table below.

The M25P-series devices are programmed on a word (2-byte) basis and erased on a sector (4-KB) or block (32-KB) basis. The revision A devices
and revision B devices differ slightly. Both have an Auto-Address Increment (AAl) programming mode. In revision A devices, the programming is
performed byte-by-byte; in revision B devices, word-by-word. Revision B devices can also be erased on a 64-KB block basis and support a
command to read a JEDEC-compatible ID.

Manufacturer Device Capacity Block Size Block Count
SST SST25VF010B 1 Mb 4-KB 32

SST SST25VF020B 2 Mb 4-KB 64

SST SST25VF040B 4 Mb 4-KB 128

SST SST25VF080B 8 Mb 32-KB 32

SST SST25VF016B 16 Mb 32-KB 64

SST SST25VF032B 32 Mb 32-KB 128

Table - Supported SST25 serial flash

MSC Driver

The MSC driver supports USB mass storage class devices (i.e., USB drives, thumb drives) using the pC/USB host stack.
Files and Directories - MSC

http://www.sst.com
http://www.numonyx.com
http://www.numonyx.com
http://www.numonyx.com

The files inside the MSC driver directory are outlined in this section; the generic file-system files, outlined in uC/FS Directories and Files, are also
required.

\' M cri um Sof t war e\ uG FS\ Dev
This directory contains device-specific files.
\' M cri um Sof t war e\ uC- FS\ Dev\ MsC
This directory contains the MSC driver files.
fs_dev_nsc. * constitute the MSC device driver.
\'M cri um Sof t war e\ uC- USB
This directory contains the code for uC/USB. For more information, please see the pC/USB user manual.
Using the MSC Driver
To use the MSC driver, two files, in addition to the generic file system files, must be included in the build:

* fs_dev_nsc.c.
® fs_dev_nsc. h.

The file f s_dev_nsc. h must also be #included in any application or header files that directly reference the driver (for example, by registering the
device driver). The following directory must be on the project include path:

® \Mcrium Sof t war e\ uC- FS\ Dev\ MsC

Before uC/FS is initialized, the pC/USB host stack must be initialized as shown in Listing - Example pC/USB initialization in the Using the MSC
Driver page. The file system initialization function (FS_I ni t ()) must then be called and the MSC driver, FSDev_MSC, restivered (using FS_DevD
rvAdd()). The USB natification function should add/remove devices when events occur, as shown in Listing - Example pC/USB initialization in
the Using the MSC Driver page.

ROM/RAM characteristics and performance benchmarks of the MSC driver can be found in Driver Characterization.

static void App_IlnitUSB Host (void)

{
USBH ERR err;
err = USBH_Host Creat e(&App_USB_Host, &USBH _AT91SAMD261 Drv);
if (err '= USBH ERR_NONE) {
return;
}
err = USBH Host | nit(&App_USB Host);
if (err '= USBH ERR_NONE) {
return;
}
USBH_Cl assDr vReg(&App_USB _Host, &USBH MSC O assDrv,
(USBH_CLASS_NOTI FY_FNCT) App_USB_Host MsC_Cl assNoti fy,
(void *)0);
}

Listing - Example pC/USB initialization

static void App_USB Host MsC C assNotify (void *pcl ass_dev,
CPU_I NTOBU is_conn,

voi d *pct x)
{
USBH MSC DEV *p_nsc_dev;
USBH _ERR usb_err;
FS ERR fs err;
p_nsc_dev = (USBH_MSC DEV *)pcl ass_dev;
switch (is_conn) {
case USBH CLASS DEV_STATE_CONNECTED: e MASS STORAGE DEVI CE
COND ----- */
usb_err = USBH _MSC Ref Add(p_nsc_dev);
if (usb_err == USBH_ERR NONE) ({
FSDev_MSC _DevQpen(p_nsc_dev, & s_err);
}
br eak;
case USBH CLASS DEV_STATE_REMOVED: [* ----- MASS STORAGE DEVI CE
REMOVED ---- */
FSDev_MSC DevC ose(p_nsc_dev);
USBH_MSC_Ref Rel (p_nsc_dev);
br eak;
defaul t:
br eak;
}
}

Listing - pC/USB MSC natification function

If the file system and USB stack initialization succeed, the file system will produce the trace output as shown in Figure - MSC detection trace
output in the Using the MSC Driver page (if a sufficiently high trace level is configured) when the a MSC device is connected. See Trace
Configuration about configuring the trace level.

= COM1 - PuTTY

Figure - MSC detection trace output

IDE/CF Driver

Compact flash (CF) cards are portable, low-cost media often used for storage in consumer devices. Several variants, in different media widths,
are widely available, all supported by the IDE driver. ATA IDE hard drives are also supported by this driver.

Files and Directories - IDE/CF

The files inside the IDE driver directory are outlined in this section; the generic file system files, outlined in uC/FS Directories and Files, are also
required.

\'M cri um Sof t war e\ uC- FS\ Dev

This directory contains device-specific files.

\'M cri um Sof t war e\ uC- FS\ Dev\ | DE
This directory contains the IDE driver files.

fs_dev_ide. * are device driver for IDE devices. This file requires a set of BSP functions be defined in a file named f s_dev_i de_bsp. ¢
to work with a certain hardware setup.

.\ BSP\ Tenpl at e\ fs_dev_i de_bsp. c is a template BSP. See IDE BSP Overview for more information.
\'M cri um Sof t war e\ uC- FS\ Exanpl es\ BSP\ Dev\ | DE
Each subdirectory contains an example BSP for a particular platform. These are named according to the following rubric:
<Chi p Manuf acturer>\<Board or CPU>\fs_dev_i de_bsp.c
Using the IDE/CF Driver
To use the IDE/CF driver, five files, in addition to the generic file system files, must be included in the build:
® fs_dev_ide.c
® fs_dev_ide.h
® fs_dev_i de_bsp. c (located in the user application or BSP).

The file f s_dev_i de. h must also be #included in any application or header files that directly reference the driver (for example, by registering the
device driver). The following directories must be on the project include path:

® \Mcrium Software\uC-FS\Dri vers\ | DE

A single IDE/CF volume is opened as shown in Listing - Opening a IDE/CF device volume in the Using the IDE/CF Driver page. The file system
initialization (FS_I ni t ()) function must have been previously called.

ROM/RAM characteristics and performance benchmarks of the IDE driver can be found in Driver Characterization.

CPU BOOLEAN App_FS_AddI DE (voi d)

{
FS ERR err;
FS DevDr vAdd((FS_DEV_API *) &FSDev_| DE, (1)
(FS_ERR *)&err);
if ((err I'= FS_ERR NONE) && (err !'= FS_ERR DEV_DRV_ALREADY_ADDED)) ({
return (DEF_FAIL);
}
(2)
FSDev_QOpen((CPU_CHAR *)“ide: 0:", (a)
(void *) 0, (b)
(FS_ERR *)&err);
switch (err) {
case FS_ERR NONE:
br eak;
case FS ERR DEV:
case FS ERR DEV_|I O
case FS_ERR DEV_TI MEQOUT:
case FS_ERR DEV_NOT_PRESENT:
return (DEF_FAIL);
defaul t:
return (DEF_FAIL);
}
(3)
FSVol _Open((CPU_CHAR *)“ide:0:", (a)
(CPU_CHAR *)“ide:0:", (b)
(FS_PARTI TION_NBR) O, (c)
(FS_ERR *)&err);
switch (err) {
case FS_ERR NONE:
br eak;
case FS_ERR _DEV:
case FS ERR DEV_I G
case FS ERR DEV_TI MEQUT:
case FS_ERR DEV_NOT_PRESENT:
case FS_ERR _PARTI TI ON_NOT_FOUND: (4)
return (DEF_FAIL);
defaul t:
return (DEF_FAIL);
}
return (DEF_CK);
}

Listing - Opening a IDE/CF device volume

1)
Register the IDE/CF device driver.

)]

FSDev_Open() opensl/initializes a file system device. The parameters are the device name
(1a)

and a pointer to a device driver-specific configuration structure

(1b)

. The device name

(1a)

is composed of a device driver name (“ide”), a single colon, an ASCII-formatted integer (the unit number) and another colon. Since the IDE/CF
driver requires no configuration, the configuration structure

(1b)

should be passed a NULL pointer.

Since IDE/CF are often removable media, it is possible for the device to not be present when FSDev_QOpen() is called. The device will still be
added to the file system and a volume opened on the (not yet present) device. When the volume is later accessed, the file system will attempt to
refresh the device information and detect a file system (see Using Devices for more information).

(3

FSVol _Open() opens/mounts a volume. The parameters are the volume name
(2a)

, the device name

(2b)

and the partition that will be opened

(2¢)

. There is no restriction on the volume name

(2a)

; however, it is typical to give the volume the same name as the underlying device. If the default partition is to be opened, or if the device is not
partition, then the partition number

(20)

should be zero.

4)
High level format can be applied to the volume if FS_ERR_PARTI TI ON_NOT_FOUND is returned by the call to FSVol _Open() function.

If the IDE initialization succeeds, the file system will produce the trace output as shown in Figure - IDE detection trace output in the Using the
IDE/CF Driver page (if a sufficiently high trace level is configured). See Trace Configuration about configuring the trace level.

Terminal 1,0

Dutpat:

Addingsopening IDE volume "ide:z0:1"...
IDE/CF FOUND: Name : "ide:O:"™
Secs : T783115:=
Size : 3823 MB
=14 : 41403829400000200201
FWl Rev : ZO0070915
HModel : LEXAR ATA FLASH CARD
=« s 0pened dewvice.
F@Partition RdAEntry(): Found poassible partition: 3tart: 0 sector

S5ize : 0 sectors
Type : 00
F3_FAT Openi): File system found: Type : FATIZ

Sec asize: S12 B
Clus size: 8 =ec
Vol size:z: 7831153 =sec
Clus : 978981
FAT= : 2
-« s OpEened volume (mounted).

I ripat: Ctrl codes I &

| Buffer size: 0

Figure - IDE detection trace output
ATA (True IDE) Communication

The interface between an ATA device and host is comprised of data bus, address bus and various control signals, as shown in Figure - True IDE
(ATA) host/device connection in the ATA (True IDE) Communication page. Three forms of data transfer are possible, each with several timing
modes:

® 1 PIO (programmed input/output). PIO must always be possible; indeed, it may be the only possible transfer form on certain hardware.

Using PIO, data requests are satisfied by direct reads or writes to the DATA register. The | DENTI FY_DEVI CE command and standard
sector and multiple sector read/write commands always involve this type of transfer. Five timing modes (0, 1, 2, 3 and 4) are standard;
two more (5 and 6) are defined in the CF specification.

® 2 Mutiword DMA. In Multiword DMA mode, a DMARQ and -DMACK handshake initiates automatic data transmission, during which the
host moves data between its memory and the bus. The DMA read/write commands (READ_DVA, WRI TE_DMA) may use Multiword DMA.
Three timing modes (0, 1 and 2) are standard; two more (3 and 4) are defined in the CF specification.

® 3 Ultra DMA. The purposes of several control signals are reassigned during Ultra DMA transfers. For example, IORDY becomes either
DDMARDY or DSTROBE (depending on the direction) to control data flow. The DMA read/write commands (READ_DVA, WRI TE_DMA)
may use Ultra DMA. Seven timing modes (0, 1, 2, 3, 4, 5 and 6) are standard.

MCU/MPU IDE Drive / CF Card
D[0..15] |4 » D00.D15
AJ0..2] p| A00..A02
-CS0 p -cs0
-CS1 p| -cs1
-IORD »! -IORD
-IOWR » -l0WR
-IORDY P -IORDY
INTRQ | INTRQ
-RESET p| -RESET
DMARQ |« DMARQ
-DMACK p| -DMACK
-DASP |« »| -DASP
-CD1 | -CD1
-CD2 | -CD2
-CSEL
-ATA_SEL

Figure - True IDE (ATA) host/device connection

Pin Name(s) Function

A00, A01, AD2, -CS0, -CS1 Address group. Use by host to select the register or data port that will be accessed.
-IORD Asserted by host to read register or data port.

-IOWR Asserted by host to write register or data port.

-IORDY

INTRQ Interrupt request to the host.

-RESET Hardware reset signal.

DMARQ Asserted by device when it is ready for a DMA transfer.

-DMACK DMA acknowledge signal asserted by host in response to DMARQ.
-DASP Disk Active/Slav Present signal in Master/Slave handshake protocol.
-CD1, -CD2 Chip detect.

The host controls the device via eight registers (see Figure - Register definitions in the ATA (True IDE) Communication page). Seven of these
registers comprise the command block: FR, SC, SN, CYL, CYH, DH and CMD. The command block registers are written, in sequence, to execute
a command. Afterwards, the error and status register return to the host a failure indicator or otherwise signal device operation completion. The
need to poll these registers is removed if the host is instead alerted by an interrupt request (on the INTRQ signal) to attend to the device.

Up to two devices, known as master and slave (or device 0 and device 1) may be located on a single conventional bus. The active device (the
target for the next command) is selected by the DEV bit in the DH register, and generally only one device can be accessed at a time, meaning
that a read or write to one cannot interrupt a read or write to the other.

Figure - Register definitions

Abbreviation

DATA
ERR

FR

SC

SN

CYyL

CYH

DH

CMD
STATUS
ALTSTATUS
DEVCTRL

IDE BSP Overview

A BSP is required so that the IDE driver will work on a particular system. The functions shown in the table below must be implemented.

Function

FSDev_| DE_BSP_Open()
FSDev_| DE_BSP_C ose()
FSDev_| DE_BSP_Lock()

FSDev_| DE_BSP_Unl ock()

SRST Software reset bit
DEVCTERL nIEN Device interrupt enable
HHEEENNC
DEV Device selected:
DH 0= DE\"!DE-' 0 (Master)
1 = Device 1 (Slave)
ABRT Command has
ERR been aborted
DEDY DRQ Device is ready to
Device is ready to transfer a word of
STATUS accepl commands data
and
ALTSTATUS BSY ERR Error occurred during
Device is busy execution of previous
command
Name R/W Control Signals
Cs1 CS0 A02 AO1
Data R/W 0 1 0 0
Error R 0 1 0 0
Features w 0 1 0 0
Sector Count w 0 1 0 1
Sector Number w 0 1 0 1
Cylinder Low w 0 1 1 0
Cylinder High w 0 1 1 0
Card/Drive/Head w 0 1 1 1
Command w 0 1 1 1
Status R 0 1 1 1
Alternate Status R 1 0 1 1
Device Control w 1 0 1 1

Description

Open (initialize) hardware.

Close (uninitialize) hardware.

Acquire IDE bus lock.

Release IDE bus lock.

A0O

b O kB O

o O B

£ & N

FSDev_| DE_BSP_Reset ()
FSDev_| DE_BSP_RegRd()
FSDev_| DE_BSP_RegW ()
FSDev_| DE_BSP_CmdW ()
FSDev_| DE_BSP_Dat aRd()
FSDev_| DE_BSP_Dat aW ()
FSDev_| DE_ BSP_DVA Start ()
FSDev_| DE_BSP_DNMA_End()
FSDev_| DE_BSP_Get Dr vNbr ()
FSDev_| DE_BSP_Get ModesSupport ed()
FSDev_| DE_BSP_Set Mode()

FSDev_| DE_BSP_DI y400_ns()

Table - IDE BSP functions

Hardware-reset IDE device

Read from IDE device register.

Write to IDE device register.

Write command to IDE device register.
Read data from IDE device.

Write data to IDE device.

Setup DMA for command (Initialize channel).
End DMA transfer (and uninitialize channel).
Get IDE drive number.

Get supported transfer modes.

Set transfer modes.

Delay for 400 ns.

Mo DMA Yes
W
L k 4
Write command Setup DMA
FSDev_IDE BSP_CmdWr () FSDev_ IDE BSP DMA Star
Y k4
: Write command
Wait for data request + FSDev IDE BSP | (
v L
Read or write data End DMA
FSDev_ IDE BSP Da taRd/Wr () FSDev_1I DE_ESP_DHA_End
Yes
More data?
Mo

Check for error

k J

1 Return }

Figure - Command execution

UC/FS Reference Guide

Version 4.07.00

The puC/FS Reference Guide contains the following sections:

UC/FS API Reference
UC/FS Error Codes

UC/FS Porting Manual
UC/FS Types and Structures
UC/FS Configuration

Shell Commands

Bibliography

UC/FS API Reference

This chapter provides a reference to uC/FS services. The following information is provided for each entry:

A brief description of the service

The function prototype

The filename of the source code

The #define constant required to enable code for the service
A description of the arguments passed to the function

A description of returned value(s)

Specific notes and warnings regarding use of the service
One or two examples of how to use the function

Many functions return error codes. These error codes should be checked by the application to ensure that the uC/FS function performed its
operation as expected.

Each of the user-accessible file system services is presented in alphabetical order within an appropriate section; the section for a particular

function can be determined from its name.

Section Functions begin with...
General file system functions FS_

POXIX API functions fs_

Device functions FSDev_
Directory functions FSDir_

Entry functions FSEntry_
File functions FSFile_
Time functions FSTi me_
Volume functions FSvol _
RAMDisk driver functions FSDev_RAM_
NAND driver functions FS_NAND
SD/MMC driver functions FSDev_SD_
NAND driver functions FSDev_NAND_
NOR driver functions FSDev_NOR_
MSC driver functions FSDev_MsC _
FAT functions FS_FAT_

BSP functions FS BSP_

OS functions FS OS_

General File System Functions

voi d

FS_DevDr vAdd (FS_DEV_API *p_dev_api,
FS ERR *p_err);

FS_ERR

FS Init (FS_CFG *p_fs_cfg);

CPU_| NTO8U

FS_Ver si onGet (voi d);

voi d
FS_Worki ngDi r Get (CPU_CHAR *path_dir,
CPU_SIZE' T |en_nux,

FS_ERR *p_err);

voi d

FS_Wor ki nghi r Set (CPU_CHAR *path_dir,

FS _ERR *p_err);

voi d

FS_DevDr vAdd (FS_DEV_API *p_dev_drv,
FS _ERR *p_err);

FS_DevDrvAdd()

void FS DevDrvAdd (FS_DEV_API *p_dev_drv,
FS_ERR *p_err);

File Called from Code enabled by

fs.c Application N/A
Adds a device driver to the file system.

Arguments
p_dev_drv
Pointer to device driver (see Device Driver).
p_err
Pointer to variable that will receive the return error code from this function:
FS_ERR_NONE
Device driver added.
FS ERR NULL_PTR
Argument p_dev_dr v passed a NULL pointer.
FS_ERR_DEV_DRV_ALREADY_ ADDED
Device driver already added.
FS_ERR DEV_DRV_| NVALI D_NAME
Device driver name invalid.
FS_ERR _DEV_DRV_NO TBL_POS_AVAI L

No device driver table position available.

Returned Value

None.

Notes/Warnings

. The NameGet () device driver interface function must return a valid name:

The name must be unique (e.g., a name that is not returned by any other device driver);

The name must not include any of the characters: ', ‘\’ or */".

The name must contain fewer than FS_CFG_MAX_DEV_DRV_NAME_LEN characters;

The name must not be an empty string.

. The I ni t () device driver interface function is called to initialize driver structures and any hardware for detecting the presence of devices
(for a removable medium).

FS_Init()

SRS AN

FS ERR FS Init (FS CFG *p fs cfg);

File Called from Code enabled by

fs.h Application N/A
Initializes pC/FS and must be called prior to calling any other uC/FS API functions.

Arguments
p_fs_cfg
Pointer to file system configuration (see FS_CFG).
Returned Value
FS_ERR_NONE, if successful;
Specific initialization error code, otherwise.

The return value SHOULD be inspected to determine whether uC/FS is successfully initialized or not. If W/FS did not successfully initialize, search
for the returned error in fs_err.h and source files to locate where uC/FS initialization failed.

Notes/Warnings

1. pC/LIB memory management function Mem_| ni t () must be called prior to calling this function.

FS_VersionGet()

CPU_I NT16U FS VersionCGet (void);

File Called from Code enabled by
fs.c Application N/A

Gets the uC/FS software version.

Arguments

None.

Returned Value

UC/FS software version.

Notes/Warnings

1. The value returned is multiplied by 100. For example, version 4.03.00 would be returned as 40300.
FS_WorkingDirGet()

void FS WorkingDirGet (CPU_CHAR *path_dir,
CPU SIZE T si ze,

FS ERR *p_err);
File Called from Code enabled by
fs.c Application; FS_CFG WORKI NG DI R_EN

fs_getcwd()

Get the working directory for the current task.

Arguments
path_dir
String buffer that will receive the working directory path.
si ze
Size of string buffer.
p_err
Pointer to variable that will receive the return error code from this function:
FS_ERR_NONE
Working directory obtained.
FS ERR NULL_PTR
Argument path_dir passed a NULL pointer.
FS _ERR_NULL_ARG
Argument size passed a NULL value.
FS_ERR_NAME_BUF_TOO_SHORT
Argument size less than length of path
FS_ERR VOL_NONE_EXI ST

No volumes exist.

Returned Value

None.

Notes/Warnings

1. If no working directory is assigned for the task, the default working directory—the root directory on the default volume—uwill be returned in
the user buffer and set as the task’s working directory.

FS_WorkingDirSet()

void FS WorkingDirSet (CPU CHAR *path_dir,
FS ERR *p_err);

File Called from Code enabled by
S8 tife working directfREFRI R urrent task. FS_CFG_WORKING_DI R_EN
fs_chdir()
Arguments

path_dir

String buffer that specified EITHER...
(a) the absolute working directory path to set;
(b) a relative path that will be applied to the current working directory.
p_err
Pointer to variable that will receive the return error code from this function:
FS_ERR_NONE
Working directory set.
FS_ERR_NAME_NULL
Argument pat h_di r passed a NULL pointer.
FS_ERR _VOL_NONE_EXI ST
No volumes exist.
FS_ERR_WORKI NG DI R_NONE_AVAI L
No working directories available.
FS_ERR WORKI NG DI R | NVALI D

Argument pat h_di r passed an invalid directory.

Returned Value

None.

Notes/Warnings

None.
Posix API Functions

char *
fs_asctine_r (const struct fs_tm *p_tine,

char *str_tine);

int

fs_chdir (const char *path_dir);
voi d

fs_clearerr (FS_FI LE *p_file);
int

fs_closedir (FS_DR *p_dir);
char *

fs_ ctime_r (const fs_time_t *p_ts,
char *str_tine);

int

fs_fclose (FS_FILE *p_file);
int

fs_feof (FS_FILE *p_file);

int

fs_ferror

int

fs_fflush

int
fs_fgetpos

fs_fpos_t

voi d

fs_flockfile

FS_FILE *
fs_fopen

const char

fs_size_t
fs_fread
fs_size_ t
fs_size_t

FS FILE

int
fs_fseek
long int

int

int
fs_fsetpos

fs_fpos_t

long int

fs ftell

int
fs_ftruncate
fs_off_t

int

fs ftrylockfile

voi d

fs_funlockfile

(FS_FILE

(FS_FILE

(FS_FILE

*p_pos);

(FS_FILE

(const char

*str_node);

(void
si ze,
nitens,

*p_file);

(FS_FILE
of f set,

origin);

(FS_FILE

*p_pos);

(FS_FILE

(FS_FILE

si ze);

(FS_FI LE

(FS_FILE

*p_file);
*p_file);
*p_file,
*p_file);
*name_ful I,
*p_dest,
*p_file,
*p_file,
*p_file);
*p_file,
*p_file);

*p_file);

fs_size_t

fs_fwite (void *p_src,
fs_size_t si ze,

fs_size_t nitens,

FS FI LE *p file);

char *

fs_getcwd (char *path_dir,
fs_size_ t si ze);

struct fs_tm *
fs_localtime_r (const fs_tine_t *p_ts,

struct fs_tm *p_tinme);

int

fs_mkdir (const char *name_ful l);

fs_time_t

fs_nmktine (struct fs_tm *p_tinme);

FSDIR *

fs_opendir (const char *name_ful l);

int
fs_readdir (FS_DR *p_dir,
struct fs_dirent *p_dir_entry,

struct fs_dirent **pp_result);

int

fs_renove (const char *name_ful I');

int
fs_renane (const char *name_ful | _ol d,

const char *nanme_ful | _new);

voi d

fs_rew nd (FS_FI LE *p_file);
int
fs_set buf (FS_FILE *p_file,

fs_size_t si ze);

int

fs_setvbuf (FS_FI LE *p_file,
char *p_buf,

int node,

fs_size_t si ze);

fs_asctime_r()

char *fs_asctime_r (const struct fs_tm *p_tine,

char *str_tinme);
File Called from Code enabled by
fs_api.c Application FS _CFG_API _EN

Converts date/time to string in the form:
Sun Sep 16 01:03:52 1973\ n\0
Arguments
p_tine
Pointer to date/time to format.
str_tinme
String buffer that will receive date/time string (see Note).
Returned Value
Pointerto str _ti e, if NO errors.

Pointer to NULL, otherwise.

Notes/Warnings

1. str_ti me must be at least 26 characters long. Buffer overruns must be prevented by caller.

fs_chdir()

int fs_chdir (const char *path_dir);

File Called from Code enabled by

fs_api.c Application FS _CFG_API _EN and FS_CFG WORKI NG DI R_EN
Set the working directory for the current task.

Arguments
path_dir
String buffer that specifies either...

® the absolute working directory path to set;
® relative path that will be applied to the current working directory.

Returned Value

0, if no error occurs.

-1, otherwise

Notes/Warnings

None.
fs_clearerr()

void fs_clearerr (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS _CFG_API _EN
Clear EOF and error indicators on a file.

Arguments
p_file

Pointer to a file.
Returned Value

None.

Notes/Warnings

None.
fs_closedir()

int fs_closedir (FS.DIR *p_dir);

File Called from Code enabled by

fs_api.c Application FS_CFG_API _ENand FS_CFG _DI R_EN
Close and free a directory.

Arguments
p_dir

Pointer to a directory.
Returned Value

0, if the directory is successfully closed.

-1, if any error was encountered.

Notes/Warnings

1. After a directory is closed, the application must desist from accessing its directory pointer. This could cause file system corruption, since
this handle may be re-used for a different directory.

fs_ctime_r()

char *fs_ctine_r (const fs_time_t *p_ts,
char *str_tinme);

File Called from Code enabled by

fs_api.c Application FS_CFG_API _EN
Converts timestamp to string in the form:
Sun Sep 16 01:03:52 1973\n\0
Arguments
p_ts
Pointer to timestamp to format.
str_time
String buffer that will receive date/time string (see Note).
Returned Value
Pointer to str_time, if NO errors.
Pointer to NULL, otherwise.
Notes/Warnings

1. str_ti me must be at least 26 characters long. Buffer overruns must be prevented by caller.
fs_fclose()

int fs_ fclose (FS_FILE *p_file);

File Called from Code enabled by
fs_api.c Application FS _CFG_API _EN
Close and free a file.
Arguments
p_file
Pointer to a file.
Returned Value
0, if the file was successfully closed.

FS_ECF, otherwise.

Notes/Warnings

1. After afile is closed, the application must desist from accessing its file pointer. This could cause file system corruption, since this handle

may be re-used for a different file.
2. If the most recent operation is output (write), all unwritten data is written to the file.

3. Any buffer assigned with f s_set buf () orfs_set vbuf () shall no longer be accessed by the file system and may be re-used by the

application.

fs_feof()

int fs_feof (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS_CFG_API _EN

Test EOF indicator on a file.

Arguments
p_file

Pointer to a file.
Returned Value
0, if EOF indicator is not set or if an error occurred
Non-zero value, if EOF indicator is set.
Notes/Warnings

1. The return value from this function should ALWAYS be tested against 0:

rtn = fs_feof (p_file);
if (rtn == 0) {

/1 EOF indicator is NOT set
} else {

/1 EOF indicator is set

2. If the end-of-file indicator is set (i.e., f s_f eof () returns DEF_YES), f s_cl earerr () can be used to clear that indicator.
fs_ferror()

int fs_ ferror (FS_FILE *p_file);

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN
Test error indicator on a file.

Arguments
p_file

Pointer to a file.
Returned Value
0, if error indicator is not set or if an error occurred
Non-zero value, if error indicator is set.
Notes/Warnings

1. The return value from this function should ALWAYS be tested against 0:

rtn = fs_ferror(p_file);
if (rtn == 0) {

/1l Error indicator is NOT set
} else {

/1 Error indicator is set

2. If the error indicator is set (i.e., f s_f error () returns a non-zero value), f s_cl earerr () can be used to clear that indicator.

fs_fflush()

int fs fflush (FS_FILE *p_file);

File Called from Code enabled by
fs_api.c Application FS_CFG_API_EN and FS_CF_FILE_BUF_EN

Flush buffer contents to file.

Arguments
p_file

Pointer to a file.
Returned Value

0, if flushing succeeds.

FS_ECF, otherwise.

Notes/Warnings

1. If the most recent operation is output (write), all unwritten data is written to the file.
2. If the most recent operation is input (read), all buffered data is cleared.

fs_fgetpos()

int fs_fgetpos (FS_FILE *p_file,
fs_fpos_t *p_pos);

File Called from Code enabled by
fs_api.c Application FS _CFG_API _EN
Get file position indicator.

Arguments
p_file
Pointer to a file.
p_pos
Pointer to variable that will receive the file position indicator.
Returned Value
0, if no error occurs.

Non-zero value, otherwise.

Notes/Warnings

1. The return value should be tested against O:

rtn = fs_fgetpos(p_file, &pos);
if (rtn == 0) {

/1 No error occurred
} else {

/1 Handl e error

2. The value placed in pos should be passed to FS_f set pos() to reposition the file to its position at the time when this function was called.

fs_flockfile()

void fs_flockfile (FS_FILE *p_file);

File Called from Code enabled by
fs_api.c Application FS _CFG APl _ENand FS_CFG FI LE_LOCK_EN
Acquire task ownership of a file.

Arguments
p_file

Pointer to a file.

Returned Value

None.

Notes/Warnings

1. Alock count is associated with each file:
a. The file is unlocked when the lock count is zero.
b. If the lock count is positive, a task owns the file.
c. Whenfs_flockfile() iscalled, if...
i. ...the lock count is zero OR
ii. ...the lock count is positive and the caller owns the file...
iii. ...the lock count will be incremented and the caller will own the file. Otherwise, the caller will wait until the lock count
returns to zero.
d. Eachcalltofs_funl ockfil e() incremenets the lock count.
e. Matching callstofs_fl ockfile() (orfs_ftrylockfile())andfs_funlockfile() canbe nested.

fs_fopen()

FS FILE *fs_fopen (const char “*name_full,
const char *str_node);

File Called from Code enabled by
fs_api.c Application FS _CFG APl _EN
Open a file.
Arguments
name_ful |

Name of the file. See Useful Information for information about file names.

str_node

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths

Access mode of the file.

Returned Value
Pointer to a file, if NO errors.

Pointer to NULL, otherwise.

Notes/Warnings

1. The access mode should be one of the strings shown in table Opening, Reading and Writing Files - POSIX”.
2. The character ‘b’ has no effect.
3. Opening a file with read mode fails if the file does not exist.
4. Opening a file with append mode causes all writes to be forced to the end-of-file.
fs_fread()
fs size_t fs_fread (void *p_dest,
fs size t si ze,
fs _size_ t nitens,
FS_FI LE *p_file);
File Called from Code enabled by
fs_api.c Application FS _CFG_API _EN

Read from a file.

Arguments
p_dest

Pointer to destination buffer.
si ze

Size of each item to read.
nitems

Number of items to read.
p_file

Pointer to a file.

Returned Value

Number of items read.

Notes/Warnings

1. The size or nitems is 0, then the file is unchanged and zero is returned.

2. If the file is buffered and the last operation is output (write), then acallto fs_fl ush() orfs_fsetpos() orfs_fseek()mustoccur
before input (read) can be performed.

3. The file must have been opened in read or update (read/write) mode.

fs_fseek()

int fs_fseek (FS_FILE *p_file,
long int of f set,
i nt origin);
File Called from Code enabled by

fs_api.c Application; fs_frew nd() FS _CFG_API _EN

https://doc.micrium.com/display/fsdoc/Opening%2C+Reading+and+Writing+Files+-+POSIX#Opening,ReadingandWritingFiles-POSIX-Opening,ReadingandWritingFiles-POSIX-Table-fs_fopen()modestringsinterpretations

Set file position indicator.

Arguments
p_file
Pointer to a file.
of f set
Offset from the file position specified by whence.
origin
Reference position for offset:
FS_SEEK_SET
Offset is from the beginning of the file.
FS_SEEK_CUR
Offset is from the current file position.
FS_SEEK_END

Offset is from the end of the file.

Returned Value

0, if the function succeeds.
-1, otherwise.
Notes/Warnings

1. If aread or write error occurs, the error indicator shall be set.

2. The new file position, measured in bytes form the beginning of the file, is obtained by adding offset to...:

a. ...0 (the beginning of the file), if whence is FS_SEEK_SET;
b. ...the current file position, if whence is FS_SEEK_CUR;
c. ...the file size, if whence is FS_SEEK_END;
3. The end-of-file indicator is cleared.
4. If the file position indicator is set beyond the file’s current data...
a. ...and data is later written to that point, reads from the gap will read 0.
b. ...the file must be opened in write or read/write mode.

fs_fsetpos()

int fs_ fsetpos (FS_FILE *p_file,
fs_fpos_t *p_pos);

File Called from Code enabled by

fs_api.c Application FS _CFG_API _EN
Set file position indicator.

Arguments
p_file
Pointer to a file.
p_pos
Pointer to variable containing file position indicator.
Returned Value
0, if the function succeeds.

Non-zero value, otherwise.

Notes/Warnings

1. The return value should be tested against O:

rtn = fs_fsetpos(pfile, &pos);
if (rtn == 0) {

/1 No error occurred
} else {

/1 Handl e error

2. If aread or write error occurs, the error indicator shall be set.

3. The value stored in pos should be the value from an earlier call to f s_f get pos() . No attempt is made to verify that the value in pos was
obtained by a call to f s_f get pos() .

4. Seealsofs_fseek().

fs_ftéﬂ()

long int fs_ftell (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS _CFG_API _EN
Get file position indicator.

Arguments
p_file

Pointer to a file.
Returned Value

The current file system position, if the function succeeds.

-1, otherwise.

Notes/Warnings

1. The file position returned is measured in bytes from the beginning of the file.
fs_ftruncate()

int fs_ftruncate (FS_FILE “*p_file,
fs_off t si ze);

File Called from Code enabled by

fs_api.c Application FS_CFG_API _ENand not FS_CFG_RD_ONLY_EN
Truncate a file.

Arguments
p_file

Pointer to a file.
si ze

Size of the file after truncation

Returned Value

0, if the function succeeds.

-1, otherwise.

Notes/Warnings

. The file must be opened in write or read/write mode.
Iffs_ftruncate() succeeds, the size of the file shall be equal to length.

. If the size of the file was previously greater than length, the extra data shall no longer be available.

If the file previously was smaller than this length, the size of the file shall be increased.

If the file position indicator before the call to f s_f t runcat e() lay in the extra data destroyed by the function, then the file position will
be set to the end-of-file.

fs_ftrylockfile()

N

int fs_ ftrylockfile (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS CFG APl _ENand FS_CFG FI LE_LOCK_EN
Acquire task ownership of a file (if available).
Arguments
p_file

Pointer to a file.

Returned Value
0, if no error occurs and the file lock is acquired.
Non-zero value, otherwise.

Notes/Warnings

1. fs_ftrylockfile() isthe non-blocking version of f s_f | ockfi | e() ; if the lock is not available, the function returns an error.
2. Seefs_flockfile().

fs_funlockfile()

void fs_funlockfile (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS CFG APl _ENand FS_CFG FI LE_LOCK_EN
Release task ownership of a file.
Arguments
p_file

Pointer to a file.

Returned Value
None.
Notes/Warnings

1. Seefs_flockfile().

fs_fwrite()

fs_size_t fs_fwite (void *p_src,
fs_size_t si ze,
fs_size_t nitens,
FS FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS _CFG_API _ENand not FS_CFG_RD ONLY_EN
Write to a file.
Arguments
p_src

Pointer to source buffer.
si ze

Size of each item to write.
ni tems

Number of items to write.
p_file

Pointer to a file.

Returned Value

Number of items written.

Notes/Warnings

1. The size or nitems is 0, then the file is unchanged and zero is returned.

2. If the file is buffered and the last operation is input (read), then a call to f s_f set pos() or f s_f seek() must occur before output (write
can be performed unless the end-of-file was encountered.

3. The file must have been opened in write or update (read/write) mode.

4. If the file was opened in append mode, all writes are forced to the end-of-file.

fs_getcwd()

char *fs_getcwd (char *path_dir,
fs_size_t si ze)

File Called from Code enabled by
fs_api.c Application FS_CFG_API _ENand not FS_CFG_WORKI NG DI R_EN
Get the working directory for the current task.
Arguments
path_dir
String buffer that will receive the working directory path.
si ze
Size of string buffer.

Returned Value

Pointer to path_dir, if no error occurs.
Pointer to NULL, otherwise
Notes/Warnings

None.
fs_localtime_r()

struct fs_tm *fs_localtine_r (const fs_tine_t *p_ts,
struct fs_tm *p_tine);
File Called from Code enabled by
fs_api.c Application FS _CFG_API _EN

Convert timestamp to date/time.

Arguments
p_ts
Pointer to time value.

p_tine

Pointer to variable that will receive broken-down time.

Returned Value

Pointer to p_time, if NO errors.

Pointer to NULL, otherwise.

Notes/Warnings

None.
fs_mkdir()
int fs_nkdir (const
File Called from
fs_api.c Application

Create a directory.

Arguments
nanme_ful |

Name of the directory.

Returned Value

0, if the directory is created.

-1, if the directory is not created.

Notes/Warnings

None.

Example

char *name_full);

Code enabled by

FS CFG APl _ENand not FS_CFG RD ONLY_EN

void App_Fnct (void)

{
int err;
err = fs_nkdir(“sd: 0:\\data\\ol d"); /[* Make dir. */
if (err '=0) {

APP_TRACE_| NFOQ((“Coul d not make dir.”));

}

}

fs_mktime()

fs time_t fs_nktine (struct fs_tm *p_tine);

File Called from Code enabled by
fs_api.c Application FS_CFG_API _EN
Convert date/time to timestamp.
Arguments

p_tine

Pointer to date/time to convert.

Returned Value

Time value, if NO errors.
(fs_tinme_t)-1, otherwise.
Notes/Warnings

None.

fs_opendir()

FS DIR *fs_opendir (const char *name_full);

File Called from Code enabled by

fs_api.c Application FS_CFG_API _ENand FS_CFG DI R_EN
Open a directory.
Arguments

nane_ful |

Name of the directory. See PC/FS File and Directory Names and Paths for information about directory names.

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-µC/FSFileandDirectoryNamesandPaths

Returned Value
Pointer to a directory, if NO errors.

Pointer to NULL, otherwise.

Notes/Warnings

None.

fs_readdir_r()

int fs readdir (FS DR *p_dir,
struct fs_dirent *p_dir_entry,
struct fs_dirent **pp_result);

File Called from Code enabled by

fs_api.c Application FS CFG_API _ENand FS_CFG DI R_EN
Read a directory entry from a directory.

Arguments
p_dir
Pointer to a directory.
p_dir_entry
Pointer to variable that will receive directory entry information.
pp_result
Pointer to variable that will receive:

® p_dir_entry,if NO error occurs AND directory does not encounter EOF.
® pointer to NULL if an error occurs OR directory encounters EOF.

Returned Value

1, if an error occurs.
0, otherwise.

Notes/Warnings

1. Entries for “dot” (current directory) and “dot-dot” (parent directory) shall be returned, if present. No entry with an empty name shall be

returned.
2. If an entry is removed from or added to the directory after the directory has been opened, information may or may not be returned for that

entry.
fs_remove()

int fs_renove (const char *nane_full);

File Called from Code enabled by
fs_api.c Application FS_CFG_API _ENand not FS_CFG RD_ONLY_EN
Delete a file or directory.

Arguments
name_ful |

Name of the entry.

Returned Value
0, if the file is not removed.

-1, if the file is not removed.

Notes/Warnings

1. When a file is removed, the space occupied by the file is freed and shall no longer be accessible.
2. A directory can be removed only if it is an empty directory.
3. The root directory cannot be removed.

Example

void App_Fnct (void)
{

int err;
err = fs_renmove(“sd: 0:\\data\\file001.txt"); /* Renove file. */
if (err '=0) {
APP_TRACE | NFQ((“Coul d not renove file.”));
}
err = fs_renove(“sd: 0:\\data\\ol d"); /* Renove dir. */
if (err '=0) {
APP_TRACE_| NFQ((“Coul d not renove dir.”));
}

fs_rename()

int fs_renane (const

const
File Called from
fs_api.c Application

Rename a file or directory.

Arguments
name_full _old

Old name of the entry.
narme_ful | _new

New name of the entry.

Returned Value

0, if the entry is not renamed.

-1, if the entry is not renamed.

char
char

*nanme_full _old,
*name_full _new);

Code enabled by

FS_CFG APl _ENand not FS_CFG RD_ONLY_EN

Notes/Warnings

1. nane_ful |l _ol d and nane_f ul | _new must specify entries on the same volume.
. If pat h_ol d and pat h_new specify the same entry, the volume will not be modified and no error will be returned.
3. If pat h_ol d specifies a file:
a. pat h_newmust not specify a directory;
b. if pat h_newis a file, it will be removed.
4. If pat h_ol d specifies a directory:
a. pat h_newmust not specify a file
b. if pat h_newis a directory, pat h_newmust be empty; if so, it will be removed.
5. The root directory may not be renamed.

N

Example

void App_Fnct (void)

{
int err;
/* See Note #1. */
err = fs_renane(“sd: 0:\\data\\fileOOl.txt", /* Renane file. */
“sd: 0:\\data\\ol d\\file001l.txt");
if (err 1'=0) {
APP_TRACE | NFQ((“Coul d not renane file.”));
}
}

€

For this example file rename to succeed, the following must be true when the function is called:

® Thefilesd: 0:\data\fil e001.txt must exist.
® The directory sd: 0: \ dat a\ ol d must exist.
® |fsd:0:\data\ol d\fil e001. t xt exists, it must not be read-only.

If sd: 0:\data\ol d\fil e001. t xt exists and is not read-only, it will be removed and sd: 0: \ dat a\ fi | e001. t xt will be renamed.
fs_rewind()

void fs_rewind (FS_FILE *p_file);

File Called from Code enabled by
fs_api.c Application FS _CFG_API _EN
Reset file position indicator of a file.
Arguments
p_file

Pointer to a file.

Returned Value

None.

Notes/Warnings

1. fs_rew nd() is equivalent to
(void)fs_fseek(p_file, 0, FS_SEEK SET)
except that it also clears the error indictor of the file.

fs_rmdir()

int fs_rndir (const char *nane_full);

File Called from Code enabled by

fs_api.c Application FS _CFG_ APl _ENand not FS_CFG_RD ONLY_EN
Delete a directory.
Arguments
name_ful |

Name of the file.

Returned Value
0, if the directory is removed.
-1, if the directory is not removed.
Notes/Warnings

1. Adirectory can be removed only if it is an empty directory.
2. The root directory cannot be removed.

Example

void App_Fnct (void)

{
int err;
err = fs rndir(“sd: 0:\\data\\ol d”); /* Renove dir.
if (err 1'=0) {
APP_TRACE_I NFO((“Coul d not renove dir."));
}
}

fs_setbuf()

int fs_setbuf (FS_FILE *p_file,

char *p_buf);
File Called from Code enabled by
fs_api.c Application FS_CFG APl _ENand FS_CFG FI LE BUF_EN

Assign buffer to a file.

*/

Arguments
p_file

Pointer to a file.
p_buf

Pointer to a buffer of FS_BUFSI Z bytes.

Returned Value
-1, if an error occurs.

0, if no error occurs.

Notes/Warnings

1. fs_setbuf () isequivalentto fs_set vbuf () invoked with FS__I OFBF for mode and FS_BUFSI ZE for size.
fs_setvbuf()

int fs_setvbuf (FS_FILE *p_file,
char *p_buf,
i nt node,
fs_size_ t si ze);

File Called from Code enabled by

fs_api.c Application FS _CFG APl _ENand FS_CFG_FI LE_BUF_EN
Assign buffer to a file.

Arguments
p_file
Pointer to a file.
p_buf
Pointer to buffer.
node
Buffer mode:
FS | ONBR
Unbuffered.
FS | OFBF
Fully buffered.
si ze
Size of buffer, in octets.
Returned Value
-1, if an error occurs.

0, if no error occurs.

Notes/Warnings

1. fs_setvbuf () mustbe used after a stream is opened but before any other operation is performed on stream.
2. si zemust be more than or equal to the size of one sector; it will be rounded DOWN to the nearest size of a multiple of full sectors.
3. Once a buffer is assigned to a file, a new buffer may not be assigned nor may the assigned buffer be removed. To change the buffer, the

file should be closed and re-opened.
4. Upon power loss, any data stored in file buffers will be lost.

Device Functions
Most device access functions can return any of the following device errors:
FS_ERR DEV_I NVALI D_LOW FMT

Device needs to be low-level formatted.
FS_ERR DEV

Device access error.
FS_ERR DEV IO

Device I/O error.
FS_ERR _DEV_NOT_OPEN

Device is not open.
FS_ERR_DEV_NOT_PRESENT

Device is not present.
FS_ERR DEV_TI MEQUT

Device timeout error.

Each of these indicates that the state of the device is not suitable for the intended operation.

voi d

FSDev_AccessLock (CPU_CHAR *nane_dev,
CPU_I NT32U tinmeout,

FS_ERR *p_err);

voi d

FSDev_AccessUnl ock (CPU_CHAR *nane_dev,
FS ERR *p_err);

voi d

FSDev_d ose (CPU_CHAR *nane_dev,
FS_ERR *p_err);

FS_PARTI TI ON_NBR

FSDev_Get Nbr Parti tions (CPU_CHAR *nane_dev,
FS_ERR *p_err);

voi d

FSDev_Get DevNane (FS_QrY dev_nbr,
CPU_CHAR *nane_dev) ;

FS _Qry

FSDev_Get DevCnt (void);

FS _Qry

FSDev_Get DevCnt Max (void);

voi d
FSDev_I nval i dat e

FS_ERR

voi d
FSDev_Open
voi d

FS_ERR

FS_PARTI TI ON_NBR
FSDev_Partiti onAdd
FS_SEC Qry

FS_ERR

voi d

FSDev_Parti ti onFi nd
FS_PARTI TI ON_NBR
FS_PARTI TI ON_ENTRY
FS_ERR

voi d
FSDev_Partitionlnit
FS_SEC_QrY

FS_ERR

voi d
FSDev_Query
FS_DEV_I NFO

FS_ERR

voi d
FSDev_Rd
voi d
FS_SEC_NBR
FS_SEC Qry

FS_ERR

CPU_BOOLEAN
FSDev_Ref resh

FS_ERR

(CPU_CHAR

*p_err);

(CPU_CHAR
*p_dev_cf g,

*p_err);

(CPU_CHAR
partition_size,

*p_err);

(CPU_CHAR
partition_nbr,
*p_partition_entry,

*p_err);

(CPU_CHAR
partition_size,

*p_err);

(CPU_CHAR
*p_info,

*p_err);

(CPU_CHAR
*p_dest,
start,
cnt,

*p_err);

(CPU_CHAR

*p_err);

*nane_dev,

*nanme_dev,

*nane_dev,

*nane_dev,

*nanme_dev,

*nane_dev,

*nane_dev,

*nane_dev,

voi d

FSDev_W (CPU_CHAR *nane_dev,
voi d *p_src,

FS_SEC_NBR start,

FS_SEC QrY cnt,

FS_ERR *p_err);

FSDev_AccessLock()

voi d FSDev_AccessLock (CPU_CHAR *nanme_dev,
CPU_I NT32U ti nmeout

FS ERR *p_err);
File Called from Code enabled by
fs_dev.c Application N/A

Acquire exclusive access to a device. See also Raw Device I/O.

Arguments
nane_dev
Device name.
timeout
Time to wait for a lock in milliseconds.
p_err
Pointer to variable that will receive return error code from this function :
FS_ERR_NONE
Device removed successfully.
FS_ERR_DEV_NOT_OPEN
Device is not open.
FS_ERR_NAME_NULL
Argument nanme_dev passed a NULL pointer
FS ERR OS_LOCK
Error acquiring device access lock.
FS_ERR_OS_LOCK_TI MEOUT

Time-out waiting for device access lock.

Returned Value

None.

Notes/Warnings

None.
FSDev_AccessUnlock()

void FSDev_AccessUnl ock (CPU_CHAR *nane_dev,

FS_ERR *p_err);
File Called from Code enabled by
fs_dev.c Application N/A

Release exclusive access to a device. See also section Raw Device 1/O.

Arguments
name_dev
Device name.

p_err

Pointer to variable that will receive return error code from this function :
FS_ERR_NONE
Device removed successfully.
FS_ERR DEV_NOT_OPEN
Device is not open.
FS_ERR_NAME_NULL

Argument nane_dev passed a NULL pointer

Returned Value

None.

Notes/Warnings

None.
FSDev_Close()

void FSDev_C ose (CPU CHAR *nane_dev,
FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application N/A
Close and free a device.

Arguments
name_dev
Device name.

p_err

Pointer to variable that will receive return error code from this function :
FS_ERR_NONE

Device removed successfully.
FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_NAMVE_NULL

Argument name_dev passed a NULL pointer

Returned Value

None.

Notes/Warnings

None.

FSDev_GetDevCnt()

FS QTY FSDev_Get DevCnt (void);

File Called from Code enabled by

fs_dev.c Application N/A
Gets the number of open devices.

Arguments

None.
Returned Value
Number of devices currently open.

Notes/Warnings

None.

FSDev_GetDevCntMax()

FS QTY FSDev_GCet DevCnt Max (voi d);

File Called from Code enabled by

fs_dev.c Application N/A
Gets the maximum possible number of open devices.
Arguments
None.
Returned Value
Maximum number of open devices.
Notes/Warnings

None.
FSDev_GetDevName()

voi d FSDev_Get DevNane (FS_QrY dev_nbr,
CPU_CHAR *nane_dev);

File Called from Code enabled by

fs_dev.c Application N/A
Get name of the nth open device. dev_nbr should be between 0 and the return value of FSDev_Get Nor Devs() (inclusive).

Arguments
dev_nbr

Device number.
name_dev

String buffer that will receive the device name (see Note #2).

Returned Value

None.

Notes/Warnings

1. nane_dev must point to a character array of FS_CFG_MAX_DEV_NAME_LEN characters.
2. If the device does not exist, name_dev will receive an empty string.

FSDev_GetNbrPartitions()

FS PARTI TI ON_NBR FSDev_Get NbrPartitions (CPU CHAR *nane_dev,
FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application FS_CFG_PARTI TI ON_EN
Get number of partitions on a device

Arguments
name_dev
Pointer to the device name.
p_err
Pointer to variable that will receive return error code from this function.
FS_ERR_NONE
Number of partitions obtained.
FS_ERR _DEV_VOL_OPEN
VVolume open on device.
FS_ERR | NVALI D SI G
Invalid MBR signature.
FS_ERR_NAME_NULL
Argument nanme_dev passed a NULL pointer.

Or device access error (see UC/FS Error Codes).

Returned Value
Number of partitions on the device, if no error was encountered.

Zero, otherwise.

Notes/Warnings

1. Device state change will result from device 1/O, not present or timeout error.

FSDev_Invalidate()

void FSDev_lnvalidate (CPU_ CHAR *nane_dev,
FS ERR *p_err);

File Called from Code enabled by

fs_dev.c Application N/A
Invalidate files and volumes opened on a device. See also Raw Device 1/O.

Arguments
name_dev
Device name
p_err
Pointer to variable that will receive return error code from this function.
FS_ERR_NONE
Partition added.
FS_ERR_NAME_NULL
Argument name_dev passed a NULL pointer.

Or device access error (see UC/FS Error Codes).

Returned Value

None.

Notes/Warnings

1. Operations on an affected file or volume will fail with an FS_ERR_DEV_CHNGD error.
2. Invalidation will happen automatically following a removable media change.

FSDev_Open()

void FSDev_Open (CPU_CHAR *nane_dev,
voi d *p_dev_cfg,
FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application N/A
Open a device.

Arguments
name_dev
Device name. See uC/FS File and Directory Names and Paths for information about device names.
p_dev_cfg
Pointer to device configuration.
p_err
Pointer to variable that will receive the return error code from this function (see Note #1):

FS_ERR_NONE

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths

Device opened successfully.
FS_ERR_DEV_ALREADY_ OPEN

Device is already open.
FS_ERR DEV_I NVALI D_LOW FMI

Device needs to be low-level formatted.
FS_ERR_DEV_| NVALI D_NANVE

Specified device name not valid.
FS_ERR DEV_I NVALI D_SEC_SI ZE

Invalid device sector size.
FS_ERR DEV_| NVALI D_SI ZE

Invalid device size.
FS_ERR DEV_I NVALI D_UNI T_NBR

Specified unit number invalid.
FS ERR DEV_I O

Device /O error.
FS_ERR_DEV_NONE_AVAI L

No devices available.
FS_ERR_DEV_NOT_PRESENT

Device is not present.
FS_ERR_DEV_TI MEQUT

Device timeout error.
FS_ERR_DEV_UNKNOWN

Unknown device error.
FS_ERR_NAME_NULL

Argument name_dev passed a NULL pointer

Returned Value

None.

Notes/Warnings

1. The return error code from the function SHOULD always be checked by the calling application to determine whether the device was
successfully opened. Repeated calls to FSDev_Qpen() resulting in errors that do not indicate failure to open (such as FS_ERR DEV_LO
W _FMI_I NVALI D) without matching FSDev_C ose() calls may exhaust the supply of device structures.
a. If FS_ERR_NONE is returned, then the device has been added to the file system and is immediately accessible.
b. If FS_DEV_| NVALI D_LOW FM is returned, then the device has been added to the file system, but needs to be low-level
formatted, though it is present.
c. If FS_ERR DEV_NOT_PRESENT, FS_ERR DEV_| Oor FS_ERR DEV_TI MEQUT is returned, then the device has been added to
the file system, though it is probably not present. The device will need to be either closed and re-added, or refreshed.
d. If any of the follwing is returned:
FS_ERR_DEV_INVALID_NAME
FS_ERR_DEV_INVALID_SEC_SIZE
FS_ERR_DEV_INVALID_SIZE
FS_ERR_DEV_INVALID_UNIT_NBR
FS_ERR_DEV_NONE_AVAIL

...then the device has not been added to the file system.
e. If FS_ERR_DEV_UNKNOWN is returned, then the device driver is in an indeterminate state. The system MAY need to be restarted
and the device driver should be examined for errors. The device has not been added to the file system.

FSDev_PartitionAdd()

FS PARTI TION_NBR FSDev_Partiti onAdd (CPU_CHAR *nane_dev,
FS_SEC Qry partition_size,

FS ERR *p_err);
File Called from Code enabled by
fs_dev.c Application FS_CFG_PARTI TI ON_ENand not FS_CFG_RD_ONLY_EN

Adds a partition to a device. See also Partitions.

Arguments
name_dev
Device name
partition_size
Size, in sectors, of the partition to add.
p_err
Pointer to variable that will receive return error code from this function.
FS_ERR_NONE
Partition added.
FS_ERR | NVALI D_PARTI TI ON
Invalid partition.
FS_ERR | NVALI D_SEC_NBR
Sector start or count invalid.
FS ERR | NVALID SI G
Invalid MBR signature.
FS_ERR_NAME_NULL
Argument nanme_dev passed a NULL pointer.

Or device access error (see UC/FS Error Codes).

Returned Value

The index of the created partition. The first partition on the device has an index of 0. FS_I NVALI D_PARTI Tl ON_NBRis returned if the function
fails to add the patrtition.

Notes/Warnings

1. Device state change will result from device I/O, not present or timeout error.
FSDev_PartitionFind()

void FSDev_PartitionFind (CPU_CHAR *nane_dev,
FS_PARTI TI ON_NBR partition_nbr,
FS_PARTI TI ON_ENTRY *p_partition_entry,
FS_ERR *p_err);
File Called from Code enabled by
fs_dev.c Application FS_CFG_PARTI TI ON_EN

Find a partition on a device.

See also Partitions.

Arguments
name_dev
Device name.
partition_nbr
Index of the partition to find.
p_partition_entry
Pointer to variable that will receive the partition information.
p_err
Pointer to variable that will receive return error code from this function.
FS_ERR_NONE
Partition found.
FS_ERR_DEV_VOL_OPEN
Volume open on device.
FS_ERR_| NVALI D_PARTI TI ON
Invalid partition.
FS_ERR | NVALI D_SEC _NBR
Sector start or count invalid.
FS ERR_ I NVALID_SI G
Invalid MBR signature.
FS ERR_NAME NULL
Argument nane_dev passed a NULL pointer.
FS ERR _NULL_PTR
Argument p_partition_entry passed a NULL pointer.

Or device access error (see UC/FS Error Codes).
Returned Value
None.

Notes/Warnings

1. Device state change will result from device /O, not present or timeout error.

FSDev_PartitionInit()

void FSDev_Partitionlnit (CPU_CHAR *name_dev,
FS_SEC QIY partition_size,

FS_ERR *p_err);
File Called from Code enabled by
fs_dev.c Application not FS_CFG_RD_ONLY_EN

Initialize the partition structure on a device. See also Partitions.

Arguments

name_dev

Device name.
partition_size
Size of partition, in sectors. OR
0, if partition will occupy entire device.
p_err
Pointer to variable that will receive the return error code from this function.
FS_ERR_NONE
Partition structure initialized.
FS_ERR_DEV_VOL_OPEN
VVolume open on device.
FS_ERR | NVALI D_SEC_NBR
Sector start or count invalid.
FS_ERR_NAMVE_NULL
Argument name_dev passed a NULL pointer.

Or device access error (see UC/FS Error Codes).

Returned Value

None.

Notes/Warnings

1. Function blocked if a volume is open on the device. All volume (and files) must be closed prior to initializing the partition structure, since it
will obliterate any existing file system.
2. Device state change will result from device 1/O, not present or timeout error.

FSDev_Query()

void FSDev_Query (CPU_CHAR *nane_dev,
FS DEV_INFO *p_info,
FS_ERR *p_err);
File Called from Code enabled by
fs_dev.c Application N/A

Obtain information about a device.

Arguments
nane_dev
Device name.

p_info

Pointer to structure that will receive device information (see Note #1).

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE
Device information obtained.

FS_ERR_NAMVE_NULL

Argument nanme_dev passed a NULL pointer.

FS ERR NULL_PTR

Argument p_i nf o passed a NULL pointer.
FS_ERR | NVALI D_SEC _NBR

Sector start or count invalid.

Or device access error (see uC/FS Error Codes).

Returned Value

None.

Notes/Warnings

1. For removable medias, FSDev_Quer y() will return a valid value for the St at e and Fi xed members of p_i nf o even if the media is not
present, Si ze and SecSi ze will be set to 0. In such cases an error will be returned stating the reason why the device was unaccessible.
Otherwise, if a fatal error occurs or the device is not opened an appropriate error will be return and the content of p_i nf o will be invalid.

FSDev_Rd()

void FSDev_Rd (CPU_CHAR *nanme_dev,
voi d *p_dest,
FS SEC NBR start,D
FS _SEC Qry cnt,

FS_ERR *p_err);
File Called from Code enabled by
fs_dev.c Application N/A

Read data from device sector(s). See also Raw Device I/O.

Arguments
name_dev
Device name.
p_dest
Pointer to destination buffer.
start
Start sector of read.
cnt
Number of sectors to read
p_err
Pointer to variable that will receive the return error code from this function
FS_ERR_NONE
Sector(s) read.
FS_ERR_NAME_NULL
Argument nanme_dev passed a NULL pointer.
FS ERR NULL_PTR
Argument p_dest passed a NULL pointer.

Or device access error (see UC/FS Error Codes).

Returned Value

None.

Notes/Warnings

1. Device state change will result from device 1/O, not present or timeout error.

FSDev_Refresh()

CPU_BOOLEAN FSDev_Refresh (CPU_CHAR *nane_dev,
FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application N/A

Refresh a device.Arguments
name_dev
Device name.
p_err
Pointer to variable that will receive the return error code from this function.
FS_ERR_NONE
Device opened successfully.
FS_ERR _DEV_| NVALI D_SEC_SI ZE
Invalid device sector size.
FS_ERR DEV_| NVALI D_SI ZE
Invalid device size.
FS_ERR _DEV_| NVALI D_UNI T_NBR
Specified unit number invalid.
FS_ERR NAMVE NULL
Argument nanme_dev passed a NULL pointer

Or device access error (see UC/FS Error Codes).

Returned Value
DEF_YES, if the device has not changed.

DEF_NQ, if the device has not changed.

Notes/Warnings

1. If device has changed, all volumes open on the device must be refreshed and all files closed and reopened.
2. A device status change may be caused by :

a. A device was connected, but no longer is.

b. A device was not connected, but now is.

c. A different device is connected.

FSDev_Wr()

void FSDev_W (CPU_CHAR *nane_dev,
voi d *p_src,
FS SEC NBR start,
FS SEC QTY cnt,
FS ERR *p_err);

File Called from

fs_dev.c Application

Write data to device sector(s). See also Raw Device /0.

Arguments
name_dev
Device name.
p_src
Pointer to source buffer.
start
Start sector of write.
cnt
Number of sectors to write

p_err

Code enabled by

not FS_CFG_RD_ONLY_EN

Pointer to variable that will receive the return error code from this function

FS_ERR_NONE

Sector(s) written.
FS_ERR NAMVE NULL

Argument nanme_dev passed a NULL pointer.
FS ERR NULL_PTR

Argument p_sr c passed a NULL pointer.

Or device access error (see UC/FS Error Codes).

Returned Value

None.

Notes/Warnings

1. Device state change will result from device 1/O, not present or timeout error.

Directory Access Functions

voi d

FSDi r _d ose (FS_D R *p_dir,
FS_ERR *p_err);

CPU_BOOLEAN

FSDir I sOpen (CPU_CHAR *name_full,
FS ERR *p_err);

FS DR *

FSDi r _Open (CPU_CHAR *nanme_full,

FS_ERR *p_err);

voi d
FSDir _Rd (FS_DR *p_dir,
FS DIR ENTRY *p_dir_entry,

FS ERR *p_err);

FSDir_Close()

void FSDir_Close (FS_.DIR *p_dir,
FS ERR *p_err);

File Called from Code enabled by
fs_dir.c Application; FS CFG DI R_EN
fs_closedir()
Close and free a directory.

See fs_cl osedir () for more information.

Arguments
p_dir
Pointer to a directory.
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Directory closed.
FS ERR NULL_PTR
Argument p_di r passed a NULL pointer.
FS_ERR | NVALI D_TYPE
Argument p_di r's TYPE is invalid or unknown.
FS ERR DIR DI S
Directory module disabled.
FS_ERR DI R_NOT_OPEN

Directory not open.

Returned Value

None.

Notes/Warnings

None.

FSDir_IsOpen()

CPU BOOLEAN FSDir_Cpen (CPU CHAR *nane_full,
FS_ERR *p_err);

File Called from Code enabled by

fs_dir.c Application; FS CFG DI R_EN
fs_opendir();
FSEntry_*

Test if a directory is already open. This function is also called by various FSEnt ry_* functions to prevent concurrent access to an entry in the
FAT filesystem.

Arguments

name_ful |

Name of the directory. See the sub-topic "uC/FS File and Directory Names and Paths" in the topic Useful Information.

p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Directory opened.
FS_ERR_NAVE_NULL
Argument nanme_f ul | passed a NULL pointer.
FS_ERR_NAME_| NVALI D
Entry name specified invalid or volume could not be found.

Or entry error (see PC/FS Error Codes).

Returned Value
DEF_NGQ, if dir is not open.

DEF_YES, if dir is open.

Notes/Warnings

None.

FSDir_Open()

FS DIR *FSDir_Open (CPU CHAR *nane_full,
FS ERR *p_err);

File Called from Code enabled by
fs_dir.c Application; FS CFG DI R_EN
fs_opendir()

Open a directory. See f s_opendi r () for more information.

Arguments
name_ful |

Name of the directory. See the sub-topic "UC/FS File and Directory Names and Paths" in the topic Useful Information.
p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Directory opened.
FS_ERR_NAMVE_NULL

Argument nanme_f ul | passed a NULL pointer.

FS ERR DIR DI S

Directory module disabled.
FS_ERR DI R_NONE_AVAI L

No directory available.
FS_ERR DEV

Device access error.
FS_ERR_NAME | NVALI D

Entry name specified invalid or volume could not be found.
FS_ERR_NAMVE_PATH TOO LONG

Entry name is too long.
FS_ERR_VOL_NOT_OPEN

VVolume not opened.
FS_ERR_VOL_NOT_MOUNTED

Volume not mounted.
FS_ERR BUF_NONE_AVAI L

Buffer not available.

Or entry error (see PC/FS Error Codes).

Returned Value

Pointer to a directory, if NO errors. Pointer to NULL, otherwise.

Notes/Warnings

None.
FSDir_Rd()
void FSDir_Rd (FS_DR *p_dir,
FS_DIR_ENTRY *p_dir_entry,
FS ERR *p_err);
File Called from
fs_dir.c Application;

fs_readdir_r()
Read a directory entry from a directory. See f s_r eaddi r _r () for more information.

Arguments
p_dir
Pointer to a directory.
p_dir_entry
Pointer to variable that will receive directory entry information.
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE

Directory read successfully.

Code enabled by

FS_CFG DI R EN

FS ERR NULL_PTR
Argument p_di r/p_di r _entry passed a NULL pointer.
FS_ERR | NVALI D_TYPE
Argument p_di r's TYPE is invalid or unknown.
FS ERR DIR DI S
Directory module disabled.
FS_ERR DI R_NOT_OPEN
Directory not open.
FS_ERR_ECF
End of directory reached.
FS_ERR DEV
Device access error.
FS_ERR_BUF_NONE_AVAI L

Buffer not available.

Returned Value

None.

Notes/Warnings

None.

Entry Access Functions

voi d

FSEntry_Attri bSet (CPU_CHAR *name_full,
FS_FLAGS attrib,

FS_ERR *p_err);

voi d

FSEnt ry_Copy (CPU_CHAR *name_full _src,
CPU_CHAR *nane_ful | _dest,

CPU_BOOLEAN excl,

FS ERR *p_err);

voi d

FSEntry_Create (CPU_CHAR *name_full,
FS_FLAGS entry_type,

CPU_BOOLEAN excl,

FS_ERR *p_err);

voi d

FSEntry_Del (CPU_CHAR *name_full,
FS_FLAGS entry_type,

FS_ERR *p_err);

voi d
FSEntry_Query (CPU_CHAR *name_full,

FS ENTRY_INFO *p_info,

FS ERR *p_err);

voi d

FSEnt ry_Renane (CPU_CHAR *name_ful | _src,
CPU_CHAR *nane_ful | _dest,

CPU_BOOLEAN excl,

FS_ERR *p_err);

voi d

FSEntry_Ti meSet (CPU_CHAR *name_full,

FS DATE_TIME *p_tine,
CPU_I NTO8U flag,

FS ERR *p_err);

FSEntry AttribSet()

void FSEntry_ AttribSet (CPU CHAR *nane_full,
FS FLAGS attrib,
FS_ERR *p_err);

File Called from Code enabled by

fs_entry.c Application not FS_CFG_RD_ONLY_EN
Set a file or directory’s attributes.

Arguments
name_ful |
Name of the entry. See the sub-topic "uC/FS File and Directory Names and Paths" in the topic Useful Information.
attrib
Entry attributes to set (see Note #2).
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Entry attributes set successfully.
FS_ERR_NAME_NULL
Argument name_full passed a NULL pointer.
FS_ERR_NAME_| NVALI D
Entry name specified invalid OR volume could not be found.
FS_ERR _NAME_PATH TOO _LONG

Entry name specified too long.

FS_ERR VOL_NOT_OPEN
Volume was not open.
FS_ERR VOL_NOT_MOUNTED
Volume was not mounted.
FS_ERR_BUF_NONE_AVAI L
Buffer not available.
FS_ERR _DEV
Device access error.

Or entry error (See puC/FS Error Codes).

Returned Value

None.

Notes/Warnings

1. If the entry does not exist, an error is returned.
2. Three attributes may be modified by this function:

FS_ENTRY_ATTRI B_RD Entry is readable.
FS_ENTRY_ATTRI B_WR Entry is writable.
FS_ENTRY_ATTRI B_HI DDEN Entry is hidden from user-level processes.

An attribute will be cleared if its flag is not OR'd into at t ri b. An attribute will be set if its flag is OR’d into at t ri b. If another flag besides

these are set, then an error will be returned.
3. The attributes of the root directory may not be set.

FSEntry_Copy()

void FSEntry_ Copy (CPU_CHAR *name_ful | _src,
CPU _CHAR *nanme_full _dest,
CPU BOOLEAN excl,
FS_ERR *p_err);
File Called from Code enabled by
fs_entry.c Application not FS_CFG_RD_ONLY_EN
Copy afile.
Arguments

name_full _src
Name of the source file. See the sub-topic "uC/FS File and Directory Names and Paths" in the topic Useful Information.
nanme_f ul | _dest

Name of the destination file.

excl
Indicates whether the creation of the new entry shall be exclusive
DEF_YES, if the entry shall be copied only if name_f ul | _dest does not exist.
DEF_NQ, if the entry shall be copied even if nane_f ul | _dest does exist.
p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE
File copied successfully.
FS_ERR _NAMVE NULL
Argument name_ful | _src ornane_ful | _dest passed a NULL pointer.
FS ERR_NAME | NVALI D
Entry name specified invalid OR volume could not be found.
FS_ERR_NAMVE_PATH TOO LONG
Entry name specified too long.
FS_ERR_VOL_NOT_OPEN
Volume was not open.
FS_ERR_VOL_NOT_MOUNTED
Volume was not mounted.
FS_ERR BUF_NONE_AVAI L
Buffer not available.
FS_ERR DEV
Device access error.

Or entry error (See UC/FS Error Codes).

Returned Value

None.

Notes/Warnings

1. nanme_f ul | _sr c must be an existing file. It may not be an existing directory.
2. If exclis DEF_NO nane_ful | _dest must either not exist or be an existing file; it may not be an existing directory. If excl is DEF_YES, na
me_ful | _dest must not exist.

FSEntry_Create()

voi d FSEntry Create (CPU_CHAR *nane_full,
FS_FLAGS entry_type,
CPU_BOOLEAN excl,
FS_ERR *p_err);
File Called from Code enabled by
fs_entry.c Application; not FS_CFG_RD_ONLY_EN
fs_nkdir()

Create a file or directory.

Seealsofs_nkdir().

Arguments
name_ful |

Name of the entry. See the sub-topic "uC/FS File and Directory Names and Paths" in the topic Useful Information.
entry_type

Indicates whether the new entry shall be a directory or a file (see Note #1) :

FS_ENTRY_TYPE_DI R, if the entry shall be a directory.

FS_ENTRY_TYPE_FI LE, if the entry shall be a file.

excl
Indicates whether the creation of the new entry shall be exclusive (see Notes):
DEF_VYES, if the entry shall be created only if p_name_f ul | does not exist.
DEF_NQ, if the entry shall be created even if p_name_f ul | does exist.

p_err

Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE

Entry created successfully.
FS_ERR_NAME_NULL

Argument nanme_f ul | passed a NULL pointer.
FS_ERR_NAME_| NVALI D

Entry name specified invalid OR volume could not be found.
FS_ERR_NAMVE_PATH TOO LONG

Entry name specified too long.
FS_ERR_VOL_NOT_OPEN

Volume was not open.
FS_ERR_VOL_NOT_MOUNTED

Volume was not mounted.
FS_ERR_BUF_NONE_AVAI L

Buffer not available.
FS_ERR DEV

Device access error. Or entry error.

Returned Value

None.

Notes/Warnings

1. If the entry exists and is a file, entry_type is FS_ENTRY_TYPE_FI LE and excl is DEF_NQ, then the existing entry will be truncated. If the
entry exists and is a directory and entry_type is FS_ENTRY_TYPE_DI R, then no change will be made to the file system.

2. If the entry exists and is a directory, dir is DEF_NOand excl is DEF_NO, then no change will be made to the file system. Similarly, if the
entry exists and is a file, dir is DEF_YES and excl is DEF_NO, then no change will be made to the file system.

3. The root directory may not be created.

FSEntry Del()

void FSEntry Del (CPU _CHAR *nanme_ful |,
FS_FLAGS entry_type,
FS_ERR *p_err);
File Called from Code enabled by
fs_entry.c Application; not FS_ CFG_RD_ONLY_EN
fs_ rmdir();

fs_renove()

Delete a file or directory.

Seealsofs_renmove() andfs_rndir().

Arguments
name_ful |

Pointer to character string representing the name of the entry. See the sub-topic "UC/FS File and Directory Names and Paths" in the topic U
seful Information.

entry_type
Indicates whether the entry MAY be a file (see Notes #1 and #2):
FS_ENTRY_TYPE_DI R
if the entry must be a dir.
FS_ENTRY_TYPE_FI LE
if the entry must be a file.
FS_ENTRY_TYPE_ANY
if the entry may be any type.
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Entry date/time set successfully.
FS_ERR_NAMVE_NULL
Argument name_f ul | passed a NULL pointer.
FS_ERR_NAME_| NVALI D
Entry name specified invalid OR volume could not be found.
FS_ERR_NAMVE_PATH TOO LONG
Entry name specified too long.
FS_ERR_VOL_NOT_OPEN
Volume was not open.
FS_ERR_VOL_NOT_MOUNTED
Volume was not mounted.
FS_ERR _BUF_NONE_AVAI L
Buffer not available.
FS_ERR DEV

Device access error. Or entry error.

Returned Value

None.

Notes/Warnings

1. When a file is removed, the space occupied by the file is freed and shall no longer be accessible.
2. A directory can be removed only if it is an empty directory.
3. The root directory cannot be deleted.

FSEntry_Query()

void FSEntry_ Query (CPU_CHAR *nanme_ful I,
FS_ENTRY_INFO *p_info,

FS_ERR *p_err);
File Called from Code enabled by
fs_entry.c Application; N/A
fs_stat()

Get information about a file or directory.

Arguments
nanme_ful |
Name of the entry. See the sub-topic "UC/FS File and Directory Names and Paths" in the topic Useful Information.
p_info
Pointer to structure that will receive the file information.
p_err
Pointer to variable that will the receive return error code from the function:
FS_ERR_NONE
File information obtained successfully.
FS_ERR_NAMVE_NULL
Argument nane_f ul | passed a NULL pointer.
FS_ERR_NAME_| NVALI D
Entry name specified invalid OR volume could not be found.
FS_ERR_NAME_PATH TOO LONG
Entry name specified too long.
FS_ERR_VOL_NOT_OPEN
Volume was not open.
FS_ERR_VOL_NOT_MOUNTED
Volume was not mounted.
FS_ERR_BUF_NONE_AVAI L
Buffer not available.
FS_ERR DEV

Device access error.

Returned Value

None.

Notes/Warnings

None.

FSEntry_Rename()

void FSEntry_ Renane (CPU_CHAR *nanme_ful |l _ol d,

CPU_CHAR *name_ful | _new,

CPU_BOOLEAN excl ,

FS ERR *p_err);
File Called from Code enabled by
fs_entry.c Application; not FS_CFG RD_ONLY_EN

fs_renane()

Rename a file or directory.

See alsofs_renane().

Arguments
name_full _old

Old path of the entry. See the sub-topic "UC/FS File and Directory Names and Paths" in the topic Useful Information.
name_ful | _new

New path of the entry.

excl
Indicates whether the creation of the new entry shall be exclusive (see Note #1):
DEF_YES, if the entry shall be renamed only if nane_f ul | _new does not exist.
DEF_NQ, if the entry shall be renamed even if nane_f ul | _newdoes exist.
p_err

Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE

File copied successfully.
FS_ERR_NAMVE_NULL

Argument nane_ful | _ol d or name_f ul | _newpassed a NULL pointer.
FS_ERR_NAVME_I NVALI D

Entry name specified invalid OR volume could not be found.
FS_ERR_NAME_PATH TOO LONG

Entry name specified too long.
FS_ERR_VOL_NOT_GOPEN

Volume was not open.
FS_ERR_VOL_NOT_MOUNTED

Volume was not mounted.
FS_ERR_BUF_NONE_AVAI L

Buffer not available.
FS_ERR DEV

Device access error.

Returned Value

None.

Notes/Warnings

1. Ifname_ful | _ol d and name_f ul | _newspecify entries on different volumes, then nanme_f ul | _ol d must specify a file. If nane_f ul |
_ol d specifies a directory, an error will be returned.
2. Ifname_ful | _ol d and nane_f ul | _new specify the same entry, the volume will not be modified and no error will be returned.
3. Ifnanme_f ul | _ol d specifies a file:
a. nane_f ul | _newmust not specify a directory;
b. if excl is DEF_NOand nane_f ul | _newis a file, it will be removed.
4. If nane_f ul | _ol d specifies a directory:
a. nane_f ul | _newmust not specify a file
b. if excl is DEF_NOand nane_f ul | _newis a directory, nane_f ul | _newmust be empty; if so, it will be removed.
5. If exclis DEF_NO, nane_f ul | _newmust not exist.
6. The root directory may not be renamed.

FSEntry_TimeSet()

void FSEntry_Ti meSet (CPU_CHAR *name_ful |,
FS_DATE TIME *p_tine,
CPU_I NTO8U flag,
FS _ERR *p_err);
File Called from Code enabled by
fs_entry.c Application not FS_CFG _RD_ONLY_EN

Set a file or directory’s date/time.

Arguments
name_ful |
Name of the entry. See the sub-topic "uC/FS File and Directory Names and Paths" in the topic Useful Information.
p_time
Pointer to date/time.
flag
Flag to indicate which Date/Time should be set
FS_DATE_TI ME_CREATE
Entry Created Date/Time will be set.
FS_DATE_TI ME_MODI FY
Entry Modified Date/Time will be set.
FS _DATE_TI ME_ACCESS
Entry Accessed Date will be set.
FS_DATE_TI ME_ALL
All the above will be set.
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Entry date/time set successfully.
FS_ERR_NAMVE_NULL
Argument name_f ul | or p_ti me passed a NULL pointer.
FS_ERR FILE_| NVALI D_DATE_TI ME

Date/time specified invalid.

FS_ERR_NAME_| NVALI D
Entry name specified invalid OR volume could not be found.
FS_ERR_NAME_PATH TOO LONG
Entry name specified too long.
FS_ERR _VOL_NOT_OPEN
Volume was not open.
FS_ERR_VOL_NOT_MOUNTED
Volume was not mounted.
FS_ERR _BUF_NONE_AVAI L
Buffer not available.
FS_ERR DEV
Device access error.
Returned Value

None.

Notes/Warnings

None.
File Functions

voi d

FSFi | e_Buf Assign (FS_FILE *p_file,
voi d *p_buf,

FS_FLAGS node,

CPU SIZE T si ze,

FS_ERR *p_err);

voi d

FSFi | e_Buf Fl ush (FS_FILE *p_file,
FS_ERR *p_err);

voi d

FSFi | e_d ose (FS_FILE *p_file,
FS_ERR *p_err);

voi d

FSFile CrErr (FS_FILE *p_file,
FS_ERR *p_err);

CPU_BOOLEAN

FSFi |l e_| sEOF (FS_FILE *p_file,

FS _ERR *p_err);

CPU_BOOLEAN
FSFile_ I sErr

FS_ERR

CPU_BOOLEAN
FSFi | e_l sOpen
FS_FLAGS
FS_ERR

voi d

(FS_FILE

*p_err);

(CPU_CHAR
*p_node,

*p_err);

FSFi | e_LockAccept (FS_FI LE

FS_ERR

voi d
FSFi | e_LockGCet

FS_ERR

voi d
FSFi | e_LockSet

FS_ERR

FS FILE *
FSFi | e_Open
FS_FLAGS

FS_ERR

FS_FI LE_SI ZE
FSFi | e_PosGet

FS_ERR

voi d

FSFi | e_PosSet
FS FI LE_OFFSET
FS _FLAGS

FS_ERR

voi d
FSFi |l e_Query
FS_ENTRY_I NFO

FS_ERR

*p_err);

(FS_FILE

*p_err);

(FS_FILE

*p_err);

(CPU_CHAR
node

*p_err);

(FS_FILE

*p_err);

(FS_FI LE
of f set,
origin,

*p_err);

(FS_FILE
*p_info,

*p_err);

*p_file,
*name_ful I,
*p_file,
*p_file,
*p_file,
*name_full,
*p_file,
*p_file,
*p_file,

CPUSIZE T

FSFi | e_Rd (FS_FILE *p_file,
voi d *p_dest,

CPU SIZE T si ze,

FS_ERR *p_err);

voi d

FSFile_Truncate (FS_FILE *p_file,
FS FILE_SI ZE si ze,

FS_ERR *p_err);

CPU SIZE T

FSFil e W (FS_FILE *p_file,
voi d *p_src,

CPU SIZE_ T si ze,

FS_ERR *p_err);

FSFile_BufAssign()

void FSFile_BufAssign (FS_FILE
voi d
FS_FLAGS
CPU SIZE T
FS_ERR

File Called from

fs file.c Application;
fs_setbuf();
fs_setvbuf ()

Assign buffer to a file.

See fs_setvbuf () for more information.

Arguments
p_file
Pointer to a file.
p_buf
Pointer to buffer.
node
Buffer mode:
FS_FI LE_BUF_MODE_RD
Data buffered for reads.
FS_FI LE_BUF_MODE_WR
Data buffered for writes.

FS_FI LE_BUF_MODE_RD WR

*p_file,
*p_buf,
node,
si ze,
*p_err);

Code enabled by

FS_CFG FI LE_BUF_EN

Data buffered for reads and writes.
FS_FI LE_BUF_MODE_SEC _ALI GNED
Force buffers to be aligned on sector boundaries.
si ze
Size of buffer, in octets.
p_err
Pointer to variable that will receive the return error code from this function:
FS_ERR_NONE
File buffer assigned.
FS_ERR NULL_PTR
Argument p_fil e or p_buf passed a NULL pointer.
FS_ERR | NVALI D TYPE
Argument p_fi | e's type is invalid or unknown.
FS ERR FI LE | NVALI D_BUF_MODE
Invalid buffer mode.
FS_ERR_FI LE_| NVALI D_BUF_SI ZE
Invalid buffer size.
FS_ERR FI LE_BUF_ALREADY_ASS| GNED
Buffer already assigned.
FS_ERR_FI LE_NOT_OPEN
File not open.
Returned Value

None.

Notes/Warnings

None.

FSFile_BufFlush()

void FSFile BufFlush (FS_FILE *p file,
FS ERR *p_err);

File Called from
fs_file.c Application;
fs_fflush()

Flush buffer contents to file.

Seefs_fflush() for more information.

Arguments
p_file

Pointer to a file.
p_err

Pointer to variable that will receive the return error code from this function:

Code enabled by

FS_CFG_FI LE_BUF_EN

FS_ERR_NONE
File buffer flushed successfully.
FS_ERR NULL_PTR

Argument p_fi | e passed a NULL pointer.

FS_ERR | N\VALI D_TYPE

Argument p_fi | e's type is invalid or unknown.
FS_ERR _FI LE_NOT_OPEN
File not open.
Returned Value

None.

Notes/Warnings

None.
FSFile_Close()

void FSFile_Cose (FS_FILE *p_file,
FS ERR *p_err);

File Called from Code enabled by

fs file.c Application; N/A
fs_fclose()

Close and free a file.

Seefs_fclose() for more information.

Arguments
p_file
Pointer to a file.

p_err

Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE

File closed.
FS ERR NULL_PTR

Argument p_fi | e passed a NULL pointer.

FS_ERR | NVALI D_TYPE

Argument p_fi | e's type is invalid or unknown.
FS_ERR _FI LE_NOT_OPEN
File not open.
Returned Value

None.

Notes/Warnings

None.

FSFile_CIrErr()

void FSFile CrErr (FS_FILE *p_file,
FS ERR *p_err);

File Called from Code enabled by

fs_file.c Application; N/A
fs_clearerr()

Clear EOF and error indicators on a file.

Seefs_cl earerr() for more information

Arguments
p_file
Pointer to a file.

p_err
Pointer to variable that will receive the return error code from this function:
FS_ERR_NONE
Error and end-of-file indicators cleared.
FS_ERR NULL_PTR
Argument p_fi | e passed a NULL pointer.
FS_ERR | NVALI D_TYPE
Argument p_fi | e's type is invalid or unknown.
FS_ERR_FI LE_NOT_OPEN

File not open.
Returned Value
None.

Notes/Warnings

None.
FSFile_ISEOF()

CPU BOOLEAN FSFile_| seEOF (FS_FILE *p_file,
FS ERR *p_err);

File Called from Code enabled by
fs file.c Application; N/A
fs_feof ()

Test EOF indicator on a file.

See fs_f eof () for more information.

Arguments
p_file

Pointer to a file.

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE
EOF indicator obtained.
FS ERR NULL_PTR
Argument p_fi | e passed a NULL pointer.
FS_ERR_| NVALI D_TYPE
Argument p_f i | e's type is invalid or unknown.
FS_ERR_FI LE_NOT_OPEN
File not open.
Returned Value

DEF_NOif EOF indicator is not set or if an error occurred

DEF_YES if EOF indicator is set.

Notes/Warnings

None.
FSFile_ISErr()

CPU_BOOLEAN FSFile_lsErr (FS_FILE
FS_ERR
File Called from
fs_file.c Application;
fs_ferr()

Test error indicator on a file.

See fs_ferror() for more information.

Arguments
p_file
Pointer to a file.

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE
Error indicator obtained.

FS ERR NULL_PTR
Argument p_fi | e passed a NULL pointer.

FS_ERR | NVALI D_TYPE

Argument p_f i | e's type is invalid or unknown.

FS_ERR _FI LE_NOT_OPEN

File not open.

Returned Value

DEF_NOif error indicator is not set or if an error occurred

*p_file,
*p_err);

Code enabled by

N/A

DEF_YES if error indicator is set.

Notes/Warnings

None.

FSFile_IsOpen()

CPU BOOLEAN FSFile_IsOpen (CPU_CHAR *nane_full,
FS FLAGS *p_node
FS ERR *p_err);

File Called from Code enabled by

fs_file.c Application; N/A
FSFi | e_Open()

Test if file is already open.

Arguments
name_ful |
Name of the file. See the sub-topic "UC/FS File and Directory Names and Paths" in the topic Useful Information.
p_node
Pointer to variable that will receive the file access mode (see Opening Files for the description the file access mode).
p_err
Pointer to variable that will receive the return error code from this function:
FS_ERR_NONE
Error indicator obtained.
FS_ERR_NULL_PTR
Argument p_fi | e passed a NULL pointer.
FS_ERR_BUF_NONE_AVAI L
No buffer available.
FS_ERR_ENTRY_NOT_FI LE
Entry not a file.
FS_ERR_NAME_| NVALI D
Invalid file name or path.
FS_ERR VOL_I NVALI D_SEC_NBR

Invalid sector number found in directory entry.
Returned Value

DEF_NOif file is not open

DEF_YES if file is open.

Notes/Warnings

None.

FSFile_LockAccept()

void FSFile_LockAccept (FS FILE *p_file,
FS ERR *p_err);

File Called from Code enabled by

fs_file.c Application; FS CFG_FI LE_LOCK_EN
fs_ftrylockfile()

Acquire task ownership of a file (if available).

Seefs_flockfile() for more information.

Arguments
p_file
Pointer to a file.
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
File lock acquired.
FS_ERR_NULL_PTR
Argument p_f i | e passed a NULL pointer.
FS_ERR | NVALI D_TYPE
Argument p_fi | e's type is invalid or unknown.
FS_ERR_FI LE_NOT_OPEN
File not open.
FS_ERR FI LE_LOCKED

File owned by another task.

Returned Value

None.

Notes/Warnings

None.

FSFile_LockGet()

void FSFile_LockGet (FS FILE *p_file,
FS ERR *p_err);

File Called from Code enabled by

fs file.c Application; FS_CFG FI LE _LOCK_EN
fs_flockfile()

Acquire task ownership of a file.

Seefs_flockfil e() for more information.

Arguments

p_file
Pointer to a file.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE
File lock acquired.

FS_ERR NULL_PTR

Argument p_fi | e passed a NULL pointer.

FS_ERR | N\VALI D_TYPE

Argument p_fi | e's type is invalid or unknown.

FS_ERR FI LE_NOT_OPEN
File not open.
Returned Value

None.

Notes/Warnings

None.

FSFile_LockSet()

void FSFile_LockSet (FS_FILE
FS_ERR
File Called from
fs_file.c Application;

fs_funlockfile()

Release task ownership of a file.

See fs_funl ockfile() for more information.

Arguments
p_file
Pointer to a file.

p_err

*p_file,
*p_err);

Code enabled by

FS CFG FI LE_LOCK_EN

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE
File lock acquired.

FS_ERR NULL_PTR

Argument p_fi | e passed a NULL pointer.

FS ERR | NVALI D_TYPE

Argument p_fi | e's type is invalid or unknown.

FS_ERR_FI LE_NOT_OPEN
File not open.

FS_ERR_FI LE_NOT_LOCKED

File not locked or locked by different task.

Returned Value

None.

Notes/Warnings

None.
FSFile_Open()

FS FILE *FSFile_Open (CPU CHAR *nanme_full,
FS FLAGS node
FS_ERR *p_err);

File Called from Code enabled by
fs_file.c Application; N/A
fs_fopen()
Open a file.

See fs_f open() for more information.

Arguments
name_ful |
Name of the file. See the sub-topic "UC/FS File and Directory Names and Paths" in the topic Useful Information.
node
File access mode (see Notes).
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
File opened.
FS_ERR_NAVE_NULL
Argument nanme_f ul | passed a NULL pointer.

Or entry error (see pC/FS Error Codes).

Returned Value

None.

Notes/Warnings

1. The access mode should be the logical OR of one or more flags :

FS_FI LE_ACCESS MODE_RD File opened for reads.

FS_FI LE_ACCESS MODE_WR File opened for writes.

FS_FI LE_ACCESS MODE_CREATE File will be created, if necessary.
FS_FI LE_ACCESS MODE_TRUNC File length will be truncated to 0.
FS_FI LE_ACCESS MODE_APPEND All writes will be performed at EOF.

FS_FI LE_ACCESS_MODE_EXCL File will be opened if and only if it does not already exist.

FS_FI LE_ACCESS_MODE_CACHED File data will be cached.

. If FS_FI LE_ACCESS_MODE_TRUNCis set, then FS_FI LE_ACCESS_MODE_WR must also be set.

. If FS_FI LE_ACCESS MODE_EXCL is set, then FS_FI LE_ACCESS MODE_CREATE must also be set.

. FS_FI LE_ACCESS MODE_RD and/or FS_FI LE_ACCESS MODE_WR must be set.

. The mode string argument of f s_f open() function can specify a subset of the possible valid modes for this function. The equivalent
modes of f s_f open() mode strings are shown in the table below.

a b~ wN

fopen() Mode String mode Equivalent
“r or “rb” FS_FI LE_ACCESS_MODE_RD
“w” or “wh” FS_FI LE_ACCESS_MODE_WR |

FS FI LE_ACCESS MODE_CREATE |
FS FI LE_ACCESS MODE_TRUNC

“a” or “ab” FS_FI LE_ACCESS_MODE_WR |
FS_FI LE_ACCESS_MODE_CREATE |
FS_FI LE_ACCESS_MODE_APPEND

“r+7 or “rb+” or “r+b” FS FI LE_ACCESS_MODE_RD |
FS FI LE_ACCESS MODE_WR

“W+” or “wh+” or “w+b” FS_FI LE_ACCESS_MODE_RD |
FS_FI LE_ACCESS_MODE_WR |
FS_FI LE_ACCESS_MODE_CREATE |
FS_FI LE_ACCESS_MODE_TRUNC
“a+” or “ab+” or “a+b” FS_FI LE_ACCESS_MODE_RD |

FS_FI LE_ACCESS_MODE_WR |
FS_FI LE_ACCESS_MODE_CREATE |

FS_FI LE_ACCESS_MODE_APPEND

FSFile_PosGet()

FS FILE SIZE FSFile_PosGet (FS_FILE *p_file,
FS ERR *p_err);

File Called from Code enabled by
fs file.c Application; N/A
fs ftell();

fs_fgetpos()

Set file position indicator.

Seefs_ftell () for more information.

Arguments
p_file
Pointer to a file.
p_err
Pointer to variable that will the receive return error code from the function:
FS_ERR_NONE
File position gotten successfully.
FS ERR_NULL_PTR
Argument p_f i | e passed a NULL pointer.

FS ERR | NVALI D_TYPE

Argument p_f i | e's type is invalid or unknown.
FS_ERR_FI LE_NOT_OPEN

File not open.
FS_ERR FILE | NVALI D_POS

Invalid file position.

Returned Value
The current file position, if no errors (see Note).

0, otherwise.

Notes/Warnings

1. The file position returned is the number of bytes from the beginning of the file up to the current file position.

FSFile_PosSet()

void FSFile_PosSet (FS_FILE
FS _FI LE_OFFSET

FS_FLAGS
FS_ERR
File Called from
fs_file.c Application;
fs_fseek();

fs_fsetpos()

Get file position indicator.

See fs_fseek() for more information.

Arguments
p_file
Pointer to a file.
of f set
Offset from the file position specified by origin.
origin
Reference position for offset:
FS_FI LE_ORI G N_START
Offset is from the beginning of the file.
FS FILE_ORI G N_CUR
Offset is from the current file position.
FS_FILE_ ORI A N_END
Offset is from the end of the file.

p_err

*p_file,
of f set,
origin,
*p_err);

Code enabled by

N/A

Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE
File position set successfully.

FS ERR NULL_PTR

Argument p_f i | e passed a NULL pointer.
FS_ERR_| NVALI D_TYPE

Argument p_f i | e's type is invalid or unknown.
FS_ERR FI LE_INVALID ORIG N

Invalid origin specified.
FS_ERR FILE | NVALI D_OFFSET

Invalid offset specified.
FS_ERR_FI LE_NOT_OPEN

File not open.
Returned Value
None.

Notes/Warnings

None.

FSFile_Query()

void FSFile_Query (FS_FILE *p_file,
FS_ENTRY_I NFO *p_info,
FS ERR *p_err);
File Called from Code enabled by
fs_file.c Application; N/A
fs_fstat()

FSFi | e_Query() is used to get information about a file.

Arguments
p_file
Pointer to a file.
p_info
Pointer to structure that will receive the file information (see Note).

p_err
Pointer to variable that will the receive return error code from the function:
FS_ERR_NONE
File information obtained successfully.
FS ERR NULL_PTR
Argument p_fil e or p_i nf o passed a NULL pointer.
FS_ERR | NVALI D_TYPE
Argument p_fi | e's type is invalid or unknown.
FS_ERR_FI LE_NOT_OPEN

File not open.

Returned Value

None.

Notes/Warnings

None.
FSFile Rd()
CPU SIZE'T FSFile_Rd (FS_FILE *p_file,
voi d *p_dest,
CPU SIZE T si ze,
FS_ERR *p_err);
File Called from
fs_file.c Application;
fs_fread()

Read from a file.

Seefs_fread() for more information.

Arguments
p_file
Pointer to a file.
p_dest
Pointer to destination buffer.
si ze
Number of octets to read.

p_err

Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE
File read successfully.
FS _ERR_ECF
End-of-file reached.
FS ERR NULL_PTR
Argument p_fi | e/p_dest passed a NULL pointer.
FS_ERR | NVALI D _TYPE
Argument p_fi | e's type is invalid or unknown.
FS_ERR_FI LE_NOT_OPEN
File not open.
FS_ERR FI LE_| NVALI D_OP
Invalid operation on file.
FS_ERR DEV

Device access error.

Returned Value
The number of bytes read, if file read successful.

0, otherwise.

Code enabled by

N/A

Notes/Warnings

None.
FSFile_Truncate()

void FSFile Truncate (FS FILE
FS _FI LE_SI ZE

FS_ERR
File Called from
fs_file.c Application;

fs_ftruncate()

Truncate a file.

Seefs_ftruncate() for more information.

Arguments
p_file
Pointer to a file.
si ze
Size of the file after truncation

p_err

*p_file,
si ze,
*p_err);

Code enabled by

not FS_CFG RD_ONLY_EN

Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE
File truncated successfully.

FS_ERR NULL_PTR
Argument p_fi | e passed a NULL pointer.

FS_ERR | N\VALI D_TYPE

Argument p_fi | e's type is invalid or unknown.
FS_ERR _FI LE_NOT_OPEN

File not open.

Returned Value

None.

Notes/Warnings

None.
FSFile_Wr()
CPUSIZE T FSFile W (FS_FILE
voi d
CPU SIZE T
FS ERR

File Called from

*p_file,
*p_src,
si ze,

*p_err);

Code enabled by

fs_file.c Application; not

fs fwite()

Write to a file.

Seefs_fwite() for more information.

Arguments
p_file
Pointer to a file.
p_src
Pointer to source buffer.
si ze
Number of octets to write.

p_err

Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE

File write successfully.
FS_ERR_NULL_PTR

Argument p_fi | e/p_sr c passed a NULL pointer.
FS_ERR_| NVALI D_TYPE

Argument p_fi | e's type is invalid or unknown.
FS_ERR_FI LE_NOT_OPEN

File not open.
FS_ERR FILE | NVALI D_OP

Invalid operation on file.
FS_ERR DEV

Device access error.

Returned Value

The number of bytes written, if file write successful.

0, otherwise.

Notes/Warnings

None.
Volume Functions

voi d

FSVol _d ose (CPU_CHAR *nane_vol ,
FS_ERR *p_err);

voi d

FSVol _Fnt (CPU_CHAR *nane_vol ,
voi d *p_fs_cfg,

FS_ERR *p_err);

FS CFG RD ONLY_EN

voi d

FSVol _Get Df | t Vol Nane (CPU_CHAR

FS_Qry

FSVol _Get Vol Cnt

FS_Qry

FSVol _Get Vol Cnt Max

voi d

FSVol _Get Vol Nane

CPU_CHAR

CPU_BOOLEAN

FSVol _I sMount ed

voi d

FSVol _Label Get
CPU_CHAR
CPU SIZE T

FS_ERR

voi d
FSVol _Label Set
CPU_CHAR

FS_ERR

voi d
FSVol _Open

CPU_CHAR

FS_PARTI TI ON_NBR

FS_ERR

voi d
FSVol _Query
FS_VOL_I NFO

FS_ERR

voi d

FSVol _Rd
voi d
FS_SEC NBR
FS_SEC Qry

FS_ERR

(voi d);

(void);

(FS_QrYy

*nane_vol) ;

(CPU_CHAR

(CPU_CHAR
*| abel ,
| en_max,

*p_err);

(CPU_CHAR
*| abel ,

*p_err);

(CPU_CHAR

*name_dev,

partition_nbr,

*p_err);

(CPU_CHAR
*p_info,

*p_err);

(CPU_CHAR
*p_dest,
start,
cnt,

*p_err);

*name_vol) ;

vol _nbr,

*nanme_vol) ;

*nane_vol ,

*nanme_vol ,

*nane_vol ,

*nane_vol ,

*nanme_vol ,

voi d

FSVol _W (CPU_CHAR *nane_vol ,
voi d *p_src,

FS_SEC_NBR start,

FS_SEC QrY cnt,

FS_ERR *p_err);

FSVol_Close()

void FSVol _C ose (CPU_CHAR *nane_vol,
FS_ERR *p_err);

File Called from

fs_vol.c Application
Close and free a volume.

Arguments
name_vol
Volume name.

p_err

Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE
VVolume opened.
FS_ERR_NAME_NULL
Argument name_vol passed a NULL pointer.
FS_ERR_VOL_NOT_OPEN
Volume not open.
Returned Value

None.

Notes/Warnings

None.
FSVol_Fmt()

void FSVol _Fmt (CPU CHAR *nane_vol,
voi d *p_fs_cfg,
FS_ERR *p_err);

File Called from

fs_vol.c Application
Format a volume.

Arguments

Code enabled by

N/A

Code enabled by

not FS_CFG_RD_ONLY_EN

name_vol
Colume name.
p_fs_cfg

Pointer to file system driver-specific configuration. For all file system drivers, if this is a pointer to NULL, then the default configuration will be
selected. More information about the appropriate structure for the FAT file system driver can be found in FS_FAT_SYS_CFG.

p_err
Pointer to variable that will receive the return error code from this function
FS_ERR_NONE
Volume formatted.
FS_ERR DEV
Device error.
FS_ERR DEV_| NVALI D_SI ZE
Invalid device size.
FS_ERR_NAME_NULL
Argument nanme_vol passed a NULL pointer.
FS_ERR _VOL_DI RS_OPEN
Directories open on volume.
FS_ERR VOL_FI LES_OPEN
Files open on volume.
FS ERR VOL_| NVALI D_SYS
Invalid file system parameters.
FS_ERR VOL_NOT_OPEN

VVolume not open.

Required Configuration

None.

Notes/Warnings

® Function blocked if files or directories are open on the volume. All files and directories must be closed prior to formatting the volume.

® For any file system driver, if p_f s_cf g is a pointer to NULL, then the default configuration will be selected. If non-NULL, the argument
should be passed a pointer to the appropriate configuration structure. For the FAT file system driver, p_f s_cf g should be passed a
pointer to a FS_FAT_SYS_CFG.

FSVol_GetDfltVolName()

void FSVol _GetDfltVol Name (CPU_CHAR *name_vol);

File Called from Code enabled by

fs_vol.c Application N/A
Get name of the default volume.

Arguments

nane_vol

String buffer that will receive the volume name (see Note #2).

Returned Value
None.
Notes/Warnings

1. nane_vol must point to a character array of FS_CFG_MAX_VOL_NAME_LEN characters.
2. If the volume does not exist, name_vol will receive an empty string.

FSVol_GetVolCnt()

FS QY FSVol GetVol Cnt (void);

File Called from Code enabled by

fs_vol.c Application N/A
Get the number of open volumes.
Arguments
None.
Returned Value
Number of volumes currently open.

Notes/Warnings

None.

FSVol_GetVolCntMax()

FS QTY FSVol _Get Vol Cnt Max (voi d);

File Called from Code enabled by

fs_vol.c Application N/A
Get the maximum possible number of open volumes.
Arguments
None.
Returned Value
The maximum number of open volumes.

Notes/Warnings

None.
FSVol_GetVolName()

void FSVol _Get Vol Nane (FS_QrY vol _nbr,
CPU _CHAR *nane_vol);

File Called from Code enabled by

fs_vol.c Application N/A

Get name of the nth open volume. vol _nbr should be between 0 and the return value of FSVol _Get Nor Vol s() (inclusive).

Arguments
vol _nbr
Volume number.
name_vol
String buffer that will receive the volume name (see Note #2).
Returned Value

None.

Notes/Warnings

1. nane_vol must point to a character array of FS_CFG_MAX_VOL_NAME_LEN characters.
2. If the volume does not exist, name_vol will receive an empty string.

FSVol_IsDflt()

CPU _BOOLEAN FSVol _IsDflt (CPU_CHAR *nane_vol);

File Called from Code enabled by

fs_vol.c Application N/A
Determine whether a volume is the default volume.

Arguments
name_vol

Volume name.
Returned Value
DEF_YES, if the volume with name nane_vol is the default volume.
DEF_NQO, if no volume with name nanme_vol exists,
or the volume with name nane_vol is not the default volume.
Notes/Warnings

None.

FSVol_IsMounted()

CPU_BOOLEAN FSVol _I sMounted (CPU CHAR *nane_vol);

File Called from Code enabled by

fs_vol.c Application N/A
Determine whether a volume is mounted.

Arguments
name_vol

Volume name.

Returned Value

DEF_YES, if the volume is open and is mounted.

DEF_NQ, if the volume is not open or is not mounted.

Notes/Warnings

None.

FSVol LabelGet()

void FSVol _Label Get (CPU_CHAR *nane_vol ,
CPU_CHAR *| abel ,
CPU SIZE T | en_nax,

FS ERR *p_err);
File Called from Code enabled by
fs_vol.c Application N/A

Get volume label.

Arguments
name_vol
Volume name.
| abel
String buffer that will receive volume label.
| en_max
Size of string buffer.
p_err
Pointer to variable that will receive the return error code from this function:
FS_ERR_NONE
Label gotten.
FS_ERR_DEV_CHNGD
Device has changed.
FS_ERR_NAME_NULL
Argument name_vol passed a NULL pointer.
FS ERR NULL_PTR
Argument label passed a NULL pointer.
FS_ERR DEV
Device access error.
FS_ERR VOL_LABEL_NOT_FOUND
Volume label was not found.
FS_ERR VOL_LABEL_TOO LONG
Volume label is too long.
FS_ERR_VOL_NOT_MOUNTED
Volume is not mounted.
FS_ERR_VOL_NOT_OPEN

Volume is not open.

Required Configuration

None.

Notes/Warnings

1. | en_nax is the maximum length string that can be stored in the buffer label; it does not include the final NULL character. The buffer label
must be of at least | en_max + 1 characters.

FSVol_LabelSet()

void FSVol Label Set (CPU CHAR *nane_vol,
CPU_CHAR *| abel ,
FS_ERR *p_err);

File Called from Code enabled by

fs_vol.c Application not FS_CFG_RD_ONLY_EN
Set volume label.

Arguments
nane_vol
Volume name.
| abel
Volume label.
p_err
Pointer to variable that will receive the return error code from this function:
FS_ERR_NONE
Label set.
FS_ERR_DEV_CHNGD
Device has changed.
FS _ERR_NAME_NULL
Argument nanme_vol passed a NULL pointer.
FS ERR NULL_PTR
Argument label passed a NULL pointer.
FS_ERR DEV
Device access error.
FS ERR DI R FULL
Directory is full (space could not be allocated).
FS ERR DEV_FULL
Device is full (space could not be allocated).
FS_ERR VOL_LABEL_| NVALI D
Volume label is invalid.
FS_ERR VOL_LABEL_TOO LONG
Volume label is too long.
FS_ERR_VOL_NOT_MOUNTED

Volume is not mounted.

FS_ERR VOL_NOT_OPEN
Volume is not open.
Returned Value

None.

Notes/Warnings

1. The label on a FAT volume must be no longer than 11-characters, each belonging to the set of valid short file name (SFN) characters.
Before it is committed to the volume, the label will be converted to upper case and will be padded with spaces until it is an 11-character
string.

FSVol_Open()

void FSVol _Open (CPU_CHAR *nane_vol ,
CPU_CHAR *nane_dev,
FS_PARTI TION_NBR partition_nbr,
FS ERR *p_err);
File Called from Code enabled by
fs_vol.c Application N/A

Open a volume.

Arguments
name_vol
Volume name. See Device and volume names for information about device names.
name_dev
Device name.
partition_nbr
Partition number. If 0, the default partition will be mounted.
p_err
Pointer to variable that will receive the return error code from this function. See Note #2 .
FS_ERR_NONE
VVolume opened.
FS _ERR DEV_VOL_OPEN
Volume open on device.
FS ERR I NVALID_SI G
Invalid MBR signature.
FS_ERR_NAMVE_NULL
Argument nane_vol /nane_dev passed a NULL pointer.
FS_ERR_PARTI TI ON_I NVALI D_NBR
Invalid partition number.
FS_ERR_PARTI TI ON_NOT_FOUND
Partition not found.
FS_ERR VOL_ALREADY_OPEN

Volume is already open.

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-µC/FSDeviceandVolumeNames

FS_ERR VOL_I NVALI D_NANE

Volume name invalid.

FS_ERR_VOL_NONE_AVAI L

No volumes available.

Or device access error (see Device Error Codes).

Returned Value

None.

Notes/Warnings

1.

g b~ wN

If FS_ERR_PARTI TI ON_NOT_FOUND is returned, then no valid partition (or valid file system) was found on the device. It is still placed on
the list of used volumes; however, it cannot be addressed as a mounted volume (e.qg., files cannot be accessed). Thereafter, unless a
new device is inserted, the only valid commands are

. FSVol _Fnt (), which creates a file system on the device;

. FSVol _Cl ose(), which frees the volume structure;

. FSVol _Query(), which returns information about the device.

. If FS_ERR_DEV, FS_ERR DEV_NOT_PRESENT, FS_ERR DEV_| Oor FS_ERR_DEV_TI MEQUT is returned, then the volume has been
added to the file system, though the underlying device is probably not present. The volume will need to be either closed and re-added, or
refreshed.

FSVol_Query()

void FSVol Query (CPU CHAR *nane_vol ,
FS VOL_INFO *p_info,
FS_ERR *p_err);
File Called from Code enabled by
fs_vol.c Application N/A
Obtain information about a volume.
Arguments
name_vol
Volume name.
p_info
Pointer to structure that will receive volume information.
p_err

Pointer to variable that will receive the return error code from this function:
FS_ERR_NONE
Volume information obtained.
FS_ERR DEV
Device access error.
FS_ERR_NAMVE_NULL
Argument name_vol passed a NULL pointer.
FS ERR NULL_PTR
Argument p_i nf o passed a NULL pointer.
FS_ERR VOL_NOT_OPEN

Volume is not open.

https://doc.micrium.com/pages/viewpage.action?pageId=12856873#id-�C/FSErrorCodes-DeviceErrorCodes

Returned Value

None.

Notes/Warnings

None.

FSVol_Rd()

void FSVol _Rd (CPU_CHAR *nane_vol ,
voi d *p_dest,
FS_SEC NBR start,
FS_SEC Qry cnt,

FS_ERR *p_err);
File Called from
fs_vol.c Application

Read data from volume sector(s).

Arguments
name_vol
Volume name.
p_dest
Pointer to destination buffer.
start
Start sector of read.
cnt
Number of sectors to read

p_err

Pointer to variable that will receive the return error code from this function

FS_ERR_NONE
Sector(s) read.
FS_ERR DEV
Device access error.
FS_ERR_NAMVE_NULL
Argument name_vol passed a NULL pointer.
FS ERR NULL_PTR
Argument p_dest passed a NULL pointer.
FS_ERR_VOL_NOT_MOUNTED
Volume is not mounted.
FS ERR VOL_NOT_OPEN

Volume is not open.

Returned Value

None.

Code enabled by

N/A

Required Configuration

None.

Notes/Warnings

None.
FSVol_Wr()
void FSVol W (CPU_CHAR
voi d
FS_SEC NBR
FS_SEC Qry
FS_ERR
File Called from
fs_vol.c Application

Write data to volume sector(s).

Arguments
name_vol
Volume name.
p_src
Pointer to source buffer.
start
Start sector of write.
cnt
Number of sectors to write

p_err

*nane_vol ,
*p_src,
start,
cnt,
*p_err);

Code enabled by

not FS_CFG_RD_ONLY_EN

Pointer to variable that will receive the return error code from this function

FS_ERR_NONE
Sector(s) written.
FS_ERR DEV
Device access error.

FS ERR NAMVE_NULL

Argument nane_vol passed a NULL pointer.

FS ERR NULL_PTR

Argument p_sr ¢ passed a NULL pointer.

FS_ERR VOL_NOT_MOUNTED
Volume is not mounted.
FS_ERR VOL_NOT_CPEN
Volume is not open.
Returned Value

None.

Notes/Warnings

None.

Volume Cache Functions

voi d

FSVol _CacheAssi gn (CPU_CHAR *nane_vol ,

FS VOL_CACHE_API *p_cache_api,

voi d *p_cache_dat a,
CPU_I NT32U si ze,

CPU_I NTO8U pct _nmgnt,
CPU_I NTO8U pct _dir,
FS_FLAGS node,

FS_ERR *p_err);

voi d

FSVol _Cachel nval i date (CPU_CHAR *nane_vol,

FS ERR *p_err);

voi d
FSVol _CacheFl ush (CPU_CHAR *nane_vol ,

FS_ERR *p_err);

FSVol_CacheAssign()

void FSVol CacheAssign (CPU _CHAR
FS_VOL_CACHE_API
voi d
CPU_I NT32U
CPU_I NTO8U
CPU_I NTO8U
FS_FLAGS
FS ERR

File Called from

fs_vol.c Application
Assign cache to a volume.

Arguments
nane_vol
Volume name.

p_cache_api

*nane_vol ,
*p_cache_api,
*p_cache_dat a,
si ze,
pct _mgnt,
pct _dir,
node,
*p_err)

Code enabled by

FS_CFG_CACHE_EN

Pointer to: (a) cache API to use; OR (b) NULL, if default cache API should be used.

p_cache_dat a
Pointer to cache data.

si ze

Size, in bytes, of cache buffer.
pct _nmgnt

Percent of cache buffer dedicated to management sectors.
pct _dir

Percent of cache buffer dedicated to directory sectors.

node
Cache mode
FS_VOL_CACHE_MODE_WR_THROUGH
FS_VOL_CACHE_MODE_WR_BACK
FS_VOL_CACHE_MODE_RD
p_err

Pointer to variable that will receive return error code from this function:
FS_ERR_NONE

Cache created.
FS_ERR_NAME_NULL

‘nanme_vol ' passed a NULL pointer.
FS_ERR_VOL_NOT_OPEN

Volume not open.
FS _ERR NULL_PTR

‘p_cache_dat a’' passed a NULL pointer.
FS_ERR_CACHE_| NVALI D_MODE

Mode specified invalid
FS_ERR CACHE_| NVALI D_SEC TYPE

Sector type sepecified invalid.
FS_ERR_CACHE _TOO SMALL

Size specified too small for cache.

Returned Value

None.

Notes/Warnings

None.
FSVol_CacheFlush()

void FSVol _CacheFl ush (CPU_CHAR *nane_vol,
FS ERR *p_err)

File Called from Code enabled by

fs_vol.c Application FS_CFG_CACHE_EN
Flush cache on a volume.

Arguments

nane_vol

Volume name.

p_err

Pointer to variable that will receive return error code from this function:

FS_ERR_NONE

Cache created.
FS_ERR_NAMVE_NULL

‘name_vol ' passed a NULL pointer.
FS_ERR_DEV_CHNGD

Device has changed.
FS_ERR VOL_NO _CACHE

No cache assigned to volume.
FS_ERR VOL_NOT_OPEN

Volume not open.
FS_ERR_VOL_NOT_MOUNTED

Volume not mounted.
FS_ERR DEV_| NVALI D_SEC _NBR

Sector start or count invalid.
FS_ERR_DEV_| NVALI D_| OW FMT

Device needs to be low-level formatted.
FS ERR DEV_| O

Device /O error.
FS_ERR_DEV_TI MEOUT

Device timeout error.
FS_ERR_DEV_NOT_PRESENT

Device is not present.
Returned Value

None.

Notes/Warnings

None.

FSVol_Cachelnvalidate ()

void FSVol _Cachel nval i date (CPU_CHAR
FS ERR

File Called from
fs_vol.c Application
Invalidate cache on a volume.

Arguments

nane_vol

Volume name.

*nane_vol ,
*p_err)

Code enabled by

FS_CFG CACHE EN

p_err

Pointer to variable that will receive return error code from this function:
FS_ERR_NONE

Cache created.
FS_ERR_NAME_NULL

‘nanme_vol ' passed a NULL pointer.
FS_ERR _DEV_CHNGD

Device has changed.
FS_ERR VOL_NO CACHE

No cache assigned to volume.
FS_ERR VOL_NOT_OPEN

VVolume not open.
FS_ERR VOL_NOT_MOUNTED

VVolume not mounted.

Returned Value

None.

Notes/Warnings

None.

SD/

MMC Driver Functions

voi d

FSDev_SD Card_QuerySD (CPU_CHAR *nane_dev,

FS_DEV_SD INFO *p_info,

FS_ERR *p_err);
voi d
FSDev_SD SPI _QuerySD (CPU_CHAR *nane_dev,

FS_DEV_SD INFO *p_info,

FS ERR *p_err);

voi d

FSDev_SD Card_RdCID (CPU_CHAR *nane_dev,
CPU_| NTO8U *p_info,

FS ERR *p_err);

voi d

FSDev_SD_SPI _RdCl D (CPU_CHAR *name_dev,
CPU_| NTO8U *p_info,

FS ERR *p_err);

voi d

FSDev_SD Card_RdCSD (CPU_CHAR *nane_dev,
CPU_| NTO8U *p_info,

FS ERR *p_err);

voi d

FSDev_SD_SPI _RdCSD (CPU_CHAR *name_dev,
CPU_| NTO8U *p_info,

FS_ERR *p_err);

FSDev_SD_xxx_QuerySD()

void FSDev_SD Card_QuerySD (CPU_CHAR *nane_dev,
FS_DEV_SD INFO *p_info,
FS_ERR *p_err);
void FSDev_SD SPI _QuerySD (CPU_CHAR *nane_dev,
FS DEV_SD INFO *p_info,
FS ERR *p_err);
File Called from Code enabled by
fs_dev_sd_card.c, fs_dev_sd_spi.c Application N/A

Get low-level information about SD/MMC card.

Arguments
nane_dev
Device name (see Note #1).
p_info
Pointer to structure that will receive SD/MMC card information.
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
SD/MMC info obtained.
FS_ERR_NAME_NULL
Argument nanme_dev passed a NULL pointer.
FS ERR_NULL_PTR
Argument p_i nf o passed a NULL pointer.
FS_ERR_DEV_| NVALI D
Argument nane_dev specifies an invalid device
FS_ERR_DEV_NOT_OPEN
Device is not open.
FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS ERR DEV_I O
Device /O error.
FS_ERR DEV_TI MEQUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a SD/MMC device; (for FSDev_SD Card_QuerySIX), e.g., “sdcar d: 0: ”; for FSDev_SD_SPI _QuerySD(), e.g., “
sd: 0: 7).

FSDev_SD_xxx_RdCID()

voi d FSDev_SD Card_RdCI D (CPU_CHAR *nane_dev,
CPU_I NTO8U *p_i nf o,
FS ERR *p_err);

voi d FSDev_SD SPI _RdClI D (CPU_CHAR *nane_dev,
CPU_I NTO8U *p_i nf o,
FS_ ERR *p_err);

File Called from Code enabled by

fs_dev_sd_card.c,fs_dev_sd_spi.c Application N/A
Read SD/MMC Card ID (CID) register.

Arguments
name_dev
Device name (see Note #1).
p_dest
Pointer to 16-byte buffer that will receive SD/MMC Card ID register.
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
SD/MMC Card ID register read.
FS_ERR_NAME_NULL
Argument name_dev passed a NULL pointer.
FS ERR NULL_PTR
Argument p_dest passed a NULL pointer.
FS_ERR _DEV_| NVALI D
Argument nanme_dev specifies an invalid device
FS_ERR_DEV_NOT_OPEN
Device is not open.
FS_ERR _DEV_NOT_PRESENT
Device is not present.

FS ERR DEV_| O

Device /O error.
FS_ERR_DEV_TI MEQUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a SD/MMC device; (for FSDev_SD Card_QuerySIX), e.g., “sdcard:0:"; for FSDev_SD_SPI _QuerySIX), e.g.,
“sd:0:").

2. For SD cards, the structure of the CID is defined in the SD Card Association’s “Physical Layer Simplified Specification Version 2.00”,
Section 5.1. For MMC cards, the structure of the CID is defined in the JEDEC’s “MultiMediaCard (MMC) Electrical Standard, High
Capacity”, Section 8.2.

FSDev_SD_xxx_RdCSD()

voi d FSDev_SD Card_RdCSD (CPU_CHAR *name_dev,
CPU_I NTO8U *p_i nf o,
FS ERR *p_err);

voi d FSDev_SD SPI _RdCSD (CPU_CHAR *nane_dev,
CPU_I NTO8U *p_i nf o,
FS ERR *p_err);

File Called from Code enabled by

fs_dev_sd_card.c,fs_dev_sd_spi.c Application N/A
Read SD/MMC Card-Specific Data (CSD) register.

Arguments
name_dev
Device name (see Note #1).
p_dest
Pointer to 16-byte buffer that will receive SD/MMC Card-Specific Data register.
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
SD/MMC Card-Specific Data register read.
FS_ERR_NAME_NULL
Argument nanme_dev passed a NULL pointer.
FS ERR NULL_PTR
Argument p_dest passed a NULL pointer.
FS_ERR DEV_| NVALI D
Argument nane_dev specifies an invalid device
FS_ERR_DEV_NOT_OPEN
Device is not open.
FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS ERR DEV_I O
Device /O error.
FS_ERR DEV_TI MEQUT

Device timeout.

Returned Value

None.
Notes/Warnings

1. The device must be a SD/MMC device; (for FSDev_SD_Car d_QuerySI(), e.g., “sdcar d: O: ”; for FSDev_SD SPI _QuerySI(), e.g., “
sd: 0:).
2. For SD cards, the structure of the CSD is defined in the SD Card Association’s “Physical Layer Simplified Specification Version 2.00",

Section 5.3.2 (v1.x and v2.0 standard capacity) or Section 5.3.3. (v2.0 high capacity). For MMC cards, the structure of the CSD is defined
in the JEDEC's “MultiMediaCard (MMC) Electrical Standard, High Capacity”, Section 8.3.

NAND Driver Functions

voi d

FSDev_NAND_LowFnt (CPU_CHAR *nane_dev,
FS_ERR *p_err);

voi d

FSDev_NAND_Lowivbunt (CPU_CHAR *nane_dev,

FS ERR *p_err);

voi d
FSDev_NAND_LowuUnmount (CPU_CHAR *nane_dev,

FS_ERR *p_err);

FSDev_NAND_LowFmt()

void FSDev_NAND LowkFnt (CPU CHAR *nane_dev,
FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nand. c Application N/A
Low-level format a NAND device.

Arguments
name_dev
Device name (see Note #1).
p_err
Pointer to variable that will receive the return error code from this function:
FS_ERR_NONE
Device low-level formatted successfully.
FS_ERR_NAME_NULL

Argument nanme_dev passed a NULL pointer.

FS_ERR_DEV_I NVALI D

Argument nane_dev specifies an invalid device
FS_ERR_DEV_NOT_OPEN

Device is not open.
FS_ERR_DEV_NOT_PRESENT

Device is not present.
FS_ERR_DEV_| NVALI D_LOW FMT

Device needs to be low-level formatted.
FS_ERR DEV_| O

Device /O error.
FS_ERR_DEV_TI NEQUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a NAND device (e.g., “nand: 0: ").
2. A NAND medium must be low-level formatted with this driver prior to access by the high-level file system, a requirement which the device
module enforces.

FSDev_NAND_LowMount()

void FSDev_NAND Lowibunt (CPU CHAR *nane_dev,
FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nand. c Application N/A
Low-level mount a NAND device.

Arguments
name_dev
Device name (see Note #1).
p_err
Pointer to variable that will receive the return error code from this function:
FS_ERR_NONE
Device low-level mounted successfully.
FS_ERR_NAMVE_NULL
Argument nanme_dev passed a NULL pointer.
FS_ERR_DEV_| NVALI D
Argument nane_dev specifies an invalid device
FS_ERR_DEV_NOT_OPEN
Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.
FS_ERR_CORRUPT_LOW FMT
Device low-level format corrupted.
FS_ERR DEV_I NVALI D_LOW FMI
Device needs to be low-level formatted.
FS_ERR_DEV_| NCOVPATI BLE_LOW PARANG
Device configuration not compatible with existing format.
S ERR DEV_I O
Device /O error.
FS_ERR_DEV_TI MEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a NAND device (e.g., “nand: 0:).

2. Low-level mounting parses the on-device structure, detecting the presence of a valid low-level format. If FS_ERR _DEV_| NVALI D LOW F
M is returned, the device is not low-level formatted.

3. If an existing on-device low-level format is found but doesn't match the format prompted by specified device configuration, FS_ERR_DEV_
| NCOVPATI BLE_LOW PARAMS will be returned. A low-level format is required.

4. If an existing and compatible on-device low-level format is found, but is not usable because of some metadata corruption, FS_ERR DEV_
CORRUPT_LOW FMT will be returned. A chip erase and/or low-level format is required.

FSDev_NAND_LowUnmount()

voi d FSDev_NAND LowUnnount (CPU CHAR *nane_dev,
FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nand. c Application N/A
Low-level unmount a NAND device.

Arguments
name_dev
Device name (see Note #1).
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Device low-level unmounted successfully.
FS_ERR_NAME_NULL
Argument name_dev passed a NULL pointer.
FS_ERR_DEV_| NVALI D
Argument nane_dev specifies an invalid device
FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT
Device is not present.
FS ERR DEV_I O
Device I/O error.
FS_ERR_DEV_TI MEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a NAND device (e.g., “nand: 0:).
2. Low-level unmounting clears software knowledge of the on-disk structures, forcing the device to again be low-level mounted or formatted
prior to further use.

NOR Driver Functions

voi d

FSDev_NOR_LowFnt (CPU_CHAR *nane_dev,
FS_ERR *p_err);

voi d

FSDev_NOR_Lowivbunt (CPU_CHAR *name_dev,
FS ERR *p_err);

voi d

FSDev_NOR_LowUnnount (CPU_CHAR *nane_dev,

FS_ERR *p_err);

voi d
FSDev_NOR_LowConpact (CPU_CHAR *nane_dev,

FS_ERR *p_err);

voi d

FSDev_NOR_LowDef r ag (CPU_CHAR *name_dev,

FS_ERR *p_err);

voi d

FSDev_NOR_PhyRd (CPU_CHAR *nane_dev,
voi d *p_dest,

CPU_I NT32U start,
CPU_I NT32U cnt,

FS ERR *p_err);

voi d

FSDev_NOR_PhyW (CPU_CHAR *nane_dev,
voi d *p_src,

CPU_INT32U start,

CPU_INT32U cnt,

FS ERR *p_err);

voi d

FSDev_NOR_PhyEraseBl k (CPU_CHAR *nane_dev,
CPU_INT32U start,

CPU_I NT32U si ze,

FS_ERR *p_err);

voi d
FSDev_NOR_PhyEr aseChi p (CPU_CHAR *nane_dev,

FS ERR *p_err);

FSDev_NOR_LowCompact()

voi d FSDev_NOR _LowConpact (CPU_CHAR

FS_ERR
File Called from
fs_dev_nor.c Application

Low-level compact a NOR device.

Arguments
name_dev
Device name (see Note #1).

p_err

*nane_dev,
*p_err);

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Device low-level compacted successfully.
FS_ERR_NAMVE_NULL

Argument name_dev passed a NULL pointer.
FS_ERR _DEV_| NVALI D

Argument nane_dev specifies an invalid device
FS_ERR_DEV_NOT_OPEN

Device is not open.
FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR DEV_| NVALI D_LOW FMT

Code enabled by

N/A

Device needs to be low-level formatted.
FS ERR DEV_| O

Device /O error.
FS_ERR _DEV_TI MEQUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a NOR device (e.g., “nor: 0:).
2. Compacting groups sectors containing high-level data into as few blocks as possible. If an image of a file system is to be formed for
deployment, to be burned into chips for production, then it should be compacted after all files and directories are created.

FSDev_NOR_LowDefrag()

voi d FSDev_NOR_LowDefrag (CPU_CHAR *name_dev,
FS ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A
Low-level defragment a NOR device.

Arguments
name_dev
Device name (see Note #1).
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Device low-level defragmented successfully.
FS_ERR _NAMVE NULL
Argument nanme_dev passed a NULL pointer.
FS_ERR DEV_| NVALI D
Argument nane_dev specifies an invalid device
FS_ERR _DEV_NOT_OPEN
Device is not open.
FS_ERR_DEV_NOT_PRESENT
Device is not present.
FS_ERR DEV_I NVALI D_LOW FMr
Device needs to be low-level formatted.
FS ERR DEV_| O
Device /O error.
FS_ERR _DEV_TI MEQUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a NOR device (e.g., “nor: 0:).
2. Defragmentation groups sectors containing high-level data into as few blocks as possible, in order of logical sector. A defragmented file
system should have near-optimal access speeds in a read-only environment.

FSDev_NOR_LowFmt()

void FSDev_NOR LowFnt (CPU _CHAR *nane_dev,
FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A
Low-level format a NOR device.

Arguments
name_dev
Device name (see Note #1).
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Device low-level formatted successfully.
FS_ERR_NAME_NULL
Argument nanme_dev passed a NULL pointer.
FS_ERR DEV_| NVALI D
Argument nane_dev specifies an invalid device
FS_ERR_DEV_NOT_OPEN
Device is not open.
FS_ERR_DEV_NOT_PRESENT
Device is not present.
FS_ERR DEV_I NVALI D_LOW FMr
Device needs to be low-level formatted.
FS ERR DEV_| O
Device /O error.
FS_ERR_DEV_TI MEQUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a NOR device (e.g., “nor: 0:).
2. Low-level formating associates physical areas (sectors) of the device with logical sector numbers. A NOR medium must be low-level
formatted with this driver prior to access by the high-level file system, a requirement which the device module enforces.

FSDev_NOR_LowMount()

voi d FSDev_NOR_Lowibunt (CPU_CHAR *nane_dev,
FS ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A
Low-level mount a NOR device.

Arguments
name_dev
Device name (see Note #1).
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Device low-level mounted successfully.
FS_ERR_NAME_NULL
Argument name_dev passed a NULL pointer.
FS_ERR_DEV_| NVALI D
Argument nane_dev specifies an invalid device
FS_ERR_DEV_NOT_OPEN
Device is not open.
FS_ERR_DEV_NOT_PRESENT
Device is not present.
FS_ERR DEV_| NVALI D_LOW FMI
Device needs to be low-level formatted.
FS ERR DEV_ | O
Device /O error.
FS_ERR_DEV_TI MEQUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a NOR device (e.g., “nor: 0:).
2. Low-level mounting parses the on-device structure, detecting the presence of a valid low-level format. If FS_ERR_DEV_| NVALI D LOW F
M is returned, the device is not low-level formatted.

FSDev_NOR_LowUnmount()

voi d FSDev_NOR_LowUnnount (CPU_CHAR *nane_dev,
FS ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A
Low-level unmount a NOR device.

Arguments
name_dev
Device name (see Note #1).
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Device low-level unmounted successfully.
FS_ERR_NAME_NULL
Argument nanme_dev passed a NULL pointer.
FS_ERR DEV_| NVALI D
Argument nanme_dev specifies an invalid device
FS _ERR DEV_NOT_OPEN
Device is not open.
FS_ERR_DEV_NOT_PRESENT
Device is not present.
FS ERR DEV_I O
Device I/O error.
FS_ERR_DEV_TI MEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a NOR device (e.g., “nor: 0:).
2. Low-level unmounting clears software knowledge of the on-disk structures, forcing the device to again be low-level mounted or formatted
prior to further use.

FSDev_NOR_PhyEraseBIk()

voi d FSDev_NOR_PhyEraseBl k (CPU_CHAR *nane_dev,
CPU_INT32U start,
CPU I NT32U si ze,
FS ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A
Erase block of NOR device.

Arguments

name_dev

Device name (see Note #1).
start
Start address of block (relative to start of device).
si ze
Size of block, in octets.
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Block erased successfully.
FS_ERR_NAMVE_NULL
Argument nanme_dev passed a NULL pointer.
FS_ERR_DEV_| NVALI D
Argument nane_dev specifies an invalid device
FS_ERR_DEV_NOT_OPEN
Device is not open.
FS_ERR_DEV_NOT_PRESENT
Device is not present.
FS_ERR DEV_| NVALI D_LOW FMI
Device needs to be low-level formatted.
FS ERR DEV_ | O
Device /O error.
FS_ERR_DEV_TI MEQUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a NOR device (e.g., “nor: 0:).
2. Care should be taken if this function is used while a file system exists on the device, or if the device is low-level formatted. The erased
block is not validated as being outside any existing file system or low-level format information.

FSDev_NOR_PhyEraseChip()

voi d FSDev_NOR_PhyEraseChi p (CPU_CHAR *nane_dev,
FS ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A
Erase entire NOR device.

Arguments

name_dev
Device name (see Note #1).

p_err

Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE

Device erased successfully.
FS_ERR_NAME_NULL

Argument nanme_dev passed a NULL pointer.
FS_ERR_DEV_| NVALI D

Argument nane_dev specifies an invalid device
FS_ERR_DEV_NOT_OPEN

Device is not open.
FS_ERR_DEV_NOT_PRESENT

Device is not present.
FS_ERR DEV_| NVALI D_LOW FMI

Device needs to be low-level formatted.
FS ERR DEV_ | O

Device /O error.
FS_ERR_DEV_TI MEQUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a NOR device (e.g., “nor: 0:).
2. This function should not be used while a file system exists on the device, or if the device is low-level formatted, unless the intent is to
destroy all existing information.

FSDev_NOR_PhyRd()

void FSDev_NOR PhyRd (CPU_CHAR *nane_dev,
voi d *p_dest,
CPU_I NT32U start,
CPU_I NT32U cnt,

FS_ERR *p_err);
File Called from Code enabled by
fs_dev_nor.c Application N/A

Read from a NOR device and store data in buffer.

Arguments
nane_dev

Device name (see Note #1).
p_dest

Pointer to destination buffer.
start

Start address of read (relative to start of device).

cnt

Number of octets to read.

p_err

Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE

Octets read successfully.
FS _ERR_NAME_NULL

Argument nanme_dev passed a NULL pointer.
FS ERR NULL_PTR

Argument p_dest passed a NULL pointer.
FS_ERR_DEV_| NVALI D

Argument name_dev specifies an invalid device.
FS_ERR_DEV_NOT_OPEN

Device is not open.
FS_ERR_DEV_NOT_PRESENT

Device is not present.
FS_ERR _DEV_| NVALI D_LOW FMT

Device needs to be low-level formatted.
FS ERR DEV_I O

Device I/O error.
FS_ERR_DEV_TI MEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a NOR device (e.g., “nor: 0:).

FSDev_NOR_PhyWr()

void FSDev_NOR PhyW (CPU_CHAR *name_dev,
voi d *p_src,
CPU_I NT32U start,
CPU_I NT32U cnt,

FS_ERR *p_err);
File Called from
fs_dev_nor.c Application

Write to a NOR device from a buffer.

Arguments

nane_dev

Device name (see Note #1).

p_src

Code enabled by

N/A

Pointer to source buffer.
start
Start address of write (relative to start of device).
cnt
Number of octets to write.
p_err
Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Octets written successfully.
FS_ERR_NAME_NULL
Argument nanme_dev passed a NULL pointer.
FS ERR NULL_PTR
Argument p_sr ¢ passed a NULL pointer.
FS_ERR DEV_| NVALI D
Argument nane_dev specifies an invalid device.
FS_ERR_DEV_NOT_OPEN
Device is not open.
FS_ERR_DEV_NOT_PRESENT
Device is not present.
FS_ERR_DEV_| NVALI D_LOW FMT
Device needs to be low-level formatted.
FS ERR DEV_| O
Device /O error.
FS_ERR_DEV_TI MEQUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. The device must be a NOR device (e.g., “nor: 0:).

2. Care should be taken if this function is used while a file system exists on the device, or if the device is low-level formatted. The octet
location(s) modified are not validated as being outside any existing file system or low-level format information.

3. During a program operation, only 1 bits can be changed; a 0 bit cannot be changed to a 1. The application must know that the octets
being programmed have not already been programmed.

FAT System Driver Functions

voi d
FS_FAT_Journal Open (CPU_CHAR *nane_vol,

FS_ERR *p_err);

voi d
FS_FAT Journal C ose (CPU_CHAR *nane_vol,

FS ERR *p_err);

voi d
FS_FAT Journal Start (CPU_CHAR *nane_vol,

FS_ERR *p_err);

voi d
FS_FAT _Journal Stop (CPU_CHAR *nanme_vol,

FS_ERR *p_err);

voi d
FS_FAT_Vol Chk (CPU_CHAR *nanme_vol ,

FS _ERR *p_err);

FS_FAT JournalClose()

void FS_FAT Journal dose (CPU_CHAR *nane_vol,
FS ERR *p_err);

File Called from

fs_fat_journal.c Application
Close journal on volume.

Arguments
nane_vol
Volume name.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE
Journal closed.
FS_ERR DEV
Device access error.
Returned Value

None.

Notes/Warnings

None.
FS_FAT JournalOpen()

void FS_FAT_Journal Open (CPU_CHAR *nane_vol,
FS ERR *p_err);

File Called from

Code enabled by

FS CFG FAT_JOURNAL_EN

Code enabled by

fs_fat_journal.c Application FS_CFG_FAT_JOURNAL_EN

Open journal on volume.

Arguments
nane_vol
Volume name.

p_err

Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Journal opened.
FS_ERR DEV
Device access error.
Returned Value

None.

Notes/Warnings

None.
FS_FAT_ JournalStart()

void FS_FAT Journal Start (CPU CHAR *nane_vol,
FS_ERR *p_err);

File Called from Code enabled by

fs_fat_journal.c Application FS_CFG_FAT_JOURNAL_EN

Start journaling on volume.

Arguments
nane_vol
Volume name.

p_err

Pointer to variable that will the receive return error code from this function:
FS_ERR_NONE
Journaling started.
FS_ERR DEV
Device access error.
Returned Value

None.

Notes/Warnings

None.

FS_FAT JournalStop()

void FS_FAT Journal Stop (CPU_CHAR *nane_vol,
FS_ERR *p_err);
File Called from Code enabled by
fs_fat_journal.c Application FS_CFG_FAT_JOURNAL_EN

Stop journaling on volume.

Arguments
name_vol
Volume name.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE
Journaling stopped.
FS_ERR _DEV
Device access error.
Returned Value

None.

Notes/Warnings

None.
FS_FAT_VolChk()

void FS_FAT Vol Chk (CPU _CHAR

FS_ERR
File Called from
fs_fat.c Application

Check the file system on a volume.

Arguments
name_vol
Volume name.

p_err

*nane_vol ,
*p_err);

Code enabled by

FS CFG FAT_VOL_CHK_EN

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE
Volume checked without errors.

FS_ERR_NAMVE_NULL

Argument “name_vol” passed a null pointer.

FS _ERR DEV

Device access error.

FS_ERR_VOL_NOT_CPEN
VVolume not open.
FS_ERR _BUF_NONE_AVAI L

No buffers available.

Returned Value

None.

Notes/Warnings

None.

UC/FS Error Codes

System Error Codes
Buffer Error Codes
Cache Error Codes
Device Error Codes
Device Driver Error Codes
Directory Error Codes
ECC Error Codes

Entry Error Codes

File Error Codes

Name Error Codes
Partition Error Codes
Pools Error Codes

File System Error Codes
Volume Error Codes

OS Layer Error Codes

This section provides a brief explanation of uC/FS error codes defined in f s_er r. h. Any error codes not listed here may be searched in fs_err
. h for both their numerical value and usage.

System Error Codes

Error Code

FS_ERR_NONE

FS_ERR | NVALI D_ARG
FS_ERR | NVALI D_CFG
FS_ERR | NVALI D_CHKSUM
FS_ERR | NVALI D LEN
FS_ERR | NVALI D_TI ME
FS_ERR_| NVALI D_TI MESTAMP
FS_ERR | NVALI D_TYPE
FS_ERR MEM ALLCC
FS_ERR NULL_ARG
FS_ERR NULL_PTR

FS ERR CS

FS_ERR OVF

FS ERR EOF

FS_ERR WORKI NG DI R_NONE_AVAI L

Meaning

No error.

Invalid argument.

Invalid configuration.

Invalid checksum.

Invalid length.

Invalid date/time.

Invalid timestamp.

Invalid object type.

Mem could not be alloc'd.
Arg(s) passed NULL val(s).
Ptr arg(s) passed NULL ptr(s).
OS err.

Value too large to be stored in type.
EOF reached.

No working dir avail.

FS_ERR WORKI NG DI R_| NVALI D

Buffer Error Codes

Error Code

FS_ERR_BUF_NONE_AVAI L

Cache Error Codes

Error Code
FS_ERR_CACHE_| NVALI D_MODE
FS_ERR CACHE_| NVALI D_SEC TYPE

FS _ERR _CACHE_TCO SMALL

Device Error Codes

Error Code

FS_ERR DEV
FS_ERR_DEV_ALREADY_OPEN
FS_ERR _DEV_CHNGD

FS_ERR DEV_FI XED

FS_ERR DEV_FULL

FS_ERR DEV_| NVALI D

FS_ERR _DEV_| NVALI D_CFG
FS_ERR DEV_I NVALI D_ECC
FS_ERR DEV_| NVALI D_| O CTRL
FS_ERR DEV_| NVALI D_LOW FMT
FS_ERR DEV_I NVALI D_LOW PARANG
FS_ERR DEV_| NVALI D_MARK
FS_ERR DEV_| NVALI D_NAME
FS_ERR DEV_| NVALI D _OP
FS_ERR DEV_I NVALI D_SEC NBR
FS_ERR _DEV_I NVALI D_SEC SI ZE
FS_ERR DEV_| NVALI D_SI ZE
FS_ERR DEV_| NVALI D_UNI T_NBR
FS ERR DEV_| O

FS_ERR DEV_NONE_AVAI L
FS_ERR _DEV_NOT_OPEN

FS_ERR DEV_NOT_PRESENT
FS_ERR_DEV_TI MEQUT

FS_ERR DEV_UNI T_NONE_AVAI L

Working dir invalid.

Meaning

No buffer available.

Meaning
Mode specified invalid.
Device already open.

Device has changed.

Meaning

Device access error.

Device already open.

Device has changed.

Device is fixed (cannot be closed).
Device is full (no space could be allocated).
Invalid device.

Invalid dev cfg.

Invalid ECC.

1/0O control invalid.

Low format invalid.

Invalid low-level device parameters.
Invalid mark.

Invalid device name.

Invalid operation.

Invalid device sec nbr.

Invalid device sec size.

Invalid device size.

Invalid device unit nbr.

Device /O error.

No device avail.

Device not open.

Device not present.

Device timeout.

No unit avail.

FS_ERR DEV_UNI T_ALREADY EXI ST
FS_ERR_DEV_UNKNOMN

FS_ERR DEV_VOL_OPEN

FS_ERR DEV_| NCOVPATI BLE_LOW PARAVG
FS_ERR DEV_| NVALI D_METADATA

FS_ERR DEV_OP_ABORTED

FS_ERR DEV_CORRUPT_LOW FMT

FS_ERR DEV_| NVALI D_SEC DATA

FS_ERR _DEV_WR_PROT

FS_ERR DEV_OP_FAI LED

FS_ERR _DEV_NAND_NO _AVAI L_BLK
FS_ERR DEV_NAND NO SUCH SEC
FS_ERR_DEV_NAND_ECC NOT_SUPPORTED

FS_ERR DEV_NAND _ONFI _EXT_PARAM PAGE

Device Driver Error Codes

Error Code
FS_ERR DEV_DRV_ALREADY_ADDED
FS_ERR_DEV_DRV_I NVALI D_NAME

FS_ERR_DEV_DRV_NONE_AVAI L

Directory Error Codes

Error Code

FS_ERR DI R_ALREADY_OPEN
FS ERR DIR DS
FS_ERR DI R_FULL
FS_ERR DI R_NONE_AVAI L

FS_ERR DI R_NOT_OPEN

ECC Error Codes

Error Code
FS_ERR_ECC_CORRECTABLE

FS_ERR_ECC_UNCORRECTABLE

Unit already exists.

Unknown.

Vol open on dev.

Incompatible low-level device parameters.
Device driver metadata is invalid.
Operation aborted.

Corrupted low-level fmt.

Retrieved sec data is invalid.

Device is write protected.

Operation failed.

No blk avail.

This sector is not available.

The needed ECC scheme is not supported.

NAND device extended parameter page must be read.

Meaning
Device driver already added.
Invalid device driver name.

No driver available.

Meaning

Directory already open.
Directory module disabled.
Directory is full.

No directory avail.

Directory not open.

Meaning
Correctable ECC error.

Uncorrectable ECC error.

Entry Error Codes

Error Code Meaning
FS_ERR _ENTRI ES_SAME Paths specify same file system entry.

FS_ERR ENTRI ES_TYPE_DI FF Paths do not both specify files OR directories.

FS_ERR ENTRI ES_VOLS DI FF
FS_ERR_ENTRY_CORRUPT

FS_ERR ENTRY_EXI STS

FS_ERR ENTRY_| NVALI D
FS_ERR_ENTRY_NOT DI R
FS_ERR_ENTRY_NOT_EMPTY
FS_ERR_ENTRY_NOT_FI LE
FS_ERR_ENTRY_NOT_FOUND
FS_ERR_ENTRY_PARENT_NOT_FOUND
FS_ERR ENTRY_PARENT_NOT DI R
FS_ERR_ENTRY_RD _ONLY
FS_ERR_ENTRY_ROOT_DI R
FS_ERR_ENTRY_TYPE_| NVALI D

FS_ERR ENTRY_OPEN

File Error Codes

Error Code

FS_ERR FI LE_ALREADY_ OPEN
FS_ERR_FI LE_BUF_ALREADY_ASSI GNED
FS_ERR FI LE_ERR

FS_ERR FI LE_I NVALI D_ACCESS MODE
FS_ERR FI LE_| NVALI D_ATTRI B
FS_ERR FI LE_| NVALI D_BUF_MODE
FS_ERR FI LE_I NVALI D_BUF_SI ZE

FS _ERR FI LE_| NVALI D_DATE_TI ME
FS_ERR FI LE_I NVALI D_DATE_TI ME_FLAG
FS_ERR_FI LE_| NVALI D_NAVE

FS ERR FI LE_ I NVALID ORI G N
FS_ERR_FI LE_| NVALI D_OFFSET
FS_ERR FI LE_| NVALI D_FI LES
FS_ERR_FI LE_| NVALI D_OP
FS_ERR FI LE | NVALI D_OP_SEQ
FS_ERR FI LE_I NVALI D_POS
FS_ERR FI LE_LOCKED

FS_ERR FI LE_NONE_AVAI L

FS_ERR_FI LE_NOT_OPEN

FS_ERR _FI LE_NOT_LOCKED

FS ERR FI LE_OVF

Paths specify file system entries on different vols.
File system entry is corrupt.

File system entry exists.

File system entry invalid.

File system entry not a directory.
File system entry not empty.

File system entry not a file.

File system entry not found.

Entry parent not found.

Entry parent not a directory.

File system entry marked read-only.
File system entry is a root directory.

File system entry type is invalid.

Operation not allowed on entry corresponding to an open file/dir.

Meaning
File already open.
Buf already assigned.

Error indicator set on file.

Access mode is specified invalid.
Attributes are specified invalid.

Buf mode is specified invalid or unknown.
Buf size is specified invalid.
Date/time is specified invalid.
Date/time flag is specified invalid.
Name is specified invalid.

Origin is specified invalid or unknown.
Offset is specified invalid.

Invalid file arguments.

File operation invalid.

File operation sequence invalid.

File position invalid.

File locked.

No file available.

File not open.

File not locked.

File size overflowed max file size.

FS _ERR FI LE_OVF_OFFSET

Name Error Codes

Error Code
FS_ERR_NAME_BASE_TOO LONG
FS_ERR_NAME_EMPTY
FS_ERR_NAME_EXT_TOO _LONG
FS_ERR_NAME_| NVALI D
FS_ERR_NAVE_M XED_CASE
FS_ERR_NAME_NULL

FS_ERR NAME_PATH TOO LONG
FS_ERR_NAME_BUF_TOO SHORT

FS_ERR_NAME_TOO LONG

Partition Error Codes

Error Code

FS_ERR_PARTI TI ON_| NVALI D
FS_ERR_PARTI TI ON_| NVALI D_NBR
FS_ERR_PARTI TI ON_| N\VALI D_SI G
FS_ERR_PARTI TI ON_| NVALI D_SI ZE
FS_ERR_PARTI TI ON_NMAX
FS_ERR_PARTI TI ON_NOT_FI NAL
FS_ERR_PARTI TI ON_NOT_FOUND

FS_ERR_PARTI TI ON_ZERO

Pools Error Codes

Error Code

FS_ERR_POOL_EMPTY
FS_ERR_POOL_FULL

FS_ERR_POOL_| NVALI D_BLK_ADDR
FS_ERR _POOL_| NVALI D BLK_| N_POOL
FS_ERR_POOL_| NVALI D_BLK I X
FS_ERR POOL_| NVALI D_BLK_NBR

FS_ERR POOL_| NVALI D_BLK_SI ZE

File System Error Codes

Error Code

FS_ERR_SYS_TYPE_NOT_SUPPORTED

File offset overflowed max file offset.

Meaning

Base name too long.

Name empty.

Extension too long.

Invalid file name or path.

Name is mixed case.

Name ptr arg(s) passed NULL ptr(s).
Entry path is too long.

Buffer for name is too short.

Full name is too long.

Meaning

Partition invalid.

Partition nbr specified invalid.

Partition sig invalid.

Partition size invalid.

Max nbr partitions have been created in MBR.
Prev partition is not final partition.

Partition not found.

Partition zero.

Meaning

Pool is empty.

Pool is full.

Block not found in used pool pointers.
Block found in free pool pointers.
Block index invalid.

Number blocks specified invalid.

Block size specified invalid.

Meaning

File sys type not supported.

FS ERR SYS I NVALID SI G
FS_ERR SYS_DI R_ENTRY_PLACE
FS_ERR SYS DI R_ENTRY_NOT_FOUND
FS_ERR SYS_DI R_ENTRY_NOT_FOUND_YET
FS_ERR SYS_SEC NOT_FOUND

FS _ERR SYS_CLUS CHAI N_END

FS_ERR SYS_CLUS_CHAI N_END_EARLY

FS ERR SYS_CLUS | NVALI D

FS_ERR SYS_CLUS NOT_AVAI L

FS_ERR SYS_SFN_NOT_AVAI L

FS_ERR_SYS_LFN_ORPHANED

Volume Error Codes

Error Code

FS_ERR_VOL_| NVALI D_NAMVE
FS_ERR VOL_I NVALI D_SI ZE
FS_ERR VOL_I NVALI D_SEC S| ZE
FS_ERR VOL_I NVALI D_CLUS_SI ZE
FS _ERR VOL_I NVALI D _OP

FS_ERR VOL_| NVALI D_SEC NBR
FS_ERR VOL_I NVALI D_SYS

FS_ERR VOL_NO _CACHE

FS_ERR VOL_NONE_AVAI L
FS_ERR_VOL_NONE_EXI ST

FS_ERR VOL_NOT_OPEN
FS_ERR_VOL_NOT_MOUNTED

FS_ERR VOL_ALREADY_OPEN

FS _ERR VOL_FI LES OPEN

FS_ERR VOL_DI RS_OPEN

FS_ERR _JOURNAL_ ALREADY_OPEN
FS_ERR_JOURNAL_CFG CHANGED
FS_ERR JOURNAL FILE_|I NVALID
FS_ERR_JOURNAL_FULL

FS_ERR JOURNAL_LOG | NVALI D_ARG
FS_ERR JOURNAL_LOG | NCOWPLETE
FS_ERR_JOURNAL_LOG NOT_PRESENT
FS_ERR_JOURNAL_NOT_OPEN

FS_ERR JOURNAL_NOT_REPLAYI NG

Sec has invalid OR illegal sig.
Dir entry could not be placed.
Dir entry not found.

Dir entry not found (yet).

Sec not found.

Cluster chain ended.

Cluster chain ended before number clusters traversed.

Cluster invalid.
Cluster not avail.
SFN is not avail.

LFN entry orphaned.

Meaning

Invalid volume name.

Invalid volume size.

Invalid volume sector size.
Invalid volume cluster size.
Volume operation invalid.
Invalid volume sector number.
Invalid file system on volume.
No cache assigned to volume.
No vol avail.

No vols exist.

Vol not open.

Vol not mounted.

Vol already open.

Files open on vol.

Dirs open on vol.

Journal already open.

File system suite cfg changed since log created.
Journal file invalid.

Journal full.

Invalid arg read from journal log.
Log not completely entered in journal.
Log not present in journal.
Journal not open

Journal not being replayed.

FS_ERR JOURNAL_NOT_STARTED
FS_ERR_JOURNAL_NOT_STOPPED
FS _ERR VOL_LABEL_| NVALI D

FS_ERR VOL_LABEL_NOT_FOUND

FS_ERR VOL_LABEL_TOO LONG

OS Layer Error Codes

Error Code

FS ERR OS_LOCK

FS ERR OS INIT

FS ERR OS_| NI T_LOCK

FS_ERR OS_| NI T_LOCK_NAMVE

HC/FS Porting Manual

Journaling not started.
Journaling not stopped.
Volume label is invalid.
Volume label was not found.

Volume label is too long.

Meaning

Lock not acquired.

OS not initialized.

Lock signal not successfully initialized.

Lock signal name not successfully initialized.

UC/FS adapts to its environment via a number of ports. The simplest ones, common to all installations, interface with the application, OS kernel (if
any) and CPU. More complicated may be ports to media drivers, which require additional testing, validation and optimization; but many of those
are still straightforward. The figure below diagrams the relationship between pC/FS and external modules and hardware.

The sections in this chapter describe each required function and give hints for implementers. Anyone creating a new port should first check the
example ports that are included in the uC/FS distribution in the following directory:

\'M cri um Sof t war e\ uC- FS\ Exanpl es\ BSP\ Dev

The port being contemplated may already exist; failing that, some similar CPU/device may have already be supported.

(1)

»l Clk
(2)
HC/FS | -l CPU
Platform Independent
(3)
-l RTOS

Y
MCIFS Drivers (4)
SD/IMMC NAND NOR
Driver Driver Driver

5) 7) ik

(ﬁ} {E‘} { 11]
Y A Y
SD/MMC NAND MOR
Host Device Device
Controller

Figure - uC/FS ports architecture

@

UC/Clk act as a centralized clock management module. If you use an external real-time clock, you will have to write functions to let uC/FS know
the date and time.

@
The CPU port (within uC/CPU) adapts the file system suite to the CPU and compiler characteristics. The fixed-width types (e.g., CPU_I NT16U)
used in the file system suite are defined here.

©)
The RTOS port adapts the file system suite to the OS kernel (if any) included in the application. The files FS_OS. C/H contain functions primarily
aimed at making accesses to devices and critical information in memory thread-safe.

4
UC/FS interfaces with memory devices through drivers following a generic driver model. It is possible to create a driver for a different type of
device from this model/template.

(5)
The SD/MMC driver can be ported to any SD/MMC host controller for cardmode access.

(6)
The SD/MMC driver can be ported to any SPI peripheral for SPI mode access.

Q)
The NAND driver can be ported for many physical organizations (page size, bus width, SLC/MLC, etc.).

®
The NAND driver can be ported to any bus interface. A NAND device can also be located directly on GPIO and accessed by direct toggling of
port pins.

9)

The NOR driver can be ported to many physical organization (command set, bus type, etc.).

(10)
The NOR driver can be ported to any bus interface.

(11
The NOR driver can be ported to any SPI peripheral (for SPI flash).

Date/Time Management

Depending on the settings of uC/CIk, you might have to write time management functions that are specific to your application. For example, you
might have to define the function Cl k_Ext TS_Cet () to obtain the timestamp of your system provided by a real-time clock peripheral. Please
refer to the pC/Clk manual for more details.

CPU Port

UC/CPU is a processor/compiler port needed for uC/FS to be CPU/compiler-independant. Ports for the most popular architectures are already
available in the uC/CPU distribution. If the pC/CPU port for your target architecture is not available, you should create your own based on the port
template (also available in pC/CPU distribution). You should refer to the pC/CPU user manual to know how you should use it in your project.

OS Kernel
UC/FS can be used with or without an RTOS. Either way, an OS port must be included in your project. The port includes one code/header file pair:

fs_os.c
fs_os.h

UC/FS manages devices and data structures that may not be accessed by severally tasks simultaneously. An OS kernel port leverages the
kernel’'s mutual exclusion services (mutexes) for that purpose.

These files are generally placed in a directory named according to the following rubric:
\'M cri um Sof t war e\ uC- FS\ OS\ <os_nane>

Four sets of files are included with the pC/FS distribution:

\'M crium Sof t war e\ uC- FS\ OS\ Tenpl at e Template

\'M cri um Sof t war e\ uC- FS\ OS\ None No OS kernel port
\' M crium Sof t war e\ uC- FS\ OS\ uCos- 1 | pC/OS-Il port

\'M crium Sof t war e\ uC- FS\ OS\ uCGs- 1 11 pC/OS-1lI port

If you don’t use any OS, you should include the port for no OS in your project. You must also make sure that you manage interrupts correctly.

If you are using pC/OS-II or pC/OS-lll, you should include the appropriate ports in your project. If you use another OS, you should create your
own port based on the template. The functions that need to be written in this port are described here.

FS OS Init(), FS_OS_Lock() and FS_OS_Unl ock()

The core data structures are protected by a single mutex. FS_OS_I ni t () creates this semaphore. FS_OS_Lock() and FS_OS_Unl ock(
) acquire and release the resource. Lock operations are never nested.

FS OS_Devlnit(), FS_OS DevLock() and FS_OS_DevUnl ock()

File system device, generally, do not tolerate multiple simultaneous accesses. A different mutex controls access to each device and
information about it in RAM. FS_OS_Devl ni t () creates one mutex for each possible device. FS_OS_DevLock() and FS_OS_DevUnl oc
k() acquire and release access to a specific device. Lock operations for the same device are never nested.

FS OS Filelnit(), FS_OS_FileAccept(), FS_OS FileLock() and FS_OS Fil eUnl ock()

Multiple calls to file access functions may be required for a file operation that must be guaranteed atomic. For example, a file may be a
conduit of data from one task to several. If a data entry cannot be read in a single file read, some lock is necessary to prevent preemption
by another consumer. File locks, represented by API functions like FSFi | e_LockGet () and fl ockfil e(), provide a solution. Four
functions implement the actual lock in the OS port. FS_QOS_Fi | el ni t () creates one mutex for each possible file. FS_OS_Fi | eLock()/F
S OS Fil eAccept () and FS_OS_Fi | eUnl ock() acquire and release access to a specific file. Lock operations for the same file MAY be
nested, so the implementations must be able to determine whether the active task owns the mutex. If it does, then an associated lock count
should be incremented; otherwise, it should try to acquire the resource as normal.

FS OS_ WorkingDirGet() and FS_OS Worki ngDirSet ()

File and directory paths are typically interpreted absolutely; they must start at the root directory, specifying every intermediate path
component. If much work will be accomplished upon files in a certain directory or a task requires a root directory as part of its context,
working directories are valuable. Once a working directory is set for a task, subsequent non-absolute paths will be interpreted relative to the
set directory.

https://doc.micrium.com/pages/viewpage.action?pageId=10753188
https://doc.micrium.com/display/cpudoc/uC-CPU+Documentation+Home

#i f (FS_CFG WORKI NG DI R_EN == DEF_ENABLED)
CPU CHAR *FS_0OS WrkingDirGet (void)

(1)
{
OS_ERR os_err;
CPU | NT32U reg_val ;
CPU_CHAR *p_wor ki ng_di r;
reg_val = OSTaskRegCGet ((0OS_TCB *) O,
FS_0OS REG | D WORKI NG DI R,
&os_err);
if (os_err !'= OS_ERR_NONE) {
reg_val = Ou;
}
p_working_dir = (CPU_CHAR *)reg_val ;
return (p_working_dir);
}
#endi f

#i f (FS_CFG _WORKI NG_DI R_EN == DEF_ENABLED)
void FS_OS WrkingDirSet (CPU CHAR *p_working_dir,
FS_ERR *p_err)

{
OS _ERR os_err;
CPU_I NT32U reg_val;
reg_val = (CPU_I NT32U) p_working_dir;
OSTaskRegSet ((0S_TCB *) 0,
FS_OS _Regl dWor ki ngDir,
(OCS_REQG reg_val,
&os_err);
if(os_err = OS_ERR_NONE) {
*p_err = FS_ERR CS;
return;
}
*p_err = FS_ERR _NONE;
}
#endi f

Listing - FS_OS_WorkingDirGet()/Set() (uC/OS-III)
@

FS_OS_Wor ki ngDi r Get () gets the pointer to the working directory associated with the active task. In pC/OS-lll, the pointer is stored in
one of the task registers, a set of software data that is part of the task context (just like hardware register values). The implantation casts
the integral register value to a pointer to a character. If no working directory has been assigned, the return value must be a pointer to NULL.
In the case of pC/OS-IlI, that will be done because the register values are cleared upon task creation.

@)
FS_Os_Wor ki ngDi r Set () associates a working directory with the active task. The pointer is cast to the integral register data type and
stored in a task register.

The application calls either of the core file system functions FS_Wér ki ngDi r Set () or fs_chdir() to set the working directory.
The core function forms the full path of the working directory and “saves” it with the OS port function FS_OS_Wor ki ngDi r Set () .
The port function should associate it with the task in some manner so that it can be retrieved with FS_OS_Wér ki ngDi r Get () even
after many context switches have occurred.

#i f (FS_CFG WORKI NG DI R_EN == DEF_ENABLED)
void FS OS WrkingDirFree (OS_TCB *p_tcbh)

{
OS_ERR os_err;
CPU_I NT32U reg_val ;
CPU_CHAR *pat h_buf ;
reg_val = OSTaskRegCGet(p_tchb,
FS_OS REG | D WORKI NG DI R,
&os_err);
if (os_err !'= OS_ERR_NONE) {
return;
}
if (reg_val == 0u) {
(1)
return;
}
pat h_buf = (CPU_CHAR *)reg_val;
FS_Wor ki ngDi r Obj Free(pat h_buf);
(2)
}
#endi f

Listing - FS_OS_WorkingDirFree() (C/OS-III)
@D

If the register value is zero, no working directory has been assigned and no action need be taken.

2
FS_Wor ki ngDi r Obj Free() frees the working directory object to the working directory pool. If this were not done, the unfreed object
would constitute a memory leak that could deplete the heap memory eventually.

The character string for the working directory is allocated from the pC/LIB heap. If a task is deleted, it must be freed (made available for
future allocation) to avert a crippling memory leak. The internal file system function FS_Wér ki ngDi r Obj Free() releases the string to
an object pool. In the port for uC/OS-IIl, that function is called by FS_OS_Wor ki ngDi r Free() which must be called by the assigned
task delete hook.

FS OS Diy_ms()

Device drivers and example device driver ports delay task execution FS_OS_DI y_ns() . Common functions allow BSP developers to
optimize implementation easily. A millisecond delay may be accomplished with an OS kernel service, if available. The trivial implementation
of a delay (particularly a sub-millisecond delay) is a while loop; better performance may be achieved with hardware timers with semaphores
for wait and asynchronous notification. The best solution will vary from one platform to another, since the additional context switches may
prove burdensome. No matter which strategy is selected, the function must delay for at least the specified time amount; otherwise, sporadic
errors can occur. ldeally, the actual time delay will equal the specified time amount to avoid wasting processor cycles.

void FS BSP Dy ms (CPU INT16U ns)
{

/* $$$$ Insert code to delay for specified nunmber of millieconds. */

Listing - FS_OS_Dly_ms()

FS_OS_Sem####()

The four generic OS semaphore functions provide a complete abstraction of a basic OS kernel service. FS_OS_Sen(Cr eat e() creates a
semaphore which may later be deleted with FS_OS_SenDel (). FS_OS_SenPost () signals the semaphore (with or without timeout) and F
S OS _SenPend() waits until the semaphore is signaled. On systems without an OS kernel, the trivial implementations in Listing -
FS_OS_SemCreate()/Del() trivial implementation in the OS Kernel page and Listing - FS_OS_SemPend()/Post() trivial implementation in
the OS Kernel page are recommended.

CPU BOOLEAN FS OS SentCreate (FS_BSP_SEM *p_sem

(1)
CPU _I NT16U cnt)
{
p_sem = cnt; / $$$$ Create semaphore with initial count
‘cnt'. */
return (DEF_CK);
}
CPU BOOLEAN FS _OS SenDel (FS_BSP_SEM *p_sem
(2)
{
p_sem = 0u; / $$$$ Del ete semaphore. */
return (DEF_CK);
}

Listing - FS_OS_SemCreate()/Del() trivial implementation
@

FS_OS_SentCreat e() creates a semaphore in the variable p_sem For this trivial implementation, FS_BSP_SEMis a integer type which
stores the current count, i.e., the number of objects available.

@)
FS_OS_SenDel () deletes a semaphore created by FS_OS_SenCreat e() .

CPU_BOOLEAN FS_Os _SenPend (FS_BSP_SEM *p_sem
(1)
CPU_I NT32U ti meout)
{
CPU_I NT32U tineout_cnts;
CPU_I NT16U semval;
CPU_SR ALLOC() ;
if (tineout == 0u) {
semval = 0u;
while (semval == 0Ou) {
CPU_CRI Tl CAL_ENTER() ;
semval = *p_sem /* $$$$ If semmphore available ...
*/
if (semval > 0u) {
p_sem = semval - 1lu; / ... decrenment semaphore count.
*/
}
CPU_CRITI CAL_EXI T() ;
}
} else {
timeout_cnts = tineout * FS_BSP_CNTS_PER Ms5;
sem val = 0;
while ((tineout_cnts > Ou) &&
(sem val == 0u)) {
CPU_CRI TI CAL_ENTER() ;
semval = *p_sem /* $3$$$ |f semmphore available ...
*/
if (semval > 0) {
p_sem = semval - 1lu; / ... decrenent senmaphore count.
*/
}
CPU_CRI TI CAL_EXI T() ;
timeout_cnts--;
}
}
if (semval == 0u) {
return (DEF_FAIL);
} else {
return (DEF_CK);
}
}

CPU _BOOLEAN FS OS SenPost (FS_BSP_SEM *p_semn)
(2)
{

CPU_I NT16U semval;

CPU_SR ALLOC() ;

CPU_CRI Tl CAL_ENTER() ;

semval = *p_sem /* $$3$% I ncrenent semaphore val ue. */

semval ++;

*p_sem = semval;
CPU_CRI TI CAL_EXI T() ;
return (DEF_CK);

Listing - FS_OS_SemPend()/Post() trivial implementation
@

FS_OS_SenPend() waits until a semaphore is signaled. If a zero timeout is given, the wait is possibly infinite (it never times out).

@)
FS_OS_SenPost () signals a semaphore.

Device Driver

Devices drivers for the most popular devices are already available for uC/FS. If you use a particular device for which no driver exist, you should
read this section to understand how to build your own driver.

A device driver is registered with the file system by passing a pointer to its API structure as the first parameter of FS_DevDr vAdd() . The API
structure, FS_DEV_API , includes pointers to eight functions used to control and access the device:

const FS_DEV_API FSDev_#### = {
FSDev_####_NameGet ,
FSDev_#### | nit,
FSDev_####_Qpen,
FSDev_#### C ose,
FSDev_####_Rd,

#if (FS_CFG_RD_ONLY_EN == DEF_DI SABLED)
FSDev_####_ W ,

#endi f
FSDev_####_Query,
FSDev_#### |1 O Ctrl

b

The functions which must be implemented are listed and described in the table below.. The first two functions, NanmeGet () and | ni t (), act upon
the driver as a whole; neither should interact with any physical devices. The remaining functions act upon individual devices, and the first
argument of each is a pointer to a FS_DEV structure which holds device information, including the unit number which uniquely identifies the device
unit (member Uni t Nor).

Function Description

NanmeCet () Get driver name.

Init() Initialize driver.

Open() Open a device.

C ose() Close a device.

Rd() Read from a device.

W () Write to a device.

Query() Get information about a device.
10.Ctrl () Execute device I/O control operation.

Table - Device driver API functions
Close() - Device Driver

static void FSDev_####_C ose (FS_DEV *p_dev);

File Called from Code enabled by

fs_dev_####. c FSDev_d ose() N/A
The device driver Cl ose() function should uninitialize the hardware and release or free any resources acquired in the Open() function.

Arguments

p_dev

Pointer to device to close.

Returned Value

None.

Notes/Warnings
1. Tracking whether a device is open is not necessary, because this should ONLY be called when a device is open.

2. This will be called every time the device is closed.
3. The device driver C ose() function is called while the caller holds the device lock.

Init() - Device Driver

static void FSDev_#### Init (void);

File Called from Code enabled by

fs_dev_####. c FS_DevDr vAdd() N/A

The device driver | ni t () function should initialize any structures, tables or variables that are common to all devices or are used to manage
devices accessed with the driver. This function should not initialize any devices; that will be done individually for each with the device driver's Ope
n() function.

Arguments

None.

Returned Value

None.

Notes/Warnings

1. The device driver I ni t () function is called while the caller holds the FS lock.

IO_Ctrl() - Device Driver

static void FSDev_#### 10 Crl (FS_DEV *p_dev,

FS IO CTRL_CMD cnd,

Voi d *p_buf,

FS ERR *p_err);
File Called from Code enabled by
fs_dev_####. c various N/A

The device driver | O_CtrI () function performs an I/O control operation.

Arguments
p_dev
Pointer to device to query.
p_buf
Buffer which holds data to be used for operations
OR
Buffer in which data will be stored as a result of operation.
p_err
Pointer to variable that will receive the return error code from this function
FS_ERR_NONE
Control operation performed successfully.
FS_ERR DEV_| NVALI D_| O CTRL

I/O control operation unknown to driver.

FS_ERR _DEV_| NVALI D_UNI T_NBR
Device unit number is invalid.
FS ERR DEV_I O
Device I/O error.
FS_ERR_DEV_NOT_OPEN
Device is not open.
FS_ERR_DEV_NOT_PRESENT
Device is not present.
FS_ERR_DEV_TI MEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. Tracking whether a device is open is not necessary, because this should ONLY be called when a device is open.
2. Defined /O control operations are

FS_DEV_| O CTRL_REFRESH Refresh device.

FS_DEV_| O CTRL_LOW FMI Low-level format device.

FS _DEV_| O CTRL_LOW MOUNT Low-level mount device.

FS _DEV_| O_CTRL_LOW UNMOUNT Low-level unmount device.
FS DEV_| O CTRL_LOW COVPACT Low-level compact device.
FS_DEV_| O CTRL_LOW DEFRAH Low-level defragment device.
FS DEV_| O CTRL_SEC RELEASE Release data in sector
FS_DEV_| O CTRL_PHY_RD Read physical device

FS DEV_| O CTRL_PHY_WR Write physical device

FS DEV_| O CTRL_PHY_RD PAGE Read physical device page
FS DEV_|I O CTRL_PHY_WR _PAGE Write physical device page
FS _DEV_| O CTRL_PHY_ERASE BLK Erase physical device block
FS DEV_| O CTRL_PHY_ERASE CHI P Erase physical device

The device driver | O_Ctr I () function is called while the caller holds the device lock.
NameGet() - Device Driver

static const CPU CHAR *FSDev_#### NameGet (void);

File Called from Code enabled by

fs_dev_####. c various N/A

Device drivers are identified by unique names, on which device names are based. For example, the unique name for the NAND flash driver is
“nand”; the NAND devices will be named “nand:0:", “nand:1:", etc.

Arguments

None.

Returned Value

Pointer to the device driver name.

Notes/Warnings

1. The name must not include the ‘' character.
2. The name must be constant; each time this function is called, the same name must be returned.
3. The device driver NameCGet () function is called while the caller holds the FS lock.

Open() - Device Driver
static void FSDev_####_Open (FS_DEV *p_dev,
voi d *p_dev_cfg,

FS ERR *p_err);

File Called from Code enabled by

fs_dev_####. c FSDev_Open() N/A

The device driver Open() function should initialize the hardware to access a device and attempt to initialize that device. If this function is
successful (i.e., it returns FS_ERR_NONE), then the file system suite expects the device to be ready for read and write accesses.

Arguments
p_dev
Pointer to device to open.
p_dev_cfg
Pointer to device configuration.
p_err
Pointer to variable that will receive the return error code from this function:
FS_ERR_NONE
Device opened successfully.
FS_ERR _DEV_ALREADY_OPEN
Device unit is already opened.
FS_ERR DEV_| NVALI D_CFG
Device configuration specified invalid.
FS_ERR_DEV_| NVALI D_LOW FMT
Device needs to be low-level formatted.
FS_ERR DEV_| NVALI D_LOW PARAMG
Device low-level device parameters invalid.
FS_ERR DEV_| NVALI D_UNI T_NBR
Device unit number is invalid.
FS ERR DEV_| O
Device I/O error.
FS_ERR_DEV_NOT_PRESENT
Device unit is not present.
FS_ERR_DEV_TI MEQUT
Device timeout.
FS_ERR_MEM ALLOC

Memory could not be allocated.

Returned Value

None.

Notes/Warnings

1. Tracking whether a device is open is not necessary, because this should NEVER be called when a device is already open.

2. Some drivers may need to track whether a device has been previously opened (indicating that the hardware has previously been
initialized).

3. This will be called every time the device is opened.

4. The driver should identify the device instance to be opened by checking p_dev- >Uni t Nor . For example, if “template:2:" is to be
opened, then p_dev- >Uni t Nbor will hold the integer 2.

5. The device driver Open() function is called while the caller holds the device lock.

Query() - Device Driver
static void FSDev_#### Query (FS_DEV *p_dev,

FS DEV_INFO *p_info,

FS_ERR *p_err);
File Called from Code enabled by
fs_dev_####. c FSDev_Open(), N/A

FSDev_Ref resh(),
FSDev_QueryLocked()

The device driver Quer y() function gets information about a device.

Arguments
p_dev
Pointer to device to query.
p_info
Pointer to structure that will receive device information.
p_err
Pointer to variable that will receive the return error code from this function
FS_ERR_NONE
Device information obtained.
FS_ERR DEV_| NVALI D_UNI T_NBR
Device unit number is invalid.
FS_ERR_DEV_NOT_OPEN
Device is not open.
FS_ERR_DEV_NOT_PRESENT

Device is not present.

Returned Value

None.

Notes/Warnings

1. Tracking whether a device is open is not necessary, because this should ONLY be called when a device is open.
2. The device driver Quer y() function is called while the caller holds the device lock.

For more information about the FS_DEV_| NFOstructure, see FS_DEV_| NFO.
Rd() - Device Driver

static void FSDev_#### Rd (FS_DEV *p_dev,
voi d *p_dest,
FS SEC NBR start,

FS SEC QTY cnt,

FS_ERR *p_err);
File Called from Code enabled by
fs_dev_####. c FSDev_RdLocked() N/A

The device driver Rd() function should read from a device and store data in a buffer. If an error is returned, the file system suite assumes that no
data is read,; if not all data can be read, an error must be returned.

Arguments
p_dev
Pointer to device to read from.
p_dest
Pointer to destination buffer.
start
Start sector of read.
cnt
Number of sectors to read
p_err
Pointer to variable that will receive the return error code from this function
FS_ERR_NONE
Sector(s) read.
FS_ERR _DEV_| NVALI D_UNI T_NBR
Device unit number is invalid.
FS _ERR DEV_| O
Device I/O error.
FS_ERR_DEV_NOT_OPEN
Device is not open.
FS_ERR_DEV_NOT_PRESENT
Device is not present.
FS_ERR_DEV_TI MEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. Tracking whether a device is open is not necessary, because this should only be called when a device is open.
2. The device driver Rd() function is called while the caller holds the device lock.

Wr() - Device Driver
static void FSDev_#### W (FS_DEV *p_dev,

voi d *p_src,

FS SEC NBR start,

FS_SEC Qry cnt,

FS ERR *p_err);
File Called from Code enabled by
fs_dev_####. c FSDev_W Locked() N/A

The device driver W () function should write to a device the data from a buffer. If an error is returned, the file system suite assumes that no data
has been written.

Arguments
p_dev
Pointer to device to write to.
p_src
Pointer to source buffer.
start
Start sector of write.
cnt
Number of sectors to write
p_err
Pointer to variable that will receive the return error code from this function
FS_ERR_NONE
Sector(s) written.
FS_ERR DEV_| NVALI D_UNI T_NBR
Device unit number is invalid.
FS ERR DEV_ | O
Device /O error.
FS_ERR_DEV_NOT_OPEN
Device is not open.
FS_ERR_DEV_NOT_PRESENT
Device is not present.
FS_ERR_DEV_TI MEQUT

Device timeout.

Returned Value

None.

Notes/Warnings

1. Tracking whether a device is open is not necessary, because this should only be called when a device is open.
2. The device driver W () function is called while the caller holds the device lock.

SD/MMC Cardmode BSP

The SD/MMC cardmode protocol is unique to SD- and MMC-compliant devices. The generic driver handles the peculiarities for initializing, reading
and writing a card (including state transitions and error handling), but each CPU has a different host controller that must be individually ported. To
that end, a BSP, supplementary to the general uC/FS BSP, is required that abstracts the SD/MMC interface. The port includes one code file:

FS_DEV_SD _CARD _BSP. C

This file is generally placed with other BSP files in a directory named according to the following rubric:

\'M cri um Sof t war e\ Eval Boar ds\ <manuf act ur er >\ <boar d_nane>

\ <conpi | er >\ BSP\

Several example ports are included in the uC/FS distribution in files named according to the following rubric:

\'M cri um Sof t war e\ uC- FS\ Exanpl es\ BSP\ Dev\ SD\ Car d\ <cpu_nane>

Function

FSDev_SD Car d_BSP_Open()
FSDev_SD Card_BSP_d ose()

FSDev_SD _Card_BSP_Lock()
FSDev_SD Car d_BSP_Unl ock()
FSDev_SD Card_BSP_CndStart ()
FSDev_SD_Car d_BSP_Cnd\\ai t End()
FSDev_SD_Car d_BSP_CndDat aRd()
FSDev_SD Car d_BSP_CndDat aW ()
FSDev_SD Card_BSP_Get Bl kCnt Max()
FSDev_SD Car d_BSP_GCet BusW dt hMax()
FSDev_SD_Car d_BSP_Set BusW dt h()
FSDev_SD Car d_BSP_Set C kFreq()
FSDev_SD Card_BSP_Set Ti neout Dat a()

FSDev_SD Card_BSP_Set Ti meout Resp()

Table - SD/MMC cardmode BSP functions

Description

Open (initialize) SD/MMC card interface.
Close (uninitialize) SD/MMC card interface.
Acquire SD/MMC card bus lock.

Release SD/MMC card bus lock.

Start a command.

Wait for a command to end and get response.
Read data following command.

Write data following command.

Get max block count.

Get maximum bus width, in bits.

Set bus width.

Set clock frequency.

Set data timeout.

Set response timeout.

Each BSP must implement the functions in the table above. (For information about creating a port for a platform accessing a SD/MMC device in
SPI mode, see SD/MMC SPI Mode BSP. This software interface was designed by reviewing common host implementations as well as the SD
card association’s SD Specification Part A2 — SD Host Controller Simplified Specification, Version 2.00, which recommends a host architecture
and provides the state machines that would guide operations. Example function implementations for a theoretical compliant host are provided in
this chapter. Common advanced requirements (such as multiple cards per slot) and optimizations (such as DMA) are possible. No attempt has
been made, however, to accommodate non-storage devices that are accessed on a SD/MMC cardmode, including SDIO devices.

The core operation being abstracted is the command/response sequence for high-level card transactions. The key functions, CndSt art () , CrdW
ai t End(), CndDat aRd() and CmdDat aW () , are called within the state machine of the figure below. If return error from one of the functions will
abort the state machine, so the requisite considerations, such as preparing for the next command or preventing further interrupts, must be

handled if an operation cannot be completed.

Error

returned
Start command execution Re
FSDev_SD Card BSP_CmdStart()
* Error
Wait for command to execute and returned
response to be returned Re
FSDev_SD Card BSP_ CmdWaitEnd()
Write Read
RN S
FSDev_SD Card_BSP_CmdDataWr() FSDev SD Card BSP CmdDataR

The remaining functions either investigate host capabilities (Get Bl kCnt Max () , Get BusW dt hMax ()) or set operational parameters (Set BusW
dth(), Set A kFreq(), Set Ti meout Dat a(), Set Ti meout Resp()). Together, these function sets help configure a new card upon insertion.
Note that the parameters configured by the ‘set’ functions belong to the card, not the slot; if multiple cards may be multiplexed in a single slot,
these must be saved when set and restored whenever Lock() is called.

Figure - Command execution

Two elements of host behavior routinely influence implementation and require design choices. First, block data can typically be read/written either
directly from a FIFO or transferred automatically by the peripheral to/from a memory buffer with DMA. While the former approach may be
simpler—no DMA controller need be setup—it may not be reliable. Unless the host can stop the host clock upon FIFO underrun (for write) or
overrun (for read), effectively pausing the operation from the card’s perspective, transfers at high clock frequency or multiple-bus configurations
will probably fail. Interrupts or other tasks can interrupt the operation, or the CPU just may be unable to fill the FIFO fast enough. DMA avoids
those pitfalls by offloading the responsibility for moving data directly to the CPU.

Second, the completion of operations such as command execution and data read/write are often signaled via interrupts (unless some error
occurs, whereupon a different interrupt is triggered). During large transfers, these operations occur frequently and the typical wait between
initiation and completion is measured in microseconds. On most platforms, polling the interrupt status register within the task performs better (i.e.,
results in faster reads and writes) than waiting on a semaphore for an asynchronous notification from the ISR, because the penalty of extra
context switches is not incurred.

FSDev_SD Card BSP_CmdDataRd()

void FSDev_SD Card_BSP_CndDat aRd (FS_Qry uni t _nbr,
FS_DEV_SD CARD_CMD *p_cnd,
voi d *p_dest,

FS _DEV_SD CARD ERR *p_err);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD Card_RdDat a() N/A
Read data following a command.

Arguments

uni t _nbr

Unit number of SD/MMC card.
p_cmd
Pointer to command that was started.
p_dest
Pointer to destination buffer.
p_err
Pointer to variable that will receive the return error code from this function:
FS_DEV_SD CARD_ERR_NONE
No error.
FS_DEV_SD CARD ERR NO CARD
No card present.
FS_DEV_SD_CARD_ERR_UNKNOWN
Unknown or other error.
FS _DEV_SD CARD_ERR WAI T_TI MEOUT
Timeout in waiting for data.
FS_DEV_SD_CARD_ERR DATA_ OVERRUN
Data overrun.
FS _DEV_SD CARD_ERR DATA TI MEOUT
Timeout in receiving data.
FS_DEV_SD CARD_ERR DATA CHKSUM
Error in data checksum.
FS _DEV_SD CARD ERR DATA START BI T
Data start bit error.
FS_DEV_SD CARD_ERR_DATA

Other data error.
Returned Value
None.
Notes/Warnings

None.

Example

The implementation of FSDev_SD_Car d_BSP_CndDat aRd() in the listing below is targeted for the same host controller as the other listings in
this chapter; for more information, see FSDev_SD Card_BSP_CndStart ().

void FSDev_SD Card_BSP_CndDat aRd (FS_QTY unit_nbr,
FS DEV_SD CARD CMD *p_cnd,
voi d *p_dest,
FS DEV_SD CARD ERR *p_err)

CPU_I NT16U interrupt_status;
CPU I NT16U error_status;
CPU_I NT16U ti neout;
ti meout = 0u; /* WAit until data xfer conmpl. */
(1)
interrupt_status = REG | NTERRUPT_STATUS;
while (DEF_BIT_IS CLR(interrupt_status, Bl T_| NTERRUPT_STATUS_ERROR |
Bl T_I NTERRUPT_STATUS_TRANSFER _COWPLETE) ==
DEF_YES)) {
ti meout ++;
interrupt_status = REG | NTERRUPT_STATUS;
if (tinmeout == TI MEQUT_TRANSFER NAX) {
*p_err = FS_DEV_SD_CARD ERR WAI T_TI MEQUT;
return;

/* Handl e error. */
(2)
if (DEF_BIT_IS SET(interrupt_status, BIT_I NTERRUPT_STATUS ERROR) == DEF_VYES) {
error_status = REG ERROR_STATUS;
if (DEF_BIT_IS SET(error_status, REG ERROR STATUS DATA END BIT) == DEF_YES) {
*p_err = FS_DEV_SD CARD ERR DATA;
} else if (DEF_BIT_IS SET(error_status, REG ERROR STATUS DATA CRC) == DEF_VYES)

*p_err = FS_DEV_SD CARD ERR DATA CRC;
} else if (DEF_BIT_IS SET(error_status, REG ERROR STATUS DATA TI MEOQUT) ==
DEF_YES) ({
*p_err
} else {
*p_err

FS DEV_SD CARD ERR DATA TI MEOUT;

FS_DEV_SD CARD_ERR_UNKONVW;
}

REG_ERROR_STATUS = error_status;
REG | NTERRUPT_STATUS = interrupt_status;
return;

}

*p_err = FS _DEV_SD CARD ERR NONE;
(3)
}

Listing - FSDev_SD_Card_BSP_CmdDataRd()

1)

Wait until data transfer completes or an error occurs. The wait loop (or wait on semaphore) should always have a timeout to avoid blocking the
task in the case of an unforeseen hardware malfunction or a software flaw.

@
Check if an error occurred. The error status register is decoded to produce the actual error condition. That is not necessary, strictly, but error
counters that accumulate within the generic driver based upon returned error values may be useful while debugging a port.

)

Return no error. The data has been transferred already to the memory buffer using DMA.

FSDev_SD_Card_BSP_CmdDataWr()

void FSDev_SD Card_BSP_CruDat aW (FS_QTY uni t_nbr,

FS_DEV_SD CARD CMD *p_cnd,
voi d *p_src,

FS DEV_SD CARD ERR *p_err);
File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD Card_W Dat a() N/A
Write data following a command.

Arguments
uni t _nbr
Unit number of SD/MMC card.
p_cnd
Pointer to command that was started.
p_src
Pointer to source buffer.
p_err
Pointer to variable that will receive the return error code from this function:
FS_DEV_SD CARD ERR _NONE
No error.
FS_DEV_SD CARD ERR NO CARD
No card present.
FS_DEV_SD CARD ERR_UNKNOWN
Unknown or other error.
FS _DEV_SD_CARD_ERR WAI T_TI MEOUT
Timeout in waiting for data.
FS_DEV_SD CARD ERR DATA UNDERRUN
Data underrun.
FS_DEV_SD CARD ERR DATA CHKSUM
Error in data checksum.
FS_DEV_SD CARD ERR DATA START BI T
Data start bit error.
FS_DEV_SD CARD_ERR DATA

Other data error.

Returned Value

None.

Notes/Warnings

None.

Example

The implementation of FSDev_SD _Car d_BSP_CndDat aW () in Listing - FSDev_SD_Card_BSP_CmdDataWr() in the FSDev_SD_Card_BSP_C
mdDataWr() page is targeted for the same host controller as the other listings in this chapter; for more information, see FSDev_SD _Card_BSP_C
mdStart ().

void FSDev_SD Card_BSP_CndDat aW (FS_QrY unit_nbr,
FS DEV_SD CARD CMD *p_cnd,
voi d *p_src,
FS DEV_SD CARD ERR *p_err)

CPU_I NT16U interrupt_status;
CPU I NT16U error_status;
CPU_I NT16U ti neout;
ti meout = 0u; /* WAit until data xfer conmpl. */
(1)
interrupt_status = REG | NTERRUPT_STATUS;
while (DEF_BIT_IS CLR(interrupt_status, Bl T_| NTERRUPT_STATUS_ERROR |
Bl T_I NTERRUPT_STATUS_TRANSFER _COWPLETE) ==
DEF_YES)) {
ti meout ++;
interrupt_status = REG | NTERRUPT_STATUS;
if (tinmeout == TI MEQUT_TRANSFER NAX) {
*p_err = FS_DEV_SD_CARD ERR WAI T_TI MEQUT;
return;

/* Handl e error. */
(2)
if (DEF_BIT_IS SET(interrupt_status, BIT_I NTERRUPT_STATUS ERROR) == DEF_VYES) {
error_status = REG ERROR_STATUS;
if (DEF_BIT_IS SET(error_status, REG ERROR STATUS DATA END BIT) == DEF_YES) {
*p_err = FS_DEV_SD CARD ERR DATA;
} else if (DEF_BIT_IS SET(error_status, REG ERROR STATUS DATA CRC) == DEF_VYES)

*p_err = FS_DEV_SD CARD ERR DATA CRC;
} else if (DEF_BIT_IS SET(error_status, REG ERROR STATUS DATA TI MEOQUT) ==
DEF_YES) ({
*p_err
} else {
*p_err

FS DEV_SD CARD ERR DATA TI MEOUT;

FS_DEV_SD CARD_ERR_UNKONVW;
}

REG_ERROR_STATUS = error_status;
REG | NTERRUPT_STATUS = interrupt_status;
return;

}

*p_err = FS _DEV_SD CARD ERR NONE;
(3)
}

Listing - FSDev_SD_Card_BSP_CmdDataWr()

1)

Wait until data transfer completes or an error occurs. The wait loop (or wait on semaphore) SHOULD always have a timeout to avoid blocking the
task in the case of an unforeseen hardware malfunction or a software flaw.

@
Check if an error occurred. The error status register is decoded to produce the actual error condition. That is not necessary, strictly, but error
counters that accumulate within the generic driver based upon returned error values may be useful while debugging a port.

)

Return no error. The data has been transferred already from the memory buffer using DMA.

FSDev_SD_Card_BSP_CmdStart()

void FSDev_SD Card _BSP CmdStart (FS QTY uni t_nbr,

FS_DEV_SD CARD CMD *p_cnd,
voi d *p_dat a,

FS DEV_SD CARD ERR *p_err);

File Called from Code enabled by

fs_dev_sd_card_bsp.c SD/MMC cardmode driver N/A
Start a command.

Arguments
uni t _nbr
Unit number of SD/MMC card.
p_cnd
Pointer to command to transmit (see Note #2).
p_data
Pointer to buffer address for DMA transfer (see Note #3).
p_err
Pointer to variable that will receive the return error code from this function:
FS_DEV_SD CARD ERR _NONE
No error.
FS_DEV_SD CARD ERR NO CARD
No card present.
FS_DEV_SD CARD ERR BUSY
Controller is busy.
FS_DEV_SD CARD_ERR_UNKNOWN

Unknown or other error.

Returned Value

None.

Notes/Warnings

1. The command start will be followed by zero, one or two additional BSP function calls, depending on whether data should be transferred
and on whether any errors occur.
a. FSDev_SD Card_BSP_CndSt art () starts execution of the command. IT may also set up the DMA transfer (if necessary).
b. FSDev_SD Car d_BSP_CndWi t End() waits for the execution of the command to end, getting the command response (if any).
c. If data should transferred from the card to the host, FSDev_SD_Car d_BSP_CrdDat aRd() will read that data; if data should be
transferred from the host to the card, FSDev_SD_Car d_BSP_CndDat aW () will write that data.
2. The command p_cnd has the following parameters:
a. p_cnd- >Cnd is the command index.
b. p_cnd- >Ar g is the 32-bit argument (or O if there is no argument).
c. p_cmd->Fl ags is a bit-mapped variable with zero or more command flags:

FS DEV_SD CARD CMD FLAG INIT Initialization sequence before command.
FS_DEV_SD CARD CMD_FLAG BUSY Busy signal expected after command.
FS DEV_SD CARD CMD _FLAG CRC VALID CRC valid after command.
FS_DEV_SD CARD CVD_FLAG | X_VALI D Index valid after command.

FS_DEV_SD CARD CVD_FLAG_OPEN_DRAI N Command line is open drain.

FS_DEV_SD _CARD _CNVD_FLAG DATA_START Data start command.

FS_DEV_SD CARD CVD_FLAG DATA_STOP Data stop command.
FS DEV_SD CARD CMD_FLAG RESP Response expected.
FS_DEV_SD CARD CVD_FLAG RESP_LONG Long response expected.

d. p_cnd- >Dat aDi r indicates the direction of any data transfer that should follow this command, if any:

FS_DEV_SD CARD _DATA DI R_NONE No data transfer.
FS_DEV_SD CARD DATA DI R_HOST_TO _CARD Transfer host-to-card (write).
FS DEV_SD CARD DATA DI R_CARD TO HOST Transfer card-to-host (read).

e. p_cmd- >Dat aType indicates the type of the data transfer that should follow this command, if any:

FS_DEV_SD CARD DATA TYPE_NONE No data transfer.

FS _DEV_SD CARD DATA TYPE_SI NGLE_BLOCK Single data block.
FS_DEV_SD CARD DATA TYPE MULTI BLOCK Multiple data blocks.
FS _DEV_SD CARD DATA TYPE_STREAM Stream data.

f. p_cnd- >RespType indicates the type of the response that should be expected from this command:

FS_DEV_SD CARD_ RESP_TYPE_NONE No response.

FS_DEV_SD CARD RESP_TYPE_R1 R1 response: Normal Response Command.
FS_DEV_SD CARD RESP_TYPE _R1B R1b response.

FS_DEV_SD CARD RESP_TYPE R2 R2 response: CID, CSD Regjister.
FS_DEV_SD_CARD_RESP_TYPE_R3 R3 response: OCR Register.

FS_DEV_SD CARD _RESP_TYPE_R4 R4 response: Fast /O Response (MMC).
FS_DEV_SD_CARD_RESP_TYPE_RS5 R5 response: Interrupt Request Response (MMC).
FS_DEV_SD CARD RESP_TYPE_R5B R5B response.

FS DEV_SD CARD RESP_TYPE R6 R6 response: Published RCA Response.
FS_DEV_SD CARD RESP_TYPE_R7 R7 response: Card Interface Condition.

g. p_cnd->Bl kSi ze and p_cnd- >Bl kCnt are the block size and block count of the data transfer that should follow this
command, if any.
3. The pointer to the data buffer that will receive the data transfer that should follow this command, p_dat a, is given so that a DMA transfer
can be set up.

Example

The example implementation of FSDev_SD_Card_BSP_CndSt art () in, like the examples in subsequent sections, targets a generic host
conformant to the SD card association’s host controller specification. While few hosts do conform, most have a similar mixture of registers and
registers fields and require the same sequences of basic actions.

void FSDev_SD Card BSP _CndStart (FS_QTY uni t_nbr,
FS DEV_SD CARD CMD *p_cnd,
voi d *p_dat a,

FS_DEV_SD CARD ERR *p_err)

CPU_I NT16U conmand;

CPU_I NT32U present_state;

CPU_I NT16U transfer_node;

present _state = REG _STATE; /* Chk if controller busy. */

(D

(2)

(3)

if (DEF_BIT_I'S_SET_ANY(present _state, BlIT_STATE_CVD | NHI BI T_DAT |
BI T_STATE_CMD_I NHI BI T_CVD) == DEF_YES) {
*p_err = FS_DEV_SD_CARD ERR BUSY:
return;

}
transfer_node = DEF_BI T_NONE; /* Calc transfer node reg value. */

if (p_cnd->DataType == FS_DEV_SD CARD DATA TYPE_MJLTI PLE_BLOCK) {
transfer_node | = Bl T_TRANSFER_MODE_MJLTI PLE_BLOCK
| Bl T_TRANSFER MODE_AUTO CMD12
| Bl T_TRANSFER_MODE_BLOCK_COUNT_ENABLE;
}
if (p_cnd->DataDir == FS_DEV_SD CARD DATA DI R CARD TO HOST) {
transfer_node | = BI T_TRANSFER_MODE_READ | BI T_TRANSFER_MODE_DNVA ENABLE;
} else {
transfer_node | = Bl T_TRANSFER _MODE DNVA ENABLE;

}
comand = (CPU_I NT16U) p_cnd->Cnd << 8; /* Cal c conmand register value */

if (DEF_BIT_I'S_SET(p_cnd-> Fl ags, FS_DEV_SD CARD CMD FLAG DATA START) ==

DEF_YES) {

command | = Bl T_COMVAND_ DATA PRESENT;

}

if (DEF_BIT_I'S SET(p_cnd->Fl ags, FS DEV_SD CARD CMD FLAG | X VALID) == DEF_YES) {
conmand | = BI T_COMVAND DATA COMVAND_| X_CHECK;

}

if (DEF_BIT_IS SET(p_cnd->Fl ags, FS_DEV_SD CARD CVD FLAG CRC VALID) == DEF_YES) {
conmand | = BI T_COMVAND_DATA COVNMAND CRC_CHECK;

}

if (DEF_BIT_IS SET(p_cnd->Fl ags, FS DEV_SD CARD CMD FLAG RESP) == DEF_YES) {
if (DEF_BIT IS SET(p_cnd->Fl ags, FS DEV_SD CARD CMD FLAG RESP_LONG) ==

DEF_YES) {

(4)

conmand | = BI T_COMVAND DATA COMVAND_ RESPONSE LENGTH 136;
} else {
if (DEF_BIT_I'S SET(p_cnd->Fl ags, FS DEV_SD CARD CMD FLAG BUSY) == DEF_YES)

command | = Bl T_COVIVAND_DATA COWWAND_ RESPONSE _LENGTH 48;
} else {

command | = BI T_COMVAND DATA COVVMAND RESPONSE_LENGTH_48_BUSY;
}

/* Wite registers to exec cnmd. */

REG SDVA ADDESS = p_dat a;

REG BLOCK_COUNT = p_cnd->Bl kCnt;
REG_BLOCK_SI ZE = p_cnd- >Bl kSi ze;
REG_ARGUVENT = p_cnd- >Ar g;

REG TRANSFER MODE = transfer_node;
REG_COVIVAND = command;

*p_err = FS_DEV_SD_CARD ERR NONE;

Listing - FSDev_SD_Card_BSP_CmdStart()

@

Check whether the controller is busy. Though no successful operation should return without the controller idle, an error condition, programming
mistake or unexpected condition could make an assumption about initial controller state false. This simple validation is recommended to avoid
side-effects and to aid port debugging.

@

Calculate the transfer mode register value. The command’s DataType and DataDir members specify the type and direction of any transfer. Since
this examples uses DMA, DMA is enabled in the transfer mode register.

©)

Calculate the command register value. The command index is available in the command’s Cmd member, which is supplemented by the bits OR'd
into Flags to describe the expected result—response and data transfer—following the command execution.

“

The hardware registers are written to execute the command. The sequence in which the registers are written is important. Typically, as in this
example, the assignment to the command register actually triggers execution.

FSDev_SD Card BSP_CmdWaitEnd()

void FSDev_SD Card_BSP_CrdWait End (FS_QTY unit_nbr,
FS_DEV_SD CARD CMD *p_cn,

CPU_I NT32U *p_resp,

FS_DEV_SD CARD_ERR *p_err);

File Called from Code enabled by

fs_dev_sd_card_bsp.c SD/MMC cardmode driver N/A
Wait for command to end and get command response.

Arguments
uni t _nbr
Unit number of SD/MMC card.
p_cmd
Pointer to command that is ending.
p_resp
Pointer to buffer that will receive command response, if any.
p_err
Pointer to variable that will receive the return error code from this function:
FS_DEV_SD CARD ERR NONE
No error.
FS_DEV_SD CARD ERR NO CARD
No card present.
FS_DEV_SD CARD_ERR_UNKNOWN
Unknown or other error.
FS DEV_SD CARD ERR WAl T_TI MEOUT
Timeout in waiting for command response.
FS_DEV_SD CARD ERR RESP_TI MEQUT

Timeout in receiving command response.

FS_DEV_SD CARD ERR RESP_CHKSUM
Error in response checksum.
FS_DEV_SD CARD ERR RESP_CMD | X
Response command index error.
FS DEV_SD CARD ERR RESP END BI T
Response end bit error.
FS_DEV_SD CARD ERR RESP
Other response error.
FS _DEV_SD CARD ERR DATA

Other data error.

Returned Value

None.

Notes/Warnings

1. This function will be called even if no response is expected from the command.
2. This function will not be called if FSDev_SD Car d_BSP_CndSt art () returned an error.
3. The data stored in the response buffer should include only the response data, i.e., should not include the start bit, transmission bit,
command index, CRC and end bit.
a. For a command with a normal (48-bit) response, a 4-byte response should be stored in p_r esp.
b. For a command with a long (136-bit) response, a 16-byte response should be returned in p_r esp:

The first 4-byte word should hold bits 127..96 of the response.
The second 4-byte word should hold bits 95..64 of the response.
The third 4-byte word should hold bits 63..32 of the response.

The four 4-byte word should hold bits 31.. 0 of the response.

Example

The implementation of FSDev_SD_Car d_BSP_CrrdWi t End() in is targeted for the same host controller as the other listings in this chapter; for
more information, see FSDev_SD_Card_BSP_CndStart ().

void FSDev_SD Card_BSP_CndWiitEnd (FS_QTY unit_nbr,
FS DEV_SD CARD CMD *p_cnd,
CPU_I NT32U *p_resp,
FS DEV_SD CARD ERR *p_err)
{
CPU_I NT16U interrupt_status;
CPU_I NT16U error_status;
CPU_I NT16U ti neout;
ti meout = Qu; /* WAt until cnd exec conplete.*/
(1)
interrupt_status = REG | NTERRUPT_STATUS;
while (DEF_BIT_IS CLR(interrupt_status, Bl T_I NTERRUPT_STATUS_ERROR |
Bl T_I NTERRUPT_STATUS_COWMAND_COVPLETE) ==
DEF_YES)) {

ti meout ++;
interrupt_status = REG_| NTERRUPT_STATUS,;
if (tinmeout == TI MEQUT_RESP_NAX) {
*p_err = FS_DEV_SD CARD_ERR WAI T_TI MEQUT,;
return;

/* Handl e error. */

(2)

if (DEF_BIT_IS SET(interrupt_status,

error_status =

if (DEF_BIT_IS SET(error_status,

REG_ERROR_STATUS;

BI T_I NTERRUPT_STATUS_ERROR) == DEF_YES) {

REG ERROR_STATUS_COMMAND_| NDEX) == DEF_YES) {

*p_err = FS_DEV_SD_CARD ERR RESP_CMD | X;

} else if (DEF_BIT_IS SET(error_status,

DEF_YES) {

REG ERROR_STATUS COMMAND END BI T) ==

*p_err = FS_DEV_SD_CARD ERR RESP_END BI T;

} else if (DEF_BIT_IS SET(error_status,

DEF_YES) {

*p_err = FS_DEV_SD_CARD ERR RESP_CRC;
} else if (DEF_BIT_IS SET(error_status,

DEF_YES) ({
*p_err
} else {

*p_err = FS_DEV_SD_CARD ERR RESP;

}

REG_ERROR_STATUS
REG_| NTERRUPT_STATUS = interrupt_status;

return;

(3)

error_st at us;

REG ERROR_STATUS COMMVAND _CRC) ==

REG_ERROR_STATUS_COMMAND_TI MEOUT) ==

FS_DEV_SD CARD ERR RESP_TI MEOUT;

/* Read response. */

REG_| NTERRUPT_STATUS = BI T_| NTERRUPT_STATUS_COMVAND COVPLETE;

if (DEF_BIT_IS SET(p_cnd->; Fl ags,
if (DEF_BIT_I S _SET(p_cnd->Fl ags,

DEF_YES) {
*(p_resp +
*(p_resp +
*(p_resp +
+

*(p_resp
} else {

*(p_resp +

}

3)
2)
1)
0)

0)

= REG_RESPONSE_00
= REG RESPONSE_01
= REG_RESPONSE_02
= REG RESPONSE_03

REG_RESPONSE_00

FS_DEV_SD CARD CMD FLAG RESP) == DEF_YES) {
FS_DEV_SD CARD_CMVD FLAG RESP_LONG) ==

*p_err = FS_DEV_SD_CARD ERR NONE;

Listing - FSDev_SD_Card_BSP_CmdWaitEnd()

€

Wait until command execution completes or an error occurs. The wait loop (or wait on semaphore) should always have a timeout to avoid
blocking the task in the case of an unforeseen hardware malfunction or a software flaw.

@

Check if an error occurred. The error status register is decoded to produce the actual error condition. That is not necessary, strictly, but error
counters that accumulate within the generic driver based upon returned error values may be useful while debugging a port.

©)

Read the response, if any. Note that the order in which a long response is stored in the buffer may oppose its storage in the controller’s register
or FIFO.

FSDev_SD Card_ BSP_GetBlkCntMax()
CPU_I NT32U FSDev_SD Car d_BSP_Get Bl kOnt Max (FS_QTY uni t_nbr,

CPU_I NT32U bl k_si ze);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD Car d_Refresh() N/A
Get maximum number of blocks that can be transferred with a multiple read or multiple write command.

Arguments
uni t _nbr

Unit number of SD/MMC card.
bl k_si ze

Block size, in octets.
Returned Value

Maximum number of blocks.

Notes/Warnings

1. The DMA region from which data is read or written may be a limited size. The count returned by this function should be the maximum
number of blocks of size bl k_si ze that can fit into this region.

2. If the controller is not capable of multiple block reads or writes, 1 should be returned.

3. If the controller has no limit on the number of blocks in a multiple block read or write, DEF_| NT_32U_MAX_VAL should be returned.

4. This function should always return the same value. If hardware constraints change at run-time, the device must be closed and re-opened
for any changes to be effective.

FSDev_SD Card BSP_GetBusWidthMax()

CPU_I NTO8U FSDev_SD Car d_BSP_Get BusW dt hMax (FS_QTY unit_nbr);

File Called from Code enabled by
fs_dev_sd_card_bsp.c FSDev_SD Card_Refresh() N/A
Get maximum bus width, in bits.

Arguments
uni t _nbr

Unit number of SD/MMC card.
Returned Value

Maximum bus width.

Notes/Warnings
1. Legal values are typically 1, 4 and 8.

2. This function should always return the same value. If hardware constraints change at run-time, the device must be closed and re-opened
for any changes to be effective.

FSDev_SD Card BSP_Lock/Unlock()
voi d FSDev_SD Card_BSP_Lock (FS_QTY unit_nbr);
voi d FSDev_SD Card_BSP_Unl ock (FS_QTY unit_nbr);

File Called from Code enabled by

fs_dev_sd_card_bsp.c SD/MMC cardmode driver N/A
Acquire/release SD/MMC card bus lock.

Arguments
uni t _nbr

Unit number of SD/MMC card.
Returned Value

None.

Notes/Warnings

1. FSDev_SD _Car d_BSP_Lock() will be called before the driver begins to access the SD/MMC card bus. The application should not use
the same bus to access another device until the matching call to FSDev_SD_Car d_BSP_Unl ock() has been made.

2. The clock frequency, bus width and timeouts set by the FSDev_SD Car d_BSP_Set ####() functions are parameters of the card, not
the bus. If multiple cards are located on the same bus, those parameters must be saved (in memory) when set and restored when FSDev
_SD_Card_BSP_Lock() is called.

FSDev_SD Card BSP_Open()

CPU_BOOLEAN FSDev_SD Card_BSP_Open (FS_QTY wunit_nbr);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD Car d_Refresh() N/A
Open (initialize) SD/MMC card interface.

Arguments
uni t _nbr
Unit number of SD/MMC card.
Returned Value
DEF_CX, if interface was opened.

DEF_FAI L, otherwise.

Notes/Warnings

1. This function will be called every time the device is opened.

FSDev_SD Card BSP_SetBusWidth()
void FSDev_SD Card_BSP_Set BusWdth (FS_QTY unit_nbr,
CPU_I NTO8U wi dt h);

File Called from Code enabled by

kspHevgf _card_bsp. c FSDev_SD Card_Refresh(), N/A

Arguments FSDev_SD Car d_Set BusW dt h()
uni t _nbr
Unit number of SD/MMC card.
wi dt h
Bus width, in bits.
Returned Value

None.
Notes/Warnings
None.

Example

The implementation of FSDev_SD_Car d_BSP_Set BusW dt h()) in the listing below is targeted for the same host controller as the other listings in
this chapter; for more information, see FSDev_SD_Card_BSP_CndStart ().

void FSDev_SD Card_BSP_Set BusWdth (FS_QTY unit _nbr,
CPU_I NTO8U wi dt h)
{
if (width == 1u) {
REG HOST_CONTROL &= ~BI T_HOST_CONTROL_DATA TRANSFER W DTH,;
} else {
REG HOST_CONTROL | = BI T_HOST_CONTROL_DATA_ TRANSFER W DTH,;
}
}

Listing - FSDev_SD_Card_BSP_SetBusWidth()
FSDev_SD Card BSP_SetClkFreq()

void FSDev_SD Card_BSP_Set O kFreq (FS_QrY uni t _nbr,
CPU_I NT32U freq);
File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD Card_Refresh() N/A

Set clock frequency.

Arguments
uni t _nbr

Unit number of SD/MMC card.
freq

Clock frequency, in Hz.
Returned Value

None.

Notes/Warnings

1. The effective clock frequency must be no more than freq. If the frequency cannot be configured equal to freq, it should be configured less
than freq.

FSDev_SD_Card_BSP_SetTimeoutData()

void FSDev_SD Card_BSP_Set Ti meout Data (FS_QrY uni t _nbr,

CPU_I NT32U to_clks);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD Card_Refresh() N/A
Set data timeout.

Arguments
uni t _nbr

Unit number of SD/MMC card.
to_cl ks

Timeout, in clocks.

Returned Value

None.

Notes/Warnings

None.
FSDev_SD_Card_BSP_SetTimeoutResp()

void FSDev_SD Card_BSP_Set Ti meout Resp (FS_QryY uni t _nbr,

CPU_I NT32U to_ns);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD Car d_Refresh() N/A
Set data timeout.

Arguments
uni t _nbr

Unit number of SD/MMC card.
to_ns

Timeout, in milliseconds.
Returned Value

None.

Notes/Warnings

None.

SD/MMC SPI Mode BSP

SD/MMC card can also be accessed through an SPI bus (also described as the one-wire mode). Please refer to SPI BSP for the details on how to
implement the software port for your SPI bus.

SPI BSP

Among the most common—and simplest—serial interfaces supported by built-in CPU peripherals is Serial Peripheral Interface (SPI). Four
hardware signals connect a defined master (or host) to each slave (or device): a slave select, a clock, a slave input and a slave output. Three of
these, all except the slave select, may be shared among all slaves, though hosts often have several SPI controllers to simplify integration and
allow simultaneous access to multiple slaves. Serial flash, serial EEPROM and SD/MMC cards are among the many devices which use SPI.

Signal Description

SSEL (CS) Slave select

SCLK Clock
SO (M SO Slave output (master input)

Sl (Mosl) Slave input (master output)

Table - SPI signals

No specification exists for SPI, a condition which invites technological divergence. So though the simplicity of the interface limits variations
between implementations, the required transfer unit length, shift direction, clock frequency and clock polarity and phase do vary from device to
device. Take as an example the figure below which gives the bit form of a basic command/response exchange on a typical serial flash. The
command and response both divide into 8-bit chunks, the transfer unit for the device. Within these units, the data is transferred from most
significant bit (MSB) to least significant bit (LSB), which is the slave’s shift direction. Though not evident from the diagram—the horizontal axis
being labeled in clocks rather than time—the slave cannot operate at a frequency higher than 20-MHz. Finally, the clock signal prior to slave
select activation is low (clock polarity or CPOL is 0), and data is latched on the rising clock edge (clock phase or CPHA is 0). Together, those are
the aspects of SPI communication that may need to be configured:

® Transfer unit length. A transfer unit is the underlying unit of commands, responses and data. The most common value is eight bits,
though slaves commonly require (and masters commonly support) between 8 and 16 bits.
® Shift direction. Either the MSB or LSB of each transfer unit can be the first transmitted on the data line.
® Clock frequency. Limits are usually imposed upon the frequency of the clock signal. Of all variable SPI communication parameters, only
this one is explicitly set by the device driver.
® Clock polarity and phase (CPOL and CPHA). SPI communication takes place in any of four modes, depending on the clock phase and
clock polarity settings:
® |f CPOL = 0, the clock is low when inactive.
If CPOL = 1, the clock is high when inactive.
® |f CPHA =0, data is “read” on the leading edge of the clock and “changed” on the following edge.
If CPHA =1, data is “changed” on the leading edge of the clock and “read” on the leading edge.

The most commonly-supported settings are {CPOL, CPHA} = {0, 0} and {1, 1}.
® Slave select polarity. The “active” level of the slave select may be electrically high or low. Low is ubiquitous, high rare.

! \
/ \

SSEL

2 3 4 5 6 7 8 9 10 11 12 13 14 15

s (TUULIVIULTIUITL

—

.-"'r
.-"';
/

Command (0:<SF)

Sl

Y £
/ \

SO \ /N /

\ \ A

Response (0:x20)

Figure - Example SPI transaction
A BSP is required that abstracts a CPU’s SPI peripheral. The port includes one code file named according to the following rubric:
FS_DEV_<dev_nane>_BSP. Cor FS_DEV_<dev_nane>_SPI _BSP. c
This file is generally placed with other BSP files in a directory named according to the following rubric:
\'M cri um Sof t war e\ Eval Boar ds\ <manuf act ur er >\ <boar d_nane>
\ <conpi | er >\ BSP\
Several example ports are included in the pC/FS distribution in files named according to the following rubric:
\'M cri um Sof t war e\ uC FS\ Exanpl es\ BSP\ Dev\ NAND\ <manuf act ur er >\ <cpu_nane>
\'M cri um Sof t war e\ uC- FS\ Exanpl es\ BSP\ Dev\ NOR\ <manuf act ur er >\ <cpu_nane>
\'M cri um Sof t war e\ uC- FS\ Exanpl es\ BSP\ Dev\ SD\ SPI \<xmanufacturer>\ <cpu_nane>

Check all of these directories for ports for a CPU if porting any SPI device; the CPU may be been used with a different type of device, but the port
should support another with none or few modifications. Each port must implement the functions to be placed into a FS_DEV_SPI _API structure:

const FS DEV_SPI _APl FSDev_####_BSP_SPI = {
FSDev_BSP_SPI _QOpen,
FSDev_BSP_SPI _Cl ose,
FSDev_BSP_SPI _Lock,
FSDev_BSP_SPI _Unl ock,
FSDev_BSP_SPI _Rd,
FSDev_BSP_SPI _W,
FSDev_BSP_SPI _Chi pSel En,
FSDev_BSP_SPI _Chi pSel Di s,
FSDev_BSP_SPI _Set O kFr eq

The functions which must be implemented are listed and described in the table below. SPI is no more than a physical interconnect. The protocol
of command-response interchange the master follows to control a slave is specified on a per-slave basis. Control of the chip select (SSEL) is
separated from the reading and writing of data to the slave because multiple bus transactions (e.g., a read then a write then another read) are
often performed without breaking slave selection. Indeed, some slaves require bus transactions (or “empty” clocks) AFTER the select has been

disabled.
Function Description
Open() Open (initialize) hardware for SPI.
Cl ose() Close (uninitialize) hardware for SPI.
Lock() Acquire SPI bus lock.
Unl ock() Release SPI bus lock.
Rd() Read from SPI bus.
W () Write to SPI bus.
Chi pSel En() Enable device chip select.
Chi pSel Di s() Disable device chip select
Set Cl kFreq() Set SPI clock frequency

Table - SPI port functions

The first argument of each of these port functions is the device unit number, an identifier unique to each driver/device type—after all, it is the
number in the device name. For example, “sd:0:” and “nor:0:” both have unit number 1. If two SPI devices are located on the same SPI bus, either

of two approaches can resolve unit number conflicts:

® Unique unit numbers. All devices on the same bus can use the same SPI BSP if and only if each device has a unique unit number. For

example, the SD/MMC card “sd:0:” and serial NOR “nor:1:” require only one BSP.

® Unique SPI BSPs. Devices of different types (e.g., a SD/MMC card and a serial NOR) can have the same unit number if and only if each
device uses a separate BSP. For example, the SD/MMC card “sd:0:" and serial “nor:0:" require separate BSPs.

ChipSelEn() / ChipSelDis() - SPI BSP

void FSDev_BSP_SPI _ChipSel En (FS_QTY unit_nbr);

void FSDev_BSP_SPI _ChipSelDis (FS_QTY wunit_nbr);
File Called from
fs_dev_<dev_name>_bsp.c Device driver

Enable/disable device chip select.

Arguments
uni t _nbr

Unit number of device.

Code enabled by

N/A

Returned Value

None.

Notes/Warnings

1. The chip select is typically “active low”. To enable the device, the chip select pin should be cleared; to disable the device, the chip select
pin should be set.

Close() - SPIBSP

voi d FSDev_BSP_SPI _Cl ose (FS_QTY unit_nbr);

File Called from Code enabled by

fs_dev_<dev_name>_bsp. c Device driver N/A
Close (uninitialize) hardware for SPI.

Arguments
uni t _nbr

Unit number of device.
Returned Value

None.

Notes/Warnings

1. This function will be called every time the device is closed.

Lock() / Unlock() - SPI BSP
void FSDev_BSP_SPI _Lock (FS_QTY unit_nbr);

void FSDev_BSP_SPI _Unl ock (FS_QTY unit_nbr);

File Called from Code enabled by

fs_dev_<dev_nanme>_bsp.c Device driver N/A
Acquire/release SPI bus lock.

Arguments
uni t _nbr

Unit number of device.
Returned Value

None.

Notes/Warnings

1. Lock() will be called before the driver begins to access the SPI. The application should not use the same bus to access another device
until the matching call to Unl ock() has been made.

2. The clock frequency set by the Set C kFr eq() function is a parameter of the device, not the bus. If multiple devices are located on the
same bus, those parameters must be saved (in memory) when set and restored by Lock() . The same should be done for initialization
parameters such as transfer unit size and shift direction that vary from device to device.

Open() - SPIBSP

CPU_BOOLEAN FSDev_BSP_SPI _Open (FS_QTY unit_nbr);

File Called from Code enabled by

fs_dev_<dev_name>_bsp. c Device driver N/A

Open (initialize) hardware for SPI.

Arguments
uni t _nbr

Unit number of device.

Returned Value
DEF_CX, if interface was opened.

DEF_FAI L, otherwise.

Notes/Warnings

1. This function will be called every time the device is opened.
2. Several aspects of SPI communication may need to be configured, including:
® Transfer unit length
¢ Shift direction
® Clock frequency
® Clock polarity and phase (CPOL and CPHA)
® Slave select polarity
3. For a SD/MMC card, the following settings should be used:
® Transfer unit length: 8-bits
Shift direction: MSB first
Clock frequency: 400-kHz (initially)
Clock polarity and phase (CPOL and CPHA): CPOL =0, CPHA =0
Slave select polarity: active low.
4. The slave select (SSEL or CS) must be configured as a GPIO output; it should not be controlled by the CPU’s SPI peripheral. The SPI
port’s Chi pSel En() and Chi pSel Di s() functions manually enable and disable the SSEL.

Rd() - SPI BSP
void FSDev_BSP_SPI_Rd (FS_QTY uni t _nbr,
voi d *p_dest,

CPUSIZET cnt);

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A
Read from SPI bus.

Arguments
uni t _nbr

Unit number of device.
p_dest

Pointer to destination buffer.
cnt

Number of octets to read.
Returned Value
None.

Notes/Warnings

None.

SetClkFreq() - SPI BSP
void FSDev_BSP_SPI _Setd kFreq (FS_QTY uni t _nbr,

CPU_INT32U freq);

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A
Set SPI clock frequency.

Arguments
uni t _nbr

Unit number of device.
Returned Value

None.

Notes/Warnings

1. The effective clock frequency must be no more than freg. If the frequency cannot be configured equal to freq, it should be configured less

than freq.
Wr() - SPI BSP
void FSDev_BSP_SPI_W (FS_QTY uni t _nbr,
voi d *p_src,

CPUSIZE.T cnt);

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A
Write to SPI bus.

Arguments
uni t _nbr

Unit number of device.
p_src

Pointer to source buffer.
cnt

Number of octets to write.

Returned Value

None.

Notes/Warnings

None.

NAND Flash Physical-Layer Driver

The information about porting the NAND driver to a new platform, through either a controller layer implementation or a generic controller BSP is
available in NAND Flash Driver.

NOR Flash Physical-Layer Driver

The NOR driver is divided into three layers. The topmost layer, the generic driver, requires an intermediate physical-layer driver to effect flash

operations like erasing blocks and writing octets. The physical-layer driver includes one code/header file pair named according to the following
rubric:

FS_DEV_NOR _<devi ce_nane>. C
FS_DEV_NOR_<devi ce_name>. H

A non-uniform flash—a flash with some blocks of one size and some blocks of another—uwill require a custom driver adapted from the generic
driver for the most similar medium type. Multiple small blocks should be grouped together to form large blocks, effectively making the flash appear
uniform to the generic driver. A custom physical-layer driver can also implement advanced program operations unique to a NOR device family.

The physical-layer driver acts via a BSP. The generic drivers for traditional NOR flash require a BSP as described in NOR Flash BSP. The drivers
for SPI flash require a SPI BSP as described in NOR Flash SPI BSP.

NOR Driver
i%_dev_nor.ch
Provides generic driver intarface {e.q.,

init, read, write) and performs wear-
leveling so all blocks are used equally.

Parallel Interface Serial Interface
r 1
Physical-Layer Driver |

Physical-Layer Driver

Implements particular NOR flash
command set; Accesses NOR on a

1
bus interfaca. |

|
|
|
I BSP
|
|
|
I

Implements particular NOR flash
command set, Accesses NAND on an |
SPl interface.

SPI BSP

f5_dev_nor_bhspoe

Initializefuninitial- izefread/write on the
bus interface.

Initializefuninitial- ize/read f'write on the
5Pl interface.

I NOR Device

f5_dev_nar_bspoe

NOR Device

—_—————— — —— —

Figure - NOR driver architecture

Each physical-layer driver must implement the functions to be placed into a FS_DEV_NOR_PHY_API structure:

const FS_DEV_NOR PHY APl FSDev_NOR #### {
FSDev_NOR_PHY_Open,
FSDev_NOR_PHY_Cl ose,
FSDev_NOR_PHY_Rd,
FSDev_NOR_PHY_W,
FSDev_NOR _PHY_ Er aseBl k,
FSDev_NOR PHY_IO Ctrl,

The functions which must be implemented are listed and described in the table below. The first argument of each of these is a pointer to a FS_DE
V_NOR_PHY_DATA structure which holds physical device information. Specific members will be described in subsequent sections as necessary.
The NOR driver populates an internal instance of this type based upon configuration information. Before the file system suite has been initialized,
the application may do the same if raw device accesses are a hecessary part of its start-up procedure.

Function Description

Open() Open (initialize) a NOR device and get NOR device information.
Cl ose() Close (uninitialize) a NOR device.

Rd() Read from a NOR device and store data in buffer.

W () Write to a NOR device from a buffer.

EraseBl k() Erase block of NOR device.

10.Ctrl () Perform NOR device I/O control operation.

Table - NOR flash physical-layer driver functions

Close() - NOR Flash Driver

void O ose (FS_DEV_NOR PHY_DATA *p_phy_data);
File Called from Code enabled by
NOR physical-layer driver FSDev_NOR _C ose() N/A

Close (uninitialize) a NOR device instance.

Arguments
p_phy_dat a

Pointer to NOR phy data.
Returned Value

None.

Notes/Warnings

None.

EraseBIk() - NOR Flash Driver

void EraseBl k (FS_DEV_NOR_PHY_DATA *p_phy_data,

CPU_I NT32U start,

CPU_I NT32U si ze,

FS_ERR *p_err);
File Called from Code enabled by
NOR physical-layer driver FSDev_NOR_PhyEr aseBl kHandl er () N/A

Erase block of NOR device.

Arguments
p_phy_dat a
Pointer to NOR phy data.
start
Start address of block (relative to start of device).
si ze
Size of block, in octets
p_err
Pointer to variable that will receive the return error code from this function.
FS_ERR_NONE
Block erased successfully.
FS ERR DEV_| NVALI D OP
Invalid operation for device.
FS ERR DEV_ | O
Device /O error.

FS_ERR_DEV_TI MEOUT

Device timeout error.

Returned Value

None.

Notes/Warnings

None.

IO_Ctrl() - NOR Flash Driver

void 10 Crl (FS_DEV_NOR PHY DATA *p_phy data,

CPU_| NTO8U opt,

voi d *p_dat a,

FS_ERR *p_err);
File Called from
NOR physical-layer driver various

Perform NOR device 1/O control operation.

Arguments
p_phy_dat a
Pointer to NOR phy data.
opt
Control command.
p_data
Buffer which holds data to be used for operation.
OR
Buffer in which data will be stored as a result of operation.

p_err

Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE
Control operation performed successfully.
FS ERR DEV_INVALID IO CTRL I/ O
Control unknown to driver.
FS_ERR DEV_| NVALI D_OP
Invalid operation for device.
FS ERR DEV_ | O
Device /O error.
FS_ERR_DEV_TI MEOUT

Device timeout error.
Returned Value
None.

Notes/Warnings

None.

Open() - NOR Flash Driver

Code enabled by

N/A

void Open (FS_DEV_NOR PHY_DATA *p_phy_data,

FS_ERR *p_err);
File Called from Code enabled by
NOR physical-layer driver FSDev_NOR_Open() N/A

Open (initialize) a NOR device instance and get NOR device information.

Arguments

p_phy_dat a
Pointer to NOR phy data.
p_err

Pointer to variable that will receive the return error code from this function.

Returned Value

None.

Notes/Warnings
Several members of p_phy_dat a may need to be used/assigned:

Bl kCnt and Bl kSi ze must be assigned the block count and block size of the device, respectively.

Regi onNbr specifies the block region that will be used. Addr Regi onSt ar t must be assigned the start address of this block region.
Dat aPt r may store a pointer to any driver-specific data.

Uni t Nor is the unit number of the NOR device.

MaxCl kFr eq specifies the maximum SPI clock frequency.

BusW dt h, BusW dt hMax and PhyDevCnt specify the bus configuration. Addr Base specifies the base address of the NOR flash
memory.

Rd() - NOR Flash Driver

o gk wN R

void Rd (FS_DEV_NOR _PHY_DATA *p_phy_data,

voi d *p_dest,

CPU_I NT32U start,

CPU_I NT32U cnt,

FS ERR *p_err);
File Called from Code enabled by
NOR physical-layer driver FSDev_NOR_PhyRdHandl er () N/A

Read from a NOR device and store data in buffer.

Arguments
p_phy_data
Pointer to NOR phy data.
p_dest
Pointer to destination buffer.
start
Start address of read (relative to start of device).
cnt
Number of octets to read.

p_err

Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE
Octets read successfully.
FS ERR DEV_I O
Device /O error.
FS_ERR_DEV_TI MEOUT
Device timeout error.
Returned Value

None.

Notes/Warnings

None.

Wr() - NOR Flash Driver

void W (FS_DEV_NOR _PHY_DATA *p_phy_data,

voi d *p_src,
CPU_I NT32U start,
CPU_| NT32U cnt,
FS_ERR *p_err);
File Called from
NOR physical-layer driver FSDev_NOR_PhyW Handl er ()

Write to a NOR device from a buffer.

Arguments
p_phy_data
Pointer to NOR phy data.
p_src
Pointer to source buffer.
start
Start address of write (relative to start of device).
cnt
Number of octets to write.

p_err

Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE
Octets written successfully.
FS ERR DEV_I O
Device /O error.
FS_ERR_DEV_TI MEOUT
Device timeout error.
Returned Value

None.

Code enabled by

N/A

Notes/Warnings
None.

NOR Flash BSP

A “traditional” NOR flash has two buses, one for addresses and another for data. For example, the host initiates a data read operation with the
address of the target location latched onto the address bus; the device responds by outputting a data word on the data bus.

A BSP abstracts the flash interface for the physical layer driver. The port includes one code file:

FS DEV_NOR BSP. C
This file is generally placed with other BSP files in a directory named according to the following rubric:
\'M cri um Sof t war e\ Eval Boar ds\ <manuf act ur er >\ <boar d_nane>

\ <conpi | er >\ BSP\

Function Description
FSDev_NOR_BSP_Open() Open (initialize) bus for NOR
FSDev_NOR BSP_d ose() Close (uninitialize) bus for NOR.
FSDev_NOR BSP_Rd_08()/16() Read from bus interface.
FSDev_NOR_BSP_RdWord_08()/ 16() Read word from bus interface.
FSDev_NOR BSP_WWord_08()/16() Write word to bus interface.
FSDev_NOR_BSP_Wai t Wi | eBusy/() Wait while NOR is busy.

Table - NOR BSP functions
FSDev_NOR_BSP_Close()

voi d FSDev_NOR _BSP_C ose (FS_QTY unit_nbr);
File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A
Close (uninitialize) bus for NOR.

Arguments
uni t _nbr

Unit number of NOR.
Returned Value

None.

Notes/Warnings

1. This function will be called every time the device is closed.

FSDev_NOR_BSP_Open()
CPU_BOOLEAN FSDev_NOR_BSP_Open (FS_QrY uni t _nbr,
CPU_ADDR addr _base,
CPU_I NTO8U bus_wi dt h,
CPU_I NTO8U phy_dev_cnt);
File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A

Open (initialize) bus for NOR.

Arguments
uni t _nbr

Unit number of NOR.
addr _base

Base address of NOR.
bus_wi dth

Bus width, in bits.
phy_dev_cnt

Number of devices interleaved.
Returned Value

DEF_(CX, if interface was opened.

DEF_FAI L, otherwise.

Notes/Warnings

1. This function will be called every time the device is opened.

FSDev_NOR_BSP_Rd_XX()

void FSDev_NAND BSP_Rd_08 (FS_QryY uni t _nbr,
voi d *p_dest,
CPU_ADDR addr _src,

CPUSIZET cnt);

void FSDev_NAND BSP_Rd_16 (FS_Qry uni t _nbr,
voi d *p_dest,
CPU_ADDR addr _src,

CPU SIZE T cnt);

File Called from

fs_dev_nor_bsp.c NOR physical-layer driver
Read data from bus interface.

Arguments
uni t _nbr
Unit number of NOR.
p_dest
Pointer to destination memory buffer.
addr _src
Source address.
cnt

Number of words to read.

Returned Value

None.

Code enabled by

N/A

Notes/Warnings

1. Data should be read from the bus in words sized to the data bus; for any unit, only the function with its access width will be called.

FSDev_NOR_BSP_RdWord_XX()
CPU_I NTO8U FSDev_NAND BSP_RdWord_08 (FS_Qry uni t _nbr,

CPU_ADDR addr_src);

CPU I NT16U FSDev_NAND BSP_RdWrd_16 (FS_QTY unit_nbr,

CPU_ADDR addr_src);

File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A
Read data from bus interface.

Arguments
uni t _nbr

Unit number of NOR.
addr _src

Source address.

Returned Value

Word read.

Notes/Warnings

1. Data should be read from the bus in words sized to the data bus; for any unit, only the function with its access width will be called.
FSDev_NOR_BSP_WaitWhileBusy()

CPU_BOOLEAN

FSDev_NOR_BSP_Wai t Wi | eBusy
(FS_QTY uni t _nbr,
FS DEV_NOR _PHY_DATA *p_phy_data,

CPU_BOOLEAN (*pol | _fnct)(FS_DEV_NOR_PHY_DATA *),

CPU_I NT32U to_us);
File Called from Code enabled by
fs_dev_nor_bsp.c NOR physical-layer driver N/A

Wait while NAND is busy.

Arguments
uni t _nbr
Unit number of NOR.
p_phy_dat a
Pointer to NOR phy data.
pol | _fnct
Pointer to function to poll, if there is no hardware ready/busy signal.
to_us

Timeout, in microseconds.

Returned Value
DEF_CX, if NAND became ready.

DEF_FAI L, otherwise.

Notes/Warnings

None.

CPU_BOOLEAN FSDev_NOR BSP_Wi t Wi | eBusy

(FS_Qry unit_nbr,
FS_DEV_NOR_PHY_DATA *p_phy_dat a,
CPU_BOOLEAN
(*pol | _fnct)(FS_DEV_NOR _PHY DATA *),
CPU_I NT32U to_us)
{
CPU I NT32U tine_cur _us;
CPU INT32U tine_start _us;
CPU_BOOLEAN rdy;
time_cur_us = /* $$$$ GET CURRENT TIME, |IN M CROSECONDS. */;
tinme_start _us = time_cur_us;
while (tinme_cur_us - tine_start_us < to_us) {
(1)
rdy = poll _fnct(p_phy_data);
(2)
if (rdy == DEF_K) {
return (DEF_CK);
}
time_cur_us = /* $$$$ GET CURRENT TIME, I N M CROSECONDS. */;
}
return (DEF_FAIL);
(3)
}

Listing - FSDev_NOR_BSP_WaitWhileBusy() (without hardware read/busy signal)
@

At least t o_us microseconds should elapse before the function gives up and returns. Returning early can cause disruptive timeout errors within
the physical-layer driver.
@

pol | _f nct should be called with p_phy_dat a as its sole argument. If it returns DEF_OK, then the device is ready and the function should
return DEF_OK.

(©)

If t 0_us microseconds elapse without the poll function or hardware ready/busy signaling indicating success, the function should return DEF_FAI
L.

FSDev_NOR_BSP_WrWord_XX()

void FSDev_NAND BSP_WWrd_08 (FS_QTY uni t _nbr,
CPU_ADDR addr _src,

CPU_I NTO8U dat um;

void FSDev_NAND BSP_WWrd_16 (FS_QTY unit_nbr,
CPU_ADDR addr _src,

CPU_INT16U datum);

File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A
Write data to bus interface.

Arguments
uni t _nbr
Unit number of NOR.
addr _src
Source address.
dat um

Word to write.

Returned Value

None.

Notes/Warnings

1. Data should be written o the bus in words sized to the data bus; for any unit, only the function with its access width will be called.

NOR Flash SPI BSP

The NOR driver must adapt to the specific hardware using a BSP. A serial NOR Flash will be interfaced on a SPI bus. See SPI BSP for the details
on how to implement the software port for your SPI bus.

UC/FS Types and Structures

Your application may need to access or populate the types and structures described in this appendix. Each of the user-accessible structures is
presented in alphabetical order. The following information is provided for each entry:

A brief description of the type or structure.

The definition of the type or structure.

The filename of the source code.

A description of the meaning of the type or the members of the structure.
Specific notes and warnings regarding use of the type.

FS_CFG

typedef struct fs_cfg {

FS_QTY DevCnt;

FS_Qry Vol Cnt;

FS QTY FileCnt;

FS Qry DirCnt;

FS _Qry Buf Cnt;

FS_QTY DevDrvCnt;
FS_SEC S| ZE MaxSecSi ze;

} FS_CFG

File Used for

fs.h First argument of FS_I nit ()

A pointer to a FS_CFGstructure is the argument of FS_I ni t () . It configures the number of devices, files and other objects in the file system
suite.

Members

DevCnt

The maximum number of devices that can be open simultaneously. must be greater than or equal to 1.
Vol Cnt

The maximum number of volumes that can be open simultaneously. must be greater than or equal to 1.
Fi |l eCnt

The maximum number of files that can be open simultaneously. must be greater than or equal to 1.
Di r Cnt

Maximum number of directories that can be open simultaneously. If DirCnt is 0, the directory module functions will be blocked after
successful initialization, and the file system will operate as if compiled with directory support disabled. If directory support is disabled, DirCnt
is ignored; otherwise, if directories will be used, DirCnt should be greater than or equal to 1.

Buf Cnt
Maximum number of buffers that can be used successfully. The minimum necessary BufCnt can be calculated from the number of volumes:
Buf Cnt >= Vol Cnt * 2
If FSEnt ry_Copy() or FSEnt ry_Renane() is used, then up to one additional buffer for each volume may be necessary.
DevDr vCnt
Maximum number of device drivers that can be added. It must be greater than or equal to 1.
MaxSecSi ze

Maximum sector size, in octets. It must be 512, 1024, 2048 or 4096. No device with a sector size larger than MaxSecSize can be opened.

Notes

None.

FS_DEV_INFO

typedef struct fs_dev_info {
FS_STATE St at e;
FS_SEC QrY Size;

FS_SEC SI ZE SecSi ze;
CPU_BOOLEAN Fi xed;

} FS_DEV_I NFO,

File Used for

fs_dev.h Second argument of FSDev_Query()
Receives information about a device.

Members

State

The device state:

FS DEV_STATE CLOSED
Device is closed.

FS DEV_STATE_CLCSI NG
Device is closing.

FS_DEV_STATE_OPENI NG
Device is opening.

FS DEV_STATE_OPEN

Device is open, but not present.

FS_DEV_STATE_PRESENT
Device is present, but not low-level formatted.
FS_DEV_STATE_LOW FMI_VALI D
Device low-level format is valid.
Si ze
The number of sectors on the device.
SecSi ze
The size of each device sector.
Fi xed

Indicates whether the device is fixed or removable.

Notes

None.

FS_DEV_NOR_CFG

typedef struct fs_dev_nor_cfg {

CPU_ADDR Addr Base;

CPU_I NTO8U Regi onNbr ;
CPU_ADDR Addr Start;
CPU_I NT32U DevSi ze;
FS_SEC Sl ZE SecSi ze;

CPU_| NTO8U Pct Rsvd;

CPU_I NT16U EraseCnt Di f f Th;

FS_DEV_NOR_PHY_API *PhyPtr;

CPU_I NTO8U BusW dt h;
CPU_| NTO8U BusW dt hMax;
CPU_I NTO8U PhyDevCnt ;
CPU_I NT32U Maxd kFr eq;

} FS_DEV_NOR CFG

File Used for

fs_dev_nor.h Second argument of FSDev_Open() (when opening a NOR device)

Configures the properties of a NOR device that will be opened. A pointer to this structure is passed as the second argument of FSDev_Qpen() fo
ra NOR device.

Members

Addr Base
must specify
1. the base address of the NOR flash memory, for a parallel NOR.
2. 0x00000000 for a serial NOR.

Regi onNbr

must specify the block region which will be used for the file system area. Block regions are enumerated by the physical-layer driver; for
more information, see the physical-layer driver header file. (on monolithic devices, devices with only one block region, this must be 0).

Addr St ar t

must specify
1. the absolute start address of the file system area in the NOR flash memory, for a paralel NOR.
2. the offset of the start of the file system in the NOR flash, for a serial NOR.
The address specified by Addr St art must lie within the region RegionNbr.
DevSi ze
must specify the number of octets that will belong to the file system area.
SecSi ze
must specify the sector size for the NOR flash (either 512, 1024, 2048 or 4096).
Pct Rsvd

must specify the percentage of sectors on the NOR flash that will be reserved for extra-file system storage (to improve efficiency). This
value must be between 5% and 35%, except if O is specified whereupon the default will be used (10%).

EraseCntDi ff Th

must specify the difference between minimum and maximum erase counts that will trigger passive wear-leveling. This value must be
between 5 and 100, except if O is specified whereupon the default will be used (20).

PhyPt r
must point to the appropriate physical-layer driver:
FSDev_NOR_AMD_1x08
CFl-compatible parallel NOR implementing AMD command set, 8-bit data bus.
FSDev_NOR_AMD_1x16
CFl-compatible parallel NOR implementing AMD command set, 16-bit data bus.
FSDev_NOR I ntel _1x16
CFl-compatible parallel NOR implementing Intel command set, 16-bit data bus
FSDev_NOR_SST39
SST SST39 Multi-Purpose Flash
FSDev_NOR_STM25
ST M25 serial flash
FSDev_NOR_SST25
SST SST25 serial flash
Other
User-developed
For a parallel NOR, the bus configuration is specified via BusW dt h, BusW dt hMax and PhyDevCnt :
BusW dt h
is the bus width, in bits, between the MCU/MPU and each connected device.
BusW dt hivax
is the maximum width supported by each connected device.
PhyDevCnt
is the number of devices interleaved on the bus.

For a serial flash, the maximum clock frequency is specified via MaxC kFr eq.

Notes

None.

FS_DEV_RAM_CFG

typedef struct fs_dev_ramcfg {
FS SEC SI ZE SecSi ze;

FS SEC QIY Size;

voi d *Di skPtr;

} FS_DEV_RAM CFG

File Used for

fs_dev_randi sk. h Second argument of FSDev_Open() (when opening a RAM disk)

Configures the properties of a RAM disk that will be opened. A pointer to this structure is passed as the second argument of FSDev_COpen() fora
RAM disk.

Members
SecSi ze
The sector size of RAM disk, either 512, 1024, 2048 or 4096.
Si ze
The size of the RAM disk, in sectors.
Di skPtr

The pointer to the RAM disk.

Notes

None.

FS_DIR_ENTRY (struct fs_dirent)

typedef struct fs_dirent {

CPU_CHAR Nane[FS_CFG MAX_FI LE_NAME_LEN + 1u];
FS_ENTRY_I NFO I nf o;

} FS_DI R_ENTRY;

File Used for

fs_dir.h Second argument of f s_readdir _r () and FSDi r _Rd()
Receives information about a directory entry.

Members
Name

The name of the file.
Info

Entry information. For more information, see FS_ENTRY_INFO.

Notes

None.

FS _ENTRY_INFO

typedef struct fs_entry_ info {
FS_FLAGS Attrib;

FS FILE_SI ZE Size;

CLK_TS_SEC Dat eTi meCr eat e;

CLK_TS_SEC Dat eAccess;
CLK_TS_SEC Dat eTi meW ;
FS_SEC QrY Bl kCnt ;

FS SEC SIZE Bl kSi ze;

} FS_ENTRY_I NFQ,

File Used for

fs_entry.h Second argument of FSEnt ry_Query() and FSFi | eQuery();

The Info member of FS_DI R_ENTRY (struct fs_dirent)

Receives information about a file or directory.

Members

Attrib

The file or directory attributes (see File and Directory Attributes).
Si ze

The size of the file, in octets.
Dat eTi neCr eat e

The creation timestamp of the file or directory.
Dat eAccess

The last access date of the file or directory.
Dat eTi meW

The last write (or modification) timestamp of the file or directory.
Bl kCnt

The number of blocks allocated to the file. For a FAT file system, this is the number of clusters occupied by the file data.
Bl kSi ze

The size of each block allocated in octets. For a FAT file system, this is the size of a cluster.

Notes

None.

FS FAT_SYS CFG

typedef struct fs_fat_sys cfg {
FS_SEC QrY d usSi ze;

FS_FAT_SEC NBR RsvdAreaSi ze;

CPU_I NT16U Root Di r EntryCnt ;
CPU_I NTO8U FAT_Type;
CPU_I NTO8U Nbr FATs;

} FS_FAT_SYS_CFG

File Used for

fs_fat_type.h Second argument of FSVol _Fnt () when opening a FAT volume (optional)

A pointer to a FS_FAT_SYS_CFGstructure may be passed as the second argument of FSVol _Fnt () . It configures the properties of the FAT file
system that will be created.

Members
Cl usSi ze

The size of a cluster, in sectors. This should be 1, 2, 4, 8, 16, 32, 64 or 128. The size of a cluster, in bytes, must be less than or equal to
65536, so some of the upper values may be invalid for devices with large sector sizes.

RsvdAr eaSi ze

The size of the reserved area on the disk, in sectors. For FAT12 and FAT16 volumes, the reserved area should be 1 sector; for FAT32
volumes, 32 sectors.

Root Di r Ent r yCnt

The number of entries in the root directory. This applies only to FAT12 and FAT16 volumes, on which the root directory is a separate area
of the file system and is a fixed size. The root directory entry count caps the number of files and directories that can be located in the root
directory.

FAT_Type

The type of FAT. This should be 12 (for FAT12), 16 for (FAT16) or 32 (for FAT32). Ths choice of FAT type must observe restrictions on the
maximum number a clusters. A FAT12 file system may have no more than 4085 clusters; a FAT16 file system, no more than 65525.

Nbr FATs

The number of actual FATSs (file allocation tables) to create on the disk. The typical value is 2 (one for primary use, a secondary for
backup).

Notes

1. Further restrictions on the members of this structure can be found in FAT File System.

FS_PARTITION_ENTRY
typedef struct fs_partition_entry {
FS_ SEC NBR Start;

FS_SEC QIY Size;

CPU_I NTO8U Type;

} FS_PARTI TI ON_ENTRY;

File Used for

fs_partition.h Third argument of FSDev_Par ti ti onFi nd()
Receives information about a partition entry.

Members
Start

The start sector of partition.
Si ze

The size of partition, in sectors.

Type
The type of data in the partition.
Notes
None.
FS_VOL_INFO

typedef struct fs_vol _info {
FS_STATE St ate;

FS_STATE DevSt at e;

FS_SEC QIY DevSi ze;

FS SEC SI ZE DevSecSi ze;
FS_SEC Qry PartitionSize;
FS SEC QTY Vol BadSecCnt;
FS SEC QTY Vol FreeSecCnt;
FS SEC QTY Vol UsedSecCnt;
FS _SEC QTY Vol Tot SecCnt ;

} FS_VOL_I NFO,
File Used for
fs_vol.h Second argument of FSVol _Query()

Receives information about a volume.

Members

State
The volume state:

FS _VOL_STATE_CLCSED Volume is closed.

FS_VOL_STATE_CLOCSI NG Volume is closing.

FS_VOL_STATE_OPENI NG Volume is opening.

FS_VOL_STATE_OPEN Volume is open.

FS_VOL_STATE_PRESENT Volume device is present.

FS_VOL_STATE_MOUNTED Volume is mounted.
DevSt at e

The device state:

FS_DEV_STATE_CLOSED Device is closed.
FS_DEV_STATE_CLCSI NG Device is closing.
FS_DEV_STATE_OPENI NG Device is opening.
FS_DEV_STATE_OPEN Device is open, but not present.
FS_DEV_STATE_PRESENT Device is present, but not low-level formatted.
FS _DEV_STATE_LOW FMI_VALI D Device low-level format is valid.

DevSi ze

The number of sectors on the device.
DevSecSi ze

The size of each device sector.
PartitionSize

The number of sectors in the partition.
Vol BadSecCnt

The number of bad sectors on the volume.

Vol Fr eeSecCnt

The number of free sectors on the volume.
Vol UsedSecCnt

The number of used sectors on the volume.
Vol Tot SecCnt

The total number of sectors on the volume.

Notes

None.

HC/ES Configuration

UC/FS is configurable at compile time via approximately 30 #defines in an application’s f s_cf g. h file. uC/FS uses #defines because they allow
code and data sizes to be scaled at compile time based on enabled features. In other words, this allows the ROM and RAM footprints of uC/FS to
be adjusted based on your requirements.

Most of the #defines should be configured with the default configuration values. This leaves about a dozen or so values that should be configured
with values that may deviate from the default configuration.

File System Configuration
Core file system modules may be selectively disabled.
FS_CFG BUI LD
FS_CFG _BUI LD selects the file system build. Should always be setto FS_BUI LD_FULL in this release.
FS_CFG_SYS_DRV_SEL

FS_CFG_SYS_DRV_SEL selects which file system driver(s) will be included. Currently, there is only one option. When FS_SYS _DRV_SEL_F
AT, the FAT system driver will be included.

FS_CFG_CACHE_EN
FS_CFG_CACHE_EN enables (when set to DEF_ENABLED) or disables (when set to DEF_DI SABLED) code generation of volume cache

functions.
Function File
FSVol _CacheAssi gn() fs_vol.c
FSVol _CacheFl ush() fs_vol.c
FSVol _Cachel nval i dat e() fs_vol.c

Table - Cache function exclusion
These functions are not included if FS_CFG_CACHE_EN is DEF_DI SABLED.
FS_CFG BUF_ALI GN_OCTETS

FS_CFG_BUF_ALI GN_COCTETS configures the minimum alignment of the internal buffers in octets. This should be set to the maximum
alignment required by the any of the CPU, system buses and, if relevant, the peripherals and DMA controller involved in the file system
operations. When no minimum alignment is required FS_CFG_BUF_ALI GN_OCTETS should generally be set to the platform natural
alignment for performance reasons.

FS _CFG APl _EN

FS_CFG_API _ENenables (when set to DEF_ENABLED) or disables (when set to DEF_DI SABLED) code generation of the POSIX API
functions. This API includes functions like f s_f open() or fs_opendi r () which mirror standard POSIX functions like f open() or opend

ir().
FS_CFG DI R EN

FS_CFG_DI R_ENenables (when set to DEF_ENABLED) or disables (when set to DEF_DI SABLED) code generation of directory access
functions. When disabled, the functions in the following table will not be available.

Function File

fs_opendir() fs_api.c

fs_closedir() fs_api.c
fs_readdir_r() fs_api.c
FSDi r _Open() fs_dir.c
FSDi r _Cl ose() fs dir.c
FSDi r _Rd() fs_dir.c

Table - Directory function exclusion

These functions are not included if FS_CFG _DI R_ENis DEF_DI SABLED.
Feature Inclusion Configuration

Individual file system features may be selectively disabled.

FS_CFG_FI LE_BUF_EN
FS_CFG_BUF_EN enables (when set to DEF_ENABLED) or disables (when set to DEF_DI SABLED) code generation of file buffer functions.
When disabled, the functions in the following table will not be available.

Function File
fs_fflush() fs_api.c
fs_setbuf () fs_api.c
fs_setvbuf() fs_api.c
FSFi | e_Buf Assi gn() fs_ file.c
FSFi | e_Buf Fl ush() fs_file.c

Table - File buffer function exclusion
These functions are not included if FS_CFG_FI LE_BUF_ENis DEF_DI SABLED

FS_CFG FI LE_LOCK_EN
FS_CFG_FI LE_LOCK_EN enables (when set to DEF_ENABLED) or disables (when set to DEF_DI SABLED) code generation of file lock
functions. When enabled, a file can be locked across several operations; when disabled, a file is only locked during a single operation and
the functions in the following table will not be available.

Function File
fs_flockfile() fs_api.c
fs_funlockfile() fs_api.c
fs_ftrylockfile() fs_api.c
FSFi | e_LockGCet () fs_file.c
FSFi | e_LockSet () fs file.c
FSFi | e_LockAccept () fs_ file.c

Table - File lock function exclusion
These functions are not included if FS_CFG_FI LE_LOCK_ENis DEF_DI SABLED.

FS_CFG_PARTI TI ON_EN
When FS_CFG_PARTI TI ON_EN s enabled (DEF_ENABLED). volumes can be opened on secondary partitions and partitions can be
created. When it is disabled (DEF_DI SABLED), volumes can be opened only on the first partition and the functions in the following table will
not be available. The function FSDev_Parti ti onl ni t (), which initializes the partition structure on a volume, will be included in both
configurations.

Function File

FSDev_Get Nbr Partitions() fs_dev.c

FSDev_PartitionAdd() fs_dev.c

FSDev_PartitionFind() fs_dev.c

Table - Partition function exclusion
These functions are not included if FS_CFG_PARTI TI ON_ENis DEF_DI SABLED.

FS_CFG_WORKI NG_DI R_EN
When FS_CFG_WORKI NG _DI R_ENis enabled (DEF_ENABLED), file system operations can be performed relative to a working directory.
When it is disabled (DEF_DI SABLED), all file system operations must be performed on absolute paths and the functions in the following
table will not be available.

Function File
fs_chdir() fs_api.c
fs_getcwd() fs_api.c
FS_Wor ki ngDi r Get () fs.h
FS Wor ki nghi r Set () fs.h

Table - Working directory function exclusion
These functions are not included if FS_CFG_WORKI NG _DI R_ENis DEF_DI SABLED.
FS_CFG_UTF8_EN

FS_CFG_UTF8_EN selects whether file names may be specified in UTF-8. When enabled (DEF_ENABLED), file names may be specified in
UTF-8; when disabled (DEF_DI SABLED), file names must be specified in ASCII.

FS_CFG_CONCURRENT ENTRI ES_ACCESS_EN

FS_CFG_CONCURRENT_ENTRI ES_ACCESS_EN selects whether one file can be open multiple times (in one or more task). When enabled (D
EF_ENABLED), files may be open concurrently multiple times and without protection. When disabled (DEF_DI SABLED), files may be open
concurrently only in read-only mode, but may not be open concurrently in write mode. This option makes the file system safer when
disabled.

FS_CFG_RD_ONLY_EN
FS_CFG_RD_ONLY_EN selects whether write access to files, volumes and devices will be possible. When DEF_ENABLED, files, volumes
and devices may only be read—code for write operations will not be included and the functions in the following table will not be available.

Function File

fs fwite() fs_api.c
fs_renove() fs_api.c
fs_renane() fs_api.c
fs_mkdir() fs_api.c
fs_truncate() fs_api.c
fs_rmdir() fs_api.c
FSDev_PartitionAdd() fs_dev.c
FSDev_Partitionlnit() fs_dev.c
FSDev_W () fs_dev.c
FSEntry_ AttribSet () fs_ entry.c
FSEnt ry_Copy/() fs_entry.c
FSEntry_Create() fs_ entry.c
FSEntry_Ti meSet () fs_entry.c

FSEntry_Del () fs_entry.c

FSEnt ry_Renane() fs_entry.c

FSFil e_Truncate() fs file.c
FSFile W () fs file.c
FSVol _Fnt () fs_vol.c
FSVol _Label Set () fs_vol.c
FSVol _W () fs_vol.c

Table - Read only function exclusion (continued)
These functions are not included if FS_CFG_RD_ONLY_ENis DEF_ENABLED.
FS_CFG 64_BI TS LBA _EN

FS_CFG 64_BI T_LBA_EN selects whether support for 64 logical block addressing (LBA) is enabled. When DEF_ENABLED support 64-bit
LBA will be included otherwise LBA will be limited to 32 bit. Applications that need support for 48-bit LBA should set this feature to DEF_EN
ABLED.

Name Restriction Configuration
Individual file system features may be selectively disabled.
FS_CFG_MAX_PATH_NAME_LEN

FS_CFG_MAX_PATH_NAME_LEN configures the maximum path name length, in characters (not including the final NULL character). The
default value is 260 (the maximum path name length for paths on FAT volumes).

FS_CFG_MAX_FI LE_NAME_LEN

FS_CFG_MAX_FI LE_NAME_LEN configures the maximum file name length, in characters (not including the final NULL character). The
default value is 255 (the maximum file name length for FAT long file names).

FS_CFG MAX_DEV_DRV_NAME_LEN

FS_CFG_MAX_DEV_DRV_NAME_LEN configures the maximum device driver name length, in characters (not including the final NULL
character). The default value is 10.

FS_CFG_MAX_DEV_NAME_LEN

FS_CFG_MAX_DEV_NAME_LEN configures the maximum device name length, in characters (not including the final NULL character). The
default value is 15.

FS_CFG_MAX_VOL_NANE_LEN

FS_CFG_MAX_VOL_NAME_LEN configures the maximum volume name length, in characters (not including the final NULL character). The
default value is 10.

Debug Configuration
A fair amount of code in UC/FS has been included to simplify debugging. There are several configuration constants used to aid debugging.
FS_CFG DBG_MEM CLR EN

FS_CFG DBG _MEM CLR ENis used to clear internal file system data structures when allocated or deallocated. When DEF_ENABLED,
internal file system data structures will be cleared.

FS_CFG_DBG WR_VERI FY_EN
FS_CFG_DBG WR _VERI FY_ENis used verify writes by reading back data. This is a particularly convenient feature while debugging a driver.
Argument Checking Configuration

Most functions in pC/FS include code to validate arguments that are passed to it. Specifically, uC/FS checks to see if passed pointers are NULL, if
arguments are within valid ranges, etc. The following constants configure additional argument checking.

FS_CFG ARG CHK_EXT_EN

FS_CFG_ARG _CHK_EXT_ENallows code to be generated to check arguments for functions that can be called by the user and for functions
which are internal but receive arguments from an API that the user can call.

FS_CFG ARG CHK_DBG EN

FS _CFG_ARG_CHK _DBG_ENallows code to be generated which checks to make sure that pointers passed to functions are not NULL, that

arguments are within range, etc.:

File System Counter Configuration

UC/FS contains code that increments counters to keep track of statistics such as the number of packets received, the number of packets
transmitted, etc. Also, UC/FS contains counters that are incremented when error conditions are detected.

FS_CFG_CTR_STAT EN

FS_CFG_CTR_STAT_EN determines whether the code and data space used to keep track of statistics will be included. When DEF_ENABLE
D, statistics counters will be maintained.

FS_CFG CTR ERR EN

FS_CFG_CTR_STAT_EN determines whether the code and data space used to keep track of errors will be included. When DEF_ENABLED,
error counters will be maintained.

FAT Configuration
Configuration constants can be used to enable/disable features within the FAT file system driver.
FS_FAT_CFG LFN_EN

FS_FAT_CFG_LFN_ENis used to control whether long file names (LFNs) are supported. When DEF_DI SABLED, all file names must be
valid 8.3 short file names.

FS_FAT_CFG FAT12_EN

FS_FAT_CFG_FAT12_ENis used to control whether FAT12 is supported. When DEF_DI SABLED, FAT12 volumes can not be opened, nor
can a device be formatted as a FAT12 volume.

FS_FAT_CFG FAT16_EN

FS_FAT_CFG _FAT16_ENis used to control whether FAT16 is supported. When DEF_DI SABLED, FAT16 volumes can not be opened, nor
can a device be formatted as a FAT16 volume.

FS_FAT_CFG FAT32_EN

FS_FAT_CFG_FAT32_ENis used to control whether FAT32 is supported. When DEF_DI SABLED, FAT32 volumes can not be opened, nor
can a device be formatted as a FAT32 volume.

FS_FAT_CFG_JOURNAL_EN
FS_FAT_CFG_JOURNAL_EN selects whether journaling functions will be present. When DEF_ENABLED, journaling functions are present;
when DEF_DI SABLED, journaling functions are not present. If disabled, the functions in the table below will not be available.

Function File

FS_FAT_Jour nal Open() fs_fat_journal.c/.h
FS_FAT_Jour nal d ose() fs_fat_journal.c/.h
FS_FAT Journal Start () fs_fat_journal.c/.h
FS_FAT_Jour nal End() fs_fat_journal.c/.h

Table - Journaling function exclusion
These functions are not included if FS_FAT_CFG_JOURNAL_ENis DEF_DI SABLED.
FS_FAT_CFG VOL_CHK_EN

FS_FAT_CFG_VOL_CHK_EN selects whether volume check is supported. When DEF_ENABLED, volume check is supported; when DEF_DI
SABLED, the function FS_FAT_Vol Chk() will not be available.

FS_FAT_CFG VOL_CHK_MAX_LEVELS

FS_FAT_CFG_VOL_CHK_MAX_LEVELS specifies the maximum number of directory levels that will be checked by the volume check
function. Each level requires an additional 12 bytes stack space.

SD/MMC SPI Configuration
FS_DEV_SD _SPI _CFG CRC EN

Data blocks received from the card are accompanied by CRCs, as are the blocks transmitted to the card. FS_DEV_SD_SPI _CFG_CRC_EN
enables CRC validation by the card, as well as the generation and checking of CRCs. If DEF_ENABLED, CRC generation and checking will
be performed.

Trace Configuration

The file system debug trace is enabled by #define‘ing FS_TRACE_LEVEL in your application’s f s_cf g. h:
#define FS_TRACE _LEVEL TRACE_LEVEL_DBG
The valid trace levels are described in the table below. A trace functions should also be defined:

#define FS_TRACE printf
This should be a printf-type function that redirects the trace output to some accessible terminal (for example, the terminal I/O window within
your debugger, or a serial port) . When porting a driver to a new platform, this information can be used to debug the fledgling port.

Trace Level Meaning

TRACE_LEVEL_OFF No trace.

TRACE_LEVEL_I| NFO Basic event information (e.g., volume characteristics).
TRACE_LEVEL_DBG Debug information.

TRACE_LEVEL_LOG Event log.

Table - Trace levels

Shell Commands

The command line interface is a traditional method for accessing the file system on a remote system, or in a device with a serial port (be that
RS-232 or USB). A group of shell commands, derived from standard UNIX equivalents, are available for uC/FS. These may simply expedite
evaluation of the file system suite, or become part a primary method of access (or gathering debug information) in your final product.

i COM4 - PuTTY

Figure - uC/FS shell command usage

Files and Directories

UC/FS with the shell commands (and pC/Shell) is organized into the directory structure shown in Figure - Directory structure in the Files and
Directories page. The files constituting the shell commands ares outlined in this section; the generic file-system files, outlined in pC/FS Directories
and Files, are also required.

1) Micrium
=l |) Software
) uC-CPU
) uC-CRC
=l) uC-FS
* () AFP
() BSP
) CFG
=) Cmd
3) CFG
) Template
+) Dev
) Doc
+ | Examples
) FAT
)05
) Source
) uC-LIB
=l 1) uC-Shell
=l) CFG
) Template
) Source

it

+

Figure - Directory structure
\'M cri um Sof t war e\ uG FS\ Cnd

fs_shel | . * contain the shell commands for uC/FS.
\' M cri um Sof t war e\ uG FS\ Cnd\ Tenpl at e\ Cf g

fs_shel | _cf g. his the template configuration file for the uC/FS shell commands. This file should be copied to your application directory
and modified.

\' M cri um Sof t war e\ uC- Shel |

This directory contains pC/Shell, which is used to process the commands. See the pC/Shell user manual for more information.

Using the Shell Commands

To use shell commands, four files, in addition to the generic file system files, must be included in the build:

® fs_shell.c

® fs_shell.h

® shell.c (located in\ M cri um Sof t war e\ uC- Shel | \ Sour ce)

® shell. h (located in\ M cri um Sof t war e\ uC- Shel | \ Sour ce)

The file f s_shel | . h and shel | . h must also be #included in any application or header files initialize pC/Shell or handle shell commands. The
shell command configuration file (f s_shel | _cf g. h) should be copied to your application directory and modified. The following directories must
be on the project include path:

® \Mcrium Sof twar e\ uC- FS\ Cnd
® \Mcrium Sof t war e\ uC- Shel I \ Sour ce

UC/Shell with the uC/FS shell commands is initialized in Listing - Initializing pC/Shell in the Using the Shell Commands page. The file system
initialization (FS_I ni t ()) function should have previously been called.

https://doc.micrium.com/pages/viewpage.action?pageId=10753210

CPU_BOOLEAN App_Shel I Init (voi d)

{
CPU BOOLEAN ok;
ok = Shell _Init();
if (ok == DEF_FAIL) {
return (DEF_FAIL);
}
ok = FSsShell _Init();
if (ok == DEF_FAIL) {
return (DEF_FAIL;
}
return (DEF_CK);
}

Listing - Initializing uC/Shell

It's assumed that the application will create a task to receive input from a terminal; this task should be written as shown in Listing - Executing shell
commands & handling shell output in the Using the Shell Commands page.

void App_Shell Task (void *p_arg)

{
CPU _CHAR cnd_l i ne[MAX_CMD_LEN] ;
SHELL_ERR err;
SHELL_CVD_PARAM cnd_par am
CPU_CHAR cwd_pat h[FS_CFG FULL_ NAME_LEN + 1u];
(1)
Str_Copy(&wd_pat h[0], (CPU_CHAR *)"\\");
cnd_param pcur_working_dir = (void *)cwd_path[O0];
cnd_par am pout _opt = (void *)O0;
whil e (DEF_TRUE) {
App_Shel I I n(cnmd_l i ne, MAX CMD_LEN); (2)
(3)
Shel | _Exec(cnd_line, App_Shell Qut, &cnd_param &err);
switch (err) {
case SHELL_ERR CMD_NOT_FOUND:
case SHELL ERR CMD SEARCH:
case SHELL_ERR ARG TBL_FULL:
App_Shel | Qut (" Conmand not found\r\n", 19, cnd_param pout_opt);
br eak;
defaul t:
br eak;
}
}
}
/*
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEE RS
* App_Shel I I n()
EZE R R I I O S O R S O R R S O S O
*/

CPU_I NT16S App_Shel I I n (CPU_CHAR *pbuf,
CPU_I NT16U buf _I en)

/* $$$$ Store line fromterm nal/command line into ‘pbuf’; return length of line.
*/
/*
IR R R RS R EEEEEEEEEEEE SRR EEREEEEEREEEEREEEEEESEEEREEREEEEREEEREEREEEEREEEEEEEEEEEEEEESEEEEEEEEE RS
* App_Shel | Qut ()
EIE R R I I R I R R I R I R R R R I R I S R I O
*/

CPU_I NT16S App_Shel | Qut (CPU_CHAR *pbuf,
CPU_I NT16U buf _I en,
voi d *popt)

/* $$$$ CQut put ‘pbuf’ data on terminal/conmmand |ine; return nbr bytes tx'd. */

Listing - Executing shell commands & handling shell output

@

The SHELL_CVMD_PARAMSstructure that will be passed to Shel | _Exec() must be initialized. The pcur _wor ki ng_di r member must be
assigned a pointer to a string of at least FS_SHELL_CFG_MAX_PATH_LEN characters. This string must have been initialized to the default working
directory path; if the root directory, “\".

@

The next command, ending with a newline, should be read from the command line.

©)

The received command should be executed with Shel | _Exec() . If the command is a valid command, the appropriate command function will be
called. For example, the command “f s_| s” will result in FSShel | _| s() infs_shel | . c being called. FSShel | _I s() will then print the entries
in the working directory to the command line with the output function App_Shel | Qut (), passed as the second argument of Shel | _Exec() .

Commands

The supported commands, listed in the table below, are equivalent to the standard UNIX commands of the same names, though the functionality
is typically simpler, with few or no special options.

Command Description

fs_cat Print file contents to the terminal output.

fs_cd Change the working directory.

fs_cp Copy a file.

fs_date Write the date and time to terminal output, or set the system date and time
fs_df Report disk free space.

fs_Is List directory contents.

fs_nmkdir Make a directory.

fs_nkfs Format a volume.

fs_nount Mount volume.

fs_mv Move files.

fs_od Dump file contents to terminal output.

fs_pwd Write to terminal output pathname of current working directory.
fs_rm Remove a directory entry.

fs_ rmdir Remove a directory.

fs_touch Change file modification time.

fs_unount Unmount volume.

fs_we Determine the number of newlines, words and bytes in a file.

Table - Commands

Information about each command can be obtained using the help (-h) option:

Figure - Help option output
fs_cat

Print file contents to the terminal output.

Usages
fs_cat [file]
Arguments

file

Path of file to print to terminal output.

Output

File contents, in the ASCII character set. Non-printable/non-space characters are transmitted as full stops (“periods”, character code 46). For a
more convenient display of binary files use f s_od.

Required Configuration

Available only if FS_SHELL_CFG_CAT_EN is DEF_ENABLED.

Notes/Warnings

None.

fs_cd
Change

Usages

fs_cd

the working directory.

[dir]

Arguments

dir

Absolute directory path.

OR

Path relative to current working directory.

Output

None.

Required Configuration

Available only if FS_SHELL_CFG CD ENis DEF_ENABLED.

Notes/Warnings

The new working directory is formed in three steps:

1.

If the argument dir begins with the path separator character (slash, ‘\') or a volume name, it will be interpreted as an absolute directory
path and will become the preliminary working directory. Otherwise the preliminary working directory path is formed by the concatenation

of the current working directory, a path separator character and dir.

. The preliminary working directory path is then refined, from the first to last path component:

a. If the component is a ‘dot’ component, it is removed
b. If the component is a ‘dot dot’ component, and the preliminary working directory path is not NULL, the previous path component

is removed. In any case, the ‘dot dot’ component is removed.
c. Trailing path separator characters are removed, and multiple path separator characters are replaced by a single path separator

character.

. The volume is examined to determine whether the preliminary working directory exists. If it does, it becomes the new working directory.

Otherwise, an error is output, and the working directory is unchanged.

fs_cp

Copy afile.

Usages

fs_cp [source_file] [dest_file]
fs_cp [source_file] [dest_dir]

Arguments

source_file

Source file path.

dest _file

Destination file path.
dest _dir

Destination directory path.

Output

None.

Required Configuration

Available only if FS_SHELL_CFG CP_ENis DEF_ENABLED and FS_CFG RD_ONLY_ENis DEF_DI SABLED.

Notes/Warnings

1. In the first form of this command, neither argument may be an existing directory. The contents of sour ce_fi | e will be copied to a file
named dest _fi | e located in the same directory as source_fil e.

2. In the second form of this command, the first argument must not be an existing directory and the second argument must be an existing
directory. The contents of sour ce_f i | e will be copied to a file with name formed by concatenating dest _di r, a path separator
character and the final component of source_fil e.

fs_date

Write the date and time to terminal output, or set the system date and time.

Usages
fs_date
fs_date [tine]
Arguments

time
If specified, time to set, in the form nmddhhmmeceyy:

1st mm the month (1-12)

dd the day (1-29, 30 or 31)

hh the hour (0-23)

2nd mm the minute (0-59)

ccyy the year (1900 or larger)
Output

If no argument, date and time.

Required Configuration

Available only if FS_SHELL_CFG DATE_EN is DEF_ENABLED.

Notes/Warnings

None.

& COM4 - PuTTY

Figure - fs_date output

fs_df

Report disk free space.

Usages
fs_df
fs_df [vol]
Arguments
vol
If specified, volume on which to report free space. Otherwise, information about all volumes will be output..
Output

Name, total space, free space and used space of volumes.

Required Configuration

Available only if FS_SHELL_CFG DF_ENis DEF_ENABLED.

Notes/Warnings

None.

Z COM4 - PuTTY

Figure - fs_df output
fs_Is

List directory contents.
Usages

fs_Is

Arguments

None.

Output

List of directory contents.

Required Configuration

Available only if FS_SHELL_CFG LS_ENis DEF_ENABLED.
Notes/Warnings

1. The output resembles the output from the standard UNIX command Is -I. See the figure below.

“= COM4 - PuTTY

crn
drw

—EFW—LW—LW—

Figure - fs_Is output

fs_mkdir
Make a directory.
Usages
fs_nkdir [dir]
Arguments
dir

Directory path.
Output
None.

Required Configuration

Available only if FS_SHELL_CFG MKDI R_ENis DEF_ENABLED and FS_CFG RD ONLY_ENis DEF_DI SABLED.

Notes/Warnings

None.
fs_mkfs

Format a volume.
Usages
fs_nmkfs [vol]

Arguments
vol

Volume name.
Output

None.
Required Configuration

Available only if FS_SHELL_CFG MKFS_ENis DEF_ENABLED and FS_CFG RD _ONLY_ENis DEF_DI SABLED.

Notes/Warnings

None.
fs_mount

Mount volume.

Usages

fs_munt [dev] [vol]

Arguments
dev

Device to mount.
vol

Name which will be given to volume.

Output

None.

Required Configuration

Available only if FS_SHELL_CFG MOUNT_ENis DEF_ENABLED.

Notes/Warnings

None.
fs_mv

Move files.

Usages

fs_mv [source_entry] [dest_entry]
fs_mv [source_entry] [dest_dir]

Arguments
source_entry

Source entry path.
dest_entry

Destination entry path.
dest _dir

Destination directory path.

Output

None.

Required Configuration

Available only if FS_SHELL_CFG MV_ENis DEF_ENABLED and FS_CFG RD_ONLY_ENis DEF_DI SABLED.

Notes/Warnings

1. In the first form of this command, the second argument must not be an existing directory. The file sour ce_ent ry will be renamed dest _
entry.

2. In the second form of this command, the second argument must be an existing directory. sour ce_ent r y will be renamed to an entry
with name formed by concatenating dest _di r, a path separator character and the final component of sour ce_entry.

3. In both forms, if sour ce_ent ry is a directory, the entire directory tree rooted at sour ce_ent r y will be copied and then deleted.
Additionally, both sour ce_ent ry and dest _entry or dest _di r must specify locations on the same volume.

fs_od

Dump file contents to the terminal output.

Usages

fs_od [file]

Arguments
file

Path of file to dump to terminal output.
Output

File contents, in hexadecimal form.

Required Configuration

Available only if FS_SHELL_CFG OD ENis DEF_ENABLED.

Notes/Warnings

QoOoOOoOoF 1 if. 0 ZFZ29&6ED CT7TE5895848 FFFEZ865

Figure - fs_od output

fs_pwd

Write to terminal output pathname of current working directory.
Usages

fs_pwd

Arguments

None.

Output

Pathname of current working directory..

Required Configuration

Available only if FS_SHELL_CFG PWD_ENis DEF_ENABLED.

Notes/Warnings

None.
fs_rm

Remove a file.

OsFOD-

Ge00&F0O0

2D002000

Usages
fs_rm[file]
Arguments
file

File path.
Output

None.

Required Configuration

Available only if FS_SHELL_CFG RM ENis DEF_ENABLED and FS_CFG_RD_ONLY_EN s DEF_DI SABLED.

Notes/Warnings

None.
fs_rmdir

Remove a directory.
Usages
fs rmdir [dir]
Arguments
dir
Directory path.
Output
None.
Required Configuration
Available only if FS_SHELL_CFG RVDI R_ENis DEF_ENABLED and FS_CFG RD ONLY_ENis DEF_DI SABLED.

Notes/Warnings

None.
fs_touch

Change file modification time.

Usages
fs_touch [file]
Arguments
file
File path.
Output
None.
Required Configuration

Available only if FS_SHELL_CFG TOUCH_ENis DEF_ENABLED and FS_CFG RD ONLY_ENis DEF_DI SABLED.

Notes/Warnings

1. The file modification time is set to the current time.
fs_umount

Unount volume.

Usages

fs_unount [vol]

Arguments
vol

Volume to unmount.
Output

None.

Required Configuration

Available only if FS_SHELL_CFG_UMOUNT_ENis DEF_ENABLED.

Notes/Warnings

None.
fs_wc

Determine the number of newlines, words and bytes in a file.
Usages
fs we [file]
Arguments
file
Path of file to examine.
Output

Number of newlines, words and bytes; equivalent to:

printf("%l % % %", newine_cnt, word_cnt, byte cnt, file);

Required Configuration

Available only if FS_SHELL_CFG WC_ENis DEF_ENABLED.

Notes/Warnings

None.

Figure - fs_wc output

Configuration

Configuration constants can be used to enable/disable features within the pC/FS shell commands.
FS_SHELL_CFG BUF_LEN

FS_FAT_CFG_BUF_LEN defines the length of the buffer, in octets, used to read/write from files during file access operations. Since this
buffer is placed on the task stack, the task stack must be sized appropraitely.

FS _SHELL_CFG CMD #### EN
Each FS_FAT_CFG_CNMD_####_EN separately enables/disables a particular f s_#### command:

Bibl

FS_FAT_CFG CMD _CAT EN
FS_FAT_CFG CMD_CD EN
FS_FAT_CFG CMD_CP_EN
FS_FAT_CFG CMD_DF_EN
FS_FAT_CFG CMD_DATE_EN
FS_FAT_CFG CMD_LS_EN
FS_FAT_CFG CMD_MKDI R_EN
FS_FAT_CFG CMD_MKFS_EN
FS_FAT_CFG CMD_MOUNT_EN
FS FAT_CFG CMD MWV_EN
FS_FAT_CFG CMD_OD_EN
FS_FAT_CFG CMD_PWD_EN
FS_FAT_CFG CMD_RM EN
FS_FAT_CFG CMD_RMDI R_EN
FS_FAT_CFG CVD_TOUCH_EN
FS_FAT_CFG_CMD_UMOUNT_EN

FS_FAT_CFG CMD_WC_EN

iography

Enable/disable fs_cat .
Enable/disable f s_cd.
Enable/disable f s_cp.
Enable/disable f s_df .
Enable/disable f s_dat e.
Enable/disable fs_| s.
Enable/disable f s_nkdi r.
Enable/disable f s_nkf s.
Enable/disable f s_nount .
Enable/disable f s_mv.
Enable/disable f s_od.
Enable/disable f s_pwd.
Enable/disable f s_rm
Enable/disable fs_rndi r.
Enable/disable f s_t ouch.
Enable/disable f s_unount .

Enable/disable f s_wc.

Labrosse, Jean J. 2009, uC/OS-lll, The Real-Time Kernel, Micrium Press, 2009, ISBN 978-0-98223375-3-0.

Légaré, Christian 2010, pC/TCP-IP, The Embedded Protocol Stack, Micrium Press, 2010, ISBN 978-0-98223375-0-9.
POSIX:2008 The Open Group Base Specifications Issue 7, IEEE Standard 1003.1-2008.

Programming Lauguages -- C, ISO/IEC 9899:1999.

The Motor Industry Software Reliability Association, MISRA-C:2004, Guidelines for the Use of the C Language in Critical Systems, October 2004.
Www.misra-c.com.

http://www.clusterbuilder.org/

Cho, H., Shin, D., Eom, Y. I. 2009, KAST: K-Associative Sector Translation for NAND Flash Memory in Real-Time Systems, Architecture,
507-512. IEEE.

UC/FS Release Notes

® Version 4.07.00
® Version 4.06.01
® Version 4.06.00
® Version 4.05.03
® Version 4.05.02
® Version 4.05.01
® Version 4.05.00
® Version 4.04.05
® Version 4.04.04
® Version 4.04.03
® Previous versions

Version 4.07.00

Release date: 2014-02-14

Requirements

uC/Clk V3.09.03

uC/CPU V1.29.01

UC/CRC V1.09.01

pC/LIB V1.38.00

[OPTION] pC/OS-Il OS Port: pC/OS-11 V2.92.07

[OPTION] pC/OS-lll OS Port: uC/OS-I1 V3.03.01

[OPTION] USB Mass Storage Class driver: pC/USB-Host V3.40.02

New features & improvements

® uC/LIB V1.38.00 compatibility: version 1.38.00 of uC/LIB has deprecated some APIs that were used by previous versions of uC/FS, most
notably Mem Pool Bl kGet UsedAt | x() and Mem Pool Bl kI xGet () . Updating to pC/FS V4.07.00 is required if updating other Micrium
products that require uC/FS V1.38.00.

* NAND Driver: 16-bit NAND compatibility for generic parallel NAND controller.

® Journaling module: significantly reduced performance hit due to new journal clearing algorithm.

API changes

* NAND generic controller BSPs now have an added 'wi dt h' parameter in functions Dat aRd() and Dat aW () . Existing NAND generic
controller BSPs will need to be updated. See uC/FS Migration Guide for more details.

Bug fixes

SD Driver: issue STOP_TRANSMISSION command only once per stop operation.

Missing err code init in FSDev_Access(Lock|Unlock).

Mounting logical partition fails if extended partition type is LBA extended (OxF).

NAND Driver: incorrect data size allocation for Micron ECC and Soft ECC.

FS_FAT_JournalOpen(): erroneous journal file's cluster count calculation when the journal size is smaller than the cluster size.
NOR Driver: PrepareBlk called without wear leveling check.

NAND Driver errors in 16 bits defect mark checking.

NAND Driver: add support for switching to 16 bits width.

Version 4.06.01

Release date: 2013-07-10

Requirements

uC/Clk V3.09.03

uC/CPU V1.29.01

UC/CRC V1.09.01

uC/LIB V1.37.01

[OPTION] pC/OS-1l OS Port: pC/OS-11 V2.92.07

[OPTION] pC/OS-lll OS Port: uC/O0S-I1 V3.03.01

[OPTION] USB Mass Storage Class driver: pC/USB-Host V3.40.02

New features & improvements

®* None.

APl changes

® None.
Bug fixes

® FAT: EOC handling does not account for all possible values
Version 4.06.00

Release date: 2013-06-27

Requirements

uC/Clk V3.09.03

UC/CPU V1.29.01

MC/CRC V1.09.01

uC/LIB V1.37.01

[OPTION] pC/OS-1l OS Port: pC/OS-11 V2.92.07

[OPTION] pC/OS-Ill OS Port: uC/OS-Il V3.03.01

[OPTION] USB Mass Storage Class driver: puC/USB-Host V3.40.02

New features & improvements

® Journaling module: The journaling module has been redesigned in order to improve robustness and achieve lower footprint (both ROM
and RAM).

® NOR Driver: Added support for SST25VFxxxC family.

®* NAND Driver: Major bugfix release: update is highly recommended.

* NAND Driver: Added support for dumping raw NAND images.

API changes

® Due to the journaling module redesign, any journaled volume used under uC/FS V4.05.03 or prior version must be cleanly unmounted
before upgrading to V4.06.00.

® Unused fields removed from most core pC/FS structures (shouldn't affect applications).

® FS_CFG_BUILD configuration option removed.

® See PC/FS Migration Guide for more details.

Bug fixes

FS_FAT_VolFmt() ignores the RsvdSec parameters

FAT corruption after partial cluster chain allocation

FSBuf_Free() can shadow write errors in many cases

Incorrect corner cases in default format configuration tables

NAND Driver: some incorrect use of MEM_VAL_COPY_GET/SET macros on big endian CPUs
NAND Driver: MetaBlkFoldNeeded may be uninitialized

fs_fstat: directories reported as files

Possible buffer leak when returning from FSPartition_Add()

NAND Driver: new block is not removed from available blocks table in refresh operations
NAND Driver: dirty bitmap pointer not updated after search

FS_FAT_VolIChk() erroneously consider an empty file as invalid

FS_FAT_LowEntryFind() discard clusters allocated to a zero sized file
UTF8_MAX_VAL_4BYTE undeclared when FS_UNICODE_CFG_WCHAR_SIZE is configured to 32
Deleting a file or directory with a cluster chain longer than expected will leave a lost chain
FS_FAT_FileRd() should not set the EOF indicator

Opening a file of size 0 should not set the EOF indicator

NAND Driver: retries performed on unwritten sectors at mount time in MetaBIkFind()

NOR: Possible infinite loop in the Intel PHY

Version 4.05.03

Release date: 2013-01-21

Requirements

UC/Clk V3.09.03

uC/CPU V1.29.01

UC/CRC V1.09.01

uC/LIB V1.37.01

[OPTION] pC/OS-1l OS Port: pC/OS-Il V2.92.07

[OPTION] pC/OS-Ill OS Port: uC/OS-I1 V3.03.01

[OPTION] USB Mass Storage Class driver: uC/USB-Host V3.40.02

New features & improvements

® NOR Driver: Added support for Atmel AT45 devices.

API changes

®* None.

Bug fixes

NAND Driver: wrong buffer name SpareBufPtr used when FS_NAND_CFG_XXXX_CACHE_EN is disabled
Check for LIB_MEM_HEAP_ALLOC_EN breaks build with uC/LIB V1.37.01
FSVol_LabelGet() returns malformed string

NAND Driver: wrong pointer is passed to SecRdPhyNoRefresh() in BIkRefresh()
os_err possibly undeclared in FS_OS_Init() function of the uCOS-II port

fs_app should open the volume even if the media is not present
FSVol_ReleaseUnlock() called when FSVol_Release() is appropriate

Volume not always released on lock failure

FS_OS lock not always released when returning from a fatal error
FSDev_NOR_PhyEraseChip() returns with error FS_ERR_DEV_INVALID_IO_CTRL
Invalid memory macro usage on big endian architectures

Version 4.05.02

Release date: 2012-10-26

Requirements

pC/Clk V3.09.03

HC/CPU V1.29.01

HC/CRC V1.09.01

HUC/LIB V1.37.00

[OPTION] HC/OS-Il OS Port: pC/OS-II V2.92.07
[OPTION] pC/OS-IIl OS Port: pC/OS-11 V3.03.01

New features & improvements

® NOR Driver: Added support for Micron NP5Q phase change memory (PCM) devices.

API changes

®* None.

Bug fixes

Partition mount fails on big-endian platforms

Buffer leak when closing a journaled volume

Journal creation may fail or be corrupted if the maximum sector size is larger than the volume cluster size
IOCTL calls cannot be done on a device with no media present

NAND Driver: existing meta block not checked when formatting a device with incompatible low-fmt parameters.
FS_WorkingDirGet returns the wrong error when given a size of 0

Version 4.05.01

Release date: 2012-08-17

Requirements

HC/CIK VV3.09.03

HC/CPU V1.29.01

HIC/CRC V1.09.01

HC/LIB V1.37.00

[OPTION] pC/OS-Il OS Port: pC/OS-II V2.92.07
[OPTION] pC/OS-IIl OS Port: pC/OS-11 V3.03.01

New features & improvements

®* NAND generic controller BSP: allow most BSP functions to report errors through a new p_err argument.

APl changes

® FS_NAND_PART_STATIC_CFG structure: NbrOfPgmPerPage renamed to NbrPgmPerPg.
®* NAND generic controller BSP API: all functions except Close(), ChipSelEn() and ChipSelDis() now have a FS_ERR* argument. Open()
and WaitWhileBusy() return type changed from CPU_BOOLEAN to void.

Bug fixes

Misspelled include file in fs_entry.c

FSDir_Rd() fails to read the last entry of a full root directory

VolFreeSecCnt isn't cleared when calling FSVol_Query on an unmounted volume
FS_WorkingDirSet and FSEntry_Query returns wrong error code when given a null name pointer
Documentation and code comments mention the wrong error for null strings

Cluster allocation may fail when only one free cluster is left on volume

NAND Driver: FS_NAND_Close() causes memory access error if no instance has been opened
Multiple calls to FSVol_Query may give invalid results

Opening the journal may cause FSVol_Query() to report an increased number of total sector
Erroneous return value in the fs_rmdir() comment header block

File creation may fail in the root of a FAT12/16 volume full of deleted entries

Erroneous prototype in the fs_setbuf() API reference

SD SPI preprocessor warning mention app_cfg.h instead of crc_cfg.h

Improperly closed comment in fs_dev_nor_sst25.c

NAND Driver: generic controller BSP template uses wrong API structure type

Comments about FS_CFG_RD_ONLY_EN are reversed in fs_cfg.h

Duplicate entry FS_ERR_NAME_INVALID for FSEntry_Rename()

Version 4.05.00

Release date: 2012-08-17

Requirements

HC/Clk V3.09.03
HC/CPU V1.29.01

HC/CRC V1.09.01

HC/LIB V1.37.00

[OPTION] pC/OS-Il OS Port: uC/OS-11 V2.92.07
[OPTION] pC/OS-IIl OS Port: pC/OS-11 V3.03.01

New features & improvements

NAND Flash Driver: a new driver has been added and supports most parralel NAND devices (SLC, MLC, small and large page). Support
for 1-bit software ECC correction. Has a flexible architecture allowing use of hardware ECC engines.
Multi-Cluster Writes and Reads: pC/FS can now perform writes or reads across cluster boundaries. This will result in a performance

increase when writing or reading using large application buffers.

API changes

Error codes returned from some API functions were corrected. Important changes are listed in the migration guide.

Bug fixes

Incorrect SFN tail when creating repeated SFN entries of less than 8 characters
FSEntry_Del() does not validate correctly its entry_type argument
FSEntry_Rename() fails to delete the source after copying between different volumes
FSEntry_Rename() fails over two existing files without an allocated cluster

NOR Driver: SST25 PHY assumes device is not in AA mode when opening

Cluster size is not validated by FS_FAT_VolFmt()

Possible buffer leak in FS_FAT_VolFmt()

Trying to format a small enough FAT12 volume may generate invalid device access
Volume is closed after a failed call to FSVol_Fmt()

FS_FAT_VolFmt() miscalculates the crossings between FAT 12, 16 and 32

Wrong error returned when out of heap or pool space in some cases

Garbage may be written in the last sector's slack space of a file

Possible spurious cache miss when reading sector 0

FSCache_Create returns an unrelated error message when given invalid configuration
Path names longer than FS_CFG_MAX_PATH_NAME_LEN are silently truncated
FSentry_* class of functions do not check for invalid file name length

Shell extension command 'fs_ls' reports the wrong year

Possible FAT table corruption when formating FAT32 volumes

FSFile_Query() blocks buffer assignment

Unreachable code in FSFile_BufWr() related to the FS_FILE_BUF_MODE_SEC_ALIGNED flag
FSFile_SetPos() breaks when trying to set the file position to a negative value

Some functions return the wrong error when given a null string

Inconsistent behavior between FSDir_IsOpen() and FSFile_IsOpen() when given the wrong file type as input

Some file system functions return the wrong error when using the root dir as target

FSFile_Truncate() can't increase the size of a file as documented

FSEntry_Create doesn't report any error when trying to create a directory that has a name conflict with a file when the exclusive flag isn't
set

Version 4.04.05

Release date: 2012-06-12

Requirements
HC/Clk V3.09.03
HC/CPU V1.29.01

HC/CRC V1.09.01
HC/LIB V1.37.00

New features & improvements

®* None.

API changes

®* None.

Bug fixes

® FSDev_Open(): name_dev_copy allocation size is incorrect.

Version 4.04.04

Release date: 2012-06-06

Requirements
* LC/Clk V3.09.03
* LC/CPU V1.29.01

®* pC/CRC V1.09.01
® pC/LIB V1.37.00

New features & improvements

® Device Query: FSDev_Query() will now return correct data for the 'Fixed' and 'State' fields even when the device is not accessible.
® SD Card Driver: Better support for high capacity MMCplus and eMMC devices.

API changes

®* None.

Bug fixes
® Wasted stack space for name_dev_copy in FSDev_Open().

® RAMDisk driver reports device as removable. FSDev_Query() on a RAMDisk device will now correctly report the device as fixed.
® Missing calls to FSDev_Release when returning from a lock failure in the dev layer.

Version 4.04.03

Release date: 2012-05-18

Requirements

® pC/Clk vV3.09.03
¢ pC/CPU V1.29.01

* LC/CRC V1.09.01
* UC/LIB V1.37.00

New features & improvements

® Device Access Locks: These locks needs to be acquired for all direct device layer (FSDev_####()) API calls. The filesystem core
functions (FSFile_####(), FSDir_####(), etc.) will acquire these locks automatically needed.

® Device Invalidation: Allows user to invalidate a device. Invalidating a device prevents any further operation on an open volume or entry
associated with the specified device to succeed. Errors will be returned by any function accessing an invalidated entry or volume until
those entries and volumes are closed and reopened. This is useful when devices are accessed externally directly through the device
layer, as those access can cause the file system to be modified, and thus cause cached data related to volume or entries to become
invalid. This is required for interoperation with USB Device Mass Storage Class (MSC).

® Sector-aligned file buffers: New file buffer mode that forces file buffers start positions to be aligned with sector boundaries, for increased
performance.

API changes

® OS Port Layer: FS_OS_WorkingDirSet() now takes an error pointer as last argument and may fail.

Bug fixes

fs_fstat(): modification time and creation time are interchanged.

FSDir_NameParseChk() might modify the entry name it receives.

FAT12: ClusValWr and ClusValRd incorrectly write/read cluster values across sector boundaries, for odd numbered FAT table entries.
Extending a directory table beyond a cluster causes entries to vanish.

Creating a directory without exclusive flag set fails when directory already exists.

Previous versions

Older versions' release notes are in the following PDF document: uC-FS-ReleaseNotesArchive.pdf

UC/FS Migration Guide

® Migrating from V4.06.01 to V4.07.00
® Previous versions

Migrating from V4.06.01 to V4.07.00

The following is a comprehensive list of the modifications you must apply to your uC/FS projects to update them to V4.07.00 from V4.06.01.
The changes are easy to make and updating your project should take a short time.

New source code

UC/FS V4.07.00 is comprised of mostly bugfixes and minor changes in existing modules. The first step is to replace every file of your project
by the new ones.

Updated requirements

An update of uC/LIB to V1.38.00 is required for uC/FS V4.07.00 to successfully build due to the usage of a new macro introduced in
V1.38.00.

API changes

NAND Generic controller Board Support Package (BSP) API changes

The NAND generic controller now supports 16-bit NAND parallel devices. The Dat aW () and Dat aRd() functions now take the width, in
bits, of the requested bus access. See Board Support Package for API details.

Existing implementations may ignore the 'wi dt h' argument and assume 8-bit operation and return error code FS_ERR_| NVALI D_ARG if 'w
i dth' is setto 16, as in the following example:

https://doc.micrium.com/download/attachments/12859069/uC-FS-ReleaseNotesArchive.pdf?version=1&modificationDate=1391692288000&api=v2

static void FS_NAND BSP_Dat aW
(void *p_src,

CPUSIZE T cnt,

FS_ERR *p_err)
{

CPU_I NTO8U *p_dest
SAMBDMLO_NAND_DATA;

CPU_I NTO8BU *p_src_08 =
(CPU_I NTO8U *) p_src;

CPU SIZE T i;

for (i =0u; i <cnt, i++) {

*(p_dest++) = *(p_src_08++);

}
*p_err = FS_ERR_NONE;

}

static void FS_NAND BSP_Dat aRd
(void *p_dest,

CPU SIZE T cnt,

FS_ERR *p_err)
{
CPU_I NTO8BU *p_src
SAVBMLO_NAND_DATA;
CPU_I NTO8U *p_dest_08 =
(CPU_I NTO8U *) p_dest;
CPUSIZET i;

for (i =0u; i <cnt, i++) {

*(p_dest _08++) = *(p_src++);

}
*p_err = FS_ERR_NONE;

Listing - DataWr() and DataRd() functions before migration

static void FS_NAND BSP_Dat aWw
(void *p_src,

CPU SIZE T cnt,
CPU_I NTO8U wi dt h,

FS ERR *p_err)
{

CPU_I NTO8U *p_dest =
SAMBDMLO_NAND_DATA;

CPU_I NTO8BU *p_src_08
(CPU_I NTO8U *)p_src;

CPUSIZET i;
if (width !'= 8u) { /* <-- Added
check. */
*p_err = FS_ERR_I NVALI D_ARG
return;
}
for (i =0u; i <cnt, i++) {

*(p_dest++) = *(p_src_08++);
}
*p_err = FS_ERR_NONE;
}

static void FS_NAND BSP_Dat aRd
(void *p_dest,

CPU SIZE T cnt,
CPU_INTOSU wi dth,

FS ERR *p_err)
{

CPU_I NTO8BU *p_src
SAMBDMLO_NAND_DATA;

CPU_| NTO8U *p_dest_08
(CPU_I NTO8U *) p_dest;

CPU SIZET i;

if (width !'= 8u) {
/* <-- Added check. */
*p_err = FS_ERR | NVALI D ARG

return;
}
for (i =0u; i <cnt, i++) {
*(p_dest _08++) = *(p_src++);
}

*p_err = FS_ERR_NONE;

Listing - DataWr() and DataRd() functions after migration

Previous versions

The migration guide for previous versions of uC/FS is available in PDF: uC-FS-MigrationGuide.pdf

HC/FS Licensing Policy

If you plan or intend to use uC/FS in a commercial application/product then, you need to contact Micrium to properly license pC/FS for its use in
your application/product. We provide all the source code for your convenience and to help you experience uC/FS. The fact that the source is
provided does not mean that you can use it commercially without paying a licensing fee.

It is necessary to purchase this license when the decision to use pC/FS in a design is made, not when the design is ready to go to production.

If you are unsure about whether you need to obtain a license for your application, please contact Micrium and discuss the intended use with a
sales representative.

HC/FS Maintenance Renewal

Licensing uC/FS provides one year of limited technical support and maintenance and source code updates. Renew the maintenance agreement
for continued support and source code updates.Contact sales@micrium.com for additional information.

HC/FS Source Code Updates

If you are under maintenance, updates to the pC/FS sources packages will be available in your account on the Micripm purchased software
download portal. If you are no longer under maintenance, or forget your account username or password, please contact sales@micrium.com.

UC/FS Support

Support is available for licensed customers. Please visit the customer support section in www.Micrium.com. If you are not a current user, please
register to create your account. A web form will be offered to you to submit your support question,

Licensed customers can also use the following contact

Contact Micripm

1290 Weston Road, Suite 306
Weston, FL 33326
USA

Phone: +1 954 217 2036
Fax: +1 954 217 2037

E-mail: Licensing@Micrium.com
Web: www.Micrium.com

https://doc.micrium.com/download/attachments/12859109/uC-FS-MigrationGuide.pdf?version=1&modificationDate=1391695823000&api=v2
https://login.salesforce.com/secur/login_portal.jsp?orgId=00D80000000LXYY&portalId=06080000000Mk5n
https://login.salesforce.com/secur/login_portal.jsp?orgId=00D80000000LXYY&portalId=06080000000Mk5n
http://www.Micri�m.com
http://www.micrium.com/

	µC/FS Documentation 4.07.00 Home
	µC/FS User Manual
	Introduction
	µC/FS Architecture
	µC/FS Directories and Files
	Useful Information
	Devices and Volumes
	Device Operations
	Using Devices
	Using Removable Devices
	Raw Device I/O
	Partitions
	Volume Operations
	Using Volumes
	Using Volume Cache

	Files
	File System File Access Functions
	Opening Files
	Getting Information About a File
	Configuring a File Buffer
	File Error Functions
	Atomic File Operations Using File Lock

	File System Entry Access Functions
	File and Directory Attributes
	Creating New Files and Directories
	Deleting Files and Directories

	Directories
	POSIX API
	Supported Functions - POSIX
	Working Directory Functions - POSIX
	File Access Functions - POSIX
	Opening, Reading and Writing Files - POSIX
	Getting or Setting the File Position - POSIX
	Configuring a File Buffer - POSIX
	Diagnosing a File Error - POSIX
	Atomic File Operations Using File Lock - POSIX

	Directory Access Functions - POSIX
	Entry Access Functions - POSIX

	Device Drivers
	Provided Device Drivers
	Driver Characterization

	Drivers Comparison

	FAT File System
	Why Embedded Systems Use FAT
	Organization of a FAT Volume
	Organization of Directories and Directory Entries

	Organization of the File Allocation Table
	FAT12 / FAT16 / FAT32
	Short and Long File Names

	Formatting
	Types of Corruption in FAT Volumes
	Optional Journaling System
	What Journaling Guarantees
	How Journaling Works
	How To Use Journaling
	Limitations of Journaling

	Licensing Issues

	RAM Disk Driver
	Files and Directories - RAM Disk
	Using the RAM Disk Driver

	SD/MMC Drivers
	Files and Directories - SD/MMC
	Using the SD/MMC CardMode Driver
	SD/MMC CardMode Communication
	SD/MMC CardMode Communication Debugging
	SD/MMC CardMode BSP Overview

	Using the SD/MMC SPI Driver
	SD/MMC SPI Communication
	SD/MMC SPI Communication Debugging
	SD/MMC SPI BSP Overview

	NAND Flash Driver
	Getting Started
	Architecture Overview
	NAND Translation Layer
	Translation Layer Configuration
	Translation Layer Source Files

	Controller Layer
	Generic Controller Layer Implementation

	Part Layer
	Board Support Package
	Performance Considerations
	Development Guide
	BSP Development Guide - Generic Controller
	Generic Controller Extension Development Guide
	ECC Module Development Guide
	Controller Layer Development Guide

	NOR Flash Driver
	Files and Directories - NOR Flash
	NOR Driver and Device Characteristics
	Using a Parallel NOR Device
	Driver Architecture - Parallel NOR
	Hardware - Parallel NOR
	NOR BSP Overview

	Using a Serial NOR Device
	Hardware - Serial NOR
	NOR SPI BSP Overview

	Physical-Layer Drivers
	FSDev_NOR_AMD_1x08 & FSDev_NOR_AMD_1x16
	FSDev_NOR_Intel_1x16
	FSDev_NOR_SST39
	FSDev_NOR_STM25
	FSDev_NOR_SST25

	MSC Driver
	Files and Directories - MSC
	Using the MSC Driver

	IDE/CF Driver
	Files and Directories - IDE/CF
	Using the IDE/CF Driver
	ATA (True IDE) Communication
	IDE BSP Overview

	µC/FS Reference Guide
	µC/FS API Reference
	General File System Functions
	FS_DevDrvAdd()
	FS_Init()
	FS_VersionGet()
	FS_WorkingDirGet()
	FS_WorkingDirSet()

	Posix API Functions
	fs_asctime_r()
	fs_chdir()
	fs_clearerr()
	fs_closedir()
	fs_ctime_r()
	fs_fclose()
	fs_feof()
	fs_ferror()
	fs_fflush()
	fs_fgetpos()
	fs_flockfile()
	fs_fopen()
	fs_fread()
	fs_fseek()
	fs_fsetpos()
	fs_ftell()
	fs_ftruncate()
	fs_ftrylockfile()
	fs_funlockfile()
	fs_fwrite()
	fs_getcwd()
	fs_localtime_r()
	fs_mkdir()
	fs_mktime()
	fs_opendir()
	fs_readdir_r()
	fs_remove()
	fs_rename()
	fs_rewind()
	fs_rmdir()
	fs_setbuf()
	fs_setvbuf()

	Device Functions
	FSDev_AccessLock()
	FSDev_AccessUnlock()
	FSDev_Close()
	FSDev_GetDevCnt()
	FSDev_GetDevCntMax()
	FSDev_GetDevName()
	FSDev_GetNbrPartitions()
	FSDev_Invalidate()
	FSDev_Open()
	FSDev_PartitionAdd()
	FSDev_PartitionFind()
	FSDev_PartitionInit()
	FSDev_Query()
	FSDev_Rd()
	FSDev_Refresh()
	FSDev_Wr()

	Directory Access Functions
	FSDir_Close()
	FSDir_IsOpen()
	FSDir_Open()
	FSDir_Rd()

	Entry Access Functions
	FSEntry_AttribSet()
	FSEntry_Copy()
	FSEntry_Create()
	FSEntry_Del()
	FSEntry_Query()
	FSEntry_Rename()
	FSEntry_TimeSet()

	File Functions
	FSFile_BufAssign()
	FSFile_BufFlush()
	FSFile_Close()
	FSFile_ClrErr()
	FSFile_IsEOF()
	FSFile_IsErr()
	FSFile_IsOpen()
	FSFile_LockAccept()
	FSFile_LockGet()
	FSFile_LockSet()
	FSFile_Open()
	FSFile_PosGet()
	FSFile_PosSet()
	FSFile_Query()
	FSFile_Rd()
	FSFile_Truncate()
	FSFile_Wr()

	Volume Functions
	FSVol_Close()
	FSVol_Fmt()
	FSVol_GetDfltVolName()
	FSVol_GetVolCnt()
	FSVol_GetVolCntMax()
	FSVol_GetVolName()
	FSVol_IsDflt()
	FSVol_IsMounted()
	FSVol_LabelGet()
	FSVol_LabelSet()
	FSVol_Open()
	FSVol_Query()
	FSVol_Rd()
	FSVol_Wr()

	Volume Cache Functions
	FSVol_CacheAssign()
	FSVol_CacheFlush()
	FSVol_CacheInvalidate ()

	SD/MMC Driver Functions
	FSDev_SD_xxx_QuerySD()
	FSDev_SD_xxx_RdCID()
	FSDev_SD_xxx_RdCSD()

	NAND Driver Functions
	FSDev_NAND_LowFmt()
	FSDev_NAND_LowMount()
	FSDev_NAND_LowUnmount()

	NOR Driver Functions
	FSDev_NOR_LowCompact()
	FSDev_NOR_LowDefrag()
	FSDev_NOR_LowFmt()
	FSDev_NOR_LowMount()
	FSDev_NOR_LowUnmount()
	FSDev_NOR_PhyEraseBlk()
	FSDev_NOR_PhyEraseChip()
	FSDev_NOR_PhyRd()
	FSDev_NOR_PhyWr()

	FAT System Driver Functions
	FS_FAT_JournalClose()
	FS_FAT_JournalOpen()
	FS_FAT_JournalStart()
	FS_FAT_JournalStop()
	FS_FAT_VolChk()

	µC/FS Error Codes
	µC/FS Porting Manual
	Date/Time Management
	CPU Port
	OS Kernel
	Device Driver
	Close() - Device Driver
	Init() - Device Driver
	IO_Ctrl() - Device Driver
	NameGet() - Device Driver
	Open() - Device Driver
	Query() - Device Driver
	Rd() - Device Driver
	Wr() - Device Driver

	SD/MMC Cardmode BSP
	FSDev_SD_Card_BSP_CmdDataRd()
	FSDev_SD_Card_BSP_CmdDataWr()
	FSDev_SD_Card_BSP_CmdStart()
	FSDev_SD_Card_BSP_CmdWaitEnd()
	FSDev_SD_Card_BSP_GetBlkCntMax()
	FSDev_SD_Card_BSP_GetBusWidthMax()
	FSDev_SD_Card_BSP_Lock/Unlock()
	FSDev_SD_Card_BSP_Open()
	FSDev_SD_Card_BSP_SetBusWidth()
	FSDev_SD_Card_BSP_SetClkFreq()
	FSDev_SD_Card_BSP_SetTimeoutData()
	FSDev_SD_Card_BSP_SetTimeoutResp()

	SD/MMC SPI Mode BSP
	SPI BSP
	ChipSelEn() / ChipSelDis() - SPI BSP
	Close() - SPI BSP
	Lock() / Unlock() - SPI BSP
	Open() - SPI BSP
	Rd() - SPI BSP
	SetClkFreq() - SPI BSP
	Wr() - SPI BSP

	NAND Flash Physical-Layer Driver
	NOR Flash Physical-Layer Driver
	Close() - NOR Flash Driver
	EraseBlk() - NOR Flash Driver
	IO_Ctrl() - NOR Flash Driver
	Open() - NOR Flash Driver
	Rd() - NOR Flash Driver
	Wr() - NOR Flash Driver

	NOR Flash BSP
	FSDev_NOR_BSP_Close()
	FSDev_NOR_BSP_Open()
	FSDev_NOR_BSP_Rd_XX()
	FSDev_NOR_BSP_RdWord_XX()
	FSDev_NOR_BSP_WaitWhileBusy()
	FSDev_NOR_BSP_WrWord_XX()

	NOR Flash SPI BSP

	µC/FS Types and Structures
	FS_CFG
	FS_DEV_INFO
	FS_DEV_NOR_CFG
	FS_DEV_RAM_CFG
	FS_DIR_ENTRY (struct fs_dirent)
	FS_ENTRY_INFO
	FS_FAT_SYS_CFG
	FS_PARTITION_ENTRY
	FS_VOL_INFO

	µC/FS Configuration
	File System Configuration
	Feature Inclusion Configuration
	Name Restriction Configuration
	Debug Configuration
	Argument Checking Configuration
	File System Counter Configuration
	FAT Configuration
	SD/MMC SPI Configuration
	Trace Configuration

	Shell Commands
	Files and Directories
	Using the Shell Commands
	Commands
	fs_cat
	fs_cd
	fs_cp
	fs_date
	fs_df
	fs_ls
	fs_mkdir
	fs_mkfs
	fs_mount
	fs_mv
	fs_od
	fs_pwd
	fs_rm
	fs_rmdir
	fs_touch
	fs_umount
	fs_wc

	Configuration

	Bibliography

	µC/FS Release Notes
	µC/FS Migration Guide
	µC/FS Licensing Policy

