
1. µC/FS Documentation 4.07.00 Home . 6
1.1 µC/FS User Manual . 6

1.1.1 Introduction . 6
1.1.2 µC/FS Architecture . 7
1.1.3 µC/FS Directories and Files . 9
1.1.4 Useful Information . 23
1.1.5 Devices and Volumes . 27

1.1.5.1 Device Operations . 28
1.1.5.2 Using Devices . 28
1.1.5.3 Using Removable Devices . 29
1.1.5.4 Raw Device I/O . 30
1.1.5.5 Partitions . 30
1.1.5.6 Volume Operations . 32
1.1.5.7 Using Volumes . 33
1.1.5.8 Using Volume Cache . 34

1.1.6 Files . 36
1.1.6.1 File System File Access Functions . 36

1.1.6.1.1 Opening Files . 37
1.1.6.1.2 Getting Information About a File . 38
1.1.6.1.3 Configuring a File Buffer . 38
1.1.6.1.4 File Error Functions . 39
1.1.6.1.5 Atomic File Operations Using File Lock . 39

1.1.6.2 File System Entry Access Functions . 40
1.1.6.2.1 File and Directory Attributes . 40
1.1.6.2.2 Creating New Files and Directories . 41
1.1.6.2.3 Deleting Files and Directories . 42

1.1.7 Directories . 42
1.1.8 POSIX API . 43

1.1.8.1 Supported Functions - POSIX . 43
1.1.8.2 Working Directory Functions - POSIX . 44
1.1.8.3 File Access Functions - POSIX . 44

1.1.8.3.1 Opening, Reading and Writing Files - POSIX . 45
1.1.8.3.2 Getting or Setting the File Position - POSIX . 47
1.1.8.3.3 Configuring a File Buffer - POSIX . 48
1.1.8.3.4 Diagnosing a File Error - POSIX . 49
1.1.8.3.5 Atomic File Operations Using File Lock - POSIX . 49

1.1.8.4 Directory Access Functions - POSIX . 50
1.1.8.5 Entry Access Functions - POSIX . 52

1.1.9 Device Drivers . 52
1.1.9.1 Provided Device Drivers . 52

1.1.9.1.1 Driver Characterization . 53
1.1.9.2 Drivers Comparison . 54

1.1.10 FAT File System . 54
1.1.10.1 Why Embedded Systems Use FAT . 54
1.1.10.2 Organization of a FAT Volume . 54

1.1.10.2.1 Organization of Directories and Directory Entries . 55
1.1.10.3 Organization of the File Allocation Table . 56

1.1.10.3.1 FAT12 / FAT16 / FAT32 . 57
1.1.10.3.2 Short and Long File Names . 57

1.1.10.4 Formatting . 58
1.1.10.5 Types of Corruption in FAT Volumes . 59
1.1.10.6 Optional Journaling System . 59

1.1.10.6.1 What Journaling Guarantees . 59
1.1.10.6.2 How Journaling Works . 59
1.1.10.6.3 How To Use Journaling . 60
1.1.10.6.4 Limitations of Journaling . 60

1.1.10.7 Licensing Issues . 61
1.1.11 RAM Disk Driver . 61

1.1.11.1 Files and Directories - RAM Disk . 62
1.1.11.2 Using the RAM Disk Driver . 62

1.1.12 SD/MMC Drivers . 64
1.1.12.1 Files and Directories - SD/MMC . 66
1.1.12.2 Using the SD/MMC CardMode Driver . 66

1.1.12.2.1 SD/MMC CardMode Communication . 69
1.1.12.2.2 SD/MMC CardMode Communication Debugging . 71
1.1.12.2.3 SD/MMC CardMode BSP Overview . 75

1.1.12.3 Using the SD/MMC SPI Driver . 76
1.1.12.3.1 SD/MMC SPI Communication . 78
1.1.12.3.2 SD/MMC SPI Communication Debugging . 79
1.1.12.3.3 SD/MMC SPI BSP Overview . 81

1.1.13 NAND Flash Driver . 82
1.1.13.1 Getting Started . 82

1.1.13.2 Architecture Overview . 87
1.1.13.3 NAND Translation Layer . 88

1.1.13.3.1 Translation Layer Configuration . 89
1.1.13.3.2 Translation Layer Source Files . 92

1.1.13.4 Controller Layer . 93
1.1.13.4.1 Generic Controller Layer Implementation . 93

1.1.13.5 Part Layer . 94
1.1.13.6 Board Support Package . 96
1.1.13.7 Performance Considerations . 97
1.1.13.8 Development Guide . 98

1.1.13.8.1 BSP Development Guide - Generic Controller . 98
1.1.13.8.2 Generic Controller Extension Development Guide . 99
1.1.13.8.3 ECC Module Development Guide . 100
1.1.13.8.4 Controller Layer Development Guide . 101

1.1.14 NOR Flash Driver . 103
1.1.14.1 Files and Directories - NOR Flash . 104
1.1.14.2 NOR Driver and Device Characteristics . 104
1.1.14.3 Using a Parallel NOR Device . 106

1.1.14.3.1 Driver Architecture - Parallel NOR . 109
1.1.14.3.2 Hardware - Parallel NOR . 110
1.1.14.3.3 NOR BSP Overview . 111

1.1.14.4 Using a Serial NOR Device . 111
1.1.14.4.1 Hardware - Serial NOR . 112
1.1.14.4.2 NOR SPI BSP Overview . 112

1.1.14.5 Physical-Layer Drivers . 113
1.1.14.5.1 FSDev_NOR_AMD_1x08 & FSDev_NOR_AMD_1x16 . 113
1.1.14.5.2 FSDev_NOR_Intel_1x16 . 113
1.1.14.5.3 FSDev_NOR_SST39 . 113
1.1.14.5.4 FSDev_NOR_STM25 . 114
1.1.14.5.5 FSDev_NOR_SST25 . 114

1.1.15 MSC Driver . 114
1.1.15.1 Files and Directories - MSC . 114
1.1.15.2 Using the MSC Driver . 115

1.1.16 IDE/CF Driver . 116
1.1.16.1 Files and Directories - IDE/CF . 116
1.1.16.2 Using the IDE/CF Driver . 117

1.1.16.2.1 ATA (True IDE) Communication . 119
1.1.16.2.2 IDE BSP Overview . 121

1.2 µC/FS Reference Guide . 123
1.2.1 µC/FS API Reference . 124

1.2.1.1 General File System Functions . 124
1.2.1.1.1 FS_DevDrvAdd() . 125
1.2.1.1.2 FS_Init() . 126
1.2.1.1.3 FS_VersionGet() . 126
1.2.1.1.4 FS_WorkingDirGet() . 126
1.2.1.1.5 FS_WorkingDirSet() . 127

1.2.1.2 Posix API Functions . 128
1.2.1.2.1 fs_asctime_r() . 131
1.2.1.2.2 fs_chdir() . 131
1.2.1.2.3 fs_clearerr() . 132
1.2.1.2.4 fs_closedir() . 132
1.2.1.2.5 fs_ctime_r() . 132
1.2.1.2.6 fs_fclose() . 133
1.2.1.2.7 fs_feof() . 133
1.2.1.2.8 fs_ferror() . 134
1.2.1.2.9 fs_fflush() . 134
1.2.1.2.10 fs_fgetpos() . 135
1.2.1.2.11 fs_flockfile() . 136
1.2.1.2.12 fs_fopen() . 136
1.2.1.2.13 fs_fread() . 137
1.2.1.2.14 fs_fseek() . 137
1.2.1.2.15 fs_fsetpos() . 138
1.2.1.2.16 fs_ftell() . 139
1.2.1.2.17 fs_ftruncate() . 139
1.2.1.2.18 fs_ftrylockfile() . 140
1.2.1.2.19 fs_funlockfile() . 140
1.2.1.2.20 fs_fwrite() . 140
1.2.1.2.21 fs_getcwd() . 141
1.2.1.2.22 fs_localtime_r() . 142
1.2.1.2.23 fs_mkdir() . 142
1.2.1.2.24 fs_mktime() . 143
1.2.1.2.25 fs_opendir() . 143

1.2.1.2.26 fs_readdir_r() . 144
1.2.1.2.27 fs_remove() . 144
1.2.1.2.28 fs_rename() . 145
1.2.1.2.29 fs_rewind() . 146
1.2.1.2.30 fs_rmdir() . 147
1.2.1.2.31 fs_setbuf() . 147
1.2.1.2.32 fs_setvbuf() . 148

1.2.1.3 Device Functions . 149
1.2.1.3.1 FSDev_AccessLock() . 151
1.2.1.3.2 FSDev_AccessUnlock() . 151
1.2.1.3.3 FSDev_Close() . 152
1.2.1.3.4 FSDev_GetDevCnt() . 153
1.2.1.3.5 FSDev_GetDevCntMax() . 153
1.2.1.3.6 FSDev_GetDevName() . 153
1.2.1.3.7 FSDev_GetNbrPartitions() . 154
1.2.1.3.8 FSDev_Invalidate() . 154
1.2.1.3.9 FSDev_Open() . 155
1.2.1.3.10 FSDev_PartitionAdd() . 156
1.2.1.3.11 FSDev_PartitionFind() . 157
1.2.1.3.12 FSDev_PartitionInit() . 158
1.2.1.3.13 FSDev_Query() . 159
1.2.1.3.14 FSDev_Rd() . 160
1.2.1.3.15 FSDev_Refresh() . 161
1.2.1.3.16 FSDev_Wr() . 161

1.2.1.4 Directory Access Functions . 162
1.2.1.4.1 FSDir_Close() . 163
1.2.1.4.2 FSDir_IsOpen() . 163
1.2.1.4.3 FSDir_Open() . 164
1.2.1.4.4 FSDir_Rd() . 165

1.2.1.5 Entry Access Functions . 166
1.2.1.5.1 FSEntry_AttribSet() . 167
1.2.1.5.2 FSEntry_Copy() . 168
1.2.1.5.3 FSEntry_Create() . 169
1.2.1.5.4 FSEntry_Del() . 170
1.2.1.5.5 FSEntry_Query() . 171
1.2.1.5.6 FSEntry_Rename() . 172
1.2.1.5.7 FSEntry_TimeSet() . 174

1.2.1.6 File Functions . 175
1.2.1.6.1 FSFile_BufAssign() . 177
1.2.1.6.2 FSFile_BufFlush() . 178
1.2.1.6.3 FSFile_Close() . 179
1.2.1.6.4 FSFile_ClrErr() . 179
1.2.1.6.5 FSFile_IsEOF() . 180
1.2.1.6.6 FSFile_IsErr() . 181
1.2.1.6.7 FSFile_IsOpen() . 182
1.2.1.6.8 FSFile_LockAccept() . 182
1.2.1.6.9 FSFile_LockGet() . 183
1.2.1.6.10 FSFile_LockSet() . 184
1.2.1.6.11 FSFile_Open() . 185
1.2.1.6.12 FSFile_PosGet() . 186
1.2.1.6.13 FSFile_PosSet() . 187
1.2.1.6.14 FSFile_Query() . 188
1.2.1.6.15 FSFile_Rd() . 189
1.2.1.6.16 FSFile_Truncate() . 190
1.2.1.6.17 FSFile_Wr() . 190

1.2.1.7 Volume Functions . 191
1.2.1.7.1 FSVol_Close() . 193
1.2.1.7.2 FSVol_Fmt() . 193
1.2.1.7.3 FSVol_GetDfltVolName() . 194
1.2.1.7.4 FSVol_GetVolCnt() . 195
1.2.1.7.5 FSVol_GetVolCntMax() . 195
1.2.1.7.6 FSVol_GetVolName() . 195
1.2.1.7.7 FSVol_IsDflt() . 196
1.2.1.7.8 FSVol_IsMounted() . 196
1.2.1.7.9 FSVol_LabelGet() . 197
1.2.1.7.10 FSVol_LabelSet() . 198
1.2.1.7.11 FSVol_Open() . 199
1.2.1.7.12 FSVol_Query() . 200
1.2.1.7.13 FSVol_Rd() . 201
1.2.1.7.14 FSVol_Wr() . 202

1.2.1.8 Volume Cache Functions . 203
1.2.1.8.1 FSVol_CacheAssign() . 203

1.2.1.8.2 FSVol_CacheFlush() . 204
1.2.1.8.3 FSVol_CacheInvalidate () . 205

1.2.1.9 SD/MMC Driver Functions . 206
1.2.1.9.1 FSDev_SD_xxx_QuerySD() . 207
1.2.1.9.2 FSDev_SD_xxx_RdCID() . 208
1.2.1.9.3 FSDev_SD_xxx_RdCSD() . 209

1.2.1.10 NAND Driver Functions . 210
1.2.1.10.1 FSDev_NAND_LowFmt() . 210
1.2.1.10.2 FSDev_NAND_LowMount() . 211
1.2.1.10.3 FSDev_NAND_LowUnmount() . 212

1.2.1.11 NOR Driver Functions . 213
1.2.1.11.1 FSDev_NOR_LowCompact() . 214
1.2.1.11.2 FSDev_NOR_LowDefrag() . 215
1.2.1.11.3 FSDev_NOR_LowFmt() . 216
1.2.1.11.4 FSDev_NOR_LowMount() . 216
1.2.1.11.5 FSDev_NOR_LowUnmount() . 217
1.2.1.11.6 FSDev_NOR_PhyEraseBlk() . 218
1.2.1.11.7 FSDev_NOR_PhyEraseChip() . 219
1.2.1.11.8 FSDev_NOR_PhyRd() . 220
1.2.1.11.9 FSDev_NOR_PhyWr() . 221

1.2.1.12 FAT System Driver Functions . 222
1.2.1.12.1 FS_FAT_JournalClose() . 223
1.2.1.12.2 FS_FAT_JournalOpen() . 223
1.2.1.12.3 FS_FAT_JournalStart() . 224
1.2.1.12.4 FS_FAT_JournalStop() . 224
1.2.1.12.5 FS_FAT_VolChk() . 225

1.2.2 µC/FS Error Codes . 226
1.2.3 µC/FS Porting Manual . 232

1.2.3.1 Date/Time Management . 234
1.2.3.2 CPU Port . 234
1.2.3.3 OS Kernel . 234
1.2.3.4 Device Driver . 239

1.2.3.4.1 Close() - Device Driver . 239
1.2.3.4.2 Init() - Device Driver . 240
1.2.3.4.3 IO_Ctrl() - Device Driver . 240
1.2.3.4.4 NameGet() - Device Driver . 241
1.2.3.4.5 Open() - Device Driver . 242
1.2.3.4.6 Query() - Device Driver . 243
1.2.3.4.7 Rd() - Device Driver . 243
1.2.3.4.8 Wr() - Device Driver . 244

1.2.3.5 SD/MMC Cardmode BSP . 245
1.2.3.5.1 FSDev_SD_Card_BSP_CmdDataRd() . 247
1.2.3.5.2 FSDev_SD_Card_BSP_CmdDataWr() . 249
1.2.3.5.3 FSDev_SD_Card_BSP_CmdStart() . 251
1.2.3.5.4 FSDev_SD_Card_BSP_CmdWaitEnd() . 255
1.2.3.5.5 FSDev_SD_Card_BSP_GetBlkCntMax() . 258
1.2.3.5.6 FSDev_SD_Card_BSP_GetBusWidthMax() . 258
1.2.3.5.7 FSDev_SD_Card_BSP_Lock/Unlock() . 259
1.2.3.5.8 FSDev_SD_Card_BSP_Open() . 259
1.2.3.5.9 FSDev_SD_Card_BSP_SetBusWidth() . 259
1.2.3.5.10 FSDev_SD_Card_BSP_SetClkFreq() . 260
1.2.3.5.11 FSDev_SD_Card_BSP_SetTimeoutData() . 260
1.2.3.5.12 FSDev_SD_Card_BSP_SetTimeoutResp() . 261

1.2.3.6 SD/MMC SPI Mode BSP . 261
1.2.3.7 SPI BSP . 261

1.2.3.7.1 ChipSelEn() / ChipSelDis() - SPI BSP . 263
1.2.3.7.2 Close() - SPI BSP . 264
1.2.3.7.3 Lock() / Unlock() - SPI BSP . 264
1.2.3.7.4 Open() - SPI BSP . 264
1.2.3.7.5 Rd() - SPI BSP . 265
1.2.3.7.6 SetClkFreq() - SPI BSP . 265
1.2.3.7.7 Wr() - SPI BSP . 266

1.2.3.8 NAND Flash Physical-Layer Driver . 266
1.2.3.9 NOR Flash Physical-Layer Driver . 266

1.2.3.9.1 Close() - NOR Flash Driver . 268
1.2.3.9.2 EraseBlk() - NOR Flash Driver . 268
1.2.3.9.3 IO_Ctrl() - NOR Flash Driver . 269
1.2.3.9.4 Open() - NOR Flash Driver . 269
1.2.3.9.5 Rd() - NOR Flash Driver . 270
1.2.3.9.6 Wr() - NOR Flash Driver . 271

1.2.3.10 NOR Flash BSP . 272
1.2.3.10.1 FSDev_NOR_BSP_Close() . 272

1.2.3.10.2 FSDev_NOR_BSP_Open() . 272
1.2.3.10.3 FSDev_NOR_BSP_Rd_XX() . 273
1.2.3.10.4 FSDev_NOR_BSP_RdWord_XX() . 274
1.2.3.10.5 FSDev_NOR_BSP_WaitWhileBusy() . 274
1.2.3.10.6 FSDev_NOR_BSP_WrWord_XX() . 275

1.2.3.11 NOR Flash SPI BSP . 276
1.2.4 µC/FS Types and Structures . 276

1.2.4.1 FS_CFG . 276
1.2.4.2 FS_DEV_INFO . 277
1.2.4.3 FS_DEV_NOR_CFG . 278
1.2.4.4 FS_DEV_RAM_CFG . 279
1.2.4.5 FS_DIR_ENTRY (struct fs_dirent) . 280
1.2.4.6 FS_ENTRY_INFO . 280
1.2.4.7 FS_FAT_SYS_CFG . 281
1.2.4.8 FS_PARTITION_ENTRY . 282
1.2.4.9 FS_VOL_INFO . 282

1.2.5 µC/FS Configuration . 284
1.2.5.1 File System Configuration . 284
1.2.5.2 Feature Inclusion Configuration . 285
1.2.5.3 Name Restriction Configuration . 287
1.2.5.4 Debug Configuration . 287
1.2.5.5 Argument Checking Configuration . 287
1.2.5.6 File System Counter Configuration . 288
1.2.5.7 FAT Configuration . 288
1.2.5.8 SD/MMC SPI Configuration . 288
1.2.5.9 Trace Configuration . 288

1.2.6 Shell Commands . 289
1.2.6.1 Files and Directories . 289
1.2.6.2 Using the Shell Commands . 290
1.2.6.3 Commands . 293

1.2.6.3.1 fs_cat . 293
1.2.6.3.2 fs_cd . 294
1.2.6.3.3 fs_cp . 294
1.2.6.3.4 fs_date . 295
1.2.6.3.5 fs_df . 295
1.2.6.3.6 fs_ls . 296
1.2.6.3.7 fs_mkdir . 297
1.2.6.3.8 fs_mkfs . 297
1.2.6.3.9 fs_mount . 297
1.2.6.3.10 fs_mv . 298
1.2.6.3.11 fs_od . 298
1.2.6.3.12 fs_pwd . 299
1.2.6.3.13 fs_rm . 299
1.2.6.3.14 fs_rmdir . 300
1.2.6.3.15 fs_touch . 300
1.2.6.3.16 fs_umount . 301
1.2.6.3.17 fs_wc . 301

1.2.6.4 Configuration . 301
1.2.7 Bibliography . 302

1.3 µC/FS Release Notes . 302
1.4 µC/FS Migration Guide . 308
1.5 µC/FS Licensing Policy . 310

µC/FS Documentation 4.07.00 Home

C/FS is a compact, reliable, high-performance and thread-safe
embedded file system for microprocessors, microcontrollers and
DSPs.

µC/FS User Manual

Version 4.07.00

µC/FS can access multiple storage media through a clean, simple API. It supports the FAT file system for interoperability with all major operating
systems. An optional journaling component provides fail-safe operation, while maintaining FAT compatibility.

C/FS is based on clean, consistent ANSI C source code, with extensive comments describing most global variables and all functions.

The memory footprint of C/FS can be adjusted at compile time based on required features and the desired level of run-time argument checking.
For applications with limited RAM, features such as cache and read/write buffering can be disabled; for applications with sufficient RAM, enabling
these features improves performance.

Device drivers are available for all common media types. Each of these is written with a layered structure so that it can easily be ported to your
hardware. The device driver structure is simple, so that a new driver can be developed easily for a new medium.

Introduction
About File Systems
About Storage Media
µC/FS Architecture
µC/FS Directories and Files
Useful Information
Devices and Volumes
Files
Directories
POSIX API
Device Drivers
FAT File System
RAM Disk Driver
SD/MMC Drivers
NAND Flash Driver
NOR Flash Driver
MSC Driver
IDE/CF Driver
Logical Device Driver

Introduction
Files and directories are common abstractions, which we encounter daily when sending an e-mail attachment, downloading a new application or
archiving old information. Those same abstractions may be leveraged in an embedded system for similar tasks or for unique ones. A device may
serve web pages, play or record media (images, video or music) or log data. The file system software which performs such actions must meet the
general expectations of an embedded environment—a limited code footprint, for instance—while still delivering good performance.

µC/FS

µC/FS is a compact, reliable, high-performance file system. It offers full-featured file and directory access with flexible device and volume
management including support for partitions.

Source Code: µC/FS is provided in ANSI-C source to licensees. The source code is written to an exacting coding standard that emphasizes
cleanness and readability. Moreover, extensive comments pepper the code to elucidate its logic and describe global variables and functions.
Where appropriate, the code directly references standards and supporting documents.

Device Drivers: Device drivers are available for most common media including SD/MMC cards, NAND flash, NOR flash. Each of these is written
with a clear, layered structure so that it can easily be ported to your hardware. The device driver structure is simple—basically just initialization,

This documentation is also available in PDF version: uC-FS User Manual V40700.pdf

Note that this PDF-exported version of the documentation has formatting issues and the use of the .online version is recommended

https://doc.micrium.com/display/fsdoc/About+File+Systems
https://doc.micrium.com/display/fsdoc/About+Storage+Media
https://doc.micrium.com/display/fsdoc/Logical+Device+Driver
https://doc.micrium.com/download/attachments/10753193/uC-FS%20User%20Manual%20V40700.pdf?version=1&modificationDate=1411767660000&api=v2

read and write functions—so that µC/FS can easily be ported to a new medium.

Devices and Volumes: Multiple media can be accessed simultaneously, including multiple instances of the same type of medium (since all
drivers are re-entrant). DOS partitions are supported, so more than one volume can be located on a device. In addition, the logical device driver
allows a single volume to span several (typically identical) devices, such as a bank of flash chips.

FAT: All standard FAT variants and features are supported including FAT12/FAT16/FAT32 and long file names, which encompasses Unicode file
names. Files can be up to 4-GB and volumes up to 8-TB (the standard maximum). An optional journaling module provides total power fail-safety
to the FAT system driver.

Application Programming Interface (API): µC/FS provides two APIs for file and directory access. A proprietary API with parallel argument
placement and meaningful return error codes is provided, with functions like , and .FSFile_Wr() FSFile_Rd() FSFile_PosSet()
Alternatively, a standard POSIX-like API is provided, including functions like , and that have thefs_fwrite() fs_fread() fs_fsetpos()
same arguments and return values as the POSIX functions , and .fwrite() fread() fsetpos()

Scalable: The memory footprint of µC/FS can be adjusted at compile-time based on the features you need and the desired level of run-time
argument checking. For applications with limited RAM, features such as cache and read/write buffering can be disabled; for applications with
sufficient RAM, these features can be enabled in order to gain better performance.

Portable: µC/FS was designed for resource-constrained embedded applications. Although µC/FS can work on 8- and 16-bit processors, it will
work best with 32- or 64-bit CPUs.

RTOS: µC/FS does not assume the presence of a RTOS kernel. However, if you are using a RTOS, a simple port layer is required (consisting of
a few semaphores), in order to prevent simultaneous access to core structures from different tasks. If you are not using a RTOS, this port layer
may consist of empty functions.

Typical Usages

Applications have sundry reasons for non-volatile storage. A subset require (or benefit from) organizing data into named files within a directory
hierarchy on a volume—basically, from having a file system. Perhaps the most obvious expose the structure of information to the user, like
products that store images, video or music that are transferred to or from a PC. A web interface poses a similar opportunity, since the URLs of
pages and images fetched by the remote browser would resolve neatly to locations on a volume.

Another typical use is data logging. A primary purpose of a device may be to collect data from its environment for later retrieval. If the information
must persist across device reset events or will exceed the capacity of its RAM, some non-volatile memory is necessary. The benefit of a file
system is the ability to organize that information logically, with a fitting directory structure, through a familiar API.

A file system can also store programs. In a simple embedded CPU, the program is stored at a fixed location in a non-volatile memory (usually
flash). If an application must support firmware updates, a file system may be a more convenient place, since the software handles the details of
storing the program. The boot-loader, of course, would need to be able to load the application, but since that requires only read-only access, no
imposing program is required. The ROM boot-loaders in some CPUs can check the root directory of a SD card for a binary in addition to the more
usual locations such as external NAND or NOR flash.

Why FAT?

File Allocation Table (FAT) is a simple file system, widely supported across major OSs. While it has been supplanted as the format of hard drives
in Windows PCs, removable media still use FAT because of its wide support. That is suitable for embedded systems, which would often be
challenged to muster the resources for the modern file systems developed principally for large fixed disks.

µC/FS supports FAT because of the interoperability requirements of removable media, allowing that a storage medium be removed from an
embedded device and connected to a PC. All variants and extensions are supported to specification.

A notorious weakness of FAT (exacerbated by early Windows system drivers) is its non-fail safe architecture. Certain operations leave the file
system in an inconsistent state, albeit briefly, which may corrupt the disk or force a disk check upon unexpected power failure. µC/FS minimizes
the problem by ordering modifications wisely. The problem is completely solved in an optional journaling module which logs information about
pending changes so those can be resumed on start-up after a power failure.

µC/FS Architecture
µC/FS was written from the ground up to be modular and easy to adapt to different CPUs (Central Processing Units), RTOSs (Real-Time
Operating Systems), storage media and compilers. in the page shows a simplified block diagramFigure - µC/FS architecture µC/FS Architecture
of the different µC/FS modules and their relationships.

Notice that all of the µC/FS files start with ‘ ’. This convention allows you to quickly identify which files belong to µC/FS. Also note that allfs_
functions and global variables start with ‘ ’, and all macros and start with ‘ ’.FS #defines FS_

Figure - µC/FS architecture

Architecture Components

µC/FS consists of a set of modular software components. It also requires a few external components (provided with the release) be compiled into
the application and a few configuration and BSP files be adapted to the application.

Your Application

Your application needs to provide configuration information to µC/FS in the form of one C header file named .fs_cfg.h

Some of the configuration data in consist of specifying whether certain features will be present. For example, LFN support, volumefs_cfg.h
cache and file buffering are all enabled or disabled in this file. In all, there are about 30 to set. However, most of these can be set to#define
their default values.

µC/Lib (Libraries)

Because µC/FS is designed to be used in safety critical applications, all ‘standard’ library functions like strcpy(), memset(), etc., have been
re-written to follow the same quality as the rest of the file system software.

POSIX API Layer

1.

2.

3.

Your application interfaces to µC/FS using the well-known stdio.h API (Application Programming Interface). Alternately, you can use µC/FS’s
own file and directory interface functions. Basically, POSIX API layer is a layer of software that converts POSIX file access calls to µC/FS file
access calls.

FS Layer

This layer contains most of the CPU-, RTOS- and compiler-independent code for µC/FS. There are three categories of files in this section:

File system object-specific files:
Devices ()fs_dev.*
Directories ()fs_dir.*
Entries ()fs_entry.*
Files ()fs_file.*
Partitions ()fs_partition.*
Volumes ()fs_vol.*

Support files:
Buffer management ()fs_buf.*
Cache management ()fs_cache.*
Counter management ()fs_ctr.h
File system driver ()fs_sys.*
Unicode encoding support ()fs_unicode.*
Utility functions ()fs_util.*

Miscellaneous header files:
Master µC/FS header file ()fs.h
Error codes ()fs_err.h
Aggregate header file (fs_inc.h)
Miscellaneous data types ()fs_type.h
Miscellaneous definitions ()fs_def.h
Configuration definitions ()fs_cfg_fs.h

File System Driver Layer

The file system driver layer understands the organization of a particular file system type, such as FAT. The current version of µC/FS only supports
FAT file systems. fs_fat*.* contains the file system driver which should be used for FAT12/FAT16/FAT32 disks with or without Long File Name
(LFN) support.

Device Driver Layer

Device drivers (or just drivers) are low-level functions that translate logical block operations into physical I/O operations on storage device
controlled by the device drivers. There is one driver type for each type of storage device: SD/MMC card, NAND flash, NOR flash, etc.

Device drivers hide all details about the storage device (e.g., the size of the (or, on magnetic disk, the sector), whether physicalphysical block
blocks/pages must be erased before they can be overwritten) from the higher layers in the file system, and therefore from the application as well.

The vendor of the file system may provide generic drivers.

Vendors of boards and board support packages may provide drivers for specific evaluation boards.

µC/CPU

µC/FS can work with either an 8, 16, 32 or even 64-bit CPU, but needs to have information about the CPU you are using. The µC-CPU layer
defines such things as the C data type corresponding to 16-bit and 32-bit variables, whether the CPU is little- or big-endian and, how interrupts
are disabled and enabled on the CPU, etc.

CPU specific files are found in the directory and, in order to adapt µC/FS to a different CPU, you would need to either modify the …\uC-CPU cpu*
 files or, create new ones based on the ones supplied in the uC-CPU directory. In general, it’s much easier to modify existing files because you.*

have a better chance of not forgetting anything.

RTOS Layer

µC/FS does not require an RTOS. However, if µC/FS is used with an RTOS, a set of functions must be implemented to prevent simultaneous
access of devices and core µC/FS structures by multiple tasks.

µC/FS is provided with a no-RTOS (which contains just empty functions), a C/OS-II and a µC/OS-III interface. If you use a different RTOS, you
can use the for µC/OS-II as a template to interface to the RTOS of your choice.fs_os.*

µC/FS Directories and Files
Application Code
Board Support Package (BSP)

µC/CPU Specific Source Code
µC/Lib Portable Library Functions
µC/Clk Time/Calendar Management
µC/CRC Checksums and Error Correction Codes
µC/FS Platform-Independent Source Code
µC/FS FAT Filesystem Source Code
µC/FS Memory Device Drivers
µC/FS Platform-Specific Source Code
µC/FS OS Abstraction Layer

µC/FS is fairly easy to use once you understand which source files are needed to make up a µC/FS-based application. This chapter will discuss
the modules available for µC/FS and how everything fits together.

 in the page shows the µC/FS architecture and its relationship with the hardware. MemoryFigure - µC/FS Architecture µC/FS Directories and Files
devices may include actual media both removable (SD/MMC, CF cards) and fixed (NAND flash, NOR flash) as well as any controllers for such
devices. Of course, your hardware would most likely contain other devices such as UARTs (Universal Asynchronous Receiver Transmitters),
ADCs (Analog to Digital Converters) and Ethernet controller(s). Moreover, your application may include other middleware components like an OS
kernel, networking (TCP/IP) stack or USB stack that may integrate with µC/FS.

A Windows™-based development platform is assumed. The directories and files make references to typical Windows-type directory structures.
However, since µC/FS is available in source form then it can certainly be used on Unix, Linux or other development platforms. This, of course,
assumes that you are a valid µC/FS licensee in order to obtain the source code.

The names of the files are shown in upper case to make them ‘stand out’. The file names, however, are actually lower case.

Figure - µC/FS Architecture
(1)
 The application code consist of project or product files. For convenience, we simply called these and but your application canapp.c app.h
contain any number of files and they do not have to be called . The application code is typically where you would find .app.* main()

(2)
 Quite often, semiconductor manufacturers provide library functions in source form for accessing the peripherals on their CPU (Central Processing
Unit) or MCU (Micro Controller Unit). These libraries are quite useful and often save valuable time. Since there is no naming convention for these
files, *. and *. are assumed.c h

(3)
 The Board Support Package (BSP) is code that you would typically write to interface to peripherals on your target board. For example you can
have code to turn on and off LEDs (light emitting diodes), functions to turn on and off relays, and code to read switches and temperature sensors.

(4)
 µC/CPU is an abstraction of basic CPU-specific functionality. These files define functions to disable and enable interrupts, data types (e.g., CPU_

,) independent of the CPU and compiler and many more functions.INT08U CPU_FP32

(5)
 µC/LIB consists of a group of source files to provide common functions for memory copy, string manipulation and character mapping. Some of
the functions replace stdlib functions provided by the compiler. These are provided to ensure that they are fully portable from application to
application and (most importantly) from compiler to compiler.

(6)
 µC/Clk is an independant clock/calendar management module, with source code for easily managing date and time in a product. µC/FS uses the
date and time information from µC/Clk to update files and directories with the proper creation/modification/access time.

(7)
 µC/CRC is a stand-alone module for calculating checksums and error correction codes. This module is used by some of µC/FS device drivers.

(8)
 This is the µC/FS platform-independent code, free of dependencies on CPU and memory device. This code is written in highly-portable ANSI C
code. This code is only available to µC/FS licensees.

(9)
 This is the µC/FS system driver for FAT file systems. This code is only available to µC/FS licensees.

(10)
 This is the collection of device drivers for µC/FS. Each driver supports a certain device type, such as SD/MMC cards, NAND flash or NOR flash.
Drivers are only available to µC/FS licensees.

(11)
 This is the µC/FS code that is adapted to a specific platform. It consists of small code modules written for specific drivers called ports that must
be adapted to the memory device controllers or peripherals integrated into or attached to the CPU. The requirements for these ports are
described in Appendix C, Porting Manual.

(12)
 µC/FS does not require an RTOS. However, if µC/FS is used with an RTOS, a set of functions must be implemented to prevent simultaneous
access of devices and core µC/FS structures by multiple tasks.

(13)
 This µC/FS configuration file defines which µC/FS features () are included in the application.fs_cfg.h

Application Code

When Micriµm provides you with example projects, we typically place those in a directory structure as shown below. Of course, you can use
whatever directory structure suits your project/product.

\Micrium

\Software

\EvalBoards

\<manufacturer>

\<board name>

\<compiler>

\<project name>

.

\Micrium

This is where we place all software components and projects provided by Micriµm. This directory generally starts from the root directory of your
computer.

\Software

This sub-directory contains all the software components and projects.

\EvalBoards

This sub-directory contains all the projects related to the evaluation boards supported by Micriµm.

\<manufacturer>

Is the name of the manufacturer of the evaluation board. The ‘<’ and ‘>’ are not part of the actual name.

\<board name>

This is the name of the evaluation board. A board from Micriµm will typically be called uC-Eval-xxxx where ‘xxxx’ will represent the CPU or MCU
used on the evaluation board. The ‘<’ and ‘>’ are not part of the actual name.

\<compiler>

This is the name of the compiler or compiler manufacturer used to build the code for the evaluation board. The ‘<’ and ‘>’ are not part of the actual
name.

\<project name>

This is the name of the project that will be demonstrated. For example a simple µC/FS project might have a project name of ‘FS-Ex1’. The ‘-Ex1’
represents a project containing only µC/FS. A project name of FS-Probe-Ex1 would represent a project containing µC/FS as well as µC/Probe.
The ‘<’ and ‘>’ are not part of the actual name.

.

These are the source files for the project/product. You are certainly welcomed to call the main files APP*.* for your own projects but you don’t
have to. This directory also contains the configuration file and other files as needed by the project.FS_CFG.H

Board Support Package (BSP)

The BSP is generally found with the evaluation or target board because the BSP is specific to that board. In fact, if well written, the BSP should be
used for multiple projects.

\Micrium

\Software

\EvalBoards

\<manufacturer>

\<board name>

\<compiler>

\BSP

.

\Micrium

This is where we place all software components and projects provided by Micriµm.

\Software

This sub-directory contains all the software components and projects.

\EvalBoards

This sub-directory contains all the projects related to evaluation boards.

\<manufacturer>

Is the name of the manufacturer of the evaluation board. The ‘<’ and ‘>’ are not part of the actual name.

\<board name>

This is the name of the evaluation board. A board from Micriµm will typically be called uC Eval xxxx where ‘xxxx’ will be the name of the CPU or
MCU used on the evaluation board. The ‘<’ and ‘>’ are not part of the actual name.

\<compiler>

This is the name of the compiler or compiler manufacturer used to build the code for the evaluation board. The ‘<’ and ‘>’ are not part of the actual
name.

\BSP

This directory is always called BSP.

.

These are the source files of the BSP. Typically all the file names start with BSP_ but they don’t have to. It’s thus typical to find and bsp.c bsp.h
 in this directory. Again, the BSP code should contain functions such as LED control functions, initialization of timers, interface to Ethernet
controllers and more.

µC/CPU Specific Source Code

µC/CPU consists of files that encapsulate common CPU-specific functionality as well as CPU- and compiler-specific data types.

\Micrium

\Software

\uC-CPU

\CPU_CORE.C

\CPU_CORE.H

\CPU_DEF.H

\Cfg\Template

\CPU_CFG.H

\<architecture>

\<compiler>

\CPU.H

\CPU_A.ASM

\CPU_C.C

\Micrium

This directory contains all software components and projects provided by Micriµm.

\Software

This sub-directory contains all the software components and projects.

\uC-CPU

This is the main µC/CPU directory.

cpu_core.c contains C code that is common to all CPU architectures. Specifically, this file contains functions to measure the
interrupt disable time of the and macros, a function that emulates a countCPU_CRITICAL_ENTER() CPU_CRITICAL_EXIT()
leading zeros instruction and a few other functions.

cpu_core.h contains the function prototypes of the functions provided in as well as allocation of the variables used bycpu_core.c
this module to measure interrupt disable time.

cpu_def.h contains miscellaneous #define constants used by the µC/CPU module.

\Cfg\Template

This directory contains a configuration template file () that you will need to copy to your application directory in order tocpu_cfg.h
configure the µC/CPU module based on your application requirements.

cpu_cfg.h determines whether you will enable measurement of the interrupt disable time, whether your CPU implements a count
leading zeros instruction in assembly language or whether it will need to be emulated in C and more.

\<architecture>

This is the name of the CPU architecture for which µC/CPU was ported to. The ‘<’ and ‘>’ are not part of the actual name.

\<compiler>

This is the name of the compiler or compiler manufacturer used to build the code for the µC/CPU port. The ‘<’ and ‘>’ are not part of the
actual name.

The files in this directory contain the µC/CPU port.

cpu.h contains type definitions to make µC/FS and other modules independent of the CPU and compiler word sizes. Specifically,
you will find the declaration of the , , and many other data types. Also, this file specifiesCPU_INT16U CPU_INT32U CPU_FP32
whether the CPU is a big- or little-endian machine and contains function prototypes for functions that are specific to the CPU
architecture and more.

cpu_a.asm contains the assembly language functions to implement the code to disable and enable CPU interrupts, count leading
zeros (if the CPU supports that instruction) and other CPU specific functions that can only be written in assembly language. This file
could also contain code to enable caches, setup MPUs and MMU and more. The functions provided in this file are accessible from C.

cpu_c.c contains C code of functions that are specific to the specific CPU architecture but written in C for portability. As a general
rule, if a function can be written in C then it should, unless there are significant performance benefits by writing it in assembly
language.

µC/Lib Portable Library Functions

µC/LIB consists of library functions that are meant to be highly portable and not tied to any specific compiler. This was done to facilitate third party
certification of Micriµm products.

\Micrium

\Software

\uC-LIB

\lib_ascii.C

\lib_ascii.H

\lib_def.H

\lib_math.C

\lib_math.H

\lib_mem.C

\lib_mem.H

\lib_str.C

\lib_str.H

\Cfg\Template

\lib_cfg.H

\Ports

\<architecture>

\<compiler>

\lib_mem_a.asm

\Micrium

This directory contains all software components and projects provided by Micriµm.

\Software

This sub-directory contains all the software components and projects.

\uC-LIB

This is the main µC/LIB directory.

\Cfg\Template

This directory contains a configuration template file () that must be copied to the application directory to configure the µC/LIBlib_cfg.h
module based on application requirements.

lib_cfg.h determines whether to enable assembly-language optimization (assuming there is an assembly-language file for the
processor, i.e.) and a few other #defines.lib_mem_a.asm

µC/Clk Time/Calendar Management

µC/Clk consists of functions that are meant to centralize time management in one independant module. This way, the same time info can be
easily shared across all Micrium products.

\Micrium

\Software

\uC-Clk

\Cfg

\Template

\clk_cfg.h

\OS

\<rtos_name>

\clk_os.c

\Source

\clk.c

\clk.h

\Micrium

This directory contains all software components and projects provided by Micriµm.

\Software

This sub-directory contains all the software components and projects.

\uC-Clk

This is the main µC/Clk directory.

\Cfg\Template

This directory contains a configuration template file () that must be copied to the application directory to configure the µC/Clkclk_cfg.h
module based on application requirements.

clk_cfg.h determines whether clock will be managed by the RTOS or in your application. A few other #defines are used to
enable/disable some features of µC/Clk and to configure some parameteres, like the clock frequency.

\OS

This is the main OS directory.

\<rtos_name>

This is the directory that contains the file to perform RTOS abstraction. Note that the file for the selected RTOS abstraction layer must
always be named .clk_os.c

µC/Clk has been tested with µC/OS-II, µC/OS-III and the RTOS layer files for these RTOS are found in the following directories:

\Micrium\Software\uC-Clk\OS\uCOS-II\clk_os.c

\Micrium\Software\uC-Clk\OS\uCOS-III\clk_os.c

\Source

This directory contains the CPU-independant source code for µC/Clk. All file in this directory should be included in the build (assuming the
presence of the source code). Features that are not required will be compiled out based on the value of #define constants in .clk_cfg.h

µC/CRC Checksums and Error Correction Codes

µC/CRC consists of functions to compute different error detection and correction codes. The functions are speed-optimized to avoid the important
impact on performances that these CPU-intensive calcutions may present.

\Micrium

\Software

\uC-CRC

\Cfg

\Template

\crc_cfg.h

\Ports

\<architecture>

\<compiler>

\ecc_hamming_a.asm

\edc_crc_a.asm

\Source

\edc_crc.h

\edc_crc.c

\ecc_hamming.h

\ecc_hamming.c

\ecc.h

\crc_util.h

\crc_util.c

\Micrium

This directory contains all software components and projects provided by Micriµm.

\Software

This sub-directory contains all the software components and projects.

\uC-CRC

This is the main µC/CRC directory.

\Cfg\Template

This directory contains a configuration template file () that must be copied to the application directory to configure the µC/CRCcrc_cfg.h
module based on application requirements.

crc_cfg.h determines whether to enable assembly-language optimization (assuming there is an assembly-language file for the
processor) and a few other #defines.

\<architecture>

The name of the CPU architecture that µC/CRC was ported to. The ‘<’ and ‘>’ are not part of the actual name.

\<compiler>

The name of the compiler or compiler manufacturer used to build code for the µC/CRC port. The ‘<’ and ‘>’ are not part of the actual name.

ecc_hamming_a.asm contains the assembly language functions to optimize the calculation speed of Hamming code.

edc_crc_a.asm contains the assembly language functions to optimize the calculation speed of CRC (cyclic redundancy checks).

\Source

This is the directory that contains all the CPU independent source code files. of µC/CRC.

µC/FS Platform-Independent Source Code

The files in these directories are available to µC/FS licensees (see Appendix H, Licensing Policy).

\Micrium

\Software

\uC-FS

\APP\Template

\fs_app.c

\fs_app.h

\Cfg\Template

\fs_cfg.h

\OS\Template

\fs_os.c

\fs_os.h

\Source

\fs_c

\fs.h

\fs_api.c

\fs_api.h

\fs_buf.c

\fs_buf.h

\fs_cache.c

\fs_cache.h

\fs_cfg_fs.h

\fs_ctr.h

\fs_def.h

\fs_dev.c

\fs_dev.h

\fs_dir.c

\fs_dir.h

\fs_entry.c

\fs_entry.h

\fs_err.h

\fs_file.c

\fs_file.h

\fs_inc.h

\fs_partition.c

\fs_partition.h

\fs_sys.c

\fs_sys.h

\fs_type.h

\fs_unicode.c

\fs_unicode.h

\fs_util.c

\fs_util.h

\fs_vol.c

\fs_vol.h

\Micrium

This is where we place all software components and projects provided by Micriµm.

\Software

This sub-directory contains all the software components and projects.

\uC-FS

This is the main µC/FS directory.

\APP\Template

This directory contains a template of the code for initializing the file system.

\Cfg\Template

This directory contains a configuration template file () that is required to be copied to the application directory to configure thelib_cfg.h
µC/FS module based on application requirements.

fs_cfg.h specifies which features of µC/FS you want in your application. If µC/FS is provided in linkable object code format then this file
will be provided to show you what features are available in the object file. See Appendix B, µC/FS Configuration Manual.

\Source

This directory contains the platform-independent source code for µC/FS. All the files in this directory should be included in your build
(assuming you have the source code). Features that you don’t want will be compiled out based on the value of #define constants in fs_cf

.g.h

fs.c/h contains core functionality for µC/FS including (called to initialize µC/FS) and /FS_Init() FS_WorkingDirSet() FS_Wor
 (used to get and set the working directory).kingDirGet()

fs_api.c/h contains the code for the POSIX-compatible API. See Chapter x, API for details about the POSIX-compatible API.

fs_buf.c/h contains the code for the buffer management (used internally by µC/FS).

fs_dev.c/h contains code for device management. See Chapter x, Devices for details about devices.

fs_dir.c/h contains code for directory access. See Chapter x, Directories for details about directory access.

fs_entry.c/h contains code for entry access. See Chapter x, Entries for details about entry access.

fs_file.c/h contains code for file access. See Chapter x, Files for details about file access.

fs_inc.h is a master include file that includes all other include files.

fs_sys.c/h contains the code for system driver management (used internally by µC/FS).

fs_unicode.c/h contains the code for handling Unicode strings (used internally by µC/FS).

µC/FS FAT Filesystem Source Code

The files in these directories are available to µC/FS licensees (see Appendix H, Licensing Policy).

\Micrium

\Software

\uC-FS

\FAT

\fs_fat.c

\fs_fat.h

\fs_fat_dir.c

\fs_fat_dir.h

\fs_fat_entry.c

\fs_fat_entry.h

\fs_fat_fat12.c

\fs_fat_fat12.h

\fs_fat_fat16.c

\fs_fat_fat16.h

\fs_fat_fat32.c

\fs_fat_fat32.h

\fs_fat_file.c

\fs_fat_file.h

\fs_fat_journal.c

\fs_fat_journal.h

\fs_fat_lfn.c

\fs_fat_lfn.h

\fs_fat_sfn.c

\fs_fat_sfn.h

\fs_fat_type.h

\Micrium

This is where we place all software components and projects provided by Micriµm.

\Software

This sub-directory contains all the software components and projects.

\uC-FS

This is the main µC/FS directory.

\FAT

This directory contains the FAT system driver for µC/FS. All the files in this directory should be included in your build (assuming you have
the source code).

µC/FS Memory Device Drivers

These files are generic drivers to use with differenty memory devices.

\Micrium

\Software

\uC-FS

\Dev

\MSC

\fs_dev_msc.c

\fs_dev_msc.h

\NAND

\fs_dev_nand.c

\fs_dev_nand.h

\Ctrlr

\fs_dev_nand_ctrlr_gen.c

\fs_dev_nand_ctrlr_gen.h

 \GenExt

\fs_dev_nand_ctrlr_gen_soft_ecc.c

\fs_dev_nand_ctrlr_gen_soft_ecc.h

\fs_dev_nand_ctrlr_gen_micron_ecc.c

\fs_dev_nand_ctrlr_gen_micron_ecc.h

\Part

\fs_dev_nand_part_static.c

\fs_dev_nand_part_static.h

\fs_dev_nand_part_onfi.c

\fs_dev_nand_part_onfi.h

\Cfg\Template

\fs_dev_nand_cfg.h

\BSP\Template

\fs_dev_nand_ctrlr_gen_bsp.c

\NOR

\fs_dev_nor.c

\fs_dev_nor.h

\PHY

\fs_dev_nor_amd_1x08.c

\fs_dev_nor_amd_1x08.h

\fs_dev_nor_amd_1x16.c

\fs_dev_nor_amd_1x16.h

\fs_dev_nor_intel.c

\fs_dev_nor_intel.h

\fs_dev_nor_sst25.c

\fs_dev_nor_sst25.h

\fs_dev_nor_sst39.c

\fs_dev_nor_sst39.h

\fs_dev_nor_stm25.c

\fs_dev_nor_stm25.h

\fs_dev_nor_stm29_1x08.c

\fs_dev_nor_stm29_1x08.h

\fs_dev_nor_stm29_1x16.c

\fs_dev_nor_stm29_1x16.h

\Template

\fs_dev_nor_template.c

\fs_dev_nor_template.h

\BSP\Template

\fs_dev_nor_bsp.c

\BSP\Template (SPI GPIO)

\fs_dev_nor_bsp.c

\BSP\Template (SPI)

\fs_dev_nor_bsp.c

\RAMDisk

\fs_dev_ram.c

\fs_dev_ram.h

\SD

\fs_dev_sd.c

\fs_dev_sd.h

\Card

\fs_dev_sd_card.c

\fs_dev_sd_card.h

\BSP\Template

\fs_dev_sd_card_bsp.c

\SPI

\fs_dev_sd_spi.c

\fs_dev_sd_spi.h

\BSP\Template

\fs_dev_sd_spi.bsp.c

\Template

\fs_dev_template.c

\fs_dev_template.h

\Micrium

This directory contains all software components and projects provided by Micriµm.

\Software

This sub-directory contains all the software components and projects.

\uC-FS

This is the main µC/FS directory.

\Dev

This is where you will find the device driver files for the storage devices you are planning on using.

\MSC

This directory contains the MSC (Mass Storage Class - USB drives) driver files.

fs_dev_msc.* are device driver for MSC devices. This driver is designed to work with µC/USB host stack.

For more details on this driver, please refer to .MSC Driver

\NAND

This directory contains the NAND driver files.

fs_dev_nand.* are the device driver for NAND devices. These files require a set of controller-layer functions (defined in a file named fs_
) as well as BSP functions specific to particular hardware and associated with chosen controller-layer (to bedev_nand_ctrlr_<type>.*

defined in a file named).fs_dev_nand_ctrlr_<type>_bsp.c

Note that in the case of the “generic” controller-layer implementation, some controller extensions files (defined in files named fs_dev_nan
) may also be required.d_ctrlr_<ext_name>.*

For more details on this driver, please refer to .NAND Flash Driver

\NOR

This directory contains the NOR driver files.

fs_dev_nor.* are the device driver for NOR devices. These files require a set of physical-layer functions (defined in a file name fs_dev
) as well as BSP functions (to be defined in a file named) to work with a particular_nor_<physical type>.* fs_dev_nor_bsp.c

hardware setup.

For more details on this driver, please refer to .NOR Flash Driver

\RAMDisk

This directory contains the RAM disk driver files.

fs_dev_ramdisk.* constitue the RAM disk driver.

For more details on this driver, please refer to .RAM Disk Driver

\SD

This directory contains the SD/MMC driver files.

fs_dev_sd.* are device driver for SD devices. Theses files require to be used with either the (for SPI/one-wirefs_dev_sd_spi.*
mode) or (for Card/4-wires mode) files. These files require a set of BSP functions to be defined in a file named either fs_dev_sd_card.*

 or to work with a particular hardware setup.fs_dev_sd_spi_bsp.c fs_dev_sd_card_bsp.c

For more details on this driver, please refer to .SD/MMC Drivers

µC/FS Platform-Specific Source Code

These files are provided by the µC/FS device driver developer. See Chapter 17, Porting µC/FS. However, the µC/FS source code is delivered with
port examples.

\Micrium

\Software

\uC-FS

\Examples

\BSP

\Dev

<memory type>

<manufacturer>

<board name>

\fs_dev_<memory type>_bsp.c

\Micrium

This directory contains all software components and projects provided by Micriµm.

\Software

This sub-directory contains all the software components and projects.

\uC-FS

This is the main µC/FS directory.

\Examples

This is where you will find the device driver BSP example files.

\Dev\<memory type>

This is where you will find the examples BSP for one memory type. The ‘<’ and ‘>’ are not part of the actual name. The memory types
supported by µC/FS are the following: NAND, NOR, SD\CARD, SD\SPI.

\<manufacturer>

The name of the manufacturer of the evaluation board. The ‘<’ and ‘>’ are not part of the actual name.

µC/FS OS Abstraction Layer

This directory contains the RTOS abstraction layer which allows the use of µC/FS with nearly any commercial of in-house RTOS, or without any
RTOS at all. The abstraction layer for the selected RTOS is placed in a sub-directory under OS as follows:

\Micrium

\Software

\uC-FS

\OS

\<rtos_name>

\fs_os.c

\fs_os.h

\Micrium

This directory contains all software components and projects provided by Micriµm.

\Software

This sub-directory contains all the software components and projects.

\uC-FS

This is the main µC/FS directory.

\OS

This is the main OS directory.

\<rtos_name>

This is the directory that contains the files to perform RTOS abstraction. Note that files for the selected RTOS abstraction layer must always
be named .fs_os.*

µC/FS has been tested with µC/OS-II, µC/OS-III and without an RTOS. The RTOS layer files are found in the following directories:

\Micrium\Software\uC-Clk\OS\None\fs_os.*

 \Micrium\Software\uC-Clk\OS\Template\fs_os.*

 \Micrium\Software\uC-Clk\OS\uCOS-II\fs_os.*

 \Micrium\Software\uC-Clk\OS\uCOS-III\fs_os.*

Useful Information
Nomenclature
µC/FS Device and Volume Names
µC/FS File and Directory Names and Paths
µC/FS Name Lengths
Resource Usage

Nomenclature

This manual uses a set of terms to consistently describe operation of µC/FS and its hardware and software environment. The following is a small
list of these terms, with definitions.

A is software which can find and access files and directories. Using “file system suite” rather than “file system” eliminates anyfile system suite
need for disambiguation among the second term’s several meanings, which include “a system for organizing directories and files”, “a collection of
files and directories stored on a drive” and (commonly) the software which will be referred to as a file system suite. The term file system will
always mean a collection of files and directories stored on a drive (or, in this document, volume).

A (or just driver) is a code module which allows the general-purpose file system suite to access a specific type of device. A devicedevice driver
driver is with the file system suite.registered

A is an instance of a device type that is accessed using a device driver. An addressable area (typically of 512 bytes) on a device is adevice
sector. A sector is the smallest area that (from the file system suite’s point of view) can be atomically read or written.

Several devices can use the same device driver. These are distinguished by each having a unique . Consequently, unit number <DEVICE
 is a unique device identifier if all devices are required to have unique names. That requirement is enforced in this fileNAME>:<UNIT NUMBER>:

system suite.

A is the combination of two or more separate devices. To form a logical device, the sector address spaces of the constituentlogical device
devices are concatenated to form a single continuous address space.

A device can be , or subdivided into one or more regions (called) each consisting of a number of consecutive sectors.partitioned partitions
Typically, structures are written to the device instructing software as to the location and size of these partitions. This file system suite supports DO

.S partitions

A is a device or device partition with a file system. A device or device partition must go through a process called to become avolume mounting
volume, which includes finding the file system and making it ready for use. The name by which a volume is addressed may also be called the
volume’s .mount point

A device or volume may be to create a new file system on the device. For disambiguation purposes, this process is also referred to as formatted
. The volume or device will automatically be mounted once formatting completes.high-level formatting

For certain devices, it is either necessary or desirable to perform . This is the process of associating logical sector numberslow-level formatting
with areas of the device.

A is a code module which allows the general-purpose file system suite to access a specific type of file system. For example,file system driver
this file system suite includes a FAT file system driver.

FAT (File Allocation Table) is a common file system type, prevalent in removable media that must work with various OSs. It is named after its
primary data structure, a large table that records what clusters of the disk are allocated. A , or group of sectors, is the minimum datacluster
allocation unit of the FAT file system.

µC/FS Device and Volume Names

Devices are specified by name. For example, a device can be opened:

FSDev_Open(“sd:0:”, (void *)0, &err);

In this case, “sd:0:” is the device name. It is a concatenation of:

sd The name of the device driver

: A single colon

0 The unit number

: A final colon

The unit number allows multiple devices of the same type; for example, there could be several SD/MMC devices connected to the CPU: “ sd:0: ”
 , “ sd:1 ”, “ sd:2 ”…

The maximum length of a device name is ; this must be at least three characters larger than the maximum lengthFS_CFG_MAX_DEV_NAME_LEN
of a device driver name, . A device name (or device driver name) must not contain the characters:FS_CFG_MAX_DEV_DRV_NAME_LEN

: \ /

Volumes are also specified by name. For example, a volume can be formatted:

FSVol_Fmt(“vol:”, (void *)0, &err);

Here, “vol:” is the volume name. µC/FS imposes no restrictions on these names, except that they must end

with a colon (‘:’), must be no more than FS_CFG_MAX_VOL_NAME_LEN characters long, and must not contain

either of the characters ‘\’ or ‘/’:

It is typical to name a volume the same as a device; for example, a volume may be opened:

FSVol_Open(“sd:0:” (a)
 “sd:0:” (b)
 (void *)0,
 &err);

In this case, the name of the volume (a) is the same as the name as the device (b). When multiple volumes exist in the same application, the
volume name should be prefixed to the file or directory path name:

p_file = fs_fopen(“sd:0:\\dir01\file01.txt”, “w”); // File on SD card
p_file = fs_fopen(“ram:0:\\dir01\file01.txt”, “w”); // File on RAM disk

µC/FS File and Directory Names and Paths

Files and directories are identified by a path string; for example, a file can be opened:

p_file = fs_fopen(“\\test\\file001.txt”, “w”);

In this case, “\\test\\file001.txt” is the path string.

An application specifies the path of a file or directory using either an absolute or a relative path. An absolute path is a character string which
specifies a unique file, and follows the pattern:

<vol_name>:<... Path ...><File>

where

<vol_name> is the name of the volume, identical to the string specified in FSVol_Open().

<... Path ...> is the file path, which must always begin and end with a ‘\’.

<File> is the file (or leaf directory) name, including any extension.

For example:

p_file = fs_fopen(“sd:0:\\file.txt”, “w”); (a)
p_file = fs_fopen(“\\file.txt”, “w”); (b)
p_file = fs_fopen(“sd:0:\\dir01\\file01.txt”, “w”); (c)
p_file = fs_opendir(“sd:0:\\”) (d)
p_file = fs_opendir(“\\”) (e)
p_file = fs_opendir(“sd:0:\\dir01\\”) (f)

Which demonstrate (a) opening a file in the root directory of a specified volume; (b) opening a file in the root directory on a default volume; (c)
opening a file in a non-root directory; (d) opening the root directory of a specified volume; (e) opening the root directory of the default volume; (f)
opening a non-root directory.

Relative paths can be used if working directories are enabled (is — see FS_CFG_WORKING_DIR_EN DEF_ENABLED Feature Inclusion
). A relative path begins with neither a volume name nor a ‘ ’:Configuration \

<... Relative Path ...><File>

where

<... Relative Path ...> is the file path, which must not begin with a ‘\’ but must end with a ‘\’.

<File> is the file (or leaf directory) name, including any extension.

Two special path components can be used. “..” moves the path to the parent directory. “.” keeps the path in the same directory (basically, it
does nothing).

A relative path is appended to the current working directory of the calling task to form the absolute path of the file or directory. The working
directory functions, and , can be used to set and get the working directory.fs_chdir() fs_getcwd()

µC/FS Name Lengths

The configuration constants , and in FS_CFG_MAX_PATH_NAME_LEN FS_CFG_MAX_FILE_NAME_LEN FS_CFG_MAX_VOL_NAME_LEN fs_cfg.h
set the maximum length of path names, file names and volume names. The constant is defined in FS_CFG_MAX_FULL_NAME_LEN fs_cfg_fs.

 to describe the maximum full name length. The path name begins with a path separator character and includes the file name; the file name ish
just the portion of the path name after the last (non-final) path separator character. The full name is composed of an explicit volume name
(optional) and a path name; the maximum full name length can be calculated:

FullNameLenmax = VolNameLenmax + PathNameLenmax

 in the page demonstrates these definitions.Figure - File, path and volume name lengths Useful Information

Figure - File, path and volume name lengths

No maximum parent name length is defined, though one may be derived. The parent name must be short enough so that the path of a file in the
directory would be valid. Strictly, the minimum file name length is 1 character, though some OSs may enforce larger values (eleven on some
Windows systems), thereby decreasing the maximum parent name length.

ParentNameLenmax = PathNameLenmax - FileNameLenmin - 1

The constants and in set the maximum length of device driverFS_CFG_MAX_DEV_DRV_NAME_LEN FS_CFG_MAX_DEV_NAME_LEN fs_cfg.h
names and device names, as shown in in the page. The device name isFigure - Device and device driver name lengths Useful Information
between three and five characters longer than the device driver name, since the unit number (the integer between the colons of the device name)
must be between 0 and 255.

Figure - Device and device driver name lengths

Each of the maximum name length configurations specifies the maximum string length the character. Consequently, a buffer whichwithout NULL
holds one of these names must be one character longer than the define value.

Resource Usage

µC/FS resource usage, of both ROM and RAM, depends heavily on application usage. How many (and which) interface functions are referenced
determines the code and constant data space requirements. The greater the quantity of file system objects (buffers, files, directories, devices and
volumes), the more RAM needed.

 in the page gives the ROM usage for the file system core, plus additional components that can beTable - ROM Requirements Useful Information
included optionally, collected on IAR EWARM v6.40.1. The ‘core’ ROM size includes file system components and functions (except thoseall
itemized in the table); this is significantly larger than most installations because most applications use a fraction of the API.

Component ROM, Thumb Mode ROM, ARM Mode

 High Size Opt High Speed Opt High Size Opt High Speed Opt

Core* 43.4 kB 58.2 kB 67.7 kB 90.5 kB

OS port (µC/OS-III) 1.3 kB 1.4 kB 1.8 kB 2.2 kB

LFN support 4.3 kB 5.6 kB 7.0 kB 8.8 kB

Directories 1.6 kB 1.9 kB 2.7 kB 3.1 kB

Partitions 1.3 kB 2.6 kB 2.3 kB 3.9 kB

Journaling 5.0 kB 7.1 kB 7.9 kB 10.7 kB

Table - ROM Requirements

*Includes code and data for file system components and functions except those itemized in the table.all

RAM requirements are summarized in in the page. The total depends on the number of eachTable - RAM characteristics Useful Information
object allocated and the maximum sector size (set by values passed to in the file system configuration structure), and various nameFS_Init()
length configuration parameters (see , “FS_CFG_MAX_PATH_NAME_LEN”).Name Restriction Configuration

Item RAM (bytes)

Core 932

Per device 40 + FS_CFG_MAX_DEV_NAME_LEN

Per volume 148 + FS_CFG_MAX_VOL_NAME_LEN

Per file 140

Per directory 98

Per buffer 34 + MaxSectorSize

Per device driver 8 bytes

Working directories ((FS_CFG_MAX_PATH_NAME_LEN * 2) + 8) * TaskCnt§

Table - RAM characteristics

§ The number of tasks that use relative path names

See also for ROM/RAM characteristics of file system suite drivers.Driver Characterization

Devices and Volumes
To begin reading files from a medium or creating files on a medium, that medium (hereafter called a device) and the driver which will be used to
access it must be registered with the file system. After that, a volume must be opened on that device (analogous to “mounting”). This operation
will succeed if and only if the device responds and the file system control structures (for FAT, the Boot Parameter Block or BPB) are located and
validated.

In this manual, as in the design of µC/FS, the terms ‘device’ and ‘volume’ have distinct, non-overlapping meanings. We define a ‘device’ as a
. An SD/MMC card is a physical device.single physical or logical entity which contains a continuous sequence of addressable sectors

We define a ‘volume’ as .a collection of files and directories on a device

These definitions were selected so that multiple volumes could be opened on a device (as shown in inFigure - Device and volume architecture
the page) without requiring ambiguous terminology.Devices and Volumes

Figure - Device and volume architecture

Device Operations

The ultimate purpose of a file system device is to hold data. Consequently, two major operations that can occur on a device are the reading and
writing of individual sectors. Five additional operations can be performed which affect not just individual sectors, but the whole device:

A device can be . During the opening of a device, it is initialized and its characteristics are determined (sector size, number ofopened
sectors, vendor).
A device can be . Partitioning divides the final unallocated portion of the device into two parts, so that a volume could bepartitioned
located on each (see).Partitions
A device can be . Some device must be low-level formatted before being used.low-level formatted
A device can be . (High-level) formatting writes the control information for a file system to a device so that a(high-level) formatted
volume on it can be mounted. Essentially, (high-level) formatting is the process of creating a volume on an empty device or partition.
A device can be . During the closing of a device, it is uninitialized (if necessary) and associated structures are freed.closed

These operations and the corresponding API functions are discussed in this section. For information about using device names, see µC/FS
.Device and Volume Names

Function Description

FSDev_AccessLock() Acquire exclusive access to a device.

FSDev_AccessUnlock() Release exclusive access to a device.

FSDev_Close() Remove device from file system.

FSDev_GetNbrPartitions() Get number of partitions on a device.

FSDev_Invalidate() Invalidate files and volumes open on a device.

FSDev_IO_Ctrl() Perform device I/O control operation.

FSDev_Open() Add device to file system.

FSDev_PartitionAdd() Add partition to device.

FSDev_PartitionFind() Find partition on device and get information about partition.

FSDev_PartitionInit() Initialize partition on device.

FSDev_Query() Get device information.

FSDev_Rd() Read sector on device.

FSDev_Refresh() Refresh device in file system.

FSDev_Wr() Write sector on device.

Table - Device API functions

Using Devices

A device is opened with :FSDev_Open()

FSDev_Open((CPU_CHAR *)“ide:0:”, /* <-- (a) device name */
 (void *) 0, /* <-- (b) pointer to configuration */
 (FS_ERR *)&err); /* <-- (c) return error */

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSDeviceandVolumeNames
https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSDeviceandVolumeNames

The parameters are the device name (a) and a pointer to a device driver-specific configuration structure (b). If a device driver requires no
configuration structure (as the SD driver does not), the configuration structure (b) should be passed a pointer. For other devices, like RAMNULL
disks, this point to a valid structure.must

Figure - Device state transition

Prior to being called (a), software is ignorant of the presence, state or characteristics of the particular device. After all referencesFSDev_Open()
to the device are released (b), this ignorance again prevails, and any buffers or structures are freed for later use.

The return error code from this functions provides important information about the device state:

If the return error code is , then the device is present, responsive and low-level formatted; basically, it is ready to use.FS_ERR_NONE
If the return error code is , then the device is present and responsive, but must be low-level formatted.FS_ERR_DEV_INVALID_LOW_FMT
The application should next call for the NOR flash.FSDev_NOR_LowFmt()
If the return error code is , or , the device is either not present orFS_ERR_DEV_NOT_PRESENT FS_ERR_DEV_IO FS_ERR_DEV_TIMEOUT
did not respond. This is an important consideration for removable devices. It is still registered with the file system suite, and the file
system will attempt to re-open the device each time the application accesses it.
If any other error code is returned, the device is registered with the file system. The developer should examine the error code tonot
determine the source of the error.

Using Removable Devices

µC/FS expects that any call to a function that accesses a removable device may fail, since the device may be removed, powered off or suddenly
unresponsive. If µC/FS detects such an event, the device will need to be refreshed or closed and re-opened. refreshes aFSDev_Refresh()
device:

chngd = FSDev_Refresh((CPU_CHAR *)“ide:0:”, /* <-- device name */
 (FS_ERR *)&err); /* <-- return error */

There are several cases to consider:

If the return error is and the return value is , then a new device (e.g., SD card) has been inserted. All files andFS_ERR_NONE DEF_YES
directories that are open on volumes on the device must be closed and all volumes that are open on the device must be closed or
refreshed.
If the return error is and the return value is , then the same device (e.g., SD card) is still inserted. The applicationFS_ERR_NONE DEF_NO
can continue to access open files, directories and volumes.
If the return error is neither nor , then no functioning device is present. The deviceFS_ERR_NONE FS_ERR_DEV_INVALID_LOW_FMT
must be refreshed at a later time.

A device can be refreshed explicitly with ; however, refresh also happens automatically. If a volume access (e.g., FSDev_Refresh() FSVol_Fmt
,), entry access (,), file open (or) or directory open (() FSVol_Rd() FSEntry_Create() fs_remove() fs_fopen() FSFile_Open() fs_ope

 or) is initiated on a device that was not present at the last attempted access, µC/FS attempts to refresh the devicendir() FSDir_Open()
information; if that succeeds, it attempts to refresh the volume information.

Files and directories have additional behavior. If a file is opened on a volume, and the underlying device is subsequently removed or changed, all
further accesses using the file API (e.g.,) will fail with the error code ; all POSIX API functions will return errorFSFile_Rd() FS_ERR_DEV_CHNGD
values. The file should then be closed (to free the file structure).

Similarly, if a directory is opened on a volume, and the underlying device is subsequently removed or changed, all further attemptsFSDir_Rd()
will fail with the error code ; will return 1. The directory should then be closed (to free the directoryFS_ERR_DEV_CHNGD fs_readdir_r()
structure).

Raw Device I/O

Opened devices can be accessed directly at the sector level, completely bypassing the file system. Such read and write operations on raw
devices are accomplished by using and to respectively read and write one or more sector at a time. However, doingFSDev_Rd() FSDev_Wr()
so may have the unwanted side-effect of corrupting an existing file system on the device and as such, should be done carefully.

Applications wishing to use both the high level file system API of µC/FS and raw device access concurrently may acquire a global lock to a device
with . While the application has ownership of a device’s access lock all higher level operations such as the andFSDev_AccessLock() FSFile_

 type of functions will wait for the lock to be released. The lock can then be released using to give backFSEntry_ FSDev_AccessUnlock()
access to the device.

When raw device operations are used to make changes on opened files and volumes it is generally required to invalidate them to prevent µC/FS
from performing inconsistent operations on the file system. A call to FSDev_Invalidate() will make every operations on files and volumes opened
on a device fail with an error. Affected files and volumes will then have to be closed and re-opened to continue, similarly toFS_ERR_DEV_CHNGD
a removable media change.

Partitions

A device can be partitioned into two or more regions, and a file system created on one or more of these, each of which could be mounted as a
volume. µC/FS can handle and make DOS-style partitions, which is a common partitioning system.

The first sector on a device with DOS-style partitions is the Master Boot Record (MBR), with a partition table with four entries, each describing a
partition. An MBR entry contains the start address of a partition, the number of sectors it contains and its type. The structure of a MBR entry and
the MBR sector is shown in in the page and in the page.Figure - Partition entry format Partitions Figure - Master boot record Partitions

Figure - Partition entry format

Figure - Master boot record

An application can write an MBR to a device and create an initial partition with . For example, if you wanted to createFSDev_PartitionInit()
an initial 256-MB partition on a 1-GB device “ ”:ide:0:

FSDev_PartitionInit((CPU_CHAR *)“ide:0:”, /* <-- (a) device name */
 (FS_SEC_QTY)(512 * 1024), /* <-- (b) size of partition */
 (FS_ERR *)&err); /* <-- (c) return error */

Listing - Example FSDev_PartitionInit() call

The parameters are the device name (a) and the size of the partition, in sectors (b). If (b) is 0, then the partition will take up the entire device. After
this call, the device will be divided as shown in in the page. This new partition is called a Figure - Device after partition initialization Partitions prim

 because its entry is in the MBR. The four circles in the MBR represent the four partition entries; the one that is now used ‘points to’ary partition
Primary Partition 1.

Figure - Device after partition initialization

More partitions can now be created on the device. Since the MBR has four partition entries, three more can be made without using extended
partitions (as discussed below). The function FSDev_PartitionAdd() should be called three times:

FSDev_PartitionAdd((CPU_CHAR *)“ide:0:”, /* <-- (a) device name */
 (FS_SEC_QTY)(512 * 1024), /* <-- (b) size of partition */
 (FS_ERR *)&err); /* <-- (c) return error */

Again, the parameters are the device name (a) and the size of the partition, in sectors (b). After this has been done, the device is divided as
shown in in the page.Figure - Device after four partitions have been created Partitions

Figure - Device after four partitions have been created

When first instituted, DOS partitioning was a simple scheme allowing up to four partitions, each with an entry in the MBR. It was later extended for
larger devices requiring more with , partitions that contains other partitions. The is the extendedextended partitions primary extended partition
partition with its entry in the MBR; it should be the last occupied entry.

An extended partition begins with a partition table that has up to two entries (typically). The first defines a which may containsecondary partition
a file system. The second may define another extended partition; in this case, a , which can contain yet anothersecondary extended partition
secondary partition and secondary extended partition. Basically, the primary extended partition heads a linked list of partitions.

Figure - Device with five partitions

Reading secondary partitions in existing preformatted devices is supported in µC/FS. For the moment, the creation of extended and secondary
partitions is not supported in µC/FS.

Volume Operations

Five general operations can be performed on a volume:

A volume can be . During the opening of a volume, file system control structures are read from the underlying device,opened (mounted)
parsed and verified.
Files can be accessed on a volume. A file is a linear data sequence (‘file contents’) associated with some logical, typically
human-readable identifier (‘file name’). Additional properties, such as size, update date/time and access mode (e.g., read-only, write-only,
read-write) may be associated with a file. File accesses constitute reading data from files, writing data to files, creating new files,
renaming files, copying files, etc. File access is accomplished via file module-level functions, which are covered in .Files
Directories can be accessed on a volume. A directory is a container for files and other directories. Operations include iterating through
the contents of the directory, creating new directories, renaming directories, etc. Directory access is accomplished via directory
module-level functions, which are covered in .Directories
A volume can be . (More specifically, high-level formatted.) Formatting writes the control information for a file system to theformatted
partition on which a volume is located.
A volume can be . During the closing of a volume, any cached data is written to the underlying device andclosed (unmounted)
associated structures are freed.

For information about using volume names, see . For FAT-specific volume functions, see .µC/FS Device and Volume Names FAT File System

Function Description Valid for Unmounted Volume?

FSVol_CacheAssign() Assign cache to volume. Yes

FSVol_CacheInvalidate() Invalidate cache for volume. No

FSVol_CacheFlush() Flush cache for volume. No

FSVol_Close() Close (unmount) volume. Yes

FSVol_Fmt() Format volume. Yes

FSVol_IsMounted() Determine whether volume is mounted. Yes

FSVol_LabelGet() Get volume label. No

FSVol_LabelSet() Set volume label. No

FSVol_Open() Open (mount) volume. -----

FSVol_Query() Get volume information. Yes

FSVol_Rd() Read sector on volume. No

FSVol_Refresh() Refresh a volume. No

FSVol_Wr() Write sector on volume. No

Table - Volume API functions

Using Volumes

A volume is opened with :FSVol_Open()

FSVol_Open((CPU_CHAR *)“ide:0:”, /* <-- (a) volume name */
 (CPU_CHAR *)“ide:0:”, /* <-- (b) device name */
 (FS_PARTITION_NBR *) 0, /* <-- (c) partition number */
 (FS_ERR *)&err); /* <-- (d) return error */

Listing - Example FSVol_Open() call

The parameters are the volume name (a), the device name (b) and the partition that will be opened (c). There is no restriction on the volume
name (a); however, it is typical to give the volume the same name as the underlying device. If the default partition is to be opened, or if the device
is not partitioned, then the partition number (c) should be zero.

The return error code from this function provides important information about the volume state:

If the return error code is , then the volume has been mounted and is ready to use.FS_ERR_NONE
If the return error code is , then no valid file system could be found on the device, or the specifiedFS_ERR_PARTITION_NOT_FOUND
partition does not exist. The device may need to be formatted (see below).
If the return error code is , , or , the device is eitherFS_ERR_DEV FS_ERR_DEV_NOT_PRESENT FS_ERR_DEV_IO FS_ERR_DEV_TIMEOUT

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSDeviceandVolumeNames

not present or did not respond. This is an important consideration for removable devices. The volume is still registered with the file
system suite, and the file system will attempt to re-open the volume each time the application accesses it (see for moreUsing Devices
information).
If any other error code is returned, the volume is registered with the file system. The developer should examine the error code tonot
determine the source of the error.

FSVol_Fmt() formats a device, (re-)initializing the file system on the device:

FSVol_Fmt((CPU_CHAR *)“ide:0:”, /* <-- (a) volume name */
 (void *) 0, /* <-- (b) pointer to system configuration */
 (FS_ERR *)&err); /* <-- (c) return error */

Listing - Example FSVol_Fmt() call

The parameters are the volume name (a) and a pointer to file system-specific configuration (b). The configuration is not required; if you are willing
to accept the default format, a NULL pointer should be passed. Alternatively, the exact properties of the file system can be configured by passing
a pointer to a structure as the second argument. For more information about the structure, see FS_FAT_SYS_CFG FS_FAT_SYS_CFG FS_FAT_S

.YS_CFG

Using Volume Cache

Choosing Cache Parameters
Other Caching and Buffering Mechanisms

File accesses often incur repeated reading of the same volume sectors. On a FAT volume, these may be sectors in the root directory, the area of
the file allocation table (FAT) from which clusters are being allocated or data from important (often-read) files. A cache wedged between the
system driver and volume layers (as shown in in the page) will eliminate manyFigure - Volume cache architecture Using Volume Cache
unnecessary device accesses. Sector data is stored upon first read or write. Further reads return the cached data; further writes update the cache
entry and, possibly, the data on the volume (depending on the cache mode).

Figure - Volume cache architecture

A cache is defined by three parameters: size, sector type allocation and mode. The size of the cache is the number of sectors that will fit into it at
any time. Every sector is classified according to its type, either management, directory or file; the determines thesector type allocation
percentage of the cache that will be devoted to each type. The determines when cache entries are created (i.e., when sectors are cached)mode
and what happens upon write.

Cache Mode Description Cache Mode #define

Read cache Sectors cached upon read; never cached upon write. FS_VOL_CACHE_MODE_RD

Write-through
cache

Sectors cached upon read and write; data on volume always updated upon
write.

FS_VOL_CACHE_MODE_WR_THROUGH

Write-back cache Sectors cached upon read and write; data on volume never updated upon
write.

FS_VOL_CACHE_MODE_WR_BACK

Table - Cache types

Choosing Cache Parameters

 in the page is an example using the cache for the volume “ . The cache is used in write back mode,Listing - Cache Using Volume Cache sdcard:0:”
and the cache parameters are:

25% of cache size is used for management sector, 15% is used for directories sectors and the remaining (60%) is used for file sectors.

FSVol_CacheAssign ((CPU_CHAR *)"sdcard:0:", /* <-- volume name
*/
 (FS_VOL_CACHE_API *) NULL, /* <-- pointer to
vol cache API */
 (void *)&CACHE_BUF[0], /* <-- pointer to
the cache buf */
 (CPU_INT32U) CACHE_BUF_LEN, /* <-- cache buf
size in bytes */
 (CPU_INT08U) 25, (1)
 (CPU_INT08U) 15, (2)
 (FS_FLAGS) FS_VOL_CACHE_MODE_WR_BACK, /* <-- cache mode
*/
 (FS_ERR *)&err); /* <-- used for error
code */

if (err != FS_ERR_NONE) {
 APP_TRACE_INFO ((" Error : could not assign Volume cache"));
 return;
}

pfile = FSFile_Open(“sdcard:0:\\file.txt”,
 FS_FILE_ACCESS_MODE_WR |
 FS_FILE_ACCESS_MODE_CACHED,
 &err);
if (pFile == (FS_FILE *)0) {
 return;
}

/*
 DO THE WRITE OPERATIONS TO THE FILE
*/

FSFile_Close (pFile, &err);

FSVol_CacheFlush ("sdcard:0:", &err); /* <-- Flush volume cache.
*/

Listing - Cache
(1)
Percent of cache buffer dedicated to management sectors.

(2)
 Percent of cache buffer dedicated to directory sectors.

The application using C/FS volume cache should vary the third and fourth parameters passed to , and select the valuesFSVol_CacheAssign()
that give the best performance.

For an efficient cache usage, it is better to do not allocate space in the cache for sectors of type file when the write size is greater than sector size.

When the cache is used in write back mode, all cache dirty sectors will be updated on the media storage only when the cache is flushed.

Other Caching and Buffering Mechanisms

Volume cache is just one of several important caching mechanisms, which should be balanced for optimal performance within the bounds of
platform resources. The second important software mechanism is the file buffer (see), which makes file accesses moreConfiguring a File Buffer
efficient by buffering data so a full sector’s worth will be read or written.

Individual devices or drivers may also integrate a cache. Standard hard drives overcome long seek times by buffering extra data upon read (in
anticipation of future requests) or clumping writes to eliminate unnecessary movement. The latter action can be particularly powerful, but since it
may involve re-ordering the sequence of sector writes will eliminate any guarantee of fail-safety of most file systems. For that reason, write cache
in most storage devices should be disabled.

A driver may implement a buffer to reduce apparent write latency. Before a write can occur to a flash medium, the driver must find a free (erased)
area of a block; occasionally, a block will need to be erased to make room for the next write. Incoming data can be buffered while the long erase
occurs in the background, thereby uncoupling the application’s wait time from the real maximum flash write time.

The ideal system might use both volume cache and file buffers. A volume cache is most powerful when confined to the sector types most subject
to repeated reads: management and directory. Caching of files, if enabled, should be limited to important (often-read) files. File buffers are more
flexible, since they cater to the many applications that find small reads and writes more convenient than those of full sectors.

Files
An application stores information in a file system by creating a file or appending new information to an existing file. At a later time, this information
may be retrieved by reading the file. Other functions support these capabilities; for example, the application can move to a specified location in the
file or query the file system to get information about the file. These functions, which operate on file structures (s), are grouped under fileFS_FILE
access (or simply file) functions. The available file functions are listed in in the page.Table - File API functions File System File Access Functions

A separate set of file operations (or entry) functions manage the files and directories available on the system. Using these functions, the
application can copy, create, delete and rename files, and get and set a file or directory’s attributes and date/time. The available entry functions
are listed in in the pageTable - Entry API functions File System Entry Access Functions

The entry functions and the function accept full file paths. For information about using file and path names, see FSFile_Open() µC/FS File and
.Directory Names and Paths

The functions listed in in the page and in the Table - File API functions File System File Access Functions Table - Entry API functions File System
 page the are core functions in the file access module (functions) and entry module (Entry Access Functions FSFile_####() FSEntry_####()

functions). These are matched, in most cases, by API level functions that correspond to standard C or POSIX functions. The core and API
functions provide basically the same functionality; the benefits of the former are enhanced capabilities, a consistent interface and meaningful
return error codes.

File System File Access Functions

The file access functions (listed in in the page) provide an API for performing aTable - File API functions File System File Access Functions
sequence of operations on a file located on a volume’s file system. The file object pointer returned when a file is opened is passed as the first
argument of all file access functions (a characteristic which distinguishes these from the entry access functions), and the file object so referenced
maintains information about the actual file (on the volume) and the state of the file access. The file access state includes the file position (the next
place data will be read/written), error conditions and (if file buffering is enabled) the state of any file buffer.

Function Description

FSFile_BufAssign() Assign buffer to a file.

FSFile_BufFlush() Write buffered data to volume.

FSFile_Close() Close a file.

FSFile_ClrErr() Clear error(s) on a file.

FSFile_IsEOF() Determine whether a file is at EOF.

FSFile_IsErr() Determine whether error occurred on a file.

FSFile_IsOpen() Determine whether a file is open or not.

FSFile_LockGet() Acquire task ownership of a file.

FSFile_LockSet() Release task ownership of a file.

FSFile_LockAccept() Acquire task ownership of a file (if available).

FSFile_Open() Open a file.

FSFile_PosGet() Get file position.

https://doc.micrium.com/display/fsdoc/File+System+File+Access+Functions#FileSystemFileAccessFunctions-Table-FileAPIfunctions
https://doc.micrium.com/display/fsdoc/File+System+Entry+Access+Functions#FileSystemEntryAccessFunctions-Table-EntryAPIfunctions
https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths
https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths
https://doc.micrium.com/display/fsdoc/File+System+File+Access+Functions#FileSystemFileAccessFunctions-Table-FileAPIfunctions
https://doc.micrium.com/display/fsdoc/File+System+Entry+Access+Functions#FileSystemEntryAccessFunctions-Table-EntryAPIfunctions

FSFile_PosSet() Set file position.

FSFile_Query() Get information about a file.

FSFile_Rd() Read from a file.

FSFile_Truncate() Truncate a file.

FSFile_Wr() Write to a file.

Table - File API functions

Opening Files

When an application needs to access a file, it must first open it using or . For most applications, the former with itsfs_fopen() FSFile_Open()
familiar interface suffices. In some cases, the flexibility of the latter is demanded (see in the Listing - Example FSFile_Open() usage Opening Files
page).

file ptr --> p_file = FSFile_Open (“\\file.txt”, /* file name */
 FS_FILE_ACCESS_MODE_RD, /* access mode */
 &err); /* return error */
 if (p_file == (FS_FILE *)0) {
 /* $$$$ Handle error */
 }

Listing - Example FSFile_Open() usage

The return value of should always be verified as non-NULL before the application proceeds to access the file. The secondFSFile_Open()
argument to this function is a logical OR of mode flags:

FS_FILE_ACCESS_MODE_RD

File opened for reads.

FS_FILE_ACCESS_MODE_WR

File opened for writes.

FS_FILE_ACCESS_MODE_CREATE

File will be created, if necessary.

FS_FILE_ACCESS_MODE_TRUNC

File length will be truncated to 0.

FS_FILE_ACCESS_MODE_APPEND

All writes will be performed at EOF.

FS_FILE_ACCESS_MODE_EXCL

File will be opened if and only if it does not already exist.

FS_FILE_ACCESS_MODE_CACHED

File data will be cached.

For example, if you wanted to create a file to write to if and only if it does not exist, you would use the flags

FS_FILE_ACCESS_MODE_WR | FS_FILE_ACCESS_MODE_CREATE | FS_FILE_ACCESS_MODE_EXCL

It is impossible to do this in a single, atomic operation using .fs_fopen()

 in the page lists the mode flag equivalents of the mode strings.Table - fopen() mode strings and mode equivalents Opening Files fs_fopen()

“r” or “rb” FS_FILE_ACCESS_MODE_RD

“w” or “wb” FS_FILE_ACCESS_MODE_WR
FS_FILE_ACCESS_MODE_CREATE
FS_FILE_ACCESS_MODE_TRUNC

“a” or “ab” FS_FILE_ACCESS_MODE_WR
FS_FILE_ACCESS_MODE_CREATE
FS_FILE_ACCESS_MODE_APPEND

“r+” or “rb+” or “r+b” FS_FILE_ACCESS_MODE_RD
FS_FILE_ACCESS_MODE_WR

“w+” or “wb+” or “w+b” FS_FILE_ACCESS_MODE_RD
FS_FILE_ACCESS_MODE_WR
FS_FILE_ACCESS_MODE_CREATE FS_FILE_ACCESS_MODE_TRUNC

“a+” or “ab+” or “a+b” FS_FILE_ACCESS_MODE_RD
FS_FILE_ACCESS_MODE_WR
FS_FILE_ACCESS_MODE_CREATE
FS_FILE_ACCESS_MODE_APPEND

Table - fopen() mode strings and mode equivalents

Getting Information About a File

Detailed information about an open file, such as size and date/time stamps, can be obtained using the function (see FSFile_Query() Listing -
 in the page).Example FSFile_Query() usage Getting Information About a File

FS_ENTRY_INFO info;
FSFile_Query(p_file, /* file pointer */
 &info, /* pointer to info structure */
 &err); /* return error */

Listing - Example FSFile_Query() usage

The structure has the following members:FS_ENTRY_INFO

Attrib contains the file attributes (see).File and Directory Attributes
Size is the size of the file, in octets.
DateTimeCreate is the creation timestamp of the file.
DateAccess is the access timestamp (date only) of the file.
DateTimeWr is the last write (or modification) timestamp of the file.
BlkCnt is the number of blocks allocated to the file. For a FAT file system, this is the number of clusters occupied by the file data.
BlkSize is the size of each block allocated in octets. For a FAT file system, this is the size of a cluster.

DateTimeCreate, and are structures of type CLK_TS_SEC.DateAccess DateTimeWr

Configuring a File Buffer
The file module has functions to assign and flush a file buffer that are equivalents to POSIX API functions (see iListing - File Module Function
n the page and in the page); the primary difference is theConfiguring a File Buffer Listing - POSIX API Equivalent Configuring a File Buffer
advantage of valuable return error codes to the application.

int fs_setvbuf (FS_FILE *stream,
 char *buf,
 int mode,
 fs_size_t size);

 int fs_fflush (FS_FILE *stream);

Listing - POSIX API Equivalent

https://doc.micrium.com/display/fsdoc/File+and+Directory+Attributes#FileandDirectoryAttributes-title-text

void FSFile_BufAssign (FS_FILE
*p_file,
 void
*p_buf,
 FS_FLAGS
mode,
 CPU_SIZE_T
size,
 FS_ERR
*p_err);

void FSFile_BufFlush (FS_FILE
*p_file,
 FS_ERR
*p_err);

Listing - File Module Function

For more information about and an example of configuring a file buffer, see .Configuring a File Buffer - POSIX

File Error Functions
The file module has functions get and clear a file’s error status that are almost exact equivalents to POSIX API functions (see Listing - File

 in the page and in the page); the primary differenceModule Function File Error Functions Listing - POSIX API Equivalent File Error Functions
is the advantage of valuable return error codes to the application.

void FSFile_ClrErr(FS_FILE
*p_file,
 FS_ERR
*p_err);
CPU_BOOLEAN FSFile_IsErr (FS_FILE
*p_file,
 FS_ERR
*p_err);
CPU_BOOLEAN FSFile_IsEOF (FS_FILE
*p_file,
 FS_ERR
*p_err);

Listing - File Module Function

void fs_clearerr (FS_FILE *stream);

int fs_ferror (FS_FILE *stream);

int fs_feof (FS_FILE *stream);

Listing - POSIX API Equivalent

For more information about this functionality, see .Diagnosing a File Error - POSIX

Atomic File Operations Using File Lock
The file module has functions lock files across several operations that are almost exact equivalents to POSIX API functions (see Listing - File

 in the page and in the Module Function Atomic File Operations Using File Lock Listing - POSIX API Equivalent Atomic File Operations Using
 page); the primary difference is the advantage of valuable return error codes to the application.File Lock

void fs_flockfile (FS_FILE
*file);

int fs_ftrylockfile (FS_FILE
*file);

void fs_funlockfile (FS_FILE
*file);

https://doc.micrium.com/display/fsdoc/Configuring+a+File+Buffer+-+POSIX#ConfiguringaFileBuffer-POSIX-title-text
https://doc.micrium.com/display/fsdoc/Diagnosing+a+File+Error+-+POSIX#DiagnosingaFileError-POSIX-title-text

void FSFile_LockGet (FS_FILE
*p_file,
 FS_ERR
*p_err);
void FSFile_LockAccept (FS_FILE
*p_file,
 FS_ERR
*p_err);
void FSFile_LockSet (FS_FILE
*p_file,
 FS_ERR
*p_err);

Listing - File Module Function

Listing - POSIX API Equivalent

For more information about and an example of using file locking, see .Atomic File Operations Using File Lock - POSIX

File System Entry Access Functions

The entry access functions (listed in in the page) provide an API for performingTable - Entry API functions File System Entry Access Functions
single operations on file system entries (files and directories), such as copying, renaming or deleting. Each of these operations is atomic;
consequently, in the absence of device access errors, either the operation will have completed or no change to the storage device will have been
made upon function return.

One of these functions, , obtains information about an entry (including the attributes, date/time stamp and file size). TwoFSEntry_Query()
functions set entry properties, and , which set a file’s attributes and date/time stamp. A new fileFSEntry_AttribSet() FSEntry_TimeSet()
entry can be created with or an existing entry deleted, copied or renamed (with , or FSEntry_Create() FSEntry_Del() FSEntry_Copy() FS

).Entry_Rename()

Function Description

FSEntry_AttribSet() Set a file or directory's attributes.

FSEntry_Copy() Copy a file.

FSEntry_Create() Create a file or directory.

FSEntry_Del() Delete a file or directory.

FSEntry_Query() Get information about a file or directory.

FSEntry_Rename() Rename a file or directory.

FSEntry_TimeSet() Set a file or directory's date/time.

Table - Entry API functions

File and Directory Attributes

The function gets information about file system entry, including its attributes, which indicate whether it is a file or directory,FSEntry_Query()
writable or read-only, and visible or hidden (see in the page).Listing - Example FSEntry_Query() usage File and Directory Attributes

FS_FLAGS attrib;
 FS_ENTRY_INFO info;
 FSEntry_Query(“path_name”, /* pointer to full path name */
 &info, /* pointer to info */
 &err); /* return error */
 attrib = info.Attrib;

Listing - Example FSEntry_Query() usage

The return value is a logical OR of attribute flags:

FS_ENTRY_ATTRIB_RD

https://doc.micrium.com/display/fsdoc/Atomic+File+Operations+Using+File+Lock+-+POSIX#AtomicFileOperationsUsingFileLock-POSIX-title-text

Entry is readable.

FS_ENTRY_ATTRIB_WR

Entry is writable.

FS_ENTRY_ATTRIB_HIDDEN

Entry is hidden from user-level processes.

FS_ENTRY_ATTRIB_DIR

Entry is a directory.

FS_ENTRY_ATTRIB_ROOT_DIR

Entry is a root directory.

If no error is returned and is not set, then the entry is a file.FS_ENTRY_ATTRIB_DIR

An entry can be made read-only (or writable) or hidden (or visible) by setting its attributes:

The second argument should be the logical OR of relevant attribute flags.

attrib = FS_ENTRY_ATTRIB_RD;
 FSEntry_AttribSet(“path_name”, /* pointer to full path name */
 attrib, /* attributes */
 &err); /* return error */

FS_ENTRY_ATTRIB_RD

Entry is readable.

FS_ENTRY_ATTRIB_WR

Entry is writable.

FS_ENTRY_ATTRIB_HIDDEN

Entry is hidden from user-level processes.

If a flag is clear (not OR’d in), then that attribute will be clear. In the example above, the entry will be made read-only (i.e., not writable) and will be
visible (i.e., not hidden) since the WR and flags are not set in . Since there is no way to make files write-only (i.e., not readable),HIDDEN attrib
the RD flag should always be set.

Creating New Files and Directories

A new file can be created using or , if opened in write or append mode. There are a few other ways that new filesFSFile_Open() fs_fopen()
can be created (most of which also apply to new directories).

The simplest is the function, which just makes a new file or directory:FSEntry_Create()

FSEntry_Create(“\\file.txt”, /* file name */
 FS_ENTRY_TYPE_FILE, /* means entry will be a file */
 DEF_NO, /* DEF_NO means creation NOT exclusive */
 &err); /* return error */

If the second argument, , is the new entry will be a directory. The third argument, , indicates whetherentry_type FS_ENTRY_TYPE_DIR excl
the creation should be exclusive. If it is exclusive (is), nothing will happen if the file already exists. Otherwise, the file currentlyexcl DEF_YES
specified by the file name will be deleted and a new empty file with that name created.

Similar functions exist to copy and rename an entry:

FSEntry_Copy(“\\dir\\src.txt”, /* source file name */
 “\\dir\\dest.txt », /* destination file name */
 DEF_NO, /* DEF_NO means creation not exclusive */
 &err); /* return error */
 FSEntry_Rename (“\\dir\\oldname.txt”, /* old file name */
 “\\dir\\newname.txt”, /* new file name */
 DEF_NO, /* DEF_NO means creation not exclusive */
 &err); /* return error */

FSEntry_Copy() can only be used to copy files. The first two arguments of each of these are both paths; the second path is not relative tofull
the parent directory of the first. As with , the third argument of each, excl, indicates whether the creation should beFSEntry_Create()
exclusive. If it is exclusive (is), nothing will happen if the destination or new file already exists.excl DEF_YES

Deleting Files and Directories

A file or directory can be deleted using :FSEntry_Del()

FSEntry_Del(“\\dir”, /* entry name */
 FS_ENTRY_TYPE_DIR, /* means entry must be a dir */
 &err); /* return error */

The second argument, entry_type, restricts deletion to specific types. If it is , then the entry specified by the first argument FS_ENTRY_TYPE_DIR
 be a directory; if it is a file, an error will be returned. If it is , then the entry be a file. If it is must FS_ENTRY_TYPE_FILE must FS_ENTRY_TYPE_A

, then the entry will be deleted whether it is a file or a directory.NY

Directories
An application stores information in a file system by creating a file or appending new information to an existing file. At a later time, this
information may be retrieved by reading the file. However, if a certain file must be found, or all files may be listed, the application can iterate
through the entries in a directory using the . The available directory functions are listed in directory access (or simply directory) functions

 in the page.Table - Directory API functions Directories

A separate set of manage the files and directories available on the system. Using these functions,directory operations (or entry) functions
the application can create, delete and rename directories, and get and set a directory’s attributes and date/time. More information about the
entry functions can be found in in the page.Table - File API functions File System File Access Functions

The entry functions and the directory function accept one or paths. For information about using file and pathOpen() more full directory
names, see .µC/FS File and Directory Names and Paths

The functions listed in in the page are core functions in the directory access module (Table - Directory API functions Directories FSDir_###
 functions). These are matched by API level functions that correspond to standard C or POSIX functions. More information about the#()

API-level functions can be found in . The core and API functions provide basically the same functionality; the benefits of the formerPOSIX API
are enhanced capabilities, a consistent interface and meaningful return error codes.

Directory Access Functions

The directory access functions provide an API for iterating through the entries within a directory. The function initiates thisFSDir_Open()
procedure, and each subsequent call to (until all entries have been examined) returns a which holds informationFSDir_Rd() FS_DIRENT
about a particular entry. The function releases any file system structures and locks.FSDir_Close()

Function Description

FSDir_Open() Open a directory.

FSDir_Close() Close a directory

FSDir_Rd() Read a directory entry.

FSDir_IsOpen() Determine whether a directory is open or not.

Table - Directory API functions

These functions are almost exact equivalents to POSIX API functions (see in the page and Listing - Directory Module Function Directories List

https://doc.micrium.com/display/fsdoc/File+System+File+Access+Functions#FileSystemFileAccessFunctions-Table-FileAPIfunctions
https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths
https://doc.micrium.com/display/fsdoc/POSIX+API#POSIXAPI-title-text

 in the page); the primary difference is the advantage of valuable return error codes to the application.ing - POSIX API Equivalent Directories

FS_DIR *FSDir_Open (CPU_CHAR
*p_name_full,
 FS_ERR
*p_err);

void FSDir_Close(FS_DIR
*p_dir,
 FS_ERR
*p_err);

void FSDir_Rd (FS_DIR
*p_dir,
 FS_DIR_ENTRY
*p_dir_entry,
 FS_ERR
*p_err);

Listing - Directory Module Function

FS_DIR *fs_opendir (const char
*dirname);

int fs_closedir (FS_DIR
*dirp);

int fs_readdir_r(FS_DIR
*dirp,
 struct
fs_dirent *entry,
 struct
fs_dirent **result);

Listing - POSIX API Equivalent

For more information about and an example of using directories, see .Directory Access Functions - POSIX

POSIX API

The best-known API for accessing and managing files and directories is specified within the POSIX standard (IEEE Std 1003.1). The basis of
some of this functionality, in particular buffered input/output, lies in the ISO C standard (ISO/IEC 9899), though many extensions provide new
features and clarify existing behaviors. Functions and macros prototyped in four header files are of particular importance:

stdio.h. Standard buffered input/output (, , etc), operating on FILE objects.fopen() fread()
dirent.h. Directory accesses (, , etc), operating on DIR objects.opendir() readdir()
unistd.h. Miscellaneous functions, including working directory management (,), and .chdir() getcwd() ftruncate() rmdir()
sys/stat.h. File statistics functions and .mkdir()

µC/FS provides a POSIX-like API based on a subset of the functions in these four header files. To avoid conflicts with the user compilation
environment, files, functions and objects are renamed:

All functions begin with ‘fs_’. For example, is renamed , is renamed , isfopen() fs_fopen() opendir() fs_opendir() getcwd()
renamed , etc.fs_getcwd()
All objects begin with ‘FS_’. So returns a pointer to a and returns a pointer to a .fs_fopen() FS_FILE fs_opendir() FS_DIR
Some argument types are renamed. For example, the second and third parameters of are typed to avoidfs_fread() fs_size_t
conflicting with other definitions.size_t

Supported Functions - POSIX

The supported POSIX functions are listed in in the page. These are divided into fourTable - POSIX API functions Supported Functions - POSIX
groups. First, the functions which operate on file objects (s) are grouped under file access (or simply file) functions. An application storesFS_FILE
information in a file system by creating a file or appending new information to an existing file. At a later time, this information may be retrieved by
reading the file. Other functions support these capabilities; for example, the application can move to a specified location in the file or query the file
system to get information about the file.

A separate set of file operations (or entry) functions manage the files and directories available on the system. Using these functions, the
application can create, delete and rename files and directories.

The entries within a directory can be traversed using the directory access (or simply directory) functions, which operate on directory objects (FS_D
s). The name and properties of the entries are returned within a struct structure.IR fs_dirent

The final group of functions is the working directory functions. For information about using file and path names, see µC/FS File and Directory
.Names and Paths

Important warning about the POSIX API

The µC/FS implementation of the POSIX API is not 100% compliant. Most notably, the error flag isn’t set when an error occurserrno
and thus it is recommended to use the µC/FS proprietary API (, , etc.).FSFile_####() FSDir_####(), FSEntry_####()

https://doc.micrium.com/display/fsdoc/Directory+Access+Functions+-+POSIX#DirectoryAccessFunctions-POSIX-text-title
https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths
https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths

Function POSIX Equivalent Function POSIX Equivalent

fs_asctime_r() asctime_r() fs_ftruncate() ftruncate()

fs_chdir() chdir() fs_ftrylockfile() ftrylockfile()

fs_clearerr() clearerr() fs_funlockfile() funlockfile()

fs_closedir() closedir() fs_fwrite() fwrite()

fs_ctime_r() ctime_r() fs_getcwd() getcwd()

fs_fclose() fclose() fs_localtime_r() localtime_r()

fs_feof() feof() fs_mkdir() mkdir()

fs_ferror() ferror() fs_mktime() mktime()

fs_fflush() fflush() fs_rewind() rewind()

fs_fgetpos() fgetpos() fs_opendir() opendir()

fs_flockfile() flockfile() fs_readdir_r() readdir_r()

fs_fopen() fopen() fs_remove() remove()

fs_fread() fread() fs_rename() rename()

fs_fseek() fseek() fs_rmdir() rmdir()

fs_fsetpos() fsetpos() fs_setbuf() setbuf()

fs_fstat() fstat() fs_setvbuf() setvbuf()

fs_ftell() ftell() fs_stat() stat()

Table - POSIX API functions

Working Directory Functions - POSIX

Normally, all file or directory paths must be absolute, either on the default volume or on an explicitly-specified volume:

p_file1 = fs_fopen(“\\file.txt”, “r”); /* File on default volume */
p_file2 = fs_fopen(“sdcard:0:\\file.txt”, “r”); /* File on explicitly-specified
volume */

If working directory functionality is enabled, paths may be specified relative to the working directory of the current task:

p_file2 = fs_fopen(“file.txt”, “r”); /* File in working directory */
p_file1 = fs_fopen(“..\\file.txt”, “r”); /* File in parent of working
directory */

The two standard special path components are supported. The path component “..” moves to the parent of the current working directory. The path
component “.” makes no change; essentially, it means the current working directory.

fs_chdir() is used to set the working directory. If a relative path is employed before any working directory is set, the root directory of the default
volume is used.

The application can get the working directory with . A terminal interface may use this function to implement an equivalent to thefs_getcwd()
standard pwd (print working directory) command, while calling to carry out a cd operation. If working directories are enabled, thefs_chdir()
µC/Shell commands for µC/FS manipulate and access the working directory with and (see also).fs_chdir() fs_getcwd() Shell Commands

File Access Functions - POSIX

The file access functions provide an API for performing a sequence of operations on a file located on a volume’s file system. The file object
pointer returned when a file is opened is passed as an argument of all file access function, and the file object so referenced maintains information
about the actual file (on the volume) and the state of the file access (see in the page)Figure - File state transitions File Access Functions - POSIX
. The file access state includes the file position (the next place data will be read/written), error conditions and (if file buffering is enabled) the state
of any file buffer.

https://doc.micrium.com/display/fsdoc/Shell+Commands#ShellCommands-title-text

As data is read from or written to a file, the file position is incremented by the number of bytes transferred from/to the volume. The file position
may also be directly manipulated by the application using the position set function (), and the current absolute file position may befs_fsetpos()
gotten with the position get function (), to be later used with the position set function.fs_fgetpos()

Figure - File state transitions

The file maintains flags that reflect errors encountered in the previous file access, and subsequent accesses will fail (under certain conditions
outlined here) unless these flags are explicitly cleared (using). There are actually two sets of flags. One reflects whether the filefs_clearerr()
encountered the end-of-file (EOF) during the previous access, and if this is set, writes will not fail, but reads will fail. The other reflects device
errors, and no subsequent file access will succeed (except file close) unless this is first cleared. The functions and cafs_ferror() fs_feof()
n be used to get the state of device error and EOF conditions, respectively.

If file buffering is enabled (is), then input/output buffering capabilities can be used to increase theFS_CFG_FILE_BUF_EN DEF_ENABLED
efficiency of file reads and writes. A buffer can be assigned to a file using or ; the contents of the buffer can befs_setbuf() fs_setvbuf()
flushed to the storage device using .fs_fflush()

If a file is shared between several tasks in an application, a file lock can be employed to guarantee that a series of file operations are executed
atomically. (or its non-blocking equivalent) acquires the lock for a task (if it does not already own it).fs_flockfile() fs_ftrylockfile()
Accesses from other tasks will be blocked until a is called. This functionality is available if is fs_funlockfile() FS_CFG_FILE_LOCK_EN DEF

._ENABLED

Opening, Reading and Writing Files - POSIX

When an application needs to access a file, it must first open it using fs_fopen():

p_file = fs_fopen(“\\file.txt”, /* file name */
 “w+”); /* mode string */
if (p_file == (FS_FILE *)0) {
 /* $$$$ Handle error */
}

The return value of this function should always be verified as non-NULL before the application proceeds to access the file. The first argument of
this function is the path of the file; if working directories are disabled, this must be the absolute file path, beginning with either a volume name or a
‘\’ (see). The second argument of this function is a string indicating the mode of the file; this must beµC/FS File and Directory Names and Paths
one of the strings shown in in the page. Note that inTable - fs_fopen() mode strings interpretations Opening, Reading and Writing Files - POSIX
all instances, the ‘b’ (binary) option has no affect on the behavior of file accesses.

fs_fopen() Mode String Read? Write? Truncate? Create? Append?

“r” or “rb” Yes No No No No

“w” or “wb” No Yes Yes Yes No

“a” or “ab” No Yes No Yes Yes

“r+” or “rb+” or “r+b” Yes Yes No No No

“w+” or “wb+” or “w+b” Yes Yes Yes Yes No

“a+” or “ab+” or “a+b” Yes Yes No Yes Yes

Table - fs_fopen() mode strings interpretations

After a file is opened, any of the file access functions valid for that its mode can be called. The most commonly used functions are afs_fread()
nd , which read or write a certain number of ‘items’ from a file:fs_fwrite()

cnt = fs_fread(p_buf, /* pointer to buffer */
 1, /* size of each item */
 100, /* number of items */
 p_file); /* pointer to file */

The return value, the number of items read (or written), should be less than or equal to the third argument. If the operation is a read, this value
may be less than the third argument for one of two reasons. First, the file could have encountered the end-of-file (EOF), which means that there is
no more data in the file. Second, the device could have been removed, or some other error could have prevented the operation. To diagnose the
cause, the function should be used. This function returns a non-zero value if the file has encountered the EOF.fs_feof()

Once the file access is complete, the file be closed; if an application fails to close files, then the file system suite resources such as filemust
objects may be depleted.

An example of reading a file is given below:

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths

void App_Fnct (void)
{
 FS_FILE *p_file;
 fs_size_t cnt;
 unsigned char buf[50];
 .
 .
 .

 p_file = fs_fopen(“\\file.txt”, “r”); /* Open file.
*/

 if (p_file != (FS_FILE *)0) { /* If file is opened ...
*/
 /* ... read from file.
*/
 do {
 cnt = fs_fread(&buf[0], 1, sizeof(buf), p_file);
 if (cnt > 0) {
 APP_TRACE_INFO((“Read %d bytes.\r\n”, cnt));
 }
 } while (cnt >= sizeof(buf));
 eof = fs_feof(p_file); /* Chk for EOF.
*/
 if (eof != 0) { (1)
 APP_TRACE_INFO((“Reached EOF.\r\n”));
 } else {
 err = fs_ferror(p_file); /* Chk for error.
*/
 if (err != 0) { (2)
 APP_TRACE_INFO((“Read error.\r\n”));
 }
 }
 fs_fclose(p_file); /* Close file.
*/
 } else {
 APP_TRACE_INFO((“Could not open \”\\file.txt\”.\r\n”));
 }
 .
 .
 .
}

Listing - Example file read
(1)
To determine whether a file read terminates because of reaching the EOF or a device error/removal, the EOF condition should be checked using

.fs_feof()

(2)
In most situations, either the EOF or the error indicator will be set on the file if the return value of is smaller than the buffer size.fs_fread()
Consequently, this check is unnecessary.

Getting or Setting the File Position - POSIX

Another common operation is getting or setting the file position. The and allow the application to ‘store’ a filefs_fgetpos() fs_fsetpos()
location, continue reading or writing the file, and then go back to that place at a later time. An example of using file position get and set is given in

 in the pageListing - Example file position set and get Getting or Setting the File Position - POSIX

void App_Fnct (void)
{
 FS_FILE *p_file;
 fs_fpos_t pos;
 int err;
 .
 .
 .
 p_file = fs_fopen(“\file.txt”, “r”); /* Open file ...
*/
 if (p_file == (FS_FILE *)0) {
 APP_TRACE_INFO((“Could not open file.”));
 return;
 }
 .
 . /* ... read from file.
*/
 .
 err = fs_fgetpos(p_file, &pos); /* Save file position ...
*/
 if (err != 0) {
 APP_TRACE_INFO((“Could not get file position.”));
 return;
 }
 .
 . /* ... read some more from file.
*/
 .
 err = fs_fsetpos(p_file, &pos); /* Set file to saved position ...
*/
 if (err != 0) {
 APP_TRACE_INFO((“Could not set file position.”));
 return;
 }
 .
 . /* ... read some more from file.
*/
 .
 FS_fclose(p_file); /* When finished, close file.
*/
 .
 .
 .
}

Listing - Example file position set and get

Configuring a File Buffer - POSIX

In order to increase the efficiency of file reads and writes, input/output buffering capabilities are provided. Without an assigned buffer, reads and
writes will be immediately performed within and . Once a buffer has been assigned, data will always be read from orfs_fread() fs_fwrite()
written to the buffer; device access will only occur once the file position moves beyond the window represented by the buffer.

fs_setbuf() and assign the buffer to a file. The contents of the buffer can be flushed to the storage device with fs_setvbuf() fs_fflush()
. If a buffer is assigned to a file that was opened in update (read/write) mode, then a write may only be followed by a read if the buffer has been
flushed (by calling or a file positioning function). A read may be followed by a write only if the buffer has been flushed, exceptfs_fflush()
when the read encountered the end-of-file, in which case a write may happen immediately. The buffer is automatically flushed when the file is
closed.

File buffering is particularly important when data is written in small chunks to a medium with slow write time or limited endurance. An example is
NOR flash, or even NAND flash, where write times are much slower than read times, and the lifetime of device is constrained by limits on the

number of times each block can be erased and programmed.

static CPU_INT32U App_FileBuf[512 / 4]; /* Define file buffer.
*/

void App_Fnct (void)
{
 CPU_INT08U data1[50];
 .
 .
 .

 p_file = FS_fopen(“\\file.txt”, “w”);
 if (p_file != (FS_FILE *)0) { (1)
 /* Set buffer.
*/
 fs_setvbuf(p_file, (void *)App_FileBuf, FS__IOFBF, sizeof(App_FileBuf));
 .
 .
 . (2)
 fs_fflush(p_file); /* Make sure data is written to
file. */

 .
 .
 .
 fs_fclose(p_file); /* When finished, close file.
*/
 }
 .
 .
 .
}

Listing - Example file buffer usage
(1)
The buffer be assigned immediately after opening the file. An attempt to set the buffer after read or writing the file will fail.must

(2)
While it is not necessary to flush the buffer before closing the file, some applications may want to make sure at certain points that all previously
written data is stored on the device before writing more.

Diagnosing a File Error - POSIX

The file maintains flags that reflect errors encountered in the previous file access, and subsequent accesses will fail (under certain conditions
outlined here) unless these flags are explicitly cleared (using). There are actually two sets of flags. One reflects whether the filefs_clearerr()
encountered the end-of-file (EOF) during the previous access, and if this is set, writes will not fail, but reads will fail. The other reflects device
errors, and no subsequent file access will succeed (except file close) unless this is first cleared. The functions and cafs_ferror() fs_feof()
n be used to get the state of device error and EOF conditions, respectively.

Atomic File Operations Using File Lock - POSIX

If a file is shared between several tasks in an application, the file lock can be employed to guarantee that a series of file operations are executed
atomically. (or its non-blocking equivalent) acquires the lock for a task (if it does not already own it).fs_flockfile() fs_ftrylockfile()
Accesses from other tasks will be blocked until is called.fs_funlockfile()

Each file actually has a lock count associated with it. This allows nested calls by a task to acquire a file lock; each of those calls must be matched
with a call to). in the page shows how thefs_funlockfile(Listing - Example file lock usage Atomic File Operations Using File Lock - POSIX
file lock functions can be used.

void App_Fnct (void)
{
 unsigned char data1[50];
 unsigned char data2[10];
 .
 .
 .

 if (App_FilePtr != (FS_FILE *)0) { (1)
 fs_flockfile(App_FilePtr); /* Lock file.
*/

 /* Wr data atomically.
*/
 fs_fwrite(data1, 1, sizeof(data1), App_FilePtr);
 fs_fwrite(data2, 1, sizeof(data1), App_FilePtr);
 fs_funlockfile(App_FilePtr); /* Unlock file.
*/
 }
 .
 .
 .
}

Listing - Example file lock usage
(1)

 will block the calling task until the file is available. If the task must write to the file only if no other task is currently accessing it,fs_flockfile()
the non-blocking function can be used.fs_funlockfile()

Directory Access Functions - POSIX

The directory access functions provide an API for iterating through the entries within a directory. The function initiates thisfs_opendir()
procedure, and each subsequent call to (until all entries have been examined) returns information about a particular entry in afs_readdir_r()
struct fs_dirent. The function releases any file system structures and locks.fs_closedir()

 in the page gives an example using the directory access functions toListing - Directory listing example code Directory Access Functions - POSIX
list the files in a directory.

void App_Fnct (void)
{
 FS_DIR *p_dir;
 struct fs_dirent dirent;
 struct fs_dirent *p_dirent;
 char str[50];
 char *p_cwd_path;
 fs_time_t ts;
 .
 .
 .
 p_dir = fs_opendir(p_cwd_path); /* Open dir.
*/
 if (p_dir != (FS_DIR *)0) {
 (void)fs_readdir_r(pdir, &dirent, &p_dirent); /* Rd first dir entry.
*/
 if (p_dirent == (FS_DIRENT *)0) { /* If NULL ... dir is
empty. */
 APP_TRACE_INFO((“Empty dir: %s.\r\n”, p_cwd_path));
 } else { /* Fmt info for each entry.
*/
 Str_Copy(str, "-r--r—r-- : ");

 while (p_dirent != (struct dirent *)0) {
 /* Chk if file is dir.
*/
 if (DEF_BIT_IS_SET(dirent.Info.Attrib, FS_ENTRY_ATTRIB_DIR) ==
DEF_YES) {
 str[0] = ‘d’;
 }
 /* Chk if file is rd only.
*/
 if (DEF_BIT_IS_SET(dirent.Info.Attrib, FS_ENTRY_ATTRIB_WR) == DEF_YES)
{
 str[2] = ‘w’;
 str[5] = ‘w’;
 str[8] = ‘w’;
 }
 /* Get file size.
*/
 if (p_dirent->Info.Size == 0) {
 if (DEF_BIT_IS_CLR(dirent.Info.Attrib, FS_ENTRY_ATTRIB_DIR) ==
DEF_YES) {
 Str_Copy(&str[11]," 0");
 }
 } else {
 Str_FmtNbr_Int32U(dirent.Info.Size,
 10, 10, ‘0’, DEF_NO, DEF_NO, &str[11]);
 }
 /* Get file date/time.
*/
 if (p_dirent->Info.DateTimeCreate.Month != 0) {
 Str_Copy(&str[22],
 (CPU_CHAR *)App_MonthNames[dirent.Info.DateTimeCreate.Month -
1]);
 Str_FmtNbr_Int32U(dirent.Info.DateTimeWr.Day,
 2, 10, ‘ ‘, DEF_NO, DEF_NO, &str[26]);
 Str_FmtNbr_Int32U(dirent.Info.DateTimeWr.Hour,
 2, 10, ‘ ’, DEF_NO, DEF_NO, &str[29]);
 Str_FmtNbr_Int32U(dirent.Info.DateTimeWr.Minute,
 2, 10, ‘ ’, DEF_NO, DEF_NO, &str[32]);
 }
 /* Output info for entry.
*/
 APP_TRACE_INFO((“%s%s\r\n”, str, dirent.Name));
 /* Rd next dir entry.
*/
 (void)fs_readdir_r(pdir, &dirent, &p_dirent);
 }
 }

 fs_closedir(p_dir); /* Close dir.
*/
 /* If dir could not be
opened ... */
 } else { /* ... dir does not exist.
*/
 APP_TRACE_INFO((“Dir does not exist: %s.\r\n”, p_cwd_path));
 }
 .
 .

 .
}

Listing - Directory listing example code

An example result of listing a directory is shown in the figure below.

Figure - Example directory listing

The second argument , is a pointer to a struct , which has two members. The first is Name, which holds the namefs_readdir_r() fs_dirent
of the entry; the second is Info, which has file information. For more information about the struct structure, see fs_dirent FS_DIR_ENTRY

.(struct fs_dirent)

Entry Access Functions - POSIX

The entry access functions provide an API for performing single operations on file system entries (files and directories), such as renaming or
deleting a file. Each of these operations is atomic; consequently, in the absence of device access errors, either the operation will have completed
or no change to the storage device will have been made upon function return.

A new directory can be created with or an existing file or directory deleted or renamed (with or).fs_mkdir() fs_remove() fs_rename()

Device Drivers
The file system initializes, controls, reads and writes a device using a device driver. A µC/FS device driver has eight interface functions, grouped
into a structure that is registered with the file system (with) as part of application start-up, immediately following FS_DEV_DRV FS_DevDrvAdd()

.FS_Init()

Several restrictions are enforced to preserve the uniqueness of device drivers and simplify management:

Each device driver must have a unique name.
No driver may be registered more than once.
Device drivers cannot be unregistered.
All device driver functions must be implemented (even if one or more is ‘empty’).

Provided Device Drivers

Portable device drivers are provided for standard media categories:

RAM disk driver. The RAM disk driver supports using internal or external RAM as a storage medium.
SD/MMC driver. The SD/MMC driver supports SD, SD high-capacity and MMC cards, including micro and mini form factors. Either
cardmode and SPI mode can be used.
NAND driver. The NAND flash driver support parallel (typically ONFI-compliant) NAND flash devices.
NOR driver. The NOR flash driver support parallel (typically CFI-compliant) and serial (typically SPI) NOR flash devices.
MSC driver. The MSC (Mass Storage Class) driver supports USB host MSC devices (i.e., thumb drives or USB drives) via µC/USB-Host.

https://doc.micrium.com/pages/viewpage.action?pageId=12856941#FS_DIR_ENTRY(structfs_dirent)-title-text
https://doc.micrium.com/pages/viewpage.action?pageId=12856941#FS_DIR_ENTRY(structfs_dirent)-title-text

The table below summarizes the drivers, driver names and driver API structure names. If you require more information about a driver, please
consult the listed chapter.

Driver Driver Name Driver API Structure Name Reference

RAM disk “ram:” FSDev_RAM RAM Disk Driver

SD/MMC “sd:” / “sdcard:” FSDev_SD_SPI / FSDev_SD_Card SD/MMC Driver

NAND “nand:” FSDev_NAND NAND

NOR “nor:” FSDev_NOR NOR

MSC “msc:” FSDev_MSC MSC

Table - Device driver API structures

 If your medium is not supported by one of these drivers, a new driver can be written based on the template driver. The pageDevice Driver
describes how to do this.

Driver Characterization

Typical ROM requirements are summarized in the table below. The ROM data were collected on IAR EWARM v6.40 with high size optimization.

Driver ROM, Thumb Mode ROM, ARM Mode

RAM disk 0.4 kB 0.6 kB

SD/MMC CardMode* 3.9 kB 6.2 kB

SD/MMC SPI* 4.7 kB 7.3 kB

NOR*** 5.7 kB 9.1 kB

MSC** 0.6 kB 0.9 kB

Table - Driver ROM requirements

* Not including BSP
**Not including µC/USB
***Using the generic controller and software ECC, not including BSP

Typical RAM requirements are summarized in the table below.

Driver RAM (Overhead) RAM (Per Device)

MSC* 12 bytes 32 bytes

NOR*** 4 bytes --- bytes

RAM disk 4 bytes 24 bytes

SD/MMC CardMode 4 bytes 64 bytes

SD/MMC SPI 4 bytes 52 byte

Table - Driver RAM requirements

*Not including µC/USB
***See .NOR Driver and Device Characteristics

Performance can vary significantly as a result of CPU and hardware differences, both as well as file system format. All test were compiled using
IAR EWARM 6.40.1 using high speed optimization. The table below lists results for two general performance tests:

Read file test. Read a file in 4-kB and 64kB chunks. The time to open the file is included in the time.not
Write file test. Write a file in 4-kB and 64kB chunks. The time to open (create) the file is included in the time.not

Driver CPU Media Performance (kB/s)

4k Read

4k Write

64k Read

64k Write

https://doc.micrium.com/display/PORTSDRIVERS/NAND
https://doc.micrium.com/NOR_Flash_Driver.xhtml#ww1046405
https://doc.micrium.com/MSC_Driver.xhtml#ww1046405
https://doc.micrium.com/display/fsdoc/Device+Driver#DeviceDriver-text-title
https://doc.micrium.com/display/fsdoc/NOR+Driver+and+Device+Characteristics#NORDriverandDeviceCharacteristics-title-text

RAM Disk ST STM32F207IGH6

120Mhz

IS61WV102416BLL-10MLI

16Mbit 10-ns SRAM

16 622 kB/s

10 839 kB/s

31 186 kB/s

26 473 kB/s

RAM Disk Atmel AT91SAM9M10

400-Mhz

MT47H64M8CF-3-F DDR2 2x8bit 2 banks interleaved 27 478 kB/s

18 858 kB/s

96 866 kB/s

84 121 kB/s

SD/MMC CardMode ST STM32F207IGH6

120-MHz, 4-bit mode

Nokia 64 MB SMS064FF SD Card 5 333 kB/s

661 kB/s

8 595 kB/s

1 607 kB/s

SD/MMC SPI ST STM32F107VC

72-Mhz

Nokia 64 MB SMS064FF SD Card 947 kB/s

444 kB/s

1 010kB/s

793 kB/s

SD/MMC SPI ST STM32F107VC

72-MHz (w/CRC)

Nokia 64 MB SMS064FF SD Card 759 kB/s

388 kB/s

800 kB/s

655 kB/s

NAND Atmel AT91SAM9M10

400-Mhz

Micron MT29F2G08ABDHC 2Gb NAND flash 9 039 kB/s

1 950 kB/s

10 732 kB/s

4 332 kB/s

NAND (auto-sync) Atmel AT91SAM9M10

400-Mhz

Micron MT29F2G08ABDHC 2Gb NAND flash 9 039 kB/s

1 336 kB/s

10 732 kB/s

2 695 kB/s

NOR (parallel) ST STM32F103ZE

72-MHz

ST M29W128GL 16MB NOR flash 2 750 kB/s

158 kB/s

3 810 kB/s

310 kB/s

NOR (serial) ST STM32F103VE

72-MHz

ST M25P64 serial flash 691 kB/s

55 kB/s

---- kB/s

---- kB/s

MSC Atmel AT91SAM9M10

400-MHz

64-GB SanDisk Cruzer 613 kB/s

153 kB/s

2 301kB/s

883 kB/s

Table - Driver performance (file test)

Drivers Comparison

NAND flash is a low-cost on-board storage solution. Typically, NAND flash have a multiplexed bus for address and data, resulting in a much lower
pin count than parallel NOR devices. Their low price-per-bit and relatively high capacities often makes these preferable to NOR, though the higher
absolute cost (because the lowest-capacity devices are at least 128-Mb) reverses the logic for applications requiring very little storage.

FAT File System
Microsoft originally developed FAT (File Allocation Table) as a simple file system for diskettes and then hard disks. FAT originally ran on very
early, very small microcomputers, e.g., IBM PCs with 256 KB of memory. Windows, Mac OS, Linux, and many Unix-like systems also use FAT as
a file interchange format.

FAT was designed for magnetic disks, but today supports Flash memory and other storage devices.

µC/FS is an implementation of FAT that supports FAT12, FAT16, and FAT32. By default, µC/FS supports only short (8.3) file names. To enable
long file names (LFNs), you must set a configuration switch. By setting this switch, you agree to contact Microsoft to obtain a license to use LFNs.

Why Embedded Systems Use FAT

Since FAT’s inception, it has been extended multiple times to support larger disks as well as longer file names. However, it remains simple
enough for the most resource-constrained embedded system.

Because FAT is supported by all major operating systems, it still dominates the removable storage market. USB flash drives are embedded
systems, and most are formatted in FAT. Cameras, MP3 players, and other consumer electronics that depend on easy file transfer to and from
the device also normally use FAT. FAT is also widely used in embedded systems, especially ones that run on microcontrollers.

Organization of a FAT Volume

As shown in in the page a FAT volume (i.e., a logical disk) contains several :Figure - FAT volume layout Organization of a FAT Volume areas

1.

2.

3.

4.

Figure - FAT volume layout

Reserved area. The reserved area includes the boot sector, which contains basic format information, like the number of sectors in the
volume.
File allocation table area. The FAT file system is named after the file allocation table, a large table with one entry for each cluster in the
volume. This area must contain at least one FAT area; for redundancy, it may also contain one or more additional FAT areas.
Root directory area. FAT 12 and FAT 16 volumes contain a fixed amount of space for the root directory, In FAT32 volumes, there is no
area reserved for the root directory; the root directory is instead stored in a fixed location in the data area.
Data area. The data area contains files and directories. A (or) is a special type of file.directory folder

FAT supports only four attributes for its files and directories: Read-Only, Hidden, System, and Archive.

Organization of Directories and Directory Entries

In the FAT file system, directories are just special files, composed of 32-byte structures called directory entries. The topmost directory, the root
directory, is located using information in the boot sector.

The normal (short file name) entries in this directory and all other directories follow the format shown in figure below (long file names are
discussed a little further on in .Short and Long File Names

Figure - The entry for a file in a FAT directory
(1)

 is the 8-character short file name (SFN). Eight bytes.Filename

(2)
 is the three-character file name extension. Three bytesFile extension

(3)
 are the attributes of the entry, indicating whether it is a file or directory, writable or read-only and visible or hidden. One byte.File Attributes

(4)
 One byte.Reserved area.

(5)
 and is the fraction of the second of the date and time the file was created. One byte.Created Time (milliseconds)

(6)
 is the hour, minute, and second the file was created. Two bytes.Created Time

(7)
 is the day, month, and year the file was created. Two bytes.Created Date

(8)
 is the day, month, and year the file was last accessed. Two byte.Last Accessed Day

https://doc.micrium.com/display/fsdoc/Short+and+Long+File+Names#ShortandLongFileNames-text-title

(9)
. In FAT16, this field is used for extended attributes for some operating systems. In FAT32, this field contains the highExtended Attribute Index

two bytes of the cluster address. Two bytes.

(10)
 is hour, minute, and second when the file was last modified. Two bytes.Last Modified Time

(11)
 is the day, month, and year when the file was last modified. Two bytes.Last Modified Date

(12)
is the address of the first cluster allocated to the file (i.e., the first cluster that contains file data). In FAT16, this field contains theCluster address

entire cluster address. In FAT32, this field contains the low two bytes of the cluster address. Two bytes.

(13)
 is the size of the file, in octets. If the entry is a directory, this field is blank. Four bytes.File Size

Organization of the File Allocation Table

The File Allocation Table is a map of all the clusters that make up the data area of the volume. The FAT does not “know” the location of the first
cluster that has been allocated to a given file. It does not even know the name of any files. That information is stored in the directory.

As described in the section above, the directory entry for each file contains a value called a . This is a pointer to the first entry incluster address
the File Allocation Table for a given file. This FAT entry in turn points to the first cluster in the volume’s data area that has been allocated to the
file.

If the file has been allocated more than one cluster, then the FAT table entry will contain the address of the second cluster (which is also the index
number of the second cluster’s entry in the FAT table). The second cluster entry points to the third, and so forth. A FAT entry like this forms a
linked list commonly called a .cluster chain

 in the page illustrates the relationshipFigure - File Allocation Table and Directory Entry relationship Organization of the File Allocation Table
between the directory entry and the FAT.

Figure - File Allocation Table and Directory Entry relationship

In the figure above, the directory entry for a file points to the 40th entry in the FAT table. The 40th entry points to the 41st, the 41st to the 46th; the
46th is not a pointer, as the entry contains a special end-of-cluster-chain marker. This means that the 41st cluster is the final cluster allocated to
the file.

Other entries in the FAT area illustrated in the figure above are either not allocated to a file, or allocated to a file whose cluster chain is terminated
by the 43rd entry.

To summarize, a cluster’s entry in the File Allocation Table typically contains a pointer to the entry for the next cluster in a file’s cluster chain.

Other values that can be stored in a cluster’s entry in the FAT are special markers for:

End-of-cluster-chain: this cluster is the final cluster for a file.
Cluster-not-allocated (): no file is using this cluster.free cluster mark

Damaged-cluster: this cluster cannot be used.

NOTE: Updating the FAT table is time consuming, but updating it frequently is very important. If the FAT table gets out of sync with its files, files
and directories can become corrupted, resulting in the loss of data (see).Optional Journaling System

FAT12 / FAT16 / FAT32

The earliest version of FAT, the file system integrated into MS-DOS, is now called FAT12, so-called because each cluster address in the File
Allocation Table is 12 bits long. This limits disk size to approximately 32 MB. Extensions to 16- and 32-bit addresses (i.e., FAT16 and FAT32),
expand support to 2 GB and 8 TB, respectively (see in the page).Table - FAT 12/16/32 characteristics FAT12 / FAT16 / FAT32

FAT version Pointer size (Table entry size) Max. size of disk Free cluster marker Damaged cluster marker End of cluster chain marker

FAT12 12 bits 32 MB 0 0xff7 0xff8

FAT16 16 bits 2 GB 0 0xfff7 0xfff8

FAT32 32 bits 8 TB 0 0x0fff fff7 0x0fff fff8

Table - FAT 12/16/32 characteristics

In µC/FS, you can enable support for FAT12, FAT16 and FAT32 individually: this means that you can enable only the FAT version that you need
for your embedded system (see Appendix E, “C/FS Configuration”.

FAT32 introduced some innovations:

The root directory in the earlier systems was a fixed size; i.e., when the medium is formatted, the maximum number of files that could be
created in the root directory (typically 512) is set. In FAT32, the root directory is dynamically resizable, like all other directories.
Two special sectors have been added to the volume: the FS info sector and the backup boot sector. The former stores information
convenient to the operation of the host, such as the last used cluster. The latter is a copy of the first disk sector (the boot sector), in case
the original is corrupted.

Short and Long File Names

In the original version of FAT, files could only carry short “8 dot 3” names, with eight or fewer characters in the main name and three or fewer in its
extension. The valid characters in these names are letters, digits, characters with values greater than 0xFF and the following:

$ % ‘ - _ @ ~ ` ! () { } ^ # &

In µC/FS, the name passed by the application is always verified, both for invalid length and invalid characters. If valid, the name is converted to
upper case for storage in the directory entry. Accordingly, FAT file names are not case-sensitive.

Later, in a backwards-compatible extension, Microsoft introduced long file names (LFN). LFNs are limited to 255 characters stored as 16-bit
Unicode in long directory entries. Each LFN is stored with a short file name (SFN) created by truncating the LFN and attaching a numeric “tail” to
the original; this results in names like “file~1.txt”. In addition to the characters allowed in short file names (SFN), the following characters are
allowed in LFNs:

+ , ; = []

As described in section E-7 “FAT Configuration”, support for LFNs can be disabled, if desired. If LFNs are enabled, the application may choose to
specify file names in UTF-8 format, which will be converted to 16-bit Unicode for storage in directory entries. This option is available if FS_CFG_UT

 is (see).F8_EN DEF_ENABLED Feature Inclusion Configuration

Entries for files that have long file names

To allow FAT to support long file names, Microsoft devised the LFN directory entry, as shown in in the Figure - LFN directory entry Short and
 page.Long File Names

https://doc.micrium.com/display/fsdoc/Optional+Journaling+System#OptionalJournalingSystem-title-text
https://doc.micrium.com/display/fsdoc/Feature+Inclusion+Configuration#FeatureInclusionConfiguration-title-text

Figure - LFN directory entry

An LFN entry is essentially a workaround to store long file names in several contiguous 32-byte entries that were originally intended for short file
names.

A file with an LFN also has a SFN this is derived from the LFN. The last block of an LFN stores the SFN that corresponds to the LFN. The two or
more preceding blocks each store parts of the LFN. The figure above shows four “blocks”

The first block shows the names for the fields in an LFN entry; the actual LFN entry is shown in the next three blocks.
The middle two blocks show how FAT stores the LFN for a file named “abcdefghijklm.op” in two 32-byte FAT table entries.
The final block shows how FAT stores the SFN derived from the LFN. In this case, the SFN is “abcdef~1.op” Note that the “ ” of an 8.3.
filename is not actually stored.

The final 32 bytes for an LFN entry has the same fields as the 32-byte entry for (in this example) a file with a SFN of “abcdef~1.op”.
Accordingly, it is able to store, in addition to the file’s SFN, the properties (creation date and time, etc.) for file “abcdefghijklm.op”.

Together, the three blocks make up one LFN directory entry, in this case the LFN entry for file “abcdefghijklm.op”.

A long file name is stored in either two or three 32-bit entries of a directory table:

If three entries are needed to store the long file name, byte 0 of the entries carry of , and , respectively.order numbers 0x43 0x02 0x01
(Byte 0 is labelled “ ” in the figure above). None of these, are valid characters (which allows backward compatibility).Ord
If two entries are needed (as in figure above), byte 0 of the entries carry order numbers of and , respectively.0x43 0x01
In entries that store part of a LFN, byte 11, where the Attributes value is stored in a SFN, is always ; Microsoft found that no0x0F
software would modify or use a directory entry with this marker.
In entries that store part of a LFN, byte 13 contains the checksum, which is calculated from the SFN. FAT’s file system software
recalculates the checksum each time it parses the directory entries. If the stored checksum is not the same as the recalculated
checksum, FAT’s file system software knows that the SFN was modified (presumably by a program that is not LFN-aware).

Formatting

A volume, once it is open, may need to be formatted before files or directories can be created. The default format is selected by passing a NULL
pointer as the second parameter of . Alternatively, the exact properties of the file system can be configured with a FSVol_Fmt() FS_FAT_SYS_C

 structure. An example of populating and using the FAT configuration is shown in in the page. If theFG Listing - Example device format Formatting
configuration is invalid, an error will be returned from . For more information about the structure, see FSVol_Fmt() FS_FAT_SYS_CFG FS_FAT_

.SYS_CFG

https://doc.micrium.com/display/fsdoc/FS_FAT_SYS_CFG#FS_FAT_SYS_CFG-title-text
https://doc.micrium.com/display/fsdoc/FS_FAT_SYS_CFG#FS_FAT_SYS_CFG-title-text

void App_InitFS (void)
{
 FS_ERR err;
 FS_FAT_SYS_CFG fat_cfg;
 .
 .
 .
 fat_cfg.ClusSize = 4; /* Cluster size = 4 * 512-B
= 2-kB.*/
 fat_cfg.RsvdAreaSize = 1; /* Reserved area = 1 sector.
*/
 fat_cfg.RootDirEntryCnt = 512; /* Entries in root dir = 512.
*/
 fat_cfg.FAT_Type = 12; /* FAT type = FAT12.
*/
 fat_cfg.NbrFATs = 2; /* Number of FATs = 2.
*/
 FSVol_Fmt(“ram:0:”, &fat_cfg, &err);
 if (err != FS_ERR_NONE) {
 APP_TRACE_DEBUG((“Format failded.\r\n”));
 }
 .
 .
 .
}

Listing - Example device format

Types of Corruption in FAT Volumes

Errors can accrue on a FAT volume, either by device removal during file system modifications, power loss, or by improper host operation. Several
types of corruption are common:

Cross-linked files. If a single cluster becomes linked to two different files, then it is called “cross-linked.” The only way to resolve this is by
deleting both files; if necessary, they can be copied first so that the contents can be verified.
Orphaned directory entries. If LFNs are used, a single file name may span several directory entries. If a file deletion is interrupted, some
of these entiries may be left behind or “orphaned” to be deleted later.
Invalid cluster. The cluster specified in a directory entry or linked in a chain can become invalid. The only recourse is to zero the cluster (if
in a directory entry) or replace with end-of-cluster (if in a chain).
Chain length mismatch. Too many or too few clusters may be linked to a file, for its size. If too many, the extra clusters should be freed. If
too few, the file size should be adjusted.
Lost cluster. When a cluster is marked as allocated in the FAT, but is not linked to any file, it is considered lost. Optionally, lost cluster
chains may be recovered to a file.

Optional Journaling System

µC/FS’s FAT journaling module (optional feature) provides protection against unexpected power-failures that may occur during file system
operations.

Since cluster allocation information is stored separately from file data and meta data (directory entries), even file operations that make a simple
change to one file (e.g., adding data to the end of a file, updating data in place) are . An atomic operation is an operation that will eithernon-atomic
complete or not happen at all, but never halfway in between.

The repercussions of this can be innocuous – wasted disk space, for example – or very serious – corrupted directories, corrupted files, and data
loss.

In order to prevent such corruption, you can use µC/FS’s optional journaling module.

What Journaling Guarantees

In short, journaling guarantees file system consistency. Journaling prevents the directory hierarchy, file names, file metadata and cluster allocation
information from becoming corrupted in case of an untimely interruption (such as a power failure or application crash). However, while journaling
protects the integrity of the file system, it does not necessarily protect your data integrity (i.e., the file contents). For example, if the application
crashes while a write operation is being performed, the data could end up only partially written on the media (see).Journaling API level atomicity

How Journaling Works

https://doc.micrium.com/display/fsdoc/Limitations+of+Journaling#LimitationsofJournaling-JournalingandAPIlevelatomicity

1.
2.
3.

1.
2.

3.

1.
2.

In order to understand how the journaling module works, you should first understand how API-level operations relate to the underlying FAT layer
operations. As seen in in the page, an API level operation isFigure - Relation between API and FAT layer operations How Journaling Works
made of one or more top-level FAT operations which, in turn, are made of one or more low-level FAT operations.

Figure - Relation between API and FAT layer operations

Take a file rename operation, for example. The API-level rename operation involves one top-level FAT rename operation and the following
low-level FAT sub-operations:

Create a directory entry that accommodates the new file name.
Update the newly created directory entry so that it reflects the original one.
Remove the original directory entry.

Without journaling, a failure occurring during the rename operation can leave the file system in any of the following corrupted states:

The original directory entry is intact but orphaned LFN entries remain due to a partial directory entry creation.
The new directory entry now exists (creation has been completed) but orphaned LFN entries remain due to an uncompleted original
directory entry deletion.
Two directory entries (both pointing to the same data) now exist: one containing the original name and another one containing the new
name.

Using the journaling module, any of the previous corrupted states would be either rolled back or completed upon volume remounting. This is
made possible because, prior to performing any low-level FAT operation, the journaling system logs recovery information in a special file called
the journal file. By reverting or completing successive underlying low-level FAT operations, the journaling module also allows top-level FAT
operations to be reverted or completed, thus making them atomic (see). In our previous example, the journaledOptional Journaling System
rename operation could only have on of the two following outcomes:

The original directory entry is intact and everything appears as if nothing had happened.
The new directory entry has been created and the original one has been completely deleted, so that the file has been cleanly renamed.

How To Use Journaling

The journaling system can be started on a per-volume basis, by calling followed by (afterFS_FAT_JournalOpen() FS_FAT_JournalStart()
the volume has been mounted but prior to any file system modifications). Likewise, the journal can be stopped with anFS_FAT_JournalStop()
d closed with . It is important to note that the journaling module should not be stopped unless you want to unmount aFS_FAT_JournalClose()
journaled volume. Likewise, the journaling module should be started as soon as the volume is mounted. If any modifications were to be made on
the file system after the journaling module has been stopped or before it has been started, the file system could become corrupted.

Limitations of Journaling

When properly used, the journaling system provides reliable protection for the file system metadata. To ensure proper operation, though, you
should understand certain limitations, and follow the corresponding recommendations. A failure to observe these recommendations could spoil
the benefits of using the journaling system and lead to file system corruption.

Journaling and cached FILE access mode

FS_FILE_ACCESS_MODE_CACHED should be avoided on a journaled volume. Using the file access modeFS_FILE_ACCESS_MODE_CACHED
prevents the journaling module from effectively ensuring file meta data consistency since it might lead to a mismatch between the file’s size and
its allocated storage space, resulting in a waste of storage space.

Journaling and FAT16/32 removable media

The journaling module recovery process is based on the assumption that the file system has not been modified since the failure occurred.
Therefore, mounting a journaled volume on a host (including accesses through USB Mass Storage Class) should be avoided as much as
possible. If it must be done, you must first make sure that the volume has been cleanly unmounted from the embedded host.

https://doc.micrium.com/display/fsdoc/Optional+Journaling+System#OptionalJournalingSystem-title-text

Journaling and FAT12 removable media

It is strongly discouraged to mount a FAT12 journaled volume on another host. It is important to note that, unlike the FAT16 and FAT32 cases, it
is not enough to cleanly unmount the volume on the embedded host to ensure proper journaling module behavior.

Journaling and cache

Since they do not affect disk write operations, read cache () and write-through cache ()FS_VOL_CACHE_MODE_RD FS_VOL_CACHE_WR_THROUGH
can be safely used along with journaling. However, the combination of write-back cache () and journaling should beFS_VOL_CACHE_WR_BACK
avoided at all cost.

Journaling and API level atomicity

While the journaling system does provide top-level FAT layer operation atomicity, it does not necessarily provide API-level operation atomicity.
Most of the time, one API-level file system operation will result in a single top-level FAT operation being performed (see).How Journaling Works
In that case, the API-level operation is guaranteed to be atomic. For instance, a call to will result in a single FAT renameFSEntry_Rename()
operation being performed (assuming that renaming is not cross-volume). Therefore, the API-level rename operation is guaranteed to be atomic.
On the other hand, a call to will likely result in many successive top-level FAT operations being performed. Therefore, theFSFile_Truncate()
API-level truncate operation is not guaranteed to be atomic. Non-atomic API level operations, along with the possible interruption side effects, are
listed in in the page.Table - Non-atomic API level operations Limitations of Journaling

API level
operation

API level function Possible interruption side effects

Entry copy FSEntry_Copy() or FSEntry_Rename() with
the destination being on a different volume than
source.

The destination file size could end up being less than the source file size.

File write

(data
appending)

FSFile_FileWr() with file buffers enabled. The file size could be changed to any value between the original file size and
the new file size.

File write

(data
overwriting)

FSFile_FileWr() with or without file buffers. If existing data contained in a file is overwritten with new data, data at
overwritten locations could end up corrupted.

File
extension

FSFile_Truncate() or FSFile_PosSet()
with position set beyond file size.

The file size could be changed to any value between the original file size and
the new file size. Also, unwritten file space could contain uninitialized on-disk
data.

Table - Non-atomic API level operations

Journaling and device drivers

Data can be lost in case of unexpected reset or power-failure in either the File System Layer or in the Device Driver Layer. Your entire system is
fail-safe only if layers are fail-safe. The journaling add-on makes the file system layer fail-safe. Some of µC/FS’s device drivers areboth
guaranteed to provide fail-safe sector operations. It is the case of the NOR and NAND flash drivers. For other drivers, the fail-safety of the sector
operations depends on the underlying hardware.

Licensing Issues

There are licensing issues related to FAT, particularly relating to Microsoft patents that deal with long file names (LFNs).

Licences for Long File Names (LFNs)

Microsoft announced on 2003-12-03 that it would be offering licenses for use of its FAT specification and "associated intellectual property". The
royalty for using LFNs is US $0.25 royalty per unit sold, with a maximum of US $250,000 per license agreement.

Micrium µC/FS is delivered with complete source code for FAT; this includes source code for LFNs. To enable long file names (LFNs), you must
set a configuration switch. By setting this switch, you agree to contact Microsoft to obtain a license to use LFNs.

Extended File Allocation Table (exFAT)

Microsoft has developed a new, proprietary file system: exFAT, also known as FAT64. exFAT was designed to handle very large storage media.
Microsoft requires a license to make or distribute implementations of exFAT.

Micrium does not offer exFAT in µC/FS at this time.

RAM Disk Driver

https://doc.micrium.com/display/fsdoc/How+Journaling+Works#HowJournalingWorks-title-

The simplest device driver is the RAM disk driver, which uses a block of memory (internal or external) as a storage medium.

Files and Directories - RAM Disk

The files inside the RAM disk driver directory are outlined in this section; the generic file-system files, outlined in , areµC/FS Directories and Files
also required.

\Micrium\Software\uC-FS\Dev

This directory contains device-specific files.

\Micrium\Software\uC-FS\Dev\RAMDisk

This directory contains the RAM disk driver files.

fs_dev_ramdisk.* constitute the RAM disk device driver.

Using the RAM Disk Driver

To use the RAM disk driver, two files, in addition to the generic FS files, must be included in the build:

fs_dev_ramdisk.c.
fs_dev_ramdisk.h.

The file must also be #included in any application or header files that directly reference the driver (for example, byfs_dev_ramdisk.h
registering the device driver). The following directory must be on the project include path:

\Micrium\Software\uC-FS\Dev\RAMDisk

A single RAM disk is opened as shown in in the page. The file systemListing - Opening a RAM disk volume Using the RAM Disk Driver
initialization () function must have previously been called.FS_Init()

ROM/RAM characteristics and performance benchmarks of the RAM disk driver can be found in . For more informationDriver Characterization
about the structure, see .FS_DEV_RAM_CFG FS_DEV_RAM_CFG

#define APP_CFG_FS_RAM_SEC_SIZE 512 (1)
#define APP_CFG_FS_RAM_NBR_SECS (48 * 1024)
static CPU_INT32U App_FS_RAM_Disk[APP_CFG_FS_RAM_SEC_SIZE * APP_CFG_FS_RAM_NBR_SECS
/ 4];
CPU_BOOLEAN App_FS_AddRAM (void)
{
 FS_ERR err;
 FS_DEV_RAM_CFG cfg;
 FS_DevDrvAdd((FS_DEV_API *)&FSDev_RAM, (2)
 (FS_ERR *)&err);
 if ((err != FS_ERR_NONE) && (err != FS_ERR_DEV_DRV_ALREADY_ADDED)) {
 return (DEF_FAIL);
 }
 ram_cfg.SecSize = APP_CFG_FS_RAM_SEC_SIZE; (3)
 ram_cfg.Size = APP_CFG_FS_RAM_NBR_SECS;
 ram_cfg.DiskPtr = (void *)&App_FS_RAM_Disk[0];

 (4)
 FSDev_Open((CPU_CHAR *)“ram:0:”, (a)
 (void *)&ram_cfg, (b)
 (FS_ERR *)&err);
 if (err != FS_ERR_NONE) {
 return (DEF_FAIL);
 }
 (5)
 FSVol_Open((CPU_CHAR *)“ram:0:”, (a)
 (CPU_CHAR *)“ram:0:”, (b)
 (FS_PARTITION_NBR) 0, (c)
 (FS_ERR *)&err);

 switch (err) {
 case FS_ERR_NONE:
 APP_TRACE_DBG((" ...opened volume (mounted).\r\n"));
 break;
 case FS_ERR_PARTITION_NOT_FOUND: /* Volume error. */
 APP_TRACE_DBG((" ...opened device (not formatted).\r\n"));

 FSVol_Fmt("ram:0:", (void *)0, &err); (6)
 if (err != FS_ERR_NONE) {
 APP_TRACE_DBG((" ...format failed.\r\n"));
 return (DEF_FAIL);
 }
 break;
 default: /* Device error. */
 APP_TRACE_DBG((" ...opening volume failed w/err = %d.\r\n\r\n", err));
 return (DEF_FAIL);
 }
 return (DEF_OK);
}

Listing - Opening a RAM disk volume
(1)
The sector size and number of sectors in the RAM disk must be defined. The sector size should be 512, 1024, 2048 or 4096; the number of
sectors will be determined by your application requirements. This defines a 24-MB RAM disk (49152 512-B sectors). On most CPUs, it is
beneficial to 32-bit align the RAM disk, since this will speed up access.

(2)
Register the RAM disk driver .FSDev_RAM

(3)
The RAM disk parameters—sector size, size (in sectors) and pointer to the disk—should be assigned to a structure.FS_DEV_RAM_CFG

(4)
 opens/initializes a file system device. The parameters are the device nameFSDev_Open()

(4a)
and a pointer to a device driver-specific configuration structure
(4b)
. The device name
(4a)
is composed of a device driver name (“ram”), a single colon, an ASCII-formatted integer (the unit number) and another colon.

(5)
 opens/mounts a volume. The parameters are the volume nameFSVol_Open()

(5a)
, the device name
(5b)
and the partition that will be opened
(5c)
. There is no restriction on the volume name
(5a)
; however, it is typical to give the volume the same name as the underlying device. If the default partition is to be opened, or if the device is not
partition, then the partition number
(5c)
should be zero.

(6)
 formats a file system volume. If the RAM disk is in volatile RAM, it have no file system on it after it is opened (it will beFSVol_Fmt()

unformatted) and must be formatted before a volume on it is opened.

If the RAM disk initialization succeeds, the file system will produce the trace output as shown in in theFigure - RAM disk initialization trace output
 page (if a sufficiently high trace level is configured). See about configuring the trace level.Using the RAM Disk Driver Trace Configuration

Figure - RAM disk initialization trace output

SD/MMC Drivers
SD (Secure Digital) cards and MMCs (MultiMedia Cards) are portable, low-cost media often used for storage in consumer devices. Six variants,
as shown in in the page, are widely available to electronic retail outlets, all supported by SD/MMCTable - SD/MMC devices SD/MMC Drivers
driver. The MMCplus and SD or SDHC are offered in compatible large card formats. Adapters are offered for the remaining devices so that these
can fit in standard SD/MMC card slots.

Two further products incorporating SD/MMC technology are emerging. First, some cards now integrate both USB and SD/MMC connectivity, for

increased ease-of-access in both PCs and embedded devices. The second are embedded MMC (trademarked eMMC), fixed flash-based media
addressed like MMC cards.

Card Size Pin Count Description

MMCPlus 32 x 24 x 1.4 mm 13 Most current MMC cards can operate with 1, 4 or 8 data lines,
though legacy media were limited to a single data line. The
maximum clock frequency is 20 MHz, providing for maximum
theoretical transfer speeds of 20 MB/s, 80 MB/s and 160 MB/s
for the three possible bus widths.

MMCmobile 18 x 24 x 1.4
mm

13

MMCmicro 14 x 12 x 1.1
mm

13

SD or
SDHC

32 x 24 x 1.4
mm

9 SD cards can operate in cardmode with 1 or 4 data lines or in
SPI mode. The maximum clock frequency is 25 MHz, providing
for maximum theoretical transfer speeds of 25 MHz and 50
MHz for the two possible bus widths.

SDmini 21.5 x 20 x 1.4
mm

11

SDmicro 15 x 11 x 1.0
mm

8

Table - SD/MMC devices

SD/MMC cards can be used in two modes: (also referred to as MMC mode and SD mode) and . The former offers up to 8card mode SPI mode
data lines (depending on the type of card); the latter, only one data line, but the accessibility of a communication bus common on many
MCUs/MPUs. Because these modes involve different command protocols, they require different drivers.

Files and Directories - SD/MMC

The files inside the SD/MMC driver directory is outlined in this section; the generic file-system files, outlined in , areµC/FS Directories and Files
also required.

\Micrium\Software\uC-FS\Dev

This directory contains device-specific files.

\Micrium\Software\uC-FS\Dev\SD

This directory contains the SD/MMC driver files.

fs_dev_sd.* contain functions and definitions required for both SPI and card modes.

\Micrium\Software\uC-FS\Dev\SD\Card

This directory contains the SD/MMC driver files for card mode.

fs_dev_sd_card.* are device driver for SD/MMC cards using card mode. This file requires a set of BSP functions be defined in a
file named to work with a certain hardware setup.fs_dev_sd_card_bsp.c

.\BSP\Template\fs_dev_sd_card_bsp.c is a template BSP. See section C-5 “SD/MMC Cardmode BSP” for more information.

\Micrium\Software\uC-FS\Dev\SD\SPI

This directory contains the SD/MMC driver files for SPI mode.

fs_dev_sd_spi.* are device driver for SD/MMC cards using SPI mode. This file requires a set of BSP functions be defined in a file
named to work with a certain hardware setup.fs_dev_sd_spi_bsp.c

.\BSP\Template\fs_dev_sd_spi_bsp.c is a template BSP. See section C-6 “SD/MMC SPI mode BSP” for more information.

.\BSP\Template (GPIO)\fs_dev_sd_spi_bsp.c is a template GPIO (bit-banging) BSP. See section C-6 “SD/MMC SPI mode
BSP” for more information.

\Micrium\Software\uC-FS\Examples\BSP\Dev\SD\Card

Each subdirectory contains an example BSP for a particular platform. These are named according to the following rubric:

<Chip Manufacturer>\<Board or CPU>\fs_dev_sd_card_bsp.c

\Micrium\Software\uC-FS\Examples\BSP\Dev\SD\SPI

Each subdirectory contains an example BSP for a particular platform. These are named according to the following rubric:

<Chip Manufacturer>\<Board or CPU>\fs_dev_sd_spi_bsp.c

Using the SD/MMC CardMode Driver

To use the SD/MMC cardmode driver, five files, in addition to the generic file system files, must be included in the build:

fs_dev_sd.c.
fs_dev_sd.h.
fs_dev_sd_card.c.
fs_dev_sd_card.h.

fs_dev_sd_card_bsp.c.

The file must also be #included in any application or header files that directly reference the driver (for example, byfs_dev_sd_card.h
registering the device driver). The following directories must be on the project include path:

\Micrium\Software\uC-FS\Dev\SD
\Micrium\Software\uC-FS\Dev\SD\Card

A single SD/MMC volume is opened as shown in in the page.Listing - Opening a SD/MMC device volume Using the SD/MMC CardMode Driver
The file system initialization () function must have previously been called.FS_Init()

ROM/RAM characteristics and performance benchmarks of the SD/MMC driver can be found in . The SD/MMC driver alsoDriver Characterization
provides interface functions to get low-level card information and read the Card ID and Card-Specific Data registers (see FAT System Driver

).Functions

CPU_BOOLEAN App_FS_AddSD_Card (void)
{
 FS_ERR err;

 FS_DevDrvAdd((FS_DEV_API *)&FSDev_SD_Card, (1)
 (FS_ERR *)&err);
 if ((err != FS_ERR_NONE) && (err != FS_ERR_DEV_DRV_ALREADY_ADDED)) {
 return (DEF_FAIL);
 }
 (2)
 FSDev_Open((CPU_CHAR *)“sdcard:0:”, (a)
 (void *) 0, (b)
 (FS_ERR *)&err);

 switch (err) {
 case FS_ERR_NONE:
 break;

 case FS_ERR_DEV:
 case FS_ERR_DEV_IO:
 case FS_ERR_DEV_TIMEOUT:
 case FS_ERR_DEV_NOT_PRESENT:
 return (DEF_FAIL);
 default:
 return (DEF_FAIL);
 }
 (3)
 FSVol_Open((CPU_CHAR *)“sdcard:0:”, (a)
 (CPU_CHAR *)“sdcard:0:”, (b)
 (FS_PARTITION_NBR) 0, (c)
 (FS_ERR *)&err);

 switch (err) {
 case FS_ERR_NONE:
 APP_TRACE_DBG((" ...opened volume (mounted).\r\n"));
 break;
 case FS_ERR_DEV:
 case FS_ERR_DEV_IO:
 case FS_ERR_DEV_TIMEOUT:
 case FS_ERR_DEV_NOT_PRESENT:
 case FS_ERR_PARTITION_NOT_FOUND:
 APP_TRACE_DBG((" ...opened device (unmounted).\r\n"));
 return (DEF_FAIL);
 default:
 APP_TRACE_DBG((" ...opening volume failed w/err = %d.\r\n\r\n", err));
 return (DEF_FAIL);
 }
 return (DEF_OK);
}

Listing - Opening a SD/MMC device volume
(1)
Register the SD/MMC CardMode device driver .FSDev_SD_Card

(2)
 opens/initializes a file system device. The parameters are the device nameFSDev_Open()

(1a)
and a pointer to a device driver-specific configuration structure

(1b)
. The device name
(1a)
is composed of a device driver name (“sdcard”), a single colon, an ASCII-formatted integer (the unit number) and another colon. Since the
SD/MMC CardMode driver requires no configuration, the configuration structure
(1b)
should be passed a NULL pointer.

Since SD/MMC are often removable media, it is possible for the device to not be present when is called. The device will still beFSDev_Open()
added to the file system and a volume opened on the (not yet present) device. When the volume is later accessed, the file system will attempt to
refresh the device information and detect a file system (see for more information).Using Devices

(3)
 opens/mounts a volume. The parameters are the volume nameFSVol_Open()

(3a)
, the device name
(3b)
and the partition that will be opened
(3c)
. There is no restriction on the volume name
(3a)
; however, it is typical to give the volume the same name as the underlying device. If the default partition is to be opened, or if the device is not
partitioned, then the partition number
(3c)
should be zero.

If the SD/MMC initialization succeeds, the file system will produce the trace output as shown in in the Figure - SD/MMC detection trace output Usi
 page (if a sufficiently high trace level is configured). See about configuring the trace level.ng the SD/MMC CardMode Driver Trace Configuration

Figure - SD/MMC detection trace output

SD/MMC CardMode Communication

In card mode, seven, nine or thirteen pins on the SD/MMC device are used, with the functions listed in the table below. All cards start up in “1 bit”
mode (upon entering identification mode), which involves only a single data line. Once the host (the MCU/MPU) discovers the capabilities of the
card, it may initiate 4- or 8-bit communication (the latter available only on new MMCs). Some card holders contain circuitry for card detect and
write protect indicators, which the MCU/MPU may also monitor.

Pin Name Type Description

1 CD/DAT3 I/O Card Detect/Data Line (Bit 3)

2 CMD I/O Command/Response

3 Vss1 S Supply voltage ground

4 VDD S Supply voltage

5 CLK I Clock

6 VSS2 S Supply voltage ground

7 DAT0 I/O Data Line (Bit 0)

8 DAT1 I/O Data Line (Bit 1)

9 DAT2 I/O Data Line (Bit 2)

10 DAT4 I/O Data Line (Bit 4)*

11 DAT5 I/O Data Line (Bit 5)*

12 DAT6 I/O Data Line (Bit 6)*

13 DAT7 I/O Data Line (Bit 7)*

*Only present in MMC cards.
Table - SD/MMC pinout (Card mode)

Exchanges between the host and card begin with a command (sent by the host on the CMD line), often followed by a response from the card
(also on the CMD line); finally, one or more blocks data may be sent in one direction (on the data line(s)), each appended with a CRC.

Figure - SD/MMC communication sequence
(1)
When no data is being transmitted, data lines are held low.

(2)
Data block is preceded by a start bit (‘0’); an end bit (‘1’) follows the CRC.

(3)
The CRC is the 16-bit CCITT CRC.

(4)
During the busy signaling following a write, DAT0 only is held low.

(5)
See in the page for description of the command format.Figure - SD/MMC command and response formats SD/MMC CardMode Communication

(6)
See in the page for description of the command format.Figure - SD/MMC command and response formats SD/MMC CardMode Communication

Figure - SD/MMC command and response formats
(1)
Command index is not valid for response formats R2 and R3.

(2)
CRC is not valid for response format R3.

When a card is first connected to the host (at card power-on), it is in the ‘inactive’ state, awaiting a command to start theGO_IDLE_STATE
initialization process, which is dependent on the card type. During initialization, the card starting in the ‘idle’ state moves through the ‘ready’ (as
long as it supports the voltage range specified by the host) and ‘identification’ states (if it is assigned an address by or is assigned an address)
before ending up in ‘standby’. It can now get selected by the host for data transfers. Figure - Simplified SD/MMC cardmode initialization and state

 in the page flowcharts this procedure.transitions SD/MMC CardMode Communication Debugging

SD/MMC CardMode Communication Debugging

The SD/MMC cardmode driver accesses the hardware through a port (BSP). A new BSP developed according to MCU/MPU documentation or by
example must be verified step-by-step until flawless operation is achieved:

1 Initialization (1-bit). Initialization must succeed for a SD/MMC card in 1-bit mode.
2 Initialization (4- or 8-bit). Initialization must succeed for a SD/MMC card in 4 or 8-bit mode.
3 Read data. Data must be read from card, in both single- and multiple-block transactions.
4 Write data. Data must be written to the card, in both single and multiple-block transactions, and subsequently verified (by reading the
modified sectors and comparing to the intended contents).

The (1-bit) initialization process reveals that commands can be executed and responses are returned with the proper bits in the correct byte-order.
Example responses for each step in the sequence are given in in the Figure - Command responses (SD card) SD/MMC CardMode

 page and in the page.Communication Debugging Figure - Command responses (MMC card) SD/MMC CardMode Communication Debugging
The first command executed, , never receives a response from the card. Only V2 SD cards respond to ,GO_IDLE_STATE SEND_IF_COND
returning the check pattern sent to the card and the accepted voltage range. The OCR register, read with or SD_SEND_OP_COND SEND_OP_COND
, assumes basically the same format for all card types. Finally, the CID (card ID) and CSD (card-specific data) registers are read—the only times
‘long’ (132-bit) responses are returned.

Multiple-bit initialization (often 4-bit) when performed on a SD card further confirms that the 8-byte SCR register and 64-byte SD status can be
read and that the bus width can be set in the BSP. Though all current cards support 4-bit mode operation, the field of the SCRSD_BUS_WIDTHS
is checked before configure the card bus width. Afterwards, the 64-byte SD status is read to see whether the bus width change was
accomplished. When first debugging a port, it may be best to force multi-bit operation disabled by returning 1 from the BSP function FSDev_SD_C

.ard_BSP_GetBusWidthMax()

https://doc.micrium.com/pages/viewpage.action?pageId=12855791#SD/MMCCardModeCommunicationDebugging-Figure-SimplifiedSD/MMCcardmodeinitializationandstatetransitions
https://doc.micrium.com/pages/viewpage.action?pageId=12855791#SD/MMCCardModeCommunicationDebugging-Figure-SimplifiedSD/MMCcardmodeinitializationandstatetransitions

Figure - Simplified SD/MMC cardmode initialization and state transitions

Figure - Command responses (SD card)

Figure - Command responses (MMC card)

Figure - SD SCR register

Figure - SD status

SD/MMC CardMode BSP Overview

A BSP is required so that the SD/MMC cardmode driver will work on a particular system. The functions shown in the table below must be
implemented. Pleaser refer to for the details about implementing your own BSP.SD/MMC Cardmode BSP

Function Description

FSDev_SD_Card_BSP_Open() Open (initialize) SD/MMC card interface.

FSDev_SD_Card_BSP_Close() Close (uninitialize) SD/MMC card interface.

FSDev_SD_Card_BSP_Lock() Acquire SD/MMC card bus lock.

FSDev_SD_Card_BSP_Unlock() Release SD/MMC card bus lock.

FSDev_SD_Card_BSP_CmdStart() Start a command.

FSDev_SD_Card_BSP_CmdWaitEnd() Wait for a command to end and get response.

FSDev_SD_Card_BSP_CmdDataRd() Read data following command.

FSDev_SD_Card_BSP_CmdDataWr() Write data following command.

FSDev_SD_Card_BSP_GetBlkCntMax() Get max block count.

FSDev_SD_Card_BSP_GetBusWidthMax() Get maximum bus width, in bits.

FSDev_SD_Card_BSP_SetBusWidth() Set bus width.

FSDev_SD_Card_BSP_SetClkFreq() Set clock frequency.

FSDev_SD_Card_BSP_SetTimeoutData() Set data timeout.

FSDev_SD_Card_BSP_SetTimeoutResp() Set response timeout

Table - SD/MMC cardmode BSP functions

The / functions are called upon open/close or medium change; these calls are always matched. The status and informationOpen() Close()
functions (, , , , ,) helpGetBlkCntMax() GetBusWidthMax() SetBusWidth() SetClkFreq() SetTimeoutData() SetTimeoutResp()
configure the new card upon insertion. and surround all card accesses.Lock() Unlock()

The remaining functions (, , ,) constitute the command execution state machine (see CmdStart() CmdWaitEnd() CmdDataRd() CmdDataWr()
 in the page). A return error from one of the functions will abort the stateFigure - Command execution SD/MMC CardMode BSP Overview

machine, so the requisite considerations, such as preparing for the next command or preventing further interrupts, must be first handled.

Figure - Command execution

Using the SD/MMC SPI Driver

To use the SD/MMC SPI driver, five files, in addition to the generic file system files, must be included in the build:

fs_dev_sd.c
fs_dev_sd.h
fs_dev_sd_spi.c
fs_dev_sd_spi.h
fs_dev_sd_spi_bsp.c

The file must also be #included in any application or header files that directly reference the driver (for example, by registeringfs_dev_sd_spi.h
the device driver). The following directories must be on the project include path:

\Micrium\Software\uC-FS\Dev\SD
\Micrium\Software\uC-FS\Dev\SD\SPI

A single SD/MMC volume is opened as shown in in the paListing - Opening a SD/MMC device volume (SPI mode) Using the SD/MMC SPI Driver
ge. The file system initialization () function must have previously been called.FS_Init()

ROM/RAM characteristics and performance benchmarks of the SD/MMC driver can be found in . The SD/MMC driver alsoDriver Characterization
provides interface functions to get low-level card information and read the Card ID and Card-Specific Data registers (see FAT System Driver

).Functions

FS_ERR App_FS_AddSD_SPI (void)
{
 FS_ERR err;

 FS_DevDrvAdd((FS_DEV_API *)&FSDev_SD_SPI, (1)
 (FS_ERR *)&err);
 if ((err != FS_ERR_NONE) && (err != FS_ERR_DEV_DRV_ALREADY_ADDED)) {
 return (DEF_FAIL);
 }
 (2)
 FSDev_Open((CPU_CHAR *)“sd:0:”, (a)
 (void *) 0, (b)
 (FS_ERR *)&err);

 switch (err) {
 case FS_ERR_NONE:
 break;

 case FS_ERR_DEV:
 case FS_ERR_DEV_IO:
 case FS_ERR_DEV_TIMEOUT:
 case FS_ERR_DEV_NOT_PRESENT:
 return (DEF_FAIL);
 default:
 return (DEF_FAIL);
 }
 (3)
 FSVol_Open((CPU_CHAR *)“sd:0:”, (a)
 (CPU_CHAR *)“sd:0:”, (b)
 (FS_PARTITION_NBR) 0, (c)
 (FS_ERR *)&err);
 switch (err) {
 case FS_ERR_NONE:
 APP_TRACE_DBG((" ...opened volume (mounted).\r\n"));
 break;
 case FS_ERR_DEV:
 case FS_ERR_DEV_IO:
 case FS_ERR_DEV_TIMEOUT:
 case FS_ERR_DEV_NOT_PRESENT:
 case FS_ERR_PARTITION_NOT_FOUND:
 APP_TRACE_DBG((" ...opened device (unmounted).\r\n"));
 return (DEF_FAIL);
 default:
 APP_TRACE_DBG((" ...opening volume failed w/err = %d.\r\n\r\n", err));
 return (DEF_FAIL);
 }
 return (DEF_OK);
}

Listing - Opening a SD/MMC device volume (SPI mode)
(1)
Register the SD/MMC SPI device driver .FSDev_SD_SPI

(2)
 opens/initializes a file system device. The parameters are the device nameFSDev_Open()

(1a)
and a pointer to a device driver-specific configuration structure
(1b)

. The device name
(1a)
is composed of a device driver name (“sd”), a single colon, an ASCII-formatted integer (the unit number) and another colon. Since the SD/MMC
SPI driver requires no configuration, the configuration structure
(1b)
should be passed a NULL pointer.

Since SD/MMC are often removable media, it is possible for the device to not be present when is called. The device will still beFSDev_Open()
added to the file system and a volume opened on the (not yet present) device. When the volume is later accessed, the file system will attempt to
refresh the device information and detect a file system (see Using Devices for more information).

(3)
 opens/mounts a volume. The parameters are the volume nameFSVol_Open()

(3a)
, the device name
(3b)
and the partition that will be opened
(3c)
. There is no restriction on the volume name
(3a)
; however, it is typical to give the volume the same name as the underlying device. If the default partition is to be opened, or if the device is not
partition, then the partition number
(3c)
should be zero.

If the SD/MMC initialization succeeds, the file system will produce the trace output as shown in in the Figure - SD/MMC detection trace output Usi
 page (if a sufficiently high trace level is configured). See about configuring the trace level.ng the SD/MMC SPI Driver Trace Configuration

Figure - SD/MMC detection trace output

SD/MMC SPI Communication

SPI is a simple protocol supported by peripherals commonly built-in on CPUs. Moreover, since the communication can easily be accomplished by
software control of GPIO pins (“software SPI” or “bit-banging”), a SD/MMC card can be connected to almost any platform. In SPI mode, seven
pins on the SD/MMC device are used, with the functions listed in in the page.Table - SD/MMC pinout (SPI mode) SD/MMC SPI Communication
As with any SPI device, four signals are used to communicate with the host (CS, DataIn, CLK and DataOut). Some card holders contain circuitry
for card detect and write protect indicators, which the MCU/MPU may also monitor.

Pin Name Type Description

1 CS I Chip Select

2 DataIn I Host-to-card commands and data

3 Vss1 S Supply voltage ground

4 VDD S Supply voltage

https://doc.micrium.com/Using_Devices.xhtml#ww1046535

5 CLK I Clock

6 VSS2 S Supply voltage ground

7 DataOut O Card-to-host data and status

Table - SD/MMC pinout (SPI mode)

The four signals connecting the host (or master) and card (also known as the slave) are named variously in different manuals and documents.
The DataIn pin of the card is also known as MOSI (Master Out Slave In); it is the data output of the host CPU. Similarly, the DataOut pin of the
card is also known as MISO (Master In Slave Out); it is the data input of the host CPU. The CS and CLK pins (also known as SSEL and SCK) are
the chip select and clock pins. The host selects the slave by asserting CS, potentially allowing it to choose a single peripheral among several that
are sharing the bus (i.e., by sharing the CLK, MOSI and MISO signals).

When a card is first connected to the host (at card power-on), it is in the ‘inactive’ state, awaiting a command to start theGO_IDLE_STATE
initialization process. The card will enter SPI mode (rather than card mode) because the driver holds the CS signal low while executing the GO_ID

 command. The card now in the ‘idle’ state moves through the ‘ready’ (as long as it supports the voltage range specified by the host)LE_STATE
before ending up in ‘standby’. It can now get selected by the host (using the chip select) for data transfers. Figure - Simplified SD/MMC SPI mode

 in the page flowcharts this procedure.initialization and state transitions SD/MMC SPI Communication Debugging

SD/MMC SPI Communication Debugging

The SD/MMC SPI driver accesses the hardware through a port (SPI BSP) as described in . A new BSP developedSD/MMC SPI Mode BSP
according to MCU/MPU documentation or by example must be verified step-by-step until flawless operation is achieved:

1 Initialization. Initialization must succeed.
2 Read data. Data must be read from card, in both single- and multiple-block transactions.
3 Write data. Data must be written to the card, in both single and multiple-block transactions, and subsequently verified (by reading the
modified sectors and comparing to the intended contents).

Figure - SD/MMC SPI mode communication sequence
(1)
When no data is being transmitted, DataOut line is held high.

(2)
During busy signaling, DataOut line is held low.

(3)
The CRC is the 16-bit CCITT CRC. By default, this is optional and dummy bytes may be transmitted instead. The card only checks the CRC if CR

 has been executed.C_ON_OFF

https://doc.micrium.com/pages/viewpage.action?pageId=12855794#SD/MMCSPICommunicationDebugging-Figure-SimplifiedSD/MMCSPImodeinitializationandstatetransitions
https://doc.micrium.com/pages/viewpage.action?pageId=12855794#SD/MMCSPICommunicationDebugging-Figure-SimplifiedSD/MMCSPImodeinitializationandstatetransitions

Figure - SD/MMC SPI mode command and response formats

Figure - Simplified SD/MMC SPI mode initialization and state transitions

The initialization process reveals that commands can be executed and proper responses are returned. The command responses in SPI mode are
identical to those in cardmode (see in the page and Figure - Command responses (SD card) SD/MMC CardMode Communication Debugging Fig

 in the page), except each is preceded by a R1 statusure - Command responses (MMC card) SD/MMC CardMode Communication Debugging
byte. Obvious errors, such as improper initialization or failed chip select manipulation, will typically be caught here. More subtle conditions may
appear intermittently during reading or writing.

SD/MMC SPI BSP Overview

An SPI BSP is required so that the SD/MMC SPI driver will work on a particular system. For more information about these functions, see SPI BSP
.

https://doc.micrium.com/pages/viewpage.action?pageId=12855791#SD/MMCCardModeCommunicationDebugging-Figure-Commandresponses(SDcard)
https://doc.micrium.com/pages/viewpage.action?pageId=12855791#SD/MMCCardModeCommunicationDebugging-Figure-Commandresponses(MMCcard)
https://doc.micrium.com/pages/viewpage.action?pageId=12855791#SD/MMCCardModeCommunicationDebugging-Figure-Commandresponses(MMCcard)

Function Description

FSDev_SD_SPI_BSP_SPI_Open() Open (initialize) SPI

FSDev_SD_SPI_BSP_SPI_Close() Close (uninitialize) SPI

FSDev_SD_SPI_BSP_SPI_Lock() Acquire SPI lock

FSDev_SD_SPI_BSP_SPI_Unlock() Release SPI lock

FSDev_SD_SPI_BSP_SPI_Rd() Read from SPI

FSDev_SD_SPI_BSP_SPI_Wr() Write to SPI

FSDev_SD_SPI_BSP_SPI_ChipSelEn() Enable chip select

FSDev_SD_SPI_BSP_SPI_ChipSelDis() Disable chip select

FSDev_SD_SPI_BSP_SPI_SetClkFreq() Set SPI clock frequency

Table - SD/MMC SPI BSP functions

NAND Flash Driver
Standard storage media (such as hard drives) and managed flash-based devices (such as SD/MMC and CF cards) require relatively simple
drivers that convert the file system’s request to read or write a sector into a hardware transaction. In comparison, the driver for a raw NAND flash
is more complicated. Flash is divided into large blocks (often 16-kB to 512-kB); however, the high-level software (for example a FAT file system)
expects to read or write small sectors (512-bytes to 4096-bytes) atomically. The driver implements a NAND block abstraction to conceal the
device geometry from the file system. To aggravate matters, each block may be subjected to a finite number of erases. A wear-leveling algorithm
must be employed so that each block is used equally. All these mechanisms are grouped in the main layer of the driver, called the NAND
translation layer.

The NAND flash driver included in µC/FS has the following features:

Dynamic wear-leveling: Using logical block addressing, the driver is able to change the physical location of written data on the NAND flash, so
that a single memory location does not wear early while other locations are not used.

Fail-safe to unexpected power-loss: The NAND flash driver was designed so that write transactions are atomic. After an unexpected
power-down, the NAND flash’s low-level format will still be consistent, the device will be remounted as if the transaction never occurred.

Scalable: Various configuration options (see) are available for you to adjust the memory footprint; the speed andTranslation Layer Configuration
the wear-leveling performance of the driver.

Flexible controller layer: You can provide your own implementation of the controller layer to take advantage of hardware peripherals and reduce
CPU usage. However, a generic controller driver that is compatible with most parallel NAND flash devices and micro-controllers is provided.

Error correction codes (ECC) management: Error correction codes are used to eliminate the bit read errors typical to NAND flash. It is easy to
provide a software implementation of an ECC scheme or to interface to a hardware engine for each device used. It is then possible to configure
the size of the codewords and the level of protection required to suit the needs of your application.

Wide support for different NAND flashes: Most NAND flash memories are compatible with the driver, including large pages, small pages, SLC
and MLC (single and multiple level cells) flash memory. Please contact Micrium to inquire about µC/FS’s compatibility with specific NAND
devices.

Getting Started

The following section shows an example on how to get started in a typical case comprising the following:

The generic controller layer implementation (included with the NAND driver)
The 1-bit software ECC implementation (included with the NAND driver)
The static part layer implementation (included with the NAND driver)
Your BSP layer implementation to adapt the driver to your specific platform

In case you need additional information and details regarding the different layers, please refer to the .Architecture Overview

To use the NAND driver, you must include the following ten files in the build, in addition to the generic file system files:

fs_dev_nand.c (.)\Micrium\Software\uC-FS\Dev\NAND
fs_dev_nand.h (.)\Micrium\Software\uC-FS\Dev\NAND
fs_dev_nand_ctrlr_gen.c ()\Micrium\Software\uC-FS\Dev\NAND\Ctrlr
fs_dev_nand_ctrlr_gen.h ()\Micrium\Software\uC-FS\Dev\NAND\Ctrlr
fs_dev_nand_part_static.c ()\Micrium\Software\uC-FS\Dev\NAND\Part
fs_dev_nand_part_static.h ()\Micrium\Software\uC-FS\Dev\NAND\Part
ecc_hamming.c ()\Micrium\Software\uC-CRC\Source
ecc_hamming.h ()\Micrium\Software\uC-CRC\Source

ecc.h ()\Micrium\Software\uC-CRC\Source
Your BSP layer implementation (derived from in fs_dev_nand_ctrlr_gen_bsp.c \Micrium\Software\uC-FS\Dev\NAND\BSP\

).Template

The example in in the page shows how to open a single NAND volume. The file systemListing - Opening a NAND device volume Getting Started
initialization function () must have previously been called.FS_Init()

#include <ecc_hamming.h>
#include <fs.h>
#include <fs_err.h>
#include <fs_vol.h>
#include <fs_dev_nand.h>
#include <fs_dev_nand_ctrlr_gen.h>
#include <fs_dev_nand_ctrlr_gen_soft_ecc.h>
#include <fs_dev_nand_part_static.h>

FS_NAND_FREE_SPARE_MAP App_SpareMap[2] = { { 1, 63},
 {-1, -1} };

static CPU_BOOLEAN App_FS_AddNAND (void)
{
 (1)
 FS_NAND_CFG cfg_nand = FS_NAND_DfltCfg;
 FS_NAND_CTRLR_GENERIC_CFG cfg_ctrlr = FS_NAND_CtrlrGen_DfltCfg;
 FS_NAND_CTRLR_GEN_SOFT_ECC_CFG cfg_soft_ecc = FS_NAND_CtrlrGen_SoftEcc_DfltCfg;
 FS_NAND_PART_STATIC_CFG cfg_part = FS_NAND_PartStatic_DfltCfg;
 FS_ERR err;
 FS_DevDrvAdd((FS_DEV_API *)&FS_NAND, (2)
 &err);
 if ((err != FS_ERR_NONE) &&
 (err != FS_ERR_DEV_DRV_ALREADY_ADDED)) {
 APP_TRACE_DBG((" ...could not add driver w/err = %d\r\n\r\n", err));
 return (DEF_FAIL);
 }
 (3)
 cfg_part.BlkCnt = 2048;
 cfg_part.PgPerBlk = 64;
 cfg_part.PgSize = 2048;
 cfg_part.SpareSize = 64;
 cfg_part.SupportsRndPgPgm = DEF_NO;
 cfg_part.NbrPgmPerPg = 4;
 cfg_part.BusWidth = 8;
 cfg_part.ECC_NbrCorrBits = 1;
 cfg_part.ECC_CodewordSize = 512 + 16;
 cfg_part.DefectMarkType = DEFECT_SPARE_L_1_PG_1_OR_N_ALL_0;
 cfg_part.MaxBadBlkCnt = 40;
 cfg_part.MaxBlkErase = 100000;
 cfg_part.FreeSpareMap = &spare_map[0];

 (4)
 cfg_ctrlr.CtrlrExt = &FS_NAND_CtrlrGen_SoftECC;
 cfg_ctrlr.CtrlrExtCfg = &soft_ecc_cfg;

 (5)
 cfg_soft_ecc.ECC_ModulePtr = (ECC_CALC *)&Hamming_ECC;

 (6)
 cfg_nand.BSPPtr = (void *)&FS_NAND_BSP_SAM9M10;
 cfg_nand.CtrlrPtr = (FS_NAND_CTRLR_API *)&FS_NAND_CtrlrGeneric;
 cfg_nand.CtrlrCfgPtr = &cfg_ctrlr;

 cfg_nand.PartPtr = (FS_NAND_PART_API *)&FS_NAND_PartStatic;
 cfg_nand.PartCfgPtr = &cfg_part;
 cfg_nand.SecSize = 512;
 cfg_nand.BlkCnt = 2038u;
 cfg_nand.BlkIxFirst = 10u;
 cfg_nand.UB_CntMax = 10u;
 cfg_nand.RUB_MaxAssoc = 2u;
 cfg_nand.AvailBlkTblEntryCntMax = 10u;

 (7)
 FSDev_Open("nand:0:", (a)
 (void *)&cfg_nand, (b)
 &err);
 switch (err) {
 case FS_ERR_NONE:
 APP_TRACE_DBG((" ...opened device.\r\n"));
 break;

 case FS_ERR_DEV_INVALID_LOW_FMT:
 case FS_ERR_DEV_INCOMPATIBLE_LOW_PARAMS:
 case FS_ERR_DEV_CORRUPT_LOW_FMT:
 APP_TRACE_DBG((" ...opened device (not low-level formatted).\r\n"));
#if (FS_CFG_RD_ONLY_EN == DEF_ENABLED)
 FS_NAND_LowFmt("nand:0:", &err); (8)
 if (err != FS_ERR_NONE) {
 APP_TRACE_DBG((" ...low-level format failed.\r\n"));
 return 0;
 }
#else
 APP_TRACE_DBG((" ...opening device failed w/err = %d.\r\n\r\n", err));
 return 0;
#endif
 break;

 case FS_ERR_DEV_ALREADY_OPEN:
 break;

 case FS_ERR_DEV:
 case FS_ERR_DEV_IO:
 case FS_ERR_DEV_TIMEOUT:
 case FS_ERR_DEV_NOT_PRESENT:
 default:
 APP_TRACE_DBG((" ...opening device failed w/err = %d.\r\n\r\n", err));
 return (DEF_FAIL);
 }
 (9)
 FSVol_Open("nand:0:", (a)
 "nand:0:", (b)
 0, (c)
 &err);*/
 switch (err) {
 case FS_ERR_NONE:
 APP_TRACE_DBG((" ...opened volume (mounted).\r\n"));
 break;

 case FS_ERR_PARTITION_NOT_FOUND: /* Volume error. */
 APP_TRACE_DBG((" ...opened device (not formatted).\r\n"));
#if (FS_CFG_RD_ONLY_EN == DEF_DISABLED)
 FSVol_Fmt("nand:0:", (void *)0, &err); (10)

 if (err != FS_ERR_NONE) {
 APP_TRACE_DBG((" ...format failed.\r\n"));
 return (DEF_FAIL);
 }
#else
 APP_TRACE_DBG((" ...opening device failed w/err = %d.\r\n\r\n", err));
 return 0;
#endif
 break;

 case FS_ERR_DEV: /* Device error. */
 case FS_ERR_DEV_IO:
 case FS_ERR_DEV_TIMEOUT:
 case FS_ERR_DEV_NOT_PRESENT:
 APP_TRACE_DBG((" ...opened volume (unmounted).\r\n"));
 return (DEF_FAIL);

 default:
 APP_TRACE_DBG((" ...opening volume failed w/err = %d.\r\n\r\n", err));
 return (DEF_FAIL);
 }

 return (DEF_OK);
}

Listing - Opening a NAND device volume
(1)
Declare and initialize configuration structures. Structures should be initialized to allow for forward compatibility in case some new fields in those
structures are added in future µC/FS versions.

(2)
 Register the NAND device driver .FS_NAND

(3)
 The NAND part layer configuration structure should be initialized. For more information about these parameters, see Statically configured part

.layer

(4)
 The NAND controller layer configuration structure should be initialized. For more information about these parameters, see Generic Controller

. Please note that you might need to use a different controller layer. If this is the case, the configuration might be differentLayer Implementation
(see).Controller Layer

(5)
 The NAND generic controller software ECC extension should be initialized. For more information about these parameters, see Listing - NAND

 in the page. Please note that if you are using a differenttranslation layer configuration structure Generic Controller Layer Implementation
controller layer implementation, there probably won’t be a controller extension layer. Also, if using the generic controller, you might need to use a
different extension. Refer to in the page for a list ofTable - Generic controller layer extensions provided Generic Controller Layer Implementation
available controller extensions.

(6)
 The NAND translation layer structure should be initialized. For more information about these parameters, see .Translation Layer Configuration

(7)
 opens/initializes a file system device. The parameters are the device name (a) and a pointer to a device driver-specificFSDev_Open()
configuration structure (b). The device name (a) is composed of a device driver name (“nand”), a single colon, an ASCII-formatted integer (the unit
number) and another colon.

(8)
 low-level formats a NAND. If the NAND has never been used with µC/FS, it must be low-level formatted before being used.FS_NAND_LowFmt()
Low-level formatting will create and initialize the low-level driver metadata on the device.

(9)
 opens/mounts a volume. The parameters are the volume name (a), the device name (b) and the index of the partition that will beFSVol_Open()
opened (c). There is no restriction on the volume name (a); however, it is typical to give the volume the same name as the underlying device. If
the default partition is to be opened, or if the device is not partition, then the partition number (c) should be 0.

(10)
 formats a file system device. If the NAND has just been low-level formatted, there will be no file system on the correspondingFSVol_Fmt()
volume after it is opened (it will be unformatted). The volume must be formatted before files can be created or accessed.

If the NAND initialization succeeds, the file system traces (if a sufficiently high trace level is configured) will produce an output similar to Listing -
 in the page. See section about configuring the trace level.NAND detection trace output Getting Started Trace Configuration

https://doc.micrium.com/display/fsdoc/Part+Layer#PartLayer-Staticallyconfiguredpartlayer
https://doc.micrium.com/display/fsdoc/Part+Layer#PartLayer-Staticallyconfiguredpartlayer
https://doc.micrium.com/display/fsdoc/Generic+Controller+Layer+Implementation#GenericControllerLayerImplementation-Listing-NANDtranslationlayerconfigurationstructure
https://doc.micrium.com/display/fsdoc/Generic+Controller+Layer+Implementation#GenericControllerLayerImplementation-Listing-NANDtranslationlayerconfigurationstructure
https://doc.micrium.com/display/fsdoc/Generic+Controller+Layer+Implementation#GenericControllerLayerImplementation-Table-Genericcontrollerlayerextensionsprovided

===
= FS INITIALIZATION =
===
Initializing FS...
 ===
 Adding/opening NAND volume "nand:0:"...
NAND Ctrlr Gen: found NAND manuf id=2c, dev id=aa.
FS_NAND_Open(): Using default blk cnt (all blocks): 2048.
FS_NAND_Open(): Default number of entries in avail blk tbl.
NAND FLASH FOUND: Name : "nand:0:"
 Sec Size : 2048 bytes
 Size : 127360 sectors
 Update blks: 10
FS_NAND_LowMountHandler(): Low level mount succeeded.
 ...opened device.
FSPartition_RdEntry(): Found possible partition: Start: 0 sector
 Size : 0 sectors
 Type : 00
FS_FAT_VolOpen(): File system found: Type : FAT16
 Sec size: 2048 B
 Clus size: 4 sec
 Vol size: 127360 sec
 # Clus : 31822
 # FATs : 2
 ...opened volume (mounted).
...init succeeded.
===
===

Listing - NAND detection trace output

Handling different use-cases

If the above example does not apply to your situation, we strongly recommend you read the sections about the different layers. This will help you
determine if other existing implementations are suitable for you, or if you need to develop your own implementation of some of those layers.

Architecture Overview

The NAND driver comprises multiple layers, as depicted in in the page.Figure - NAND driver architecture Architecture Overview

Figure - NAND driver architecture

The generic NAND translation layer provides sector abstraction and performs wear-leveling (to ensure all blocks are used equally).

The controller layer driver interfaces with the NAND translation layer at the physical level (block erase, sector write/read, spare area write/read
operations). The controller layer is also responsible for the placement of sectors and metadata within a NAND page. Interfacing at this level allows
more flexibility: if your micro-controller has dedicated hardware like an ECC calculation engine or a NAND flash memory controller, you can
interface directly with it by providing your own controller layer implementation instead of using the generic implementation (see Generic Controller

) included with the NAND driver.Layer Implementation

The controller extension layer is specific to the generic controller implementation (). It provides an interface thatfs_dev_nand_ctrlr_gen.*
allows different types of ECC calculation and correction schemes to be used while avoiding duplication of the generic controller code.
Implementations for software ECC and some Micron on-chip ECC devices (including MT29F1G08ABADA) are provided with the NAND flash
driver.

The BSP layer will implement code that depends on your platform and application for the specific controller layer implementation chosen. In most
cases, you will need to develop your own implementation of the BSP layer.

The part layer is meant to provide the specifics for each part/chip you use in your design to the controller and NAND translation layers. This layer
implementation will typically be chosen from the implementations included with the NAND driver. This implementation can either rely on statically
defined parameters or values read directly from the device (for an ONFI compliant part).

The ECC layer provides code calculation and error correction functions. For performance reasons, only a 1-bit ECC software module based on
Hamming codes is provided (part of the µC/CRC product bundled with µC/FS). If a more robust ECC correction scheme is required, it is strongly
recommended to use hardware engines. Since the ECC-specific code of the generic controller driver is implemented in generic controller
extension modules, it can easily be adapted if the micro-controller or NAND flash device can handle ECC automatically.

NAND Translation Layer

The NAND translation layer is the main layer of the driver, implemented by the files and . This layer containsfs_dev_nand.c fs_dev_nand.h
most of the algorithms necessary to overcome the following limitations of NAND flash technology:

Write operations can only change a bit state from ‘1’ to ‘0’. Only erase operations can revert the bit state, from ‘0’ to ‘1’.
Erase operations are only performed on large sections of the memory called blocks (typically between 16 kB and 512 kB).
Write operations are performed on a sub-section of a block, called a page (typically between 512 and 8192 octets).
Some devices support partial page programming (splitting the operation to write a full page into multiple operations that each write a
sub-section of the page). Other devices can only have their pages written in a single operation before they are erased.
Some devices must write the pages of a block in a sequential manner (page 0, page 1, page 2, etc.).
Blocks can only be erased a limited number of times (typically 10k to 100k) before the integrity of the memory is compromised.
Some device blocks can’t be used reliably and are considered bad blocks. These blocks are either marked at the factory or become bad
during the device’s life.
Electric disturbance can cause read errors. An error correction mechanism must be used to decrease the bit error rate.

The role of the translation layer is to translate those NAND flash specific requirements into a disk interface, based on sector access. This disk
interface allows the NAND driver to be used with traditional sector-based file systems like FAT, which is used by µC/FS.

The translation layer implementation provided with the NAND driver is inspired by the KAST (K-Associative Sector Translation) as proposed by
Cho (see).Bibliography

In the provided implementation, three types of blocks are present on the device. The data blocks typically occupy the major portion of the storage
space. Data blocks are used to contain the data written to the device by the application or file system. A mapping between the logical addresses
of the blocks and their physical locations is used to enable wear-leveling.

This mapping, as well as other metadata, is contained in metadata blocks. Typically, only one block is used to store metadata. This block is also
moved around for wear-leveling reasons.

The third type of blocks are update blocks. All data written on the device must first be written through update blocks. Under specific circumstances
(including an update block becoming full), the contents of an update block are folded onto data blocks. The folding operation roughly consists of
three steps. The first step is to find an unused block and erase it. Secondly, the contents of the corresponding data block must be merged with the
more recent, but incomplete data contained in the update block. This merged data is written in the recently-erased block. Once this operation is
complete, metadata must be updated: the old data block and the update block are marked as free to erase and use, and the block mapping must
be updated to point to the new data block.

In this implementation, it is possible to specify how many different data blocks pointed to by a single update block. This specification is called
maximum associativity (see the configuration field in). If this value is greater than one, the.RUB_MaxAssoc Translation Layer Configuration
merge operation must be performed for each data block associated with the update block being folded.

Each update block can be of one of the two sub-types: random update blocks (RUBs) and sequential update blocks (SUBs). Sequential update
blocks can only refer to a single data block (associativity is always 1). Also, they must use the same exact layout as a data block (i.e. logical
sector 0 written at physical sector 0, logical sector 1 written at physical sector 1, etc.). The advantage of SUBs is that they have a much lower
merge cost. They can be converted into data blocks in-place by copying missing sectors from the associated data block and updating some
metadata. Random update blocks, on the other hand, can contain sectors from multiple data blocks. Those sectors can be written at any location
in the RUB since it contains additional metadata to map each sector to an appropriate location in a data block, resulting in an increased merge
cost but allowing for better wear-leveling since it leads to better block usage in the case of random writes.

Another important functionality of the translation layer is to keep track of the number of erase operations performed on each block. The erase
count is critical for two reasons. First, the erase count can be used to efficiently drive the wear-leveling algorithm, allowing seldom erased blocks
to be preferred over frequently erased blocks, when a new block is required. Secondly, the erase count allows the translation layer to detect the
blocks that have reached their erase limit.

Since the erase count information is stored in each block, each erase count must be backed-up somewhere else in the device prior to erasing a
block. Blocks that have their erase count backed-up are called available blocks. When the translation layer needs a new block, it will always be
taken from the available blocks table to make sure its erase count is not lost in the case of an unexpected power-down.

All this functionality is embedded within the translation layer. Using the software itself does not require a deep understanding of the mechanisms
as they are all abstracted into a simpler, easier to understand disk interface. However, understanding the internals can be useful to efficiently
configure the translation layer.

Translation Layer Configuration

The configuration of the NAND translation layer () must be done through two mechanisms. First, you need to specify driver-widefs_dev_nand.*
configuration options in the configuration file (). Then, you need to configure the device-specific options passed to thefs_dev_nand_cfg.h
function through a structure pointer. You need to call for each device you want to access and provide a properFSDev_Open() FSDev_Open()
device-specific configuration for each of them.

Driver configuration file

The driver configuration file for the NAND translation layer is . A template for this file is located in the following path:fs_dev_nand_cfg.h

\Micrium\Software\uC-FS\Dev\NAND\Cfg\Template\

The driver configuration available in the configuration file are listed below.#defines

FS_NAND_CFG_AUTO_SYNC_EN

This determines if, for each operation on the device (i.e. each call to the device’s API), the metadata should be synchronized.#define
Synchronizing at the end of each operation is safer; it ensures the device can be remounted and appear exactly as it should. Disabling

automatic synchronization can result in a large write speed increase, as the metadata won't be committed automatically, unless triggered by
the application. If a power down occurs between a device operation and a sync operation, the device will appear as it was in a prior state
when remounted. Device synchronization can be forced with a call to .FSDev_Sync()

Note that using large write buffers will reduce the metadata synchronization performance hit, as fewer calls to the device API will be
needed.

FS_NAND_CFG_UPDATE_BLK_META_CACHE_EN

This determines if, for each update block, the metadata will be cached. Enabling this will allow searching for a specific updated#define
sector through data in RAM instead of accessing the device, which would require additional read page operations.

More RAM will be consumed if this option is enabled, but write/read speed will be improved.

RAM usage =
 <Nbr update blks> x

 (log2(<Max associativity>) + log2(<Nbr secs per blk>)) /

 8 octets.

The result should be rounded up.

FS_NAND_CFG_DIRTY_MAP_CACHE_EN

This determines if the dirty blocks map will be cached. With this feature enabled, a copy of the dirty blocks map on the device is#define
cached. It is possible then to determine if the state “dirty” of a block is committed on the device without the need to actually read the device.

With this feature enabled, overall write and read speed should be improved. Also, robustness will be improved for specific cases. However,
more RAM will be consumed.

RAM usage =
 <Nbr of blks on device> / 8 octets

The result should be rounded up.

FS_NAND_CFG_UPDATE_BLK_TBL_SUBSET_SIZE

This controls the size of the subsets of sectors pointed by each entry of the update block tables. The value must be a power of 2#define
(or 0).

If, for example, the value is 4, each time a specific updated sector is requested, the NAND translation layer must search the sector in a
group of four sectors. Thus, if the update block metadata cache () is disabled, four sectorsFS_NAND_CFG_UPDATE_BLK_META_CACHE_EN
must be read from the device to find the requested sector. The four entries will instead be read from the cache, if it is enabled. If the value
is set to 0, the table will be disabled completely, meaning that all sectors of the block might have to be read before the specified sector is
found. If the value is 1, the table completely specifies the location of the sector, and thus no search must be performed. In that case,
enabling the update block metadata cache will yield no performance benefit.

RAM usage =
 <Nbr update blks> x

 (log2(<Nbr secs per blk>) - log2(<Subset size>) x

 <Max associativity> /

 8 octets

The result should be rounded up.

FS_NAND_CFG_RSVD_AVAIL_BLK_CNT

This indicates the number of blocks in the available blocks table that are reserved for metadata block folding. Since this#define
operation is critical and must be done before adding blocks to the available blocks table, the driver needs enough reserved blocks to make
sure at least one of them is not bad so that the metadata can be folded successfully. When set to 3, probability of the metadata folding
operation failing is almost null. This value is sufficient for most applications.

FS_NAND_CFG_MAX_RD_RETRIES

This indicates the maximum number of retries performed when a read operation fails. It is recommended by most manufacturers#define
to retry reading a page if it fails, as successive read operations might be successful. This number should be at least set to 2 for smooth
operation, but might be set higher to improve reliability. Please be aware that a high number of retries will reduce the response time of the
system when it tries to read a defective sector.

FS_NAND_CFG_MAX_SUB_PCT

This indicates the maximum allowed number of sequential update blocks (SUB). This value is set as a percentage of the total#define
number of update blocks. SUBs will improve the performance for large transactions on the file system (ex: copying multi-MB files). Small

files or small iterative changes to large files are best handled by RUBs. It is important to note that the translation layer will automatically
determine what type of update block is the best depending on the parameters of the transaction itself. This parameter is only to limit the
number of update blocks that can be SUBs.

Advanced configuration OPTIONs

The following configuration s should be left at their default values. Advanced understanding of the wear-leveling and block abstraction#define
algorithms is necessary to set these configurations.

FS_NAND_CFG_TH_PCT_MERGE_RUB_START_SUB

This indicates the minimum size (in sectors) of the write operation needed to create a sequential update block (SUB) when a#define
random update block (RUB) already exists. SUBs offer a substantial gain in merge speed when a large quantity of sectors are written
sequentially (within a single or multiple write operations). However, if many SUBs are created and merged early, the device will wear faster
(less sectors written between block erase operations).

This threshold is set as a percentage (relative to the number of sectors per block).

Set higher than default for better overall wear leveling and lower than default for better overall write speed.

FS_NAND_CFG_TH_PCT_CONVERT_SUB_TO_RUB

This indicates the minimum size (in sectors) of free space needed in a sequential update block (SUB) to convert it to a random#define
update block (RUB). RUBs have more flexible write rules, at the expense of a longer merge time. If the SUB’s usage is over the threshold,
the SUB will be merged and a new RUB will be started, instead of performing the conversion from SUB to RUB.

This threshold is set as a percentage (relative to number of sectors per block).

Set higher than default for better overall write speed and lower than default for better overall wear leveling.

To take advantage of this threshold, it must be set higher than the value of . Otherwise, this thresholdFS_NAND_CFG_TH_PCT_PAD_SUB
won't have any effect.

FS_NAND_CFG_TH_PCT_PAD_SUB

This indicates the maximum size (in sectors) that can be skipped in a sequential update block (SUB). Since each sector of a#define
SUB must be written at a single location (sector physical index == sector logical index), it is possible to allow small gaps in the sequence.
Larger gaps are more flexible, and can improve the overall merge speed, at the cost of faster wear, since some sectors are left empty
between erase operations.

This threshold is set as a percentage (relative to number of sectors per block).

Set higher than default for better overall write speed and lower than default for better overall wear leveling

FS_NAND_CFG_TH_PCT_MERGE_SUB

This indicates the maximum size (in sectors) of free space needed in a sequential update block (SUB) to merge it to allocate#define
another update block. If the threshold is exceeded, a random update block (RUB) will be merged instead. This threshold must be set so that
SUBs with a lot of free space are not merged. Merging SUBs early will generate additional wear.

This threshold is set as a percentage (relative to number of sectors per block).

FS_NAND_CFG_TH_SUB_MIN_IDLE_TO_FOLD

This indicates the minimum idle time (specified as the number of driver accesses since the last access that has written to the#define
SUB) for a sequential update block (SUB) to be converted to a random update block (RUB). This threshold must be set so that “hot” SUBs
are not converted to RUBs.

Device configuration

You must configure the NAND translation layer for each device you use in your project. This configuration is made through a structure of type FS_
. A pointer to this structure is then passed to the function . Each NAND device will need to be initialized by calling NAND_CFG FSDev_Open() FSDe
 and passing it a unique structure pointer of the type .v_Open() FS_NAND_CFG

Note that the constant should be used to initialize the structure to default values. This will ensure all fields willFS_NAND_DfltCfg FS_NAND_CFG
automatically be set to sane default values.

typedef struct fs_nand_cfg {
 void *BSPPtr; (1)
 FS_NAND_CTRLR_API *CtrlrPtr; (2)
 void *CtrlrCfgPtr; (3)
 FS_NAND_PART_API *PartPtr; (4)
 void *PartCfgPtr; (5)
 FS_SEC_SIZE SecSize; (6)
 FS_NAND_BLK_QTY BlkCnt; (7)
 FS_NAND_BLK_QTY BlkIxFirst; (8)
 FS_NAND_UB_QTY UB_CntMax; (9)
 CPU_INT08U RUB_MaxAssoc; (10)
 CPU_INT08U AvailBlkTblEntryCntMax; (11)
} FS_NAND_CFG;

Listing - NAND translation layer configuration structure
(1)
 This field must be set to a pointer to the controller-specific BSP layer implementation’s API you want the controller layer to use (see Board

). If you use a different controller layer implementation, that field might not be needed.Support Package

(2)
 This field must be set to a pointer to the controller layer implementation’s API you wish to use (see).Controller Layer

(3)
 This field must be set to a pointer to the configuration structure for the specified controller layer implementation.

(4)
 This field must be set to a pointer to the part layer implementation’s API you wish to use (see)API structure type for generic controller extension

(5)
 This field must be set to a pointer to the configuration structure specific to the chosen part layer implementation.

(6)
 This field must contain the sector size for the device (care must be taken when choosing sector size: see). ThePerformance Considerations
value instructs the translation layer to use the page size reported by the part layer as its sector size.FS_NAND_CFG_DEFAULT

(7)
 This field must contain the number of blocks you want µC/FS to use. This can be useful if you want to reserve blocks for data to be used outside
the file system (by a bootloader, for example). The value instructs the translation layer to use the number of blocksFS_NAND_CFG_DEFAULT
reported by the part layer.

(8)
 This field must contain the index of the first block you want µC/FS to use. This can be useful if you want to reserve blocks for data to be used
outside the file system (by a bootloader, for example).

(9)
 This field must be set to the maximum number of update blocks you want the NAND translation layer to use. A greater number can improve
performance but will also reduce available space on the device and consume RAM. You are encouraged to experiment with different values to
evaluate which one suits your application best.

(10)
 This field must be set to the maximum associativity of the random update blocks (RUB). The update blocks temporarily contain sectors from data
blocks until they are merged (copied to respective data blocks). The associativity specifies the number of data blocks from which a single RUB
can contain sectors. A high setting will usually lead to better overall write and read speeds and will reduce wear. However, a low setting will lower
the time of execution of the worst-case write operation.

(11)
 This field must be set to the size of the available blocks table. Available blocks are ready to be erased and used as update or data blocks. The
table must, at least, be large enough to contain the reserved available blocks (see) and a few more forFS_NAND_CFG_RSVD_AVAIL_BLK_CNT
general operations. The value instructs the translation layer to use 10 or (1 +)FS_NAND_CFG_DEFAULT FS_NAND_CFG_RSVD_AVAIL_BLK_CNT
entries, whichever is larger.

Translation Layer Source Files

The files relevant to the NAND translation layer are outlined in this section; the generic file-system files, outlined in ,µC/FS Directories and Files
are also required.

\Micrium\Software\uC-FS\Dev\NAND

This directory contains the NAND driver files.

https://doc.micrium.com/display/fsdoc/Generic+Controller+Extension+Development+Guide#GenericControllerExtensionDevelopmentGuide-Listing-APIstructuretypeforgenericcontrollerextension

\fs_dev_nand.*

These files compose the NAND translation layer. These following source files contain the code for the NAND translation layer.

\Cfg\Template\fs_dev_nand_cfg.h

This is a template file that is required to be copied to the application directory to configure the µC/FS NAND driver based on application
requirements.

Controller Layer

The controller-layer implementations distributed with the NAND driver (see in the Table - Controller-layer implementations provided Controller
 page) support a wide variety of flash devices from major vendors.Layer

Driver API Files Description

FS_NAND_CtrlrGen fs_dev_nand_ctrlr_gen.*

in
/Micrium/Software/uC-FS/Dev/NAND/Ctrlr

Supports most parallel flash devices interfaced on an MCU’s external
memory bus.

Table - Controller-layer implementations provided

Of course, it is possible that your specific device and/or micro-controller requires a different controller layer implementation, or that a different
implementation could take advantage of hardware modules (like a memory controller on a MCU). Please refer to the Controller Layer

 for the details on how to implement your own controller layer.Development Guide

Generic Controller Layer Implementation

The generic controller layer driver is an implementation of the controller layer that is compatible with most parallel NAND devices and most simple
memory controllers. It has the following features:

Supports multiple sector per page
Packs out-of-sector (OOS) metadata around reserved spare area zones
Extensible through extensions that provides multiple hooks to allow for different ECC protection schemes (an extension for software ECC
is provided)
Supports reading ONFI parameter pages through a its functionIO_Ctrl()
Supports both 8-bit and 16-bit bus devices

The generic controller driver imposes a specific page layout: the sectors are stored sequentially in the main page area and OOS metadata zones
are stored sequentially in the spare area, packed in the free spare zones specified by the field of the associated .FreeSpareMap FS_PART_DAT

 data structure. An example layout is shown below for a device with 2048 octets pages, using 512 bytes sectors.A

Figure - Example generic controller driver page layout

To determine if the generic controller driver is compatible with your hardware, you can study its BSP interface, described in BSP Development
.Guide - Generic Controller

Generic Controller Extension Layer

The generic controller extension layer extends the functionality of the generic controller, mostly with regards to ECC. It allows for the reuse of the
generic controller code, enabling easy customizations of the controller layer. The NAND driver ships with two generic controller extensions:

Extension API Files Description

FS_NAND_CtrlrGen_SoftECC fs_dev_nand_ctrlr_gen_soft_ecc.* in
/Micrium/Software/uC-FS/Dev/NAND/Ctrlr

Supports software ECC calculation and correction
through µC/CRC ECC modules.

FS_NAND_CtrlrGen_MicronECC fs_dev_nand_ctrlr_gen_micron_ecc.* in
/Micrium/Software/uC-FS/Dev/NAND/Ctrlr

Supports on-chip ECC hardware for some Micron
parts (ex: MT29F01G08ABADA).

Table - Generic controller layer extensions provided

The software ECC generic controller extension (FS_NAND_CtrlrGen_SoftECC) uses µC/CRC’s ECC

modules for the ECC codewords calculation and data correction. The extension is configurable through a FS_N

AND_CTRLR_GEN_SOFT_ECC_CFG type structure. It should be initialized to the value FS_NAND_CtrlrGen_S

oftEcc_DfltCfg before its fields are overridden to the appropriate values for your application.

typedef struct fs_nand_cfg {
 const ECC_CALC *ECC_ModulePtr; (1)
} FS_NAND_CFG;

Listing - NAND translation layer configuration structure
(1)
Pointer to an API structure that will be used to provide software ECC calculation and correction. Refer to ECC_CALC ECC Module Development

 and µC/CRC’s user manual for more information on ECC modules.Guide

The Micron ECC generic controller extension (FS_NAND_CtrlrGen_MicronECC) allows the use of internal

on-chip hardware ECC engines for some Micron NAND flash parts. The extension has been designed as an
example for the Micron MT29F1G08ABADA, but should function properly with other similar Micron devices with
internal ECC hardware modules. This module doesn’t have any configuration options, you should use DEF_NU

LL as the generic controller extension configuration pointer (.CtrlrExtCfg field of the FS_NAND_CTRLR_GE

N_CFG structure).

Part Layer

Statically configured part layer
ONFI part layer

There are two different part-layer implementations distributed with the NAND driver (in the Table - Part-layer implementations provided Part Layer
page).

Driver API Files Description

FS_NAND_PartStatic fs_dev_nand_part_static.* in
/Micrium/Software/uC-FS/Dev/NAND/Part

Manually configure the parameters of each NAND flash device you
use.

FS_NAND_PartONFI fs_dev_nand_part_onfi.* in
/Micrium/Software/uC-FS/Dev/NAND/Part

Use the parameters automatically obtained by reading the parameter
page of ONFI-compliant NAND flash devices.

Table - Part-layer implementations provided

It is mandatory to use one part-layer implementation for the NAND driver to work. It is recommended to use
one of the provided implementations.

Statically configured part layer

This part-layer implementation is the basic one. It lets you set all the physical characteristics of the device through a configuration structure of type
. Typically, the pointer to the configuration structure is then assigned to the field of the translationFS_NAND_PART_STATIC_CFG .PartCfgPtr

layer configuration structure (see). The pointer to the translation layer configuration structure can then be passed as anNAND Translation Layer
argument to the function . Refer to for an example of configuration. The part configuration structure should beFSDev_Open() Getting Started
initialized to to ensure upward compatibility with future versions. The configuration fields available for theFS_NAND_PartStatic_DfltCfg
static part layer are described in in the page:Listing - NAND static part layer configuration structure Part Layer

typedef struct fs_nand_part_static_cfg {
 FS_NAND_BLK_QTY BlkCnt; (1)
 FS_NAND_PG_PER_BLK_QTY PgPerBlk; (2)
 FS_NAND_PG_SIZE PgSize; (3)
 FS_NAND_PG_SIZE SpareSize; (4)
 CPU_INT08U NbrPgmPerPg; (5)
 CPU_INT08U BusWidth; (6)
 CPU_INT08U ECC_NbrCorrBits; (7)
 FS_NAND_PG_SIZE ECC_CodewordSize; (8)
 FS_NAND_DEFECT_MARK_TYPE DefectMarkType; (9)
 FS_NAND_BLK_QTY MaxBadBlkCnt; (10)
 CPU_INT32U MaxBlkErase; (11)
 FS_NAND_FREE_SPARE_DATA *FreeSpareMap; (12)
} FS_NAND_PART_STATIC_CFG;

Listing - NAND static part layer configuration structure
(1)
 Number of blocks in your device.

(2)
 Number of pages per block in your device.

(3)
 Page size (in octets) of your device.

(4)
 Size of the spare area (in octets) of your device.

(5)
 Number of partial page programming allowed before an erase operation (for example, it would be set to 4 if a device with 2048 octets pages
could be written in 4 accesses of 512 octets).

(6)
 Number of input/output lines of the device’s bus.

(7)
 Minimum required number of correctable bits per codeword for the ECC.

(8)
 Codeword size required for ECC. The codeword size corresponds to the maximum data size (in octets) that must be sent to the ECC calculation
module to get a single error correction code.

(9)
 Factory defect mark type. This determines how the translation layer can detect if a block factory is marked as a defect block. The possible values
are listed below. Unless otherwise specified, any unset bit in the defect mark indicates a defective block. A byte refers to an 8-bit value, a word
refers to a 16-bit value and a location is a bus width wide value (byte for 8-bit bus and word for 16-bit bus).

DEFECT_SPARE_L_1_PG_1_OR_N_ALL_0: the defect mark is in the first location of the spare area (first byte or first word, depending on bus
width) of the first or last page. If the mark reads 0, the block is defective.

DEFECT_SPARE_ANY_PG_1_OR_N_ALL_0: any location in the spare area or the first or last page equal to 0 indicates a defective block.

DEFECT_SPARE_B_6_W_1_PG_1_OR_2: the defect mark is the sixth byte or the first word of the spare area (depending on bus width) of the first
or second page.

DEFECT_SPARE_L_1_PG_1_OR_2: the defect mark is the first location in the spare area of the first or second page.

DEFECT_SPARE_B_1_6_W_1_IN_PG_1: the defect mark is the first and sixth byte or the first word of the spare area (depending on bus width) of
the first page.

DEFECT_PG_L_1_OR_N_PG_1_OR_2: the defect mark is the first or last location of the page area in the first or second page.

(10)
 Maximum number of bad blocks within a single device during its lifetime.

(11)
 Maximum number of erase operations that can be performed on a single block.

(12)
 Pointer to the map of the free regions in the spare area (see listing below).

 in the page shows the data type used to specify theListing - NAND configuration structure for free regions of the spare area Part Layer
contiguous regions of the spare area that are available for the NAND driver to write. The map of the free regions is an array of FS_NAND_FREE_S

 values. Each free contiguous section of the spare area will use one index of the array. There must also be a last entry set to PARE_DATA {-1,
 for the driver to know when to stop parsing the table. Note that the factory defect mark should be excluded of the free regions. You can also-1}

refer to the example (see).Getting Started

typedef struct fs_nand_free_spare_data {
 FS_NAND_PG_SIZE OctetOffset; (1)
 FS_NAND_PG_SIZE OctetLen; (2)
} FS_NAND_FREE_SPARE_DATA;

Listing - NAND configuration structure for free regions of the spare area
(1)
 Offset (in octets) of a free region.

(2)
 Length (in octets) of a free region.

ONFI part layer

The ONFI part layer implementation is able to obtain from ONFI compliant devices all the parameters necessary for the NAND driver to operate.
The different parameters are extracted from the device parameter page. in the Table - ONFI parameter page support for different ONFI versions P

 page lists the versions of the ONFI standard for which automatic parameter page parsing is supported. If your device does not respectart Layer
this standard, it should be used with a different implementation o f the part layer.

ONFI version Supported parameter page

ONFI 3.0 YES

ONFI 2.3a YES

ONFI 2.2 YES

ONFI 2.1 YES

ONFI 2.0 YES

ONFI 1.0 YES

Table - ONFI parameter page support for different ONFI versions

The ONFI part layer implementation does not have a lot of configuration options since most parameters are read from the device’s parameter

page. The part configuration structure should be initialized to to ensure upward compatibility withFS_NAND_PartONFI_DfltCfg
future versions. The configuration fields available for the ONFI part layer implementation are described in Listing - NAND ONFI part layer

 in the page:configuration structure Part Layer

typedef struct fs_nand_part_onfi_cfg {
 FS_NAND_FREE_SPARE_DATA *FreeSpareMap; (1)
} FS_NAND_PART_ONFI_CFG;

Listing - NAND ONFI part layer configuration structure
(1)
Pointer to the map of the free regions in the spare area (see listing above).

Board Support Package

Generic Controller

If you use the generic controller layer implementation, you will have to provide a board support package to interface with your board layout and
hardware. The board support package must be provided in the form of an API pointer of the type , like shown in FS_NAND_CTRLR_GEN_BSP_API

 in the page.Listing - BSP API type for the generic controller layer implementation Board Support Package

typedef struct fs_nand_ctrlr_gen_bsp_api {
 void (*Open) (FS_ERR *p_err);
 void (*Close) (void);
 void (*ChipSelEn) (void);
 void (*ChipSelDis) (void);
 void (*CmdWr) (CPU_INT08U *p_cmd,
 CPU_SIZE_T cnt,
 FS_ERR *p_err);
 void (*AddrWr) (CPU_INT08U *p_addr,
 CPU_SIZE_T cnt,
 FS_ERR *p_err);
 void (*DataWr) (void *p_src,
 CPU_SIZE_T cnt,
 CPU_INT08U width,
 FS_ERR *p_err);
 void (*DataRd) (void *p_dest,
 CPU_SIZE_T cnt,
 CPU_INT08U width,
 FS_ERR *p_err);
 void (*WaitWhileBusy) (void *poll_fcnt_arg,
 CPU_BOOLEAN (*poll_fcnt)(void *arg),
 CPU_INT32U to_us,
 FS_ERR *p_err);
} FS_NAND_CTRLR_GEN_BSP_API;

Listing - BSP API type for the generic controller layer implementation

Typically, you will provide the board support package implementation. See for details on how toBSP Development Guide - Generic Controller
implement the BSP layer.

Other Controllers

If you use a different controller layer implementation than the generic, you will typically need a BSP layer implementation identical or mostly
similar. Please refer to unless there is a section of this page dedicated to your BSP.Generic Controller

Performance Considerations

Several performance aspects can be considered when using the NAND driver. Depending on your priorities, you will need to configure and use
the NAND driver in a proper way so that your specific goals are met. The different performance metrics include the write and read/speed, the
RAM usage, the data safety level and the worst-case locking time.

Choosing an appropriate sector size

It is important to choose carefully the sector size for each device. Unless your device supports partial page programming, it is mandatory for the
sector size to be identical to the page size or larger.

If your device supports partial page programming, it is possible for you to set a sector size smaller than the page size as long as it does not force
the driver to exceed the maximum number of partial page programs. If this is not respected, the driver will fail the initialization phase and return an
error code.

One of the advantages of choosing a sector size smaller than the page size is to reduce the RAM usage. The size of the buffers in the file system
are based on the sector size. A large sector size implies large buffers.

For the best performance, the sector size should be in the ballpark of a typical transaction. If most of your write operations are a couple of octets,
you should, if possible, choose a small sector size (typically 512 octets). On the other hand, if you want to obtain good transfer rates and you have
large application buffers (with multimedia applications, for example), then the sector size should be set higher. The optimal choice will almost
always be the same as the page size (512, 2048, 4096 octets).

Choosing error correction codes

Each device needs an error correction codes (ECC) module able to correct a minimal number of bits per codeword. Choosing a module that
satisfies the minimum required level of error correction is often the best option if you want to avoid the extra calculation time of modules with
enhanced bit error correction.

To reduce the calculation load on your CPU, it is recommended to consider using a hardware ECC module. This is especially true with parts that

require more than 1 bit per codeword of error correction. These hardware ECC engines are often found in MCU and in NAND flash devices.
Consult their datasheets to determine if you have access to such a feature.

If data safety is a concern, you can consider using an ECC module with better correction capacity. For most applications, the recommended level
of correction is sufficient. However, using an ECC engine that can correct more bit-errors can improve long-term readability of the data, especially
for cold data (that never or rarely changes). Another option is to reduce the codeword size. The same number of bit errors can be corrected, but
since codewords are smaller, the bit error rate will be smaller. While those design choices will slightly improve reliability, they will also increase the
overhead and hence reduce the read/write speed and increase the worst-case locking time.

Configure the translation layer

The configuration of the translation layer is complicated. Take the time needed to read carefully each description, and make sure you choose a
configuration that is appropriate for your application. When, in most cases, the basic configuration will be enough, optimizing it will help you to
reach your goals, whether they are about CPU usage, footprints, reliability or speed.

The translation layer configuration options are described in .Translation Layer Configuration

Considering another controller layer

Some MCUs have advanced peripherals that interface with NAND flash devices. If this is the case, consider using or developing a specialized
controller layer implementation to take advantage of those peripherals and save some CPU time or increase performances.

Development Guide

This section describes the code you might need to implement to adapt the driver to your specific hardware and application. Typically, you will only
need to implement the BSP layer for an available controller layer implementation. In other cases, you might need to provide an implementation for
the ECC module and/or the controller layer.

BSP Development Guide - Generic Controller

If you use the generic controller layer implementation, a BSP is required so that it will work for a particular board, micro-controller or application.
Other controller layer implementations might require a similar BSP layer.

The BSP must declare an instance of the BSP API type () as a global variable within the source code. The APIFS_NAND_CTRLR_GEN_BSP_API
structure is an ordered list of function pointers used by the generic controller layer implementation. The BSP API type is shown in Listing - BSP

 in the page.API type for the generic controller layer implementation Board Support Package

An example of a BSP API structure definition is shown in the listing below:

const FS_NAND_CTRLR_GEN_BSP_API FS_NAND_BSP_Example = {
 Open, (1)
 Close, (2)
 ChipSelEn, (3)
 ChipSelDis, (4)
 CmdWr, (5)
 AddrWr, (6)
 DataWr, (7)
 DataRd, (8)
 WaitWhileBusy (9)
};

Listing - Example BSP API structure for generic controller

A proper BSP should implement all of these functions. The \Micrium\Software\uC-FS\Dev\NAND\BSP\Template\fs_dev_nand_ctrlr
 file, which contains a definition of API structure along with empty functions, is provided as a template to implement your BSP._gen_bsp.c

Open/Close functions (1, 2)

The and functions will be called respectively by and . Typically, is calledOpen() Close() FSDev_Open() FSDev_Close() FSDev_Open()
during initialization and is never called — closing a fixed device doesn’t make much sense. When implementing the funFSDev_Close() Open()
ction of the BSP layer, you should add all necessary code for the hardware initialization. That might include setting up the memory controller
general settings and timings for the bank associated with the NAND device, configuring the chip select and ready/busy through either the memory
controller or GPIO, configuring the memory controller clock, configuring the memory controller I/O pins, etc. The function is typically leftClose()
empty.

Chip selection functions (3, 4)

The and are called (in pairs) each time the device must be accessed. In these functions, you should implementChipSelEn() ChipSelDis()
any chip selection mechanism needed.

https://doc.micrium.com/display/fsdoc/Board+Support+Package#BoardSupportPackage-Listing-BSPAPItypeforthegenericcontrollerlayerimplementation
https://doc.micrium.com/display/fsdoc/Board+Support+Package#BoardSupportPackage-Listing-BSPAPItypeforthegenericcontrollerlayerimplementation

If the bus and/or hardware is shared with more than one task, the chip selection functions should also implement proper locking. If the shared bus
and/or hardware must be configured differently when used outside the NAND driver, the configuration changes must be done within the ChipSel

 and functions.En() ChipSelDis()

Command write function (5)

The function must write octets on the bus with the CLE (Command Latch Enable) pin asserted.CmdWr() cnt

Address write function (6)

The function must write octets on the bus with the ALE (Address Latch Enable) pin asserted.AddrWr() cnt

Data write function (7)

The DataWr() function must write cnt octets on the bus with both ALE and CLE not asserted. Bus writes must be bits wide.width

Data Read function (8)

The function must read octets from the bus and store it, starting from the address. The ALE and CLE signals must not beDataRd() cnt p_src
asserted. Bus reads must be bits wide.width

Wait while busy function (9)

This function should block until the ready pin of the NAND device is in the appropriate state. If for any reason this pin is not accessible, you should
call the with the as argument. This poll function will verify if the NAND device is ready by polling the NANDpoll_fcnt() poll_fcnt_arg
device status instead. Once the poll function returns , the can return without setting an error code. If the time outDEF_YES WaitWhileBusy()
limit is reached, the function should return with an error code set to .FS_ERR_DEV_TIMEOUT

Generic Controller Extension Development Guide

The generic controller extension layer allows extending the generic controller through a number of hook functions that are used by the generic
controller, when flexibility in handling a specific operation is desirable. A generic controller extension is defined through a structure of type FS_NA

, described in in the ND_CTRLR_GEN_EXT Listing - API structure type for generic controller extension Generic Controller Extension Development
 page. Note that all unused function pointers should be set to .Guide DEF_NULL

typedef struct fs_nand_ctrlr_gen_ext {
 void (*Init) (FS_ERR *p_err); (1)

 void *(*Open) (FS_NAND_CTRLR_GEN_DATA *p_ctrlr_data, (2)
 void *p_ext_cfg,
 FS_ERR *p_err);

 void (*Close) (void *p_ext_data); (3)

 FS_NAND_PG_SIZE (*Setup) (FS_NAND_CTRLR_GEN_DATA *p_ctrlr_data, (4)
 void *p_ext_data,
 FS_ERR *p_err);

 void (*RdStatusChk) (void *p_ext_data, (5)
 FS_ERR *p_err);

 void (*ECC_Calc) (void *p_ext_data, (6)
 void *p_sec_buf,
 void *p_oos_buf,
 FS_NAND_PG_SIZE oos_size,
 FS_ERR *p_err);

 void (*ECC_Verify) (void *p_ext_data, (7)
 void *p_sec_buf,
 void *p_oos_buf,
 FS_NAND_PG_SIZE oos_size,
 FS_ERR *p_err);
} FS_NAND_CTLRR_GEN_EXT;

Listing - API structure type for generic controller extension
(1)
The funtion provides an opportunity to initialize an extension. This will be called only once, when the extension is registered with theInit()
generic controller (during). If multiple generic controller instances are configured with the same extension, the functionFSDev_Open() Init()
will still be called only once.

(2)
 The function is called by the generic controller’s own function. This function will also receive the controller extensionOpen() Open()
configuration pointer.

(3)
 The function might be called by the generic controller’s own function and allow the extension to release its resources. Close() Close() Close

 will typically never be called.()

(4)
 The function is called during the generic controller’s own function and provides an opportunity to setup some internalSetup() Setup()
parameters according to the generic controller’s operating conditions. The generic controller’s instance data is provided as an argument to this
function. The function must return the amount of required OOS storage space, in octets (ECC data, for example).

(5)
 The function is called after a sector read operation, by the generic controller’s function. It should determine if a readRdStatusChk() SecRd()
error has occurred and return an error accordingly.

(6)
 The function is called before a sector is written to the NAND device by the generic controller’s function, and provides anECC_Calc() SecWr()
opportunity to calculate the ECC data and to append it to the OOS metadata.

(7)
 The function is called after a sector is read from the NAND device by the generic controller’s function. It should readECC_Verify() SecRd()
the ECC data from the OOS metadata, verify the sector and OOS data integrity, and correct any errors found if possible. It should return an
appropriate error code if ECC errors are found.

ECC Module Development Guide

Before undertaking the task of writing a software ECC module, or a software interface to a hardware ECC module, you should evaluate whether
or not modifications to the controller layer are needed as well. Some hardware ECC modules integrated within a NAND device or a
micro-controller’s memory controller can be handled through a generic controller extension module.

However, if your ECC module can be interfaced with the software ECC generic controller extension, you could limit the code to be developed to
the ECC layer only. If this is the case, you will need to provide the implementation of the API as shown in in the Listing - ECC API type definition E

 page:CC Module Development Guide

typedef struct ecc_calc {
 CPU_SIZE_T BufLenMin; (1)
 CPU_SIZE_T BufLenMax; (2)
 CPU_INT08U ECC_Len; (3)
 CPU_INT08U NbrCorrectableBits; (4)
 ECC_CALC_FNCT Calc; (5)
 ECC_CHK_FNCT Chk; (6)
 ECC_CORRECT_FNCT Correct; (7)
} ECC_CALC;

Listing - ECC API type definition
(1)
Minimum buffer length that the ECC module can handle.

(2)
 Maximum buffer length that the ECC module can handle.

(3)
 Length, in octets, of the code for a single buffer.

(4)
 Number of bits the module can correct for each buffer.

(5)

 Pointer to the code calculation function.

(6)
 Pointer to the error detection function.

(7)
 Pointer to the error correction function.

For more details on the implementation, please refer to the µC/CRC User Manual.

Controller Layer Development Guide

To fully take advantage of advanced peripherals (for example, NAND flash controllers), you might decide to provide your own implementation of
the controller layer. The controller layer is one level above the BSP layer. Its interface is more flexible, but is also more complex to implement. If
you choose that route, it is strongly recommended to use the provided implementations as an example. inListing - Controller API type definition
the page describes the API that must be implemented for the controller layer.Controller Layer Development Guide

typedef struct fs_nand_ctrlr_api {
 void *(*Open) (FS_NAND_PART_API *p_part_api,
 void *p_bsp_api,
 void *p_ctrlr_cfg,
 FS_ERR *p_err);

 void (*Close) (void *p_ctrlr_data);

 FS_NAND_PART_DATA *(*PartDataGet) (void *p_ctrlr_data);

 FS_NAND_PG_SIZE (*Setup) (void *p_ctrlr_data,
 FS_NAND_PG_SIZE sec_size,
 FS_ERR *p_err);

 void (*SecRd) (void *p_ctrlr_data,
 void *p_dest,
 void *p_dest_oos,
 FS_SEC_NBR sec_ix_phy,
 FS_ERR *p_err);

 void (*OOSRdRaw) (void *p_ctrlr_data,
 void *p_dest_oos,
 FS_SEC_NBR sec_nbr_phy,
 FS_NAND_PG_SIZE offset,
 FS_NAND_PG_SIZE length,
 FS_ERR *p_err);

 void (*SpareRdRaw) (void *p_ctrlr_data,
 void *p_dest_oos,
 FS_SEC_QTY pg_nbr_phy,
 FS_NAND_PG_SIZE offset,
 FS_NAND_PG_SIZE length,
 FS_ERR *p_err);

 void (*SecWr) (void *p_ctrlr_data,
 void *p_src,
 void *p_src_spare,
 FS_SEC_NBR sec_nbr_phy,
 FS_ERR *p_err);

 void (*BlkErase) (void *p_ctrlr_data,
 CPU_INT32U blk_nbr_phy,
 FS_ERR *p_err);

 void (*IO_Ctrl) (void *p_ctrlr_data,
 CPU_INT08U cmd,
 void *p_buf,
 FS_ERR *p_err);
} FS_NAND_CTRLR_API;

Listing - Controller API type definition

Before implementing the following functions, it is important to understand the difference between out-of-sector (OOS) data and the spare area. In
a NAND device, each page has a spare area, typically used to store metadata and error correction codes (ECC). The spare area also contains a
factory defect mark and, optionally, reserved sections. In the implementation of the µC/FS NAND driver, the OOS data is metadata sent to the
controller layer by the translation layer. It must be stored in the spare area, wit.hout overwriting the bad block mark and without writing to the
reserved section. It must also be protected by ECC. The OOS data is only a part of what is inside the spare area. It doesn’t include the factory
defect marks, the reserved sections and the ECC data. Also, if the sector size is not equal to the page size, the OOS data will be associated to a
single sector, while the spare area will be associated to a single page. In that case, multiple OOS sections would be fit in a single spare area.

Open/Close functions

The and function will be called respectively by and . Typically, is calledOpen() Close() FSDev_Open() FSDev_Close() FSDev_Open()
during initialization and is never called. When implementing the function of the controller layer, you should typically addFSDev_Close() Open()
all necessary code for the bus/controller initialization (or call the function of the BSP layer). You should also allocate the necessaryOpen()
memory and perform all the operations that need to be done a single time only, when opening the device. The function is typically leftClose()
empty.

Part data get function

The function should return an instance of the type associated to a particular device.PartDataGet() FS_NAND_PART_DATA

Setup function

The function is called a single time, after the function. It must perform the proper calculation to make sure that the out-of-sectorSetup() Open()
data (OOS) and the error correction codes (ECC) can fit in the spare area.

Sector read function

The function must copy the data found at the physical sector into the buffer. It must also copy theSectorRd() sec_ix_phy p_dest
out-of-sector data (OOS - the section of the spare area, excluding ECC, bad block marks and unused sections) into the buffer.p_dest_oos
Before returning successfully, the function should check for errors and correct them, if needed (with ECC).

Out-Of-sector (OOS) raw read function

The function must copy octets from the octet in the OOS of the sector into the buffer. ThisOOSRdRaw() len offset sec_ix_phy p_dest_oos
function should not perform error correction.

Spare area raw read function

The function must copy octets from the octet in the spare area of the page into the buSpareRdRaw() len offset pg_ix_phy p_dest_spare
ffer. This function should not perform error correction.

Sector write function

The function must write the data found in the buffer into the physical sector of the NAND device. It must alsoSectorWr() p_src sec_ix_phy
write the out-of-sector data (OOS - the section of the spare area, excluding ECC, bad block marks and unused sections) found in the p_src_oos
buffer into the spare area. It should also store error correction codes (ECC) in the spare area.

Block erase function

The function should erase the block of the device.BlkErase() blk_ix_phy

IO control function

The function body can be left empty. It was created to perform device or controller specific commands without the need of a customIO_Ctrl()
API. It can simply return the error code.FS_ERR_DEV_INVALID_IO_CTRL

Note that the ONFI part layer implementation makes use of the I/O control operation. In order to retainFS_DEV_IO_CTRL_NAND_PARAM_PG_RD
compatibility with the ONFI part layer implementation, your controller implementation must support that operation.

NOR Flash Driver
NOR flash is a low-capacity on-board storage solution. Traditional parallel NOR flash, located on the external bus of a CPU, offers extremely fast
read performance, but comparatively slow writes (typically performed on a word-by-word basis). Often, these store application code in addition to
providing a file system. The parallel architecture of traditional NOR flash restricts use to a narrow class of CPUs and may consume valuable PCB
space. Increasingly, serial NOR flash are a valid alternative, with fast reads speeds and comparable capacities, but demanding less of the CPU
and hardware, being accessed by SPI or SPI-like protocols. in the page briefly compares these twoTable - NOR flash devices NOR Flash Driver
technologies; specific listings of supported devices are located in .Physical-Layer Drivers

Device
Category

Typical Packages Manufacturers Description

Parallel
NOR
Flash

TSOP32, TSOP48,
BGA48, TSOP56,
BGA56

AMD (Spansion) Intel
(Numonyx) SST ST
(Numonyx)

Parallel data (8- or 16-bit) and address bus (20+ bits). Most devices have
CFI ‘query’ information and use one of several standard command sets.

Serial
NOR
Flash

SOIC-8N, SOIC-8W,
SOIC-16, WSON,
USON

Atmel SST ST (Numonyx) SPI or multi-bit SPI-like interface. Command sets are generally similar.

Table - NOR flash devices

Files and Directories - NOR Flash

The files inside the NOR flash driver directory are outlined in this section; the generic file-system files, outlined in , areµC/FS Directories and Files
also required.

\Micrium\Software\uC-FS\Dev

This directory contains device-specific files.

\Micrium\Software\uC-FS\Dev\NOR

This directory contains the NOR driver files.

fs_dev_nor.*

These files are device driver for NOR flash devices. This file requires a set of BSP functions be defined in a file named fs_dev_nor_bsp.
 to work with a certain hardware setup.c

.\BSP\Template\fs_dev_nor_bsp.c

This is a template BSP for traditional parallel NOR devices. See for more information.NOR Flash BSP

.\BSP\Template (SPI)\fs_dev_nor_bsp.c

This is a template BSP for serial (SPI) NOR devices. See for more information.NOR Flash BSP

.\BSP\Template (SPI GPIO)\fs_dev_nor_bsp.c

This is a template BSP for serial (SPI) NOR devices using GPIO (bit-banging). See for more information.NOR Flash BSP

.\PHY

This directory contains physical-level drivers for specific NOR types:

fs_dev_nor_amd_1x08.*

CFI-compatible parallel NOR implementing AMD command set (1 chip, 8-bit data bus)

fs_dev_nor_amd_1x16.*

CFI-compatible parallel NOR implementing AMD command set (1 chip, 16-bit data bus)

fs_dev_nor_intel.*

CFI-compatible parallel NOR implementing Intel command set (1 chip, 16-bit data bus)

fs_dev_nor_sst39.*

SST SST39 Multi-Purpose Flash

fs_dev_nor_stm25.*

ST STM25 serial flash

fs_dev_nor_sst25.*

SST SST25 serial flash

\Micrium\Software\uC-FS\Examples\BSP\Dev\NOR

Each subdirectory contains an example BSP for a particular platform. These are named according to the following rubric:

<Chip Manufacturer>\<Board or CPU>\fs_dev_nor_bsp.c

NOR Driver and Device Characteristics

NOR devices, no matter what attachment interface (serial or parallel), share certain characteristics. The medium is always organized into units
(called blocks) which are erased at the same time; when erased, all bits are 1. Only an erase operation can change a bit from a 0 to a 1, but any
bit can be individually programmed from a 1 to a 0. The C/FS driver requires that any 2-byte word can be individually accessed (read or
programmed).

The driver RAM requirement depends on flash parameters such as block size and run-time configurations such as sector size. For a particular
instance, a general formula can give an approximate:

if (secs_per_blk < 255) {
 temp1 = ceil(blk_cnt_used / 8) + (blk_cnt_used * 1);
 } else {
 temp1 = ceil(blk_cnt_used / 8) + (blk_cnt_used * 2);
 }
 if (sec_cnt < 65535) {
 temp2 = sec_cnt * 2;
 } else {
 temp2 = sec_cnt * 4;
 }
 temp3 = sec_size;
 TOTAL = temp1 + temp2 + temp3;

where

secs_per_blk

The number of sectors per block.

blk_cnt_used

The number of blocks on the flash which will be used for the file system.

sec_cnt

The total number of sectors on the device.

sec_size

The sector size configured for the device, in octets.

secs_per_blk and can be calculated from more basic parameters :sec_cnt

secs_per_blk = floor(blk_size / sec_size);
 sec_cnt = secs_per_blk * blk_cnt_used;

where

blk_size

The size of a block on the device, in octets

Take as an example a 16-Mb NOR that is entirely dedicated to file system usage, with a 64-KB block size, configured with a 512-B sector. The
following parameters describe the format :

blk_cnt_used = 32;
 blk_size = 65536;
 sec_size = 512;
 secs_per_blk = 65536 / 512 = 128;
 sec_cnt = 128 * 32 = 4096;

and the RAM usage is approximately

temp1 = (32 / 8) + (32 * 2) = 68;
 temp2 = 4096 * 2 = 8192;
 temp3 = 512;
 TOTAL = 68 + 8192 + 512 = 8772;

In this example, as in most situations, increasing the sector size will decrease the RAM usage. If the sector size were 1024-B, only 5188-B would
have been needed, but a moderate performance penalty would be paid.

Using a Parallel NOR Device

To use the NOR driver, five files, in addition to the generic file system files, must be included in the build:

fs_dev_nor.c.
fs_dev_nor.h.
fs_dev_nor_bsp.c (located in the user application or BSP).
A physical-layer driver (e.g., as provided in \Micrium\Software\uC-FS\Dev\NOR\PHY)

The file must also be #included in any application or header files that directly reference the driver (for example, by registering thefs_dev_nor.h
device driver). The following directories must be on the project include path:

\Micrium\Software\uC-FS\Dev\NOR
\Micrium\Software\uC-FS\Dev\NOR\PHY

A single NOR volume is opened as shown in in the page. The file systemListing - Opening a NOR device volume Using a Parallel NOR Device
initialization () function must have previously been called.FS_Init()

ROM characteristics and performance benchmarks of the NOR driver can be found in . The NOR driver also providesDriver Characterization
interface functions to perform low-level operations (see).FAT System Driver Functions

CPU_BOOLEAN App_FS_AddNOR (void)
{
 FS_DEV_NOR_CFG nor_cfg;
 FS_ERR err;
 FS_DevDrvAdd((FS_DEV_API *)&FSDev_Nor, (1)
 (FS_ERR *)&err);
 if ((err != FS_ERR_NONE) && (err != FS_ERR_DEV_DRV_ALREADY_ADDED)) {
 return (DEF_FAIL);
 }
 (2)
 nor_cfg.AddrBase = APP_CFG_FS_NOR_ADDR_BASE;
 nor_cfg.RegionNbr = APP_CFG_FS_NOR_REGION_NBR;
 nor_cfg.AddrStart = APP_CFG_FS_NOR_ADDR_START;
 nor_cfg.DevSize = APP_CFG_FS_NOR_DEV_SIZE;
 nor_cfg.SecSize = APP_CFG_FS_NOR_SEC_SIZE;
 nor_cfg.PctRsvd = APP_CFG_FS_NOR_PCT_RSVD;
 nor_cfg.PctRsvdSecActive = APP_CFG_FS_NOR_PCT_RSVD_SEC_ACTIVE;
 nor_cfg.EraseCntDiffTh = APP_CFG_FS_NOR_ERASE_CNT_DIFF_TH;
 nor_cfg.PhyPtr = (FS_DEV_NOR_PHY_API *)APP_CFG_FS_NOR_PHY_PTR;
 nor_cfg.BusWidth = APP_CFG_FS_NOR_BUS_WIDTH;
 nor_cfg.BusWidthMax = APP_CFG_FS_NOR_BUS_WIDTH_MAX;
 nor_cfg.PhyDevCnt = APP_CFG_FS_NOR_PHY_DEV_CNT;
 nor_cfg.MaxClkFreq = APP_CFG_FS_NOR_MAX_CLK_FREQ;

 (3)
 FSDev_Open((CPU_CHAR *)“nor:0:”, (a)
 (void *)&nor_cfg, (b)
 (FS_ERR *)&err);

 switch (err) {
 case FS_ERR_NONE:
 APP_TRACE_DBG((" ...opened device.\r\n"));
 break;

 case FS_ERR_DEV_INVALID_LOW_FMT: /* Low fmt invalid. */
 APP_TRACE_DBG((" ...opened device (not low-level formatted).\r\n"));
 FSDev_NOR_LowFmt("nor:0:", &err); (4)
 if (err != FS_ERR_NONE) {
 APP_TRACE_DBG((" ...low-level format failed.\r\n"));
 return (DEF_FAIL);
 }
 break;
 default: /* Device error. */
 APP_TRACE_DBG((" ...opening device failed w/err = %d.\r\n\r\n", err));
 return (DEF_FAIL);
 }
 (5)
 FSVol_Open((CPU_CHAR *)“nor:0:”, (a)
 (CPU_CHAR *)“nor:0:”, (b)
 (FS_PARTITION_NBR) 0, (c)
 (FS_ERR *)&err);

 switch (err) {
 case FS_ERR_NONE:
 APP_TRACE_DBG((" ...opened volume (mounted).\r\n"));
 break;
 case FS_ERR_PARTITION_NOT_FOUND: /* Volume error. */
 APP_TRACE_DBG((" ...opened device (not formatted).\r\n"));
 FSVol_Fmt("nor:0:", (void *)0, &err); (6)
 if (err != FS_ERR_NONE) {
 APP_TRACE_DBG((" ...format failed.\r\n"));
 return (DEF_FAIL);
 }
 break;
 default: /* Device error. */
 APP_TRACE_DBG((" ...opening volume failed w/err = %d.\r\n\r\n", err));
 return (DEF_FAIL);
 }

 return (DEF_OK);
}

Listing - Opening a NOR device volume
(1)
Register the NOR device driver .FSDev_NOR

(2)
The NOR device configuration should be assigned. For more information about these parameters, see .FS_DEV_NOR_CFG

(3)
 opens/initializes a file system device. The parameters are the device nameFSDev_Open()

(3a)
and a pointer to a device driver-specific configuration structure
(3b)
. The device name
(3a)
s composed of a device driver name (“nor”), a single colon, an ASCII-formatted integer (the unit number) and another colon.

(4)
 low-level formats a NOR. If the NOR has never been used with µC/FS, it must be low-level formatted before being used.FSDev_NOR_LowFmt()

Low-level formatting will associate logical sectors with physical areas of the device.

(5)

 opens/mounts a volume. The parameters are the volume nameFSVol_Open()
(5a)
, the device name
(5b)
and the partition that will be opened
(5c)
. There is no restriction on the volume name
(5a)
; however, it is typical to give the volume the same name as the underlying device. If the default partition is to be opened, or if the device is not
partition, then the partition number
(5c)
should be zero.

(6)

 formats a file system device. If the NOR has just been low-level format, it will have no file system on it after it is opened (it willFSVol_Fmt()
be unformatted) and must be formatted before files can be created or accessed.

If the NOR initialization succeeds, the file system will produce the trace output as shown in in the Figure - NOR detection trace output Using a
 page (if a sufficiently high trace level is configured). See about configuring the trace level.Parallel NOR Device Trace Configuration

Figure - NOR detection trace output

Driver Architecture - Parallel NOR

When used with a parallel NOR device, the NOR driver is three layered, as depicted in the figure below. The generic NOR driver, as always,
provides sector abstraction and performs wear-leveling (to make certain all blocks are used equally). Below this, the physical-layer driver
implements a particular command set to read and program the flash and erase blocks. Lastly, a BSP implements function to initialize and
unitialize the bus interface. Device commands are executed by direct access to the NOR, at locations appropriately offset from the configured
base address.

Figure - NOR driver architecture (parallel NOR flash)

Hardware - Parallel NOR

Parallel NOR devices typically connect to a host MCU/MPU via an external bus interface (EBI), with an 8- or 16-bit data lines and 20 or more
address lines (depending on the device size). Many silicon vendors offer parallel NOR product lines; most devices currently marketed are
conformant to the Common Flash Interface (CFI). A set of query information allows the C/FS NOR driver physical-layer drivers to interface with
almost any NOR flash without configuration or modification. The standard query information provides the following details:

Command set. Three different command sets are common: Intel, AMD and SST. All three are supported.
Geometry. A device is composed of one or more regions of identically-sized erase blocks. Uniform devices contain only one region.
Boot-block devices often have one or two regions of small blocks for code storage at the top or bottom of the device. All of these are
supported by the NOR driver.

Offset Length (Bytes) Contents

0x10 1 Query string “Q”

0x11 1 Query string “R”

0x12 1 Query string “Y”

0x13 2 Command set

0x27 1 Device size, in bytes = 2n

0x2A 2 Maximum number of bytes in multi-byte write = 2N

0x2C 1 Number of erase block regions = m

0x2D 2 Region 1: Number of erase blocks = x + 1

0x2F 2 Region 1: Size of each erase block = y * 256 (bytes)

0x31 2 Region 2: Number of erase blocks = x + 1

0x33 2 Region 2: Size of each erase block = y * 256 (bytes)

.

.

.

0x2D + (m-1) * 4 2 Region m: Number of erase blocks = x + 1

0x2F + (m-1) * 4 2 Region m: Size of each erase block = y * 256 (bytes)

Table - CFI query information

 in the page gives the format of CFI query information. The first three bytes shouldTable - CFI query information Hardware - Parallel NOR
constitute the marker string “QRY”, by which the retrieval of correct parameters is verified. A two-byte command set identifier follows; this must
match the identifier for the command set supported by the physical-layer driver. Beyond is the geometry information: the device size, the number
of erase block regions, and the size and number of blocks in each region. For most flash, these regions are contiguous and sequential, the first at
the beginning of the device, the second just after. Since this is not always true (see for an example), the manufacturer’sFSDev_NOR_SST39
information should always be checked and, for atypical devices, the physical-layer driver copied to the application directory and modified.

Command Set Identifier Description

0x0001 Intel

0x0002 AMD/Spansion

0x0003 Intel

0x0102 SST

Table - Common command sets

NOR BSP Overview

A BSP is required so that a physical-layer driver for a parallel flash will work on a particular system. The functions shown in the table below must
be implemented. Pleaser refer to for the details about implementing your own BSP.NOR Flash BSP

Function Description

FSDev_NOR_BSP_Open() Open (initialize) bus for NOR.

FSDev_NOR_BSP_Close() Close (uninitialize) bus for NOR.

FSDev_NOR_BSP_Rd_XX() Read from bus interface.

FSDev_NOR_BSP_RdWord_XX() Read word from bus interface.

FSDev_NOR_BSP_WrWord_XX() Write word to bus interface

FSDev_NOR_BSP_WaitWhileBusy() Wait while NOR is busy.

Table - NOR BSP functions

The / functions are called upon open/close; these calls are always matched.Open() Close()

The remaining functions (, ,) read data from or write data to the NOR. If a single parallel NOR device willRd_XX() RdWord_XX() WrWord_XX()
be accessed, these function may be defined as macros to speed up bus accesses.

Using a Serial NOR Device

When used with a serial NOR device, the NOR driver is three layered, as depicted in the figure below. The generic NOR driver, as always,
provides sector abstraction and performs wear-leveling (to make certain all blocks are used equally). Below this, the physical-layer driver
implements a particular command set to read and program the flash and erase blocks. Lastly, a BSP implements function to communicate with
the device over SPI. Device commands are executed though this BSP.

Figure - NOR driver architecture (serial NOR flash)

Hardware - Serial NOR

Serial NOR devices typically connect to a host MCU/MPU via an SPI or SPI-like bus. Eight-pin devices, with the functions listed in Table - NOR
 in the page, or similar, are common, and are often employed with the HOLD and WP pins held highSPI BSP functions NOR SPI BSP Overview

(logic low, or inactive), as shown in in the page . As with any SPI device, four signals areTable - NOR SPI BSP functions NOR SPI BSP Overview
used to communicate with the host (CS, SI, SCK and SO).

Figure - Typical serial NOR connections

NOR SPI BSP Overview

An NOR BSP is required so that a physical-layer driver for a serial flash will work on a particular system. For more information about these
functions, see .NOR Flash SPI BSP

Function Description

FSDev_NOR_BSP_SPI_Open() Open (initialize) SPI.

https://doc.micrium.com/display/fsdoc/NOR+SPI+BSP+Overview#NORSPIBSPOverview-Table-NORSPIBSPfunctions
https://doc.micrium.com/display/fsdoc/NOR+SPI+BSP+Overview#NORSPIBSPOverview-Table-NORSPIBSPfunctions
https://doc.micrium.com/display/fsdoc/NOR+SPI+BSP+Overview#NORSPIBSPOverview-Table-NORSPIBSPfunctions

FSDev_NOR_BSP_SPI_Close() Close (uninitialize) SPI.

FSDev_NOR_BSP_SPI_Lock() Acquire SPI lock.

FSDev_NOR_BSP_SPI_Unlock() Release SPI lock.

FSDev_NOR_BSP_SPI_Rd() Read from SPI.

FSDev_NOR_BSP_SPI_Wr() Write to SPI.

FSDev_NOR_BSP_SPI_ChipSelEn() Enable chip select.

FSDev_NOR_BSP_SPI_ChipSelDis() Disable chip select.

FSDev_NOR_BSP_SPI_SetClkFreq() Set SPI clock frequency.

Table - NOR SPI BSP functions

Physical-Layer Drivers

The physical-layer drivers distributed with the NOR driver (see the table below) support a wide variety of parallel and serial flash devices from
major vendors. Whenever possible, advanced programming algorithms (such as the common buffered programming commands) are used to
optimize performance. Within the diversity of NOR flash, some may be found which implement the basic command set, but not the advanced
features; for these, a released physical-layer may need to be modified. In all cases, the manufacturer’s reference should be compared to the
driver description below.

Driver API Files Description

FSDev_NOR_AMD_1x08 fs_dev_nor_amd_1x08.* Supports CFI-compatible devices with 8-bit data bus implementing AMD
command set.

FSDev_NOR_AMD_1x16 fs_dev_nor_amd_1x16.* Supports CFI-compatible devices i with 16-bit data bus mplementing AMD
command set.

FSDev_NOR_Intel_1x16 fs_dev_nor_intel.* Supports CFI-compatible devices i with 16-bit data bus mplementing Intel
command set.

FSDev_NOR_SST39 fs_dev_nor_sst39.* Supports various SST SST39 devices with 16-bit data bus.

FSDev_NOR_STM29_1x08 fs_dev_nor_stm29_1x08.* Supports various ST M29 devices with 8-bit data bus.

FSDev_NOR_STM29_1x16 fs_dev_nor_stm29_1x16.* Supports various ST M29 devices with 16-bit data bus.

FSDev_NOR_STM25 fs_dev_nor_stm25.* Supports various ST M25 serial devices.

FSDev_NOR_SST25 fs_dev_nor_sst25.* Supports various SST SST25 serial devices.

Table - Physical-layer drivers

FSDev_NOR_AMD_1x08 & FSDev_NOR_AMD_1x16

FSDev_NOR_AMD_1x08 and support CFI NOR flash implementing AMD command set, including:FSDev_NOR_AMD_1x16

Most AMD and Spansion devices
Most ST/Numonyx devices
Others

The fast programming command “write to buffer and program”, supported by many flash implementing the AMD command set, is used in this
driver if the “Maximum number of bytes in a multi-byte write” (in the CFI device geometry definition) is non-zero.

Some flash implementing AMD command set have non-zero multi-byte write size but do not support the “write to buffer & program” command.
Often these devices will support alternate fast programming methods. This driver be modified for those devices, to ignore the multi-byte writemust
size in the CFI information. Define to force this mode of operation.NOR_NO_BUF_PGM

FSDev_NOR_Intel_1x16

FSDev_NOR_Intel_1x16 supports CFI NOR flash implementing Intel command set, including

Most Intel/Numonyx devices
Some ST/Numonyx M28 device
Others

FSDev_NOR_SST39

https://doc.micrium.com/display/PORTSDRIVERS/NOR_STM29_1x08
https://doc.micrium.com/display/PORTSDRIVERS/NOR_STM29_1x16
https://doc.micrium.com/display/PORTSDRIVERS/NOR_STM25
https://doc.micrium.com/display/PORTSDRIVERS/NOR_SST25

FSDev_NOR_SST39 supports SST’s SST39 Multi-Purpose Flash memories, as described in various datasheets at SST ().http://www.sst.com
SST39 devices use a modified form of the AMD command set. A more significant deviation is in the CFI device geometry information, which
describes two different views of the memory organization—division in to small sectors and division into large blocks—rather than contiguous,
separate regions. The driver always uses the block organization.

FSDev_NOR_STM25

FSDev_NOR_STM25 supports Numonyx/ST’s M25 & M45 serial flash memories, as described in various datasheets at Numonyx (http://www.nu
). This driver has been tested with or should work with the devices in the table below.monyx.com

The M25P-series devices are programmed on a page (256-byte) basis and erased on a sector (32- or 64-KB) basis. The M25PE-series devices
are also programmed on a page (256-byte) basis, but are erased on a page, subsector (4-KB) or sector (64-KB) basis.

Manufacturer Device Capacity Block Size Block Count

ST M25P10 1 Mb 64-KB 2

ST M25P20 2 Mb 64-KB 4

ST M25P40 4 Mb 64-KB 8

ST M25P80 8 Mb 64-KB 16

ST M25P16 16 Mb 64-KB 32

ST M25P32 32 Mb 64-KB 64

ST M25P64 64 Mb 64-KB 128

ST M25P128 128 Mb 64-KB 256

ST M25PE10 1 Mb 64-KB 2

ST M25PE20 2 Mb 64-KB 4

ST M25PE40 4 Mb 64-KB 8

ST M25PE80 8 Mb 64-KB 16

ST M25PE16 16 Mb 64-KB 32

Table - Supported M25 serial flash

FSDev_NOR_SST25

FSDev_NOR_SST25 supports SST’s SST25 serial flash memories, as described in various datasheets at Numonyx ().http://www.numonyx.com
This driver has been tested with or should work with the devices in the table below.

The M25P-series devices are programmed on a word (2-byte) basis and erased on a sector (4-KB) or block (32-KB) basis. The revision A devices
and revision B devices differ slightly. Both have an Auto-Address Increment (AAI) programming mode. In revision A devices, the programming is
performed byte-by-byte; in revision B devices, word-by-word. Revision B devices can also be erased on a 64-KB block basis and support a
command to read a JEDEC-compatible ID.

Manufacturer Device Capacity Block Size Block Count

SST SST25VF010B 1 Mb 4-KB 32

SST SST25VF020B 2 Mb 4-KB 64

SST SST25VF040B 4 Mb 4-KB 128

SST SST25VF080B 8 Mb 32-KB 32

SST SST25VF016B 16 Mb 32-KB 64

SST SST25VF032B 32 Mb 32-KB 128

Table - Supported SST25 serial flash

MSC Driver
The MSC driver supports USB mass storage class devices (i.e., USB drives, thumb drives) using the µC/USB host stack.

Files and Directories - MSC

http://www.sst.com
http://www.numonyx.com
http://www.numonyx.com
http://www.numonyx.com

The files inside the MSC driver directory are outlined in this section; the generic file-system files, outlined in , are alsoµC/FS Directories and Files
required.

\Micrium\Software\uC-FS\Dev

This directory contains device-specific files.

\Micrium\Software\uC-FS\Dev\MSC

This directory contains the MSC driver files.

fs_dev_msc.* constitute the MSC device driver.

\Micrium\Software\uC-USB

This directory contains the code for µC/USB. For more information, please see the µC/USB user manual.

Using the MSC Driver

To use the MSC driver, two files, in addition to the generic file system files, must be included in the build:

fs_dev_msc.c.
fs_dev_msc.h.

The file must also be #included in any application or header files that directly reference the driver (for example, by registering thefs_dev_msc.h
device driver). The following directory must be on the project include path:

\Micrium\Software\uC-FS\Dev\MSC

Before µC/FS is initialized, the µC/USB host stack must be initialized as shown in in the Listing - Example µC/USB initialization Using the MSC
 page. The file system initialization function () must then be called and the MSC driver, , restivered (using Driver FS_Init() FSDev_MSC FS_DevD

). The USB notification function should add/remove devices when events occur, as shown in inrvAdd() Listing - Example µC/USB initialization
the page.Using the MSC Driver

ROM/RAM characteristics and performance benchmarks of the MSC driver can be found in .Driver Characterization

static void App_InitUSB_Host (void)
{
 USBH_ERR err;
 err = USBH_HostCreate(&App_USB_Host, &USBH_AT91SAM9261_Drv);
 if (err != USBH_ERR_NONE) {
 return;
 }
 err = USBH_HostInit(&App_USB_Host);
 if (err != USBH_ERR_NONE) {
 return;
 }
 USBH_ClassDrvReg(&App_USB_Host, &USBH_MSC_ClassDrv,
 (USBH_CLASS_NOTIFY_FNCT)App_USB_HostMSC_ClassNotify,
(void *)0);
}

Listing - Example µC/USB initialization

static void App_USB_HostMSC_ClassNotify (void *pclass_dev,
 CPU_INT08U is_conn,
 void *pctx)
{
 USBH_MSC_DEV *p_msc_dev;
 USBH_ERR usb_err;
 FS_ERR fs_err;
 p_msc_dev = (USBH_MSC_DEV *)pclass_dev;
 switch (is_conn) {
 case USBH_CLASS_DEV_STATE_CONNECTED: /* ----- MASS STORAGE DEVICE
CONN'D ----- */
 usb_err = USBH_MSC_RefAdd(p_msc_dev);
 if (usb_err == USBH_ERR_NONE) {
 FSDev_MSC_DevOpen(p_msc_dev, &fs_err);
 }
 break;
 case USBH_CLASS_DEV_STATE_REMOVED: /* ----- MASS STORAGE DEVICE
REMOVED ---- */
 FSDev_MSC_DevClose(p_msc_dev);
 USBH_MSC_RefRel(p_msc_dev);
 break;
 default:
 break;
 }
}

Listing - µC/USB MSC notification function

If the file system and USB stack initialization succeed, the file system will produce the trace output as shown in Figure - MSC detection trace
 in the page (if a sufficiently high trace level is configured) when the a MSC device is connected. See output Using the MSC Driver Trace

 about configuring the trace level.Configuration

Figure - MSC detection trace output

IDE/CF Driver
Compact flash (CF) cards are portable, low-cost media often used for storage in consumer devices. Several variants, in different media widths,
are widely available, all supported by the IDE driver. ATA IDE hard drives are also supported by this driver.

Files and Directories - IDE/CF

The files inside the IDE driver directory are outlined in this section; the generic file system files, outlined in , are alsoµC/FS Directories and Files
required.

\Micrium\Software\uC-FS\Dev

This directory contains device-specific files.

\Micrium\Software\uC-FS\Dev\IDE

This directory contains the IDE driver files.

fs_dev_ide.* are device driver for IDE devices. This file requires a set of BSP functions be defined in a file named fs_dev_ide_bsp.c
to work with a certain hardware setup.

.\BSP\Template\fs_dev_ide_bsp.c is a template BSP. See for more information.IDE BSP Overview

\Micrium\Software\uC-FS\Examples\BSP\Dev\IDE

Each subdirectory contains an example BSP for a particular platform. These are named according to the following rubric:

<Chip Manufacturer>\<Board or CPU>\fs_dev_ide_bsp.c

Using the IDE/CF Driver

To use the IDE/CF driver, five files, in addition to the generic file system files, must be included in the build:

fs_dev_ide.c
fs_dev_ide.h
fs_dev_ide_bsp.c (located in the user application or BSP).

The file must also be #included in any application or header files that directly reference the driver (for example, by registering thefs_dev_ide.h
device driver). The following directories must be on the project include path:

\Micrium\Software\uC-FS\Drivers\IDE

A single IDE/CF volume is opened as shown in in the page. The file systemListing - Opening a IDE/CF device volume Using the IDE/CF Driver
initialization () function must have been previously called.FS_Init()

ROM/RAM characteristics and performance benchmarks of the IDE driver can be found in .Driver Characterization

CPU_BOOLEAN App_FS_AddIDE (void)
{
 FS_ERR err;

 FS_DevDrvAdd((FS_DEV_API *)&FSDev_IDE, (1)
 (FS_ERR *)&err);
 if ((err != FS_ERR_NONE) && (err != FS_ERR_DEV_DRV_ALREADY_ADDED)) {
 return (DEF_FAIL);
 }
 (2)
 FSDev_Open((CPU_CHAR *)“ide:0:”, (a)
 (void *) 0, (b)
 (FS_ERR *)&err);

 switch (err) {
 case FS_ERR_NONE:
 break;

 case FS_ERR_DEV:
 case FS_ERR_DEV_IO:
 case FS_ERR_DEV_TIMEOUT:
 case FS_ERR_DEV_NOT_PRESENT:
 return (DEF_FAIL);
 default:
 return (DEF_FAIL);
 }
 (3)
 FSVol_Open((CPU_CHAR *)“ide:0:”, (a)
 (CPU_CHAR *)“ide:0:”, (b)
 (FS_PARTITION_NBR) 0, (c)
 (FS_ERR *)&err);

 switch (err) {
 case FS_ERR_NONE:
 break;

 case FS_ERR_DEV:
 case FS_ERR_DEV_IO:
 case FS_ERR_DEV_TIMEOUT:
 case FS_ERR_DEV_NOT_PRESENT:
 case FS_ERR_PARTITION_NOT_FOUND: (4)
 return (DEF_FAIL);
 default:
 return (DEF_FAIL);
 }

 return (DEF_OK);
}

Listing - Opening a IDE/CF device volume
(1)
Register the IDE/CF device driver.

(2)
 opens/initializes a file system device. The parameters are the device nameFSDev_Open()

(1a)
and a pointer to a device driver-specific configuration structure
(1b)
. The device name

(1a)
is composed of a device driver name (“ide”), a single colon, an ASCII-formatted integer (the unit number) and another colon. Since the IDE/CF
driver requires no configuration, the configuration structure
(1b)
should be passed a NULL pointer.

Since IDE/CF are often removable media, it is possible for the device to not be present when is called. The device will still beFSDev_Open()
added to the file system and a volume opened on the (not yet present) device. When the volume is later accessed, the file system will attempt to
refresh the device information and detect a file system (see for more information).Using Devices

(3)
 opens/mounts a volume. The parameters are the volume nameFSVol_Open()

(2a)
, the device name
(2b)
and the partition that will be opened
(2c)
. There is no restriction on the volume name
(2a)
; however, it is typical to give the volume the same name as the underlying device. If the default partition is to be opened, or if the device is not
partition, then the partition number
(2c)
should be zero.

(4)
High level format can be applied to the volume if is returned by the call to function.FS_ERR_PARTITION_NOT_FOUND FSVol_Open()

If the IDE initialization succeeds, the file system will produce the trace output as shown in in the Figure - IDE detection trace output Using the
 page (if a sufficiently high trace level is configured). See about configuring the trace level.IDE/CF Driver Trace Configuration

Figure - IDE detection trace output

ATA (True IDE) Communication

The interface between an ATA device and host is comprised of data bus, address bus and various control signals, as shown in Figure - True IDE
 in the page. Three forms of data transfer are possible, each with several timing(ATA) host/device connection ATA (True IDE) Communication

modes:

1 PIO (programmed input/output). PIO must always be possible; indeed, it may be the only possible transfer form on certain hardware.

Using PIO, data requests are satisfied by direct reads or writes to the DATA register. The command and standardIDENTIFY_DEVICE
sector and multiple sector read/write commands always involve this type of transfer. Five timing modes (0, 1, 2, 3 and 4) are standard;
two more (5 and 6) are defined in the CF specification.
2 Mutiword DMA. In Multiword DMA mode, a DMARQ and –DMACK handshake initiates automatic data transmission, during which the
host moves data between its memory and the bus. The DMA read/write commands (,) may use Multiword DMA.READ_DMA WRITE_DMA
Three timing modes (0, 1 and 2) are standard; two more (3 and 4) are defined in the CF specification.
3 Ultra DMA. The purposes of several control signals are reassigned during Ultra DMA transfers. For example, IORDY becomes either
DDMARDY or DSTROBE (depending on the direction) to control data flow. The DMA read/write commands (,)READ_DMA WRITE_DMA
may use Ultra DMA. Seven timing modes (0, 1, 2, 3, 4, 5 and 6) are standard.

Figure - True IDE (ATA) host/device connection

Pin Name(s) Function

A00, A01, A02, -CS0, -CS1 Address group. Use by host to select the register or data port that will be accessed.

-IORD Asserted by host to read register or data port.

-IOWR Asserted by host to write register or data port.

-IORDY

INTRQ Interrupt request to the host.

-RESET Hardware reset signal.

DMARQ Asserted by device when it is ready for a DMA transfer.

-DMACK DMA acknowledge signal asserted by host in response to DMARQ.

-DASP Disk Active/Slav Present signal in Master/Slave handshake protocol.

-CD1, -CD2 Chip detect.

The host controls the device via eight registers (see in the page). Seven of theseFigure - Register definitions ATA (True IDE) Communication
registers comprise the command block: FR, SC, SN, CYL, CYH, DH and CMD. The command block registers are written, in sequence, to execute
a command. Afterwards, the error and status register return to the host a failure indicator or otherwise signal device operation completion. The
need to poll these registers is removed if the host is instead alerted by an interrupt request (on the INTRQ signal) to attend to the device.

Up to two devices, known as master and slave (or device 0 and device 1) may be located on a single conventional bus. The active device (the
target for the next command) is selected by the DEV bit in the DH register, and generally only one device can be accessed at a time, meaning
that a read or write to one cannot interrupt a read or write to the other.

Figure - Register definitions

Abbreviation Name R/W Control Signals

CS1 CS0 A02 A01 A00

DATA Data R/W 0 1 0 0 0

ERR Error R 0 1 0 0 1

FR Features W 0 1 0 0 1

SC Sector Count W 0 1 0 1 0

SN Sector Number W 0 1 0 1 1

CYL Cylinder Low W 0 1 1 0 0

CYH Cylinder High W 0 1 1 0 1

DH Card/Drive/Head W 0 1 1 1 0

CMD Command W 0 1 1 1 1

STATUS Status R 0 1 1 1 1

ALTSTATUS Alternate Status R 1 0 1 1 0

DEVCTRL Device Control W 1 0 1 1 0

IDE BSP Overview

A BSP is required so that the IDE driver will work on a particular system. The functions shown in the table below must be implemented.

Function Description

FSDev_IDE_BSP_Open() Open (initialize) hardware.

FSDev_IDE_BSP_Close() Close (uninitialize) hardware.

FSDev_IDE_BSP_Lock() Acquire IDE bus lock.

FSDev_IDE_BSP_Unlock() Release IDE bus lock.

FSDev_IDE_BSP_Reset() Hardware-reset IDE device

FSDev_IDE_BSP_RegRd() Read from IDE device register.

FSDev_IDE_BSP_RegWr() Write to IDE device register.

FSDev_IDE_BSP_CmdWr() Write command to IDE device register.

FSDev_IDE_BSP_DataRd() Read data from IDE device.

FSDev_IDE_BSP_DataWr() Write data to IDE device.

FSDev_IDE_BSP_DMA_Start() Setup DMA for command (Initialize channel).

FSDev_IDE_BSP_DMA_End() End DMA transfer (and uninitialize channel).

FSDev_IDE_BSP_GetDrvNbr() Get IDE drive number.

FSDev_IDE_BSP_GetModesSupported() Get supported transfer modes.

FSDev_IDE_BSP_SetMode() Set transfer modes.

FSDev_IDE_BSP_Dly400_ns() Delay for 400 ns.

Table - IDE BSP functions

Figure - Command execution

µC/FS Reference Guide

Version 4.07.00

The µC/FS Reference Guide contains the following sections:

µC/FS API Reference
µC/FS Error Codes
µC/FS Porting Manual
µC/FS Types and Structures
µC/FS Configuration
Shell Commands

Bibliography

µC/FS API Reference
This chapter provides a reference to µC/FS services. The following information is provided for each entry:

A brief description of the service
The function prototype
The filename of the source code
The #define constant required to enable code for the service
A description of the arguments passed to the function
A description of returned value(s)
Specific notes and warnings regarding use of the service
One or two examples of how to use the function

Many functions return error codes. These error codes should be checked by the application to ensure that the µC/FS function performed its
operation as expected.

Each of the user-accessible file system services is presented in alphabetical order within an appropriate section; the section for a particular
function can be determined from its name.

Section Functions begin with…

General file system functions FS_

POXIX API functions fs_

Device functions FSDev_

Directory functions FSDir_

Entry functions FSEntry_

File functions FSFile_

Time functions FSTime_

Volume functions FSVol_

RAMDisk driver functions FSDev_RAM_

NAND driver functions FS_NAND

SD/MMC driver functions FSDev_SD_

NAND driver functions FSDev_NAND_

NOR driver functions FSDev_NOR_

MSC driver functions FSDev_MSC_

FAT functions FS_FAT_

BSP functions FS_BSP_

OS functions FS_OS_

General File System Functions

void

FS_DevDrvAdd (FS_DEV_API *p_dev_api,

FS_ERR *p_err);

FS_ERR

FS_Init (FS_CFG *p_fs_cfg);

CPU_INT08U

FS_VersionGet (void);

void

FS_WorkingDirGet (CPU_CHAR *path_dir,

CPU_SIZE_T len_max,

FS_ERR *p_err);

void

FS_WorkingDirSet (CPU_CHAR *path_dir,

FS_ERR *p_err);

void

FS_DevDrvAdd (FS_DEV_API *p_dev_drv,

FS_ERR *p_err);

FS_DevDrvAdd()

 void FS_DevDrvAdd (FS_DEV_API *p_dev_drv,
 FS_ERR *p_err);

File Called from Code enabled by

fs.c Application N/A

Adds a device driver to the file system.

Arguments

p_dev_drv

Pointer to device driver (see).Device Driver

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

Device driver added.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_dev_drv

FS_ERR_DEV_DRV_ALREADY_ADDED

Device driver already added.

FS_ERR_DEV_DRV_INVALID_NAME

Device driver name invalid.

FS_ERR_DEV_DRV_NO_TBL_POS_AVAIL

No device driver table position available.

Returned Value

None.

1.
2.
3.
4.
5.
6.

1.

1.

Notes/Warnings

The device driver interface function return a valid name:NameGet() must
The name must be unique (e.g., a name that is not returned by any other device driver);
The name must include any of the characters: ‘:’, ‘\’ or ‘/’.not
The name must contain fewer than characters;FS_CFG_MAX_DEV_DRV_NAME_LEN
The name must be an empty string.not
The device driver interface function is called to initialize driver structures and any hardware for detecting the presence of devicesInit()
(for a removable medium).

FS_Init()

FS_ERR FS_Init (FS_CFG *p_fs_cfg);

File Called from Code enabled by

fs.h Application N/A

Initializes µC/FS and be called prior to calling any other µC/FS API functions.must

Arguments

p_fs_cfg

Pointer to file system configuration (see).FS_CFG

Returned Value

FS_ERR_NONE, if successful;

Specific initialization error code, otherwise.

The return value SHOULD be inspected to determine whether µC/FS is successfully initialized or not. If µ/FS did successfully initialize, searchnot
for the returned error in fs_err.h and source files to locate where µC/FS initialization failed.

Notes/Warnings

µC/LIB memory management function be called prior to calling this function.Mem_Init() must

FS_VersionGet()

CPU_INT16U FS_VersionGet (void);

File Called from Code enabled by

fs.c Application N/A

Gets the µC/FS software version.

Arguments

None.

Returned Value

µC/FS software version.

Notes/Warnings

The value returned is multiplied by 100. For example, version 4.03.00 would be returned as 40300.

FS_WorkingDirGet()

1.

void FS_WorkingDirGet (CPU_CHAR *path_dir,
 CPU_SIZE_T size,
 FS_ERR *p_err);

File Called from Code enabled by

fs.c Application;
fs_getcwd()

FS_CFG_WORKING_DIR_EN

Get the working directory for the current task.

Arguments

path_dir

String buffer that will receive the working directory path.

size

Size of string buffer.

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

Working directory obtained.

FS_ERR_NULL_PTR

Argument path_dir passed a NULL pointer.

FS_ERR_NULL_ARG

Argument size passed a NULL value.

FS_ERR_NAME_BUF_TOO_SHORT

Argument size less than length of path

FS_ERR_VOL_NONE_EXIST

No volumes exist.

Returned Value

None.

Notes/Warnings

If no working directory is assigned for the task, the default working directory—the root directory on the default volume—will be returned in
the user buffer and set as the task’s working directory.

FS_WorkingDirSet()

void FS_WorkingDirSet (CPU_CHAR *path_dir,
 FS_ERR *p_err);

File Called from Code enabled by

fs.c Application;

fs_chdir()

FS_CFG_WORKING_DIR_ENSet the working directory for the current task.

Arguments

path_dir

String buffer that specified EITHER...

(a) the absolute working directory path to set;

(b) a relative path that will be applied to the current working directory.

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

Working directory set.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.path_dir

FS_ERR_VOL_NONE_EXIST

No volumes exist.

FS_ERR_WORKING_DIR_NONE_AVAIL

No working directories available.

FS_ERR_WORKING_DIR_INVALID

Argument passed an invalid directory.path_dir

Returned Value

None.

Notes/Warnings

None.

Posix API Functions

char *

fs_asctime_r (const struct fs_tm *p_time,

char *str_time);

int

fs_chdir (const char *path_dir);

void

fs_clearerr (FS_FILE *p_file);

int

fs_closedir (FS_DIR *p_dir);

char *

fs_ctime_r (const fs_time_t *p_ts,

char *str_time);

int

fs_fclose (FS_FILE *p_file);

int

fs_feof (FS_FILE *p_file);

int

fs_ferror (FS_FILE *p_file);

int

fs_fflush (FS_FILE *p_file);

int

fs_fgetpos (FS_FILE *p_file,

fs_fpos_t *p_pos);

void

fs_flockfile (FS_FILE *p_file);

FS_FILE *

fs_fopen (const char *name_full,

const char *str_mode);

fs_size_t

fs_fread (void *p_dest,

fs_size_t size,

fs_size_t nitems,

FS_FILE *p_file);

int

fs_fseek (FS_FILE *p_file,

long int offset,

int origin);

int

fs_fsetpos (FS_FILE *p_file,

fs_fpos_t *p_pos);

long int

fs_ftell (FS_FILE *p_file);

int

fs_ftruncate (FS_FILE *p_file,

fs_off_t size);

int

fs_ftrylockfile (FS_FILE *p_file);

void

fs_funlockfile (FS_FILE *p_file);

fs_size_t

fs_fwrite (void *p_src,

fs_size_t size,

fs_size_t nitems,

FS_FILE *p_file);

char *

fs_getcwd (char *path_dir,

fs_size_t size);

struct fs_tm *

fs_localtime_r (const fs_time_t *p_ts,

struct fs_tm *p_time);

int

fs_mkdir (const char *name_full);

fs_time_t

fs_mktime (struct fs_tm *p_time);

FS_DIR *

fs_opendir (const char *name_full);

int

fs_readdir (FS_DIR *p_dir,

struct fs_dirent *p_dir_entry,

struct fs_dirent **pp_result);

int

fs_remove (const char *name_full);

int

fs_rename (const char *name_full_old,

const char *name_full_new);

void

fs_rewind (FS_FILE *p_file);

int

fs_setbuf (FS_FILE *p_file,

fs_size_t size);

1.

int

fs_setvbuf (FS_FILE *p_file,

char *p_buf,

int mode,

fs_size_t size);

fs_asctime_r()

char *fs_asctime_r (const struct fs_tm *p_time,
 char *str_time);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN

Converts date/time to string in the form:

Sun Sep 16 01:03:52 1973\n\0

Arguments

p_time

Pointer to date/time to format.

str_time

String buffer that will receive date/time string (see Note).

Returned Value

Pointer to , if NO errors.str_time

Pointer to NULL, otherwise.

Notes/Warnings

str_time be at least 26 characters long. Buffer overruns be prevented by caller.must must

fs_chdir()

int fs_chdir (const char *path_dir);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and FS_CFG_WORKING_DIR_EN

Set the working directory for the current task.

Arguments

path_dir

String buffer that specifies ...either

the absolute working directory path to set;
relative path that will be applied to the current working directory.

Returned Value

0, if no error occurs.

1.

-1, otherwise

Notes/Warnings

None.

fs_clearerr()

void fs_clearerr (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN

Clear EOF and error indicators on a file.

Arguments

p_file

Pointer to a file.

Returned Value

None.

Notes/Warnings

None.

fs_closedir()

int fs_closedir (FS_DIR *p_dir);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and FS_CFG _DIR_EN

Close and free a directory.

Arguments

p_dir

Pointer to a directory.

Returned Value

0, if the directory is successfully closed.

-1, if any error was encountered.

Notes/Warnings

After a directory is closed, the application desist from accessing its directory pointer. This could cause file system corruption, sincemust
this handle may be re-used for a different directory.

fs_ctime_r()

char *fs_ctime_r (const fs_time_t *p_ts,
 char *str_time);

File Called from Code enabled by

1.

1.

2.
3.

fs_api.c Application FS_CFG_API_EN

Converts timestamp to string in the form:

Sun Sep 16 01:03:52 1973\n\0

Arguments

p_ts

Pointer to timestamp to format.

str_time

String buffer that will receive date/time string (see Note).

Returned Value

Pointer to str_time, if NO errors.

Pointer to NULL, otherwise.

Notes/Warnings

str_time be at least 26 characters long. Buffer overruns be prevented by caller.must must

fs_fclose()

int fs_fclose (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN

Close and free a file.

Arguments

p_file

Pointer to a file.

Returned Value

0, if the file was successfully closed.

FS_EOF, otherwise.

Notes/Warnings

After a file is closed, the application desist from accessing its file pointer. This could cause file system corruption, since this handlemust
may be re-used for a different file.
If the most recent operation is output (write), all unwritten data is written to the file.
Any buffer assigned with or shall no longer be accessed by the file system and may be re-used by thefs_setbuf() fs_setvbuf()
application.

fs_feof()

int fs_feof (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN

Test EOF indicator on a file.

1.

2.

1.

2.

Arguments

p_file

Pointer to a file.

Returned Value

0, if EOF indicator is set or if an error occurrednot

Non-zero value, if EOF indicator is set.

Notes/Warnings

The return value from this function should ALWAYS be tested against 0:

rtn = fs_feof(p_file);
if (rtn == 0) {
 // EOF indicator is NOT set
} else {
 // EOF indicator is set
}

If the end-of-file indicator is set (i.e., returns), can be used to clear that indicator.fs_feof() DEF_YES fs_clearerr()

fs_ferror()

int fs_ferror (FS_FILE *p_file);

File Called from Code enabled by

fs_api..c Application FS_CFG_API_EN

Test error indicator on a file.

Arguments

p_file

Pointer to a file.

Returned Value

0, if error indicator is set or if an error occurrednot

Non-zero value, if error indicator is set.

Notes/Warnings

The return value from this function should ALWAYS be tested against 0:

rtn = fs_ferror(p_file);
if (rtn == 0) {
 // Error indicator is NOT set
} else {
 // Error indicator is set
}

If the error indicator is set (i.e., returns a non-zero value), can be used to clear that indicator.fs_ferror() fs_clearerr()

fs_fflush()

1.
2.

1.

int fs_fflush (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and FS_CF_FILE_BUF_EN

Flush buffer contents to file.

Arguments

p_file

Pointer to a file.

Returned Value

0, if flushing succeeds.

FS_EOF, otherwise.

Notes/Warnings

If the most recent operation is output (write), all unwritten data is written to the file.
If the most recent operation is input (read), all buffered data is cleared.

fs_fgetpos()

int fs_fgetpos (FS_FILE *p_file,
 fs_fpos_t *p_pos);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN

Get file position indicator.

Arguments

p_file

Pointer to a file.

p_pos

Pointer to variable that will receive the file position indicator.

Returned Value

0, if no error occurs.

Non-zero value, otherwise.

Notes/Warnings

The return value should be tested against 0:

1.

2.

1.
a.
b.
c.

i.
ii.
iii.

d.
e.

rtn = fs_fgetpos(p_file, &pos);
if (rtn == 0) {
 // No error occurred
} else {
 // Handle error
}

The value placed in pos should be passed to to reposition the file to its position at the time when this function was called.FS_fsetpos()

fs_flockfile()

void fs_flockfile (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and FS_CFG_FILE_LOCK_EN

Acquire task ownership of a file.

Arguments

p_file

Pointer to a file.

Returned Value

None.

Notes/Warnings

A lock count is associated with each file:
The file is unlocked when the lock count is zero.
If the lock count is positive, a task owns the file.
When is called, if…fs_flockfile()

…the lock count is zero OR
…the lock count is positive and the caller owns the file…
…the lock count will be incremented and the caller will own the file. Otherwise, the caller will wait until the lock count
returns to zero.

Each call to incremenets the lock count.fs_funlockfile()
Matching calls to (or) and can be nested.fs_flockfile() fs_ftrylockfile() fs_funlockfile()

fs_fopen()

FS_FILE *fs_fopen (const char *name_full,
 const char *str_mode);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN

Open a file.

Arguments

name_full

Name of the file. See for information about file names.Useful Information

str_mode

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths

1.
2.
3.
4.

1.
2.

3.

Access mode of the file.

Returned Value

Pointer to a file, if NO errors.

Pointer to NULL, otherwise.

Notes/Warnings

The access mode should be one of the strings shown in table ”.Opening, Reading and Writing Files - POSIX
The character ‘b’ has no effect.
Opening a file with read mode fails if the file does not exist.
Opening a file with append mode causes all writes to be forced to the end-of-file.

fs_fread()

fs_size_t fs_fread (void *p_dest,
 fs_size_t size,
 fs_size_t nitems,
 FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN

Read from a file.

Arguments

p_dest

Pointer to destination buffer.

size

Size of each item to read.

nitems

Number of items to read.

p_file

Pointer to a file.

Returned Value

Number of items read.

Notes/Warnings

The size or nitems is 0, then the file is unchanged and zero is returned.
If the file is buffered and the last operation is output (write), then a call to or or occurfs_flush() fs_fsetpos() fs_fseek()must
before input (read) can be performed.
The file must have been opened in read or update (read/write) mode.

fs_fseek()

int fs_fseek (FS_FILE *p_file,
 long int offset,
 int origin);

File Called from Code enabled by

fs_api.c Application; fs_frewind() FS_CFG_API_EN

https://doc.micrium.com/display/fsdoc/Opening%2C+Reading+and+Writing+Files+-+POSIX#Opening,ReadingandWritingFiles-POSIX-Opening,ReadingandWritingFiles-POSIX-Table-fs_fopen()modestringsinterpretations

1.
2.

a.
b.
c.

3.
4.

a.
b.

Set file position indicator.

Arguments

p_file

Pointer to a file.

offset

Offset from the file position specified by whence.

origin

Reference position for offset:

FS_SEEK_SET

Offset is from the beginning of the file.

FS_SEEK_CUR

Offset is from the current file position.

FS_SEEK_END

Offset is from the end of the file.

Returned Value

0, if the function succeeds.

-1, otherwise.

Notes/Warnings

If a read or write error occurs, the error indicator shall be set.
The new file position, measured in bytes form the beginning of the file, is obtained by adding offset to…:

…0 (the beginning of the file), if whence is ;FS_SEEK_SET
…the current file position, if whence is ;FS_SEEK_CUR
…the file size, if whence is ;FS_SEEK_END

The end-of-file indicator is cleared.
If the file position indicator is set beyond the file’s current data…

…and data is later written to that point, reads from the gap will read 0.
…the file be opened in write or read/write mode.must

fs_fsetpos()

int fs_fsetpos (FS_FILE *p_file,
 fs_fpos_t *p_pos);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN

Set file position indicator.

Arguments

p_file

Pointer to a file.

p_pos

Pointer to variable containing file position indicator.

Returned Value

0, if the function succeeds.

Non-zero value, otherwise.

1.

2.
3.

4.

1.

Notes/Warnings

The return value should be tested against 0:

rtn = fs_fsetpos(pfile, &pos);
if (rtn == 0) {
 // No error occurred
} else {
 // Handle error
}

If a read or write error occurs, the error indicator shall be set.
The value stored in pos should be the value from an earlier call to . No attempt is made to verify that the value in pos wasfs_fgetpos()
obtained by a call to .fs_fgetpos()
See also .fs_fseek()

fs_ftell()

long int fs_ftell (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN

Get file position indicator.

Arguments

p_file

Pointer to a file.

Returned Value

The current file system position, if the function succeeds.

-1, otherwise.

Notes/Warnings

The file position returned is measured in bytes from the beginning of the file.

fs_ftruncate()

int fs_ftruncate (FS_FILE *p_file,
 fs_off_t size);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and not FS_CFG_RD_ONLY_EN

Truncate a file.

Arguments

p_file

Pointer to a file.

size

Size of the file after truncation

1.
2.
3.
4.
5.

1.
2.

1.

Returned Value

0, if the function succeeds.

-1, otherwise.

Notes/Warnings

The file be opened in write or read/write mode.must
If succeeds, the size of the file shall be equal to length.fs_ftruncate()
If the size of the file was previously greater than length, the extra data shall no longer be available.
If the file previously was smaller than this length, the size of the file shall be increased.
If the file position indicator before the call to lay in the extra data destroyed by the function, then the file position willfs_ftruncate()
be set to the end-of-file.

fs_ftrylockfile()

int fs_ftrylockfile (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and FS_CFG_FILE_LOCK_EN

Acquire task ownership of a file (if available).

Arguments

p_file

Pointer to a file.

Returned Value

0, if no error occurs and the file lock is acquired.

Non-zero value, otherwise.

Notes/Warnings

fs_ftrylockfile() is the non-blocking version of ; if the lock is not available, the function returns an error.fs_flockfile()
See .fs_flockfile()

fs_funlockfile()

void fs_funlockfile (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and FS_CFG_FILE_LOCK_EN

Release task ownership of a file.

Arguments

p_file

Pointer to a file.

Returned Value

None.

Notes/Warnings

See .fs_flockfile()

1.
2.

3.
4.

fs_fwrite()

fs_size_t fs_fwrite (void *p_src,
 fs_size_t size,
 fs_size_t nitems,
 FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and not FS_CFG_RD_ONLY_EN

Write to a file.

Arguments

p_src

Pointer to source buffer.

size

Size of each item to write.

nitems

Number of items to write.

p_file

Pointer to a file.

Returned Value

Number of items written.

Notes/Warnings

The size or nitems is 0, then the file is unchanged and zero is returned.
If the file is buffered and the last operation is input (read), then a call to or occur before output (writefs_fsetpos() fs_fseek()must
can be performed unless the end-of-file was encountered.
The file must have been opened in write or update (read/write) mode.
If the file was opened in append mode, all writes are forced to the end-of-file.

fs_getcwd()

char *fs_getcwd (char *path_dir,
 fs_size_t size)

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and not FS_CFG_WORKING_DIR_EN

Get the working directory for the current task.

Arguments

path_dir

String buffer that will receive the working directory path.

size

Size of string buffer.

Returned Value

Pointer to path_dir, if no error occurs.

Pointer to NULL, otherwise

Notes/Warnings

None.

fs_localtime_r()

struct fs_tm *fs_localtime_r (const fs_time_t *p_ts,
 struct fs_tm *p_time);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN

Convert timestamp to date/time.

Arguments

p_ts

Pointer to time value.

p_time

Pointer to variable that will receive broken-down time.

Returned Value

Pointer to p_time, if NO errors.

Pointer to NULL, otherwise.

Notes/Warnings

None.

fs_mkdir()

int fs_mkdir (const char *name_full);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and not FS_CFG_RD_ONLY_EN

Create a directory.

Arguments

name_full

Name of the directory.

Returned Value

0, if the directory is created.

-1, if the directory is created.not

Notes/Warnings

None.

Example

void App_Fnct (void)
{
 int err;
 .
 .
 .
 err = fs_mkdir(“sd:0:\\data\\old”); /* Make dir. */
 if (err != 0) {
 APP_TRACE_INFO((“Could not make dir.”));
 }

 .
 .
 .
}

fs_mktime()

fs_time_t fs_mktime (struct fs_tm *p_time);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN

Convert date/time to timestamp.

Arguments

p_time

Pointer to date/time to convert.

Returned Value

Time value, if NO errors.

(fs_time_t)-1, otherwise.

Notes/Warnings

None.

fs_opendir()

FS_DIR *fs_opendir (const char *name_full);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and FS_CFG_DIR_EN

Open a directory.

Arguments

name_full

Name of the directory. See for information about directory names.µC/FS File and Directory Names and Paths

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-µC/FSFileandDirectoryNamesandPaths

1.

2.

Returned Value

Pointer to a directory, if NO errors.

Pointer to NULL, otherwise.

Notes/Warnings

None.

fs_readdir_r()

int fs_readdir (FS_DIR *p_dir,
 struct fs_dirent *p_dir_entry,
 struct fs_dirent **pp_result);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and FS_CFG_DIR_EN

Read a directory entry from a directory.

Arguments

p_dir

Pointer to a directory.

p_dir_entry

Pointer to variable that will receive directory entry information.

pp_result

Pointer to variable that will receive:

p_dir_entry, if NO error occurs AND directory does not encounter EOF.
pointer to NULL if an error occurs OR directory encounters EOF.

Returned Value

1, if an error occurs.
0, otherwise.

Notes/Warnings

Entries for “dot” (current directory) and “dot-dot” (parent directory) shall be returned, if present. No entry with an empty name shall be
returned.
If an entry is removed from or added to the directory after the directory has been opened, information may or may not be returned for that
entry.

fs_remove()

int fs_remove (const char *name_full);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and not FS_CFG_RD_ONLY_EN

Delete a file or directory.

Arguments

name_full

Name of the entry.

1.
2.
3.

Returned Value

0, if the file is removed.not

-1, if the file is removed.not

Notes/Warnings

When a file is removed, the space occupied by the file is freed and shall no longer be accessible.
A directory can be removed only if it is an empty directory.
The root directory cannot be removed.

Example

void App_Fnct (void)
{
 int err;
 .
 .
 .
 err = fs_remove(“sd:0:\\data\\file001.txt”); /* Remove file. */
 if (err != 0) {
 APP_TRACE_INFO((“Could not remove file.”));
 }
 .
 .
 .
 err = fs_remove(“sd:0:\\data\\old”); /* Remove dir. */
 if (err != 0) {
 APP_TRACE_INFO((“Could not remove dir.”));
 }
 .
 .
 .
}

fs_rename()

int fs_rename (const char *name_full_old,
 const char *name_full_new);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and not FS_CFG_RD_ONLY_EN

Rename a file or directory.

Arguments

name_full_old

Old name of the entry.

name_full_new

New name of the entry.

Returned Value

0, if the entry is renamed.not

-1, if the entry is renamed.not

1.
2.
3.

a.
b.

4.
a.
b.

5.

Notes/Warnings

name_full_old and specify entries on the same volume.name_full_new must
If and specify the same entry, the volume will not be modified and no error will be returned.path_old path_new
If specifies a file:path_old

path_new must specify a directory;not
if is a file, it will be removed.path_new

If specifies a directory:path_old
path_new must specify a filenot
if is a directory, be empty; if so, it will be removed.path_new path_newmust

The root directory may be renamed.not

Example

void App_Fnct (void)
{
 int err;
 .
 .
 .
 /* See Note #1. */
 err = fs_rename(“sd:0:\\data\\file001.txt”, /* Rename file. */
 “sd:0:\\data\\old\\file001.txt”);
 if (err != 0) {
 APP_TRACE_INFO((“Could not rename file.”));
 }
 .
 .
 .
}

(1)
 For this example file rename to succeed, the following must be true when the function is called:

The file must exist.sd:0:\data\file001.txt
The directory must exist.sd:0:\data\old
If exists, it must not be read-only.sd:0:\data\old\file001.txt

If sd:0:\data\old\file001.txt exists and is not read-only, it will be removed and sd:0:\data\file001.txt will be renamed.

fs_rewind()

void fs_rewind (FS_FILE *p_file);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN

Reset file position indicator of a file.

Arguments

p_file

Pointer to a file.

Returned Value

None.

Notes/Warnings

1.

1.
2.

fs_rewind() is equivalent to
(void)fs_fseek(p_file, 0, FS_SEEK_SET)

 except that it also clears the error indictor of the file.

fs_rmdir()

int fs_rmdir (const char *name_full);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and not FS_CFG_RD_ONLY_EN

Delete a directory.

Arguments

name_full

Name of the file.

Returned Value

0, if the directory is removed.

-1, if the directory is removed.not

Notes/Warnings

A directory can be removed only if it is an empty directory.
The root directory cannot be removed.

Example

void App_Fnct (void)
{
 int err;
 .
 .
 .
 err = fs_rmdir(“sd:0:\\data\\old”); /* Remove dir. */
 if (err != 0) {
 APP_TRACE_INFO((“Could not remove dir.”));
 }

 .
 .
 .
}

fs_setbuf()

int fs_setbuf (FS_FILE *p_file,
 char *p_buf);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and FS_CFG_FILE_BUF_EN

Assign buffer to a file.

1.

1.
2.
3.

Arguments

p_file

Pointer to a file.

p_buf

Pointer to a buffer of bytes.FS_BUFSIZ

Returned Value

-1, if an error occurs.

0, if no error occurs.

Notes/Warnings

fs_setbuf() is equivalent to invoked with for mode and for size.fs_setvbuf() FS__IOFBF FS_BUFSIZE

fs_setvbuf()

int fs_setvbuf (FS_FILE *p_file,
 char *p_buf,
 int mode,
 fs_size_t size);

File Called from Code enabled by

fs_api.c Application FS_CFG_API_EN and FS_CFG_FILE_BUF_EN

Assign buffer to a file.

Arguments

p_file

Pointer to a file.

p_buf

Pointer to buffer.

mode

Buffer mode:

FS__IONBR

Unbuffered.

FS__IOFBF

Fully buffered.

size

Size of buffer, in octets.

Returned Value

-1, if an error occurs.

0, if no error occurs.

Notes/Warnings

fs_setvbuf() be used after a stream is opened but before any other operation is performed on stream.must
sizemust be more than or equal to the size of one sector; it will be rounded DOWN to the nearest size of a multiple of full sectors.
Once a buffer is assigned to a file, a new buffer may not be assigned nor may the assigned buffer be removed. To change the buffer, the

3.

4.
file should be closed and re-opened.
Upon power loss, any data stored in file buffers will be lost.

Device Functions

Most device access functions can return any of the following device errors:

FS_ERR_DEV_INVALID_LOW_FMT

Device needs to be low-level formatted.

FS_ERR_DEV

Device access error.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_TIMEOUT

Device timeout error.

Each of these indicates that the state of the device is not suitable for the intended operation.

void

FSDev_AccessLock (CPU_CHAR *name_dev,

CPU_INT32U timeout,

FS_ERR *p_err);

void

FSDev_AccessUnlock (CPU_CHAR *name_dev,

FS_ERR *p_err);

void

FSDev_Close (CPU_CHAR *name_dev,

FS_ERR *p_err);

FS_PARTITION_NBR

FSDev_GetNbrPartitions (CPU_CHAR *name_dev,

FS_ERR *p_err);

void

FSDev_GetDevName (FS_QTY dev_nbr,

CPU_CHAR *name_dev);

FS_QTY

FSDev_GetDevCnt (void);

FS_QTY

FSDev_GetDevCntMax (void);

void

FSDev_Invalidate (CPU_CHAR *name_dev,

FS_ERR *p_err);

void

FSDev_Open (CPU_CHAR *name_dev,

void *p_dev_cfg,

FS_ERR *p_err);

FS_PARTITION_NBR

FSDev_PartitionAdd (CPU_CHAR *name_dev,

FS_SEC_QTY partition_size,

FS_ERR *p_err);

void

FSDev_PartitionFind (CPU_CHAR *name_dev,

FS_PARTITION_NBR partition_nbr,

FS_PARTITION_ENTRY *p_partition_entry,

FS_ERR *p_err);

void

FSDev_PartitionInit (CPU_CHAR *name_dev,

FS_SEC_QTY partition_size,

FS_ERR *p_err);

void

FSDev_Query (CPU_CHAR *name_dev,

FS_DEV_INFO *p_info,

FS_ERR *p_err);

void

FSDev_Rd (CPU_CHAR *name_dev,

void *p_dest,

FS_SEC_NBR start,

FS_SEC_QTY cnt,

FS_ERR *p_err);

CPU_BOOLEAN

FSDev_Refresh (CPU_CHAR *name_dev,

FS_ERR *p_err);

void

FSDev_Wr (CPU_CHAR *name_dev,

void *p_src,

FS_SEC_NBR start,

FS_SEC_QTY cnt,

FS_ERR *p_err);

FSDev_AccessLock()

void FSDev_AccessLock (CPU_CHAR *name_dev,
 CPU_INT32U timeout
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application N/A

Acquire exclusive access to a device. See also .Raw Device I/O

Arguments

name_dev

Device name.

timeout

Time to wait for a lock in milliseconds.

p_err

Pointer to variable that will receive return error code from this function :

FS_ERR_NONE

Device removed successfully.

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_NAME_NULL

Argument passed a NULL pointername_dev

FS_ERR_OS_LOCK

Error acquiring device access lock.

FS_ERR_OS_LOCK_TIMEOUT

Time-out waiting for device access lock.

Returned Value

None.

Notes/Warnings

None.

FSDev_AccessUnlock()

void FSDev_AccessUnlock (CPU_CHAR *name_dev,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application N/A

Release exclusive access to a device. See also section .Raw Device I/O

Arguments

name_dev

Device name.

p_err

Pointer to variable that will receive return error code from this function :

FS_ERR_NONE

Device removed successfully.

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_NAME_NULL

Argument passed a NULL pointername_dev

Returned Value

None.

Notes/Warnings

None.

FSDev_Close()

void FSDev_Close (CPU_CHAR *name_dev,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application N/A

Close and free a device.

Arguments

name_dev

Device name.

p_err

Pointer to variable that will receive return error code from this function :

FS_ERR_NONE

Device removed successfully.

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_NAME_NULL

Argument passed a NULL pointername_dev

Returned Value

None.

Notes/Warnings

None.

FSDev_GetDevCnt()

FS_QTY FSDev_GetDevCnt (void);

File Called from Code enabled by

fs_dev.c Application N/A

Gets the number of open devices.

Arguments

None.

Returned Value

Number of devices currently open.

Notes/Warnings

None.

FSDev_GetDevCntMax()

FS_QTY FSDev_GetDevCntMax (void);

File Called from Code enabled by

fs_dev.c Application N/A

Gets the maximum possible number of open devices.

Arguments

None.

Returned Value

Maximum number of open devices.

Notes/Warnings

None.

FSDev_GetDevName()

void FSDev_GetDevName (FS_QTY dev_nbr,
 CPU_CHAR *name_dev);

File Called from Code enabled by

1.
2.

1.

fs_dev.c Application N/A

Get name of the nth open device. should be between 0 and the return value of (inclusive).dev_nbr FSDev_GetNbrDevs()

Arguments

dev_nbr

Device number.

name_dev

String buffer that will receive the device name (see Note #2).

Returned Value

None.

Notes/Warnings

name_dev point to a character array of characters.must FS_CFG_MAX_DEV_NAME_LEN
If the device does not exist, will receive an empty string.name_dev

FSDev_GetNbrPartitions()

FS_PARTITION_NBR FSDev_GetNbrPartitions (CPU_CHAR *name_dev,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application FS_CFG_PARTITION_EN

Get number of partitions on a device

Arguments

name_dev

Pointer to the device name.

p_err

Pointer to variable that will receive return error code from this function.

FS_ERR_NONE

Number of partitions obtained.

FS_ERR_DEV_VOL_OPEN

Volume open on device.

FS_ERR_INVALID_SIG

Invalid MBR signature.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

Or device access error (see).µC/FS Error Codes

Returned Value

Number of partitions on the device, if no error was encountered.

Zero, otherwise.

Notes/Warnings

Device state change will result from device I/O, not present or timeout error.

1.
2.

FSDev_Invalidate()

void FSDev_Invalidate (CPU_CHAR *name_dev,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application N/A

Invalidate files and volumes opened on a device. See also .Raw Device I/O

Arguments

name_dev

Device name

p_err

Pointer to variable that will receive return error code from this function.

FS_ERR_NONE

Partition added.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

Or device access error (see).µC/FS Error Codes

Returned Value

None.

Notes/Warnings

Operations on an affected file or volume will fail with an FS_ERR_DEV_CHNGD error.
Invalidation will happen automatically following a removable media change.

FSDev_Open()

void FSDev_Open (CPU_CHAR *name_dev,
 void *p_dev_cfg,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application N/A

Open a device.

Arguments

name_dev

Device name. See for information about device names.µC/FS File and Directory Names and Paths

p_dev_cfg

Pointer to device configuration.

p_err

Pointer to variable that will receive the return error code from this function (see):Note #1

FS_ERR_NONE

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-�C/FSFileandDirectoryNamesandPaths

1.

a.
b.

c.

d.

e.

Device opened successfully.

FS_ERR_DEV_ALREADY_OPEN

Device is already open.

FS_ERR_DEV_INVALID_LOW_FMT

Device needs to be low-level formatted.

FS_ERR_DEV_INVALID_NAME

Specified device name not valid.

FS_ERR_DEV_INVALID_SEC_SIZE

Invalid device sector size.

FS_ERR_DEV_INVALID_SIZE

Invalid device size.

FS_ERR_DEV_INVALID_UNIT_NBR

Specified unit number invalid.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_NONE_AVAIL

No devices available.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_TIMEOUT

Device timeout error.

FS_ERR_DEV_UNKNOWN

Unknown device error.

FS_ERR_NAME_NULL

Argument passed a NULL pointername_dev

Returned Value

None.

Notes/Warnings

The return error code from the function SHOULD always be checked by the calling application to determine whether the device was
successfully opened. Repeated calls to resulting in errors that do not indicate failure to open (such as FSDev_Open() FS_ERR_DEV_LO

) without matching calls may exhaust the supply of device structures.W_FMT_INVALID FSDev_Close()
If is returned, then the device has been added to the file system and is immediately accessible.FS_ERR_NONE
If is returned, then the device has been added to the file system, but needs to be low-levelFS_DEV_INVALID_LOW_FMT
formatted, though it is present.
If , or is returned, then the device has been added toFS_ERR_DEV_NOT_PRESENT FS_ERR_DEV_IO FS_ERR_DEV_TIMEOUT
the file system, though it is probably not present. The device will need to be either closed and re-added, or refreshed.
If any of the follwing is returned:

FS_ERR_DEV_INVALID_NAME
FS_ERR_DEV_INVALID_SEC_SIZE
FS_ERR_DEV_INVALID_SIZE
FS_ERR_DEV_INVALID_UNIT_NBR
FS_ERR_DEV_NONE_AVAIL

...then the device has been added to the file system.not
If is returned, then the device driver is in an indeterminate state. The system MAY need to be restartedFS_ERR_DEV_UNKNOWN
and the device driver should be examined for errors. The device has been added to the file system.not

FSDev_PartitionAdd()

1.

FS_PARTITION_NBR FSDev_PartitionAdd (CPU_CHAR *name_dev,
 FS_SEC_QTY partition_size,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application FS_CFG_PARTITION_EN and not FS_CFG_RD_ONLY_EN

Adds a partition to a device. See also .Partitions

Arguments

name_dev

Device name

partition_size

Size, in sectors, of the partition to add.

p_err

Pointer to variable that will receive return error code from this function.

FS_ERR_NONE

Partition added.

FS_ERR_INVALID_PARTITION

Invalid partition.

FS_ERR_INVALID_SEC_NBR

Sector start or count invalid.

FS_ERR_INVALID_SIG

Invalid MBR signature.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

Or device access error (see).µC/FS Error Codes

Returned Value

The index of the created partition. The first partition on the device has an index of 0. is returned if the functionFS_INVALID_PARTITION_NBR
fails to add the partition.

Notes/Warnings

Device state change will result from device I/O, not present or timeout error.

FSDev_PartitionFind()

void FSDev_PartitionFind (CPU_CHAR *name_dev,
 FS_PARTITION_NBR partition_nbr,
 FS_PARTITION_ENTRY *p_partition_entry,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application FS_CFG_PARTITION_EN

Find a partition on a device.

1.

See also .Partitions

Arguments

name_dev

Device name.

partition_nbr

Index of the partition to find.

p_partition_entry

Pointer to variable that will receive the partition information.

p_err

Pointer to variable that will receive return error code from this function.

FS_ERR_NONE

Partition found.

FS_ERR_DEV_VOL_OPEN

Volume open on device.

FS_ERR_INVALID_PARTITION

Invalid partition.

FS_ERR_INVALID_SEC_NBR

Sector start or count invalid.

FS_ERR_INVALID_SIG

Invalid MBR signature.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_partition_entry

Or device access error (see).µC/FS Error Codes

Returned Value

None.

Notes/Warnings

Device state change will result from device I/O, not present or timeout error.

FSDev_PartitionInit()

void FSDev_PartitionInit (CPU_CHAR *name_dev,
 FS_SEC_QTY partition_size,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application not FS_CFG_RD_ONLY_EN

Initialize the partition structure on a device. See also .Partitions

Arguments

name_dev

1.

2.

Device name.

partition_size

Size of partition, in sectors. OR

0, if partition will occupy entire device.

p_err

Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE

Partition structure initialized.

FS_ERR_DEV_VOL_OPEN

Volume open on device.

FS_ERR_INVALID_SEC_NBR

Sector start or count invalid.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

Or device access error (see).µC/FS Error Codes

Returned Value

None.

Notes/Warnings

Function blocked if a volume is open on the device. All volume (and files) be closed prior to initializing the partition structure, since itmust
will obliterate any existing file system.
Device state change will result from device I/O, not present or timeout error.

FSDev_Query()

void FSDev_Query (CPU_CHAR *name_dev,
 FS_DEV_INFO *p_info,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application N/A

Obtain information about a device.

Arguments

name_dev

Device name.

p_info

Pointer to structure that will receive device information (see).Note #1

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

Device information obtained.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

1.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_info

FS_ERR_INVALID_SEC_NBR

Sector start or count invalid.

Or device access error (see).µC/FS Error Codes

Returned Value

None.

Notes/Warnings

For removable medias, will return a valid value for the and members of even if the media is notFSDev_Query() State Fixed p_info
present, and will be set to 0. In such cases an error will be returned stating the reason why the device was unaccessible.Size SecSize
Otherwise, if a fatal error occurs or the device is not opened an appropriate error will be return and the content of will be invalid.p_info

FSDev_Rd()

void FSDev_Rd (CPU_CHAR *name_dev,
 void *p_dest,
 FS_SEC_NBR start,D
 FS_SEC_QTY cnt,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application N/A

Read data from device sector(s). See also .Raw Device I/O

Arguments

name_dev

Device name.

p_dest

Pointer to destination buffer.

start

Start sector of read.

cnt

Number of sectors to read

p_err

Pointer to variable that will receive the return error code from this function

FS_ERR_NONE

Sector(s) read.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_dest

Or device access error (see).µC/FS Error Codes

Returned Value

1.

1.
2.

a.
b.
c.

None.

Notes/Warnings

Device state change will result from device I/O, not present or timeout error.

FSDev_Refresh()

CPU_BOOLEAN FSDev_Refresh (CPU_CHAR *name_dev,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev.c Application N/A

Refresh a device.Arguments

name_dev

Device name.

p_err

Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE

Device opened successfully.

FS_ERR_DEV_INVALID_SEC_SIZE

Invalid device sector size.

FS_ERR_DEV_INVALID_SIZE

Invalid device size.

FS_ERR_DEV_INVALID_UNIT_NBR

Specified unit number invalid.

FS_ERR_NAME_NULL

Argument passed a NULL pointername_dev

Or device access error (see).µC/FS Error Codes

Returned Value

DEF_YES, if the device has not changed.

DEF_NO, if the device has not changed.

Notes/Warnings

If device has changed, all volumes open on the device must be refreshed and all files closed and reopened.
A device status change may be caused by :

A device was connected, but no longer is.
A device was not connected, but now is.
A different device is connected.

FSDev_Wr()

void FSDev_Wr (CPU_CHAR *name_dev,
 void *p_src,
 FS_SEC_NBR start,
 FS_SEC_QTY cnt,
 FS_ERR *p_err);

1.

File Called from Code enabled by

fs_dev.c Application not FS_CFG_RD_ONLY_EN

Write data to device sector(s). See also .Raw Device I/O

Arguments

name_dev

Device name.

p_src

Pointer to source buffer.

start

Start sector of write.

cnt

Number of sectors to write

p_err

Pointer to variable that will receive the return error code from this function

FS_ERR_NONE

Sector(s) written.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_src

Or device access error (see).µC/FS Error Codes

Returned Value

None.

Notes/Warnings

Device state change will result from device I/O, not present or timeout error.

Directory Access Functions

void

FSDir_Close (FS_DIR *p_dir,

FS_ERR *p_err);

CPU_BOOLEAN

FSDir_IsOpen (CPU_CHAR *name_full,

FS_ERR *p_err);

FS_DIR *

FSDir_Open (CPU_CHAR *name_full,

FS_ERR *p_err);

void

FSDir_Rd (FS_DIR *p_dir,

FS_DIR_ENTRY *p_dir_entry,

FS_ERR *p_err);

FSDir_Close()

void FSDir_Close (FS_DIR *p_dir,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dir.c Application;
fs_closedir()

FS_CFG_DIR_EN

Close and free a directory.

See for more information.fs_closedir()

Arguments

p_dir

Pointer to a directory.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Directory closed.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_dir

FS_ERR_INVALID_TYPE

Argument ’s TYPE is invalid or unknown.p_dir

FS_ERR_DIR_DIS

Directory module disabled.

FS_ERR_DIR_NOT_OPEN

Directory open.not

Returned Value

None.

Notes/Warnings

None.

FSDir_IsOpen()

CPU_BOOLEAN FSDir_Open (CPU_CHAR *name_full,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dir.c Application;
fs_opendir();
FSEntry_*

FS_CFG_DIR_EN

Test if a directory is already open. This function is also called by various functions to prevent concurrent access to an entry in theFSEntry_*
FAT filesystem.

Arguments

name_full

Name of the directory. See the sub-topic "µC/FS File and Directory Names and Paths" in the topic .Useful Information

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Directory opened.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_full

FS_ERR_NAME_INVALID

Entry name specified invalid or volume could not be found.

Or entry error (see).µC/FS Error Codes

Returned Value

DEF_NO, if dir is open.not

DEF_YES, if dir is open.

Notes/Warnings

None.

FSDir_Open()

FS_DIR *FSDir_Open (CPU_CHAR *name_full,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dir.c Application;

fs_opendir()

FS_CFG_DIR_EN

Open a directory. See for more information.fs_opendir()

Arguments

name_full

Name of the directory. See the sub-topic "µC/FS File and Directory Names and Paths" in the topic .Useful Information

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Directory opened.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_full

FS_ERR_DIR_DIS

Directory module disabled.

FS_ERR_DIR_NONE_AVAIL

No directory available.

FS_ERR_DEV

Device access error.

FS_ERR_NAME_INVALID

Entry name specified invalid or volume could not be found.

FS_ERR_NAME_PATH_TOO_LONG

Entry name is too long.

FS_ERR_VOL_NOT_OPEN

Volume not opened.

FS_ERR_VOL_NOT_MOUNTED

Volume not mounted.

FS_ERR_BUF_NONE_AVAIL

Buffer not available.

Or entry error (see).µC/FS Error Codes

Returned Value

Pointer to a directory, if NO errors. Pointer to NULL, otherwise.

Notes/Warnings

None.

FSDir_Rd()

void FSDir_Rd (FS_DIR *p_dir,
 FS_DIR_ENTRY *p_dir_entry,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dir.c Application;
fs_readdir_r()

FS_CFG_DIR_EN

Read a directory entry from a directory. See for more information.fs_readdir_r()

Arguments

p_dir

Pointer to a directory.

p_dir_entry

Pointer to variable that will receive directory entry information.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Directory read successfully.

FS_ERR_NULL_PTR

Argument / passed a NULL pointer.p_dir p_dir_entry

FS_ERR_INVALID_TYPE

Argument ’s TYPE is invalid or unknown.p_dir

FS_ERR_DIR_DIS

Directory module disabled.

FS_ERR_DIR_NOT_OPEN

Directory open.not

FS_ERR_EOF

End of directory reached.

FS_ERR_DEV

Device access error.

FS_ERR_BUF_NONE_AVAIL

Buffer not available.

Returned Value

None.

Notes/Warnings

None.

Entry Access Functions

void

FSEntry_AttribSet (CPU_CHAR *name_full,

FS_FLAGS attrib,

FS_ERR *p_err);

void

FSEntry_Copy (CPU_CHAR *name_full_src,

CPU_CHAR *name_full_dest,

CPU_BOOLEAN excl,

FS_ERR *p_err);

void

FSEntry_Create (CPU_CHAR *name_full,

FS_FLAGS entry_type,

CPU_BOOLEAN excl,

FS_ERR *p_err);

void

FSEntry_Del (CPU_CHAR *name_full,

FS_FLAGS entry_type,

FS_ERR *p_err);

void

FSEntry_Query (CPU_CHAR *name_full,

FS_ENTRY_INFO *p_info,

FS_ERR *p_err);

void

FSEntry_Rename (CPU_CHAR *name_full_src,

CPU_CHAR *name_full_dest,

CPU_BOOLEAN excl,

FS_ERR *p_err);

void

FSEntry_TimeSet (CPU_CHAR *name_full,

FS_DATE_TIME *p_time,

CPU_INT08U flag,

FS_ERR *p_err);

FSEntry_AttribSet()

void FSEntry_AttribSet (CPU_CHAR *name_full,
 FS_FLAGS attrib,
 FS_ERR *p_err);

File Called from Code enabled by

fs_entry.c Application not FS_CFG_RD_ONLY_EN

Set a file or directory’s attributes.

Arguments

name_full

Name of the entry. See the sub-topic "µC/FS File and Directory Names and Paths" in the topic .Useful Information

attrib

Entry attributes to set (see Note #2).

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Entry attributes set successfully.

FS_ERR_NAME_NULL

Argument name_full passed a NULL pointer.

FS_ERR_NAME_INVALID

Entry name specified invalid OR volume could not be found.

FS_ERR_NAME_PATH_TOO_LONG

Entry name specified too long.

1.
2.

3.

FS_ERR_VOL_NOT_OPEN

Volume was not open.

FS_ERR_VOL_NOT_MOUNTED

Volume was not mounted.

FS_ERR_BUF_NONE_AVAIL

Buffer not available.

FS_ERR_DEV

Device access error.

Or entry error (See).µC/FS Error Codes

Returned Value

None.

Notes/Warnings

If the entry does not exist, an error is returned.
Three attributes may be modified by this function:

FS_ENTRY_ATTRIB_RD Entry is readable.

FS_ENTRY_ATTRIB_WR Entry is writable.

FS_ENTRY_ATTRIB_HIDDEN Entry is hidden from user-level processes.

An attribute will be cleared if its flag is not OR’d into attrib. An attribute will be set if its flag is OR’d into attrib. If another flag besides

these are set, then an error will be returned.
The attributes of the root directory may be set.not

FSEntry_Copy()

void FSEntry_Copy (CPU_CHAR *name_full_src,
 CPU_CHAR *name_full_dest,
 CPU_BOOLEAN excl,
 FS_ERR *p_err);

File Called from Code enabled by

fs_entry.c Application not FS_CFG_RD_ONLY_EN

Copy a file.

Arguments

name_full_src

Name of the source file. See the sub-topic "µC/FS File and Directory Names and Paths" in the topic .Useful Information

name_full_dest

Name of the destination file.

excl

Indicates whether the creation of the new entry shall be exclusive

DEF_YES, if the entry shall be copied only if does not exist.name_full_dest

DEF_NO, if the entry shall be copied even if does exist.name_full_dest

p_err

Pointer to variable that will the receive return error code from this function:

1.
2.

FS_ERR_NONE

File copied successfully.

FS_ERR_NAME_NULL

Argument or passed a NULL pointer.name_full_src name_full_dest

FS_ERR_NAME_INVALID

Entry name specified invalid OR volume could not be found.

FS_ERR_NAME_PATH_TOO_LONG

Entry name specified too long.

FS_ERR_VOL_NOT_OPEN

Volume was not open.

FS_ERR_VOL_NOT_MOUNTED

Volume was not mounted.

FS_ERR_BUF_NONE_AVAIL

Buffer not available.

FS_ERR_DEV

Device access error.

Or entry error (See).µC/FS Error Codes

Returned Value

None.

Notes/Warnings

name_full_src must be an existing file. It may not be an existing directory.
If excl is , must either not exist or be an existing file; it may not be an existing directory. If excl is , DEF_NO name_full_dest DEF_YES na

 must not exist.me_full_dest

FSEntry_Create()

void FSEntry_Create (CPU_CHAR *name_full,
 FS_FLAGS entry_type,
 CPU_BOOLEAN excl,
 FS_ERR *p_err);

File Called from Code enabled by

fs_entry.c Application;
fs_mkdir()

not FS_CFG_RD_ONLY_EN

Create a file or directory.

See also .fs_mkdir()

Arguments

name_full

Name of the entry. See the sub-topic "µC/FS File and Directory Names and Paths" in the topic .Useful Information

entry_type

Indicates whether the new entry shall be a directory or a file (see) :Note #1

FS_ENTRY_TYPE_DIR, if the entry shall be a directory.

1.

2.

3.

FS_ENTRY_TYPE_FILE, if the entry shall be a file.

excl

Indicates whether the creation of the new entry shall be exclusive (see):Notes

DEF_YES, if the entry shall be created only if does not exist.p_name_full

DEF_NO, if the entry shall be created even if does exist.p_name_full

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Entry created successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_full

FS_ERR_NAME_INVALID

Entry name specified invalid OR volume could not be found.

FS_ERR_NAME_PATH_TOO_LONG

Entry name specified too long.

FS_ERR_VOL_NOT_OPEN

Volume was not open.

FS_ERR_VOL_NOT_MOUNTED

Volume was not mounted.

FS_ERR_BUF_NONE_AVAIL

Buffer not available.

FS_ERR_DEV

Device access error. Or entry error.

Returned Value

None.

Notes/Warnings

If the entry exists and is a file, entry_type is and excl is , then the existing entry will be truncated. If theFS_ENTRY_TYPE_FILE DEF_NO
entry exists and is a directory and entry_type is , then no change will be made to the file system.FS_ENTRY_TYPE_DIR
If the entry exists and is a directory, dir is and excl is , then no change will be made to the file system. Similarly, if theDEF_NO DEF_NO
entry exists and is a file, dir is and excl is , then no change will be made to the file system.DEF_YES DEF_NO
The root directory may not be created.

FSEntry_Del()

void FSEntry_Del (CPU_CHAR *name_full,
 FS_FLAGS entry_type,
 FS_ERR *p_err);

File Called from Code enabled by

fs_entry.c Application;
fs_rmdir();

fs_remove()

not FS_CFG_RD_ONLY_EN

Delete a file or directory.

1.
2.
3.

See also and .fs_remove() fs_rmdir()

Arguments

name_full

Pointer to character string representing the name of the entry. See the sub-topic "µC/FS File and Directory Names and Paths" in the topic U
.seful Information

entry_type

Indicates whether the entry MAY be a file (see):Notes #1 and #2

FS_ENTRY_TYPE_DIR

if the entry must be a dir.

FS_ENTRY_TYPE_FILE

if the entry must be a file.

FS_ENTRY_TYPE_ANY

if the entry may be any type.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Entry date/time set successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_full

FS_ERR_NAME_INVALID

Entry name specified invalid OR volume could not be found.

FS_ERR_NAME_PATH_TOO_LONG

Entry name specified too long.

FS_ERR_VOL_NOT_OPEN

Volume was not open.

FS_ERR_VOL_NOT_MOUNTED

Volume was not mounted.

FS_ERR_BUF_NONE_AVAIL

Buffer not available.

FS_ERR_DEV

Device access error. Or entry error.

Returned Value

None.

Notes/Warnings

When a file is removed, the space occupied by the file is freed and shall no longer be accessible.
A directory can be removed only if it is an empty directory.
The root directory cannot be deleted.

FSEntry_Query()

void FSEntry_Query (CPU_CHAR *name_full,
 FS_ENTRY_INFO *p_info,
 FS_ERR *p_err);

File Called from Code enabled by

fs_entry.c Application;
fs_stat()

N/A

Get information about a file or directory.

Arguments

name_full

Name of the entry. See the sub-topic "µC/FS File and Directory Names and Paths" in the topic .Useful Information

p_info

Pointer to structure that will receive the file information.

p_err

Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE

File information obtained successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_full

FS_ERR_NAME_INVALID

Entry name specified invalid OR volume could not be found.

FS_ERR_NAME_PATH_TOO_LONG

Entry name specified too long.

FS_ERR_VOL_NOT_OPEN

Volume was not open.

FS_ERR_VOL_NOT_MOUNTED

Volume was not mounted.

FS_ERR_BUF_NONE_AVAIL

Buffer not available.

FS_ERR_DEV

Device access error.

Returned Value

None.

Notes/Warnings

None.

FSEntry_Rename()

void FSEntry_Rename (CPU_CHAR *name_full_old,
 CPU_CHAR *name_full_new,
 CPU_BOOLEAN excl,
 FS_ERR *p_err);

File Called from Code enabled by

fs_entry.c Application;
fs_rename()

not FS_CFG_RD_ONLY_EN

Rename a file or directory.

See also .fs_rename()

Arguments

name_full_old

Old path of the entry. See the sub-topic "µC/FS File and Directory Names and Paths" in the topic .Useful Information

name_full_new

New path of the entry.

excl

Indicates whether the creation of the new entry shall be exclusive (see):Note #1

DEF_YES, if the entry shall be renamed only if does not exist.name_full_new

DEF_NO, if the entry shall be renamed even if does exist.name_full_new

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

File copied successfully.

FS_ERR_NAME_NULL

Argument or passed a NULL pointer.name_full_old name_full_new

FS_ERR_NAME_INVALID

Entry name specified invalid OR volume could not be found.

FS_ERR_NAME_PATH_TOO_LONG

Entry name specified too long.

FS_ERR_VOL_NOT_OPEN

Volume was not open.

FS_ERR_VOL_NOT_MOUNTED

Volume was not mounted.

FS_ERR_BUF_NONE_AVAIL

Buffer not available.

FS_ERR_DEV

Device access error.

Returned Value

None.

1.

2.
3.

a.
b.

4.
a.
b.

5.
6.

Notes/Warnings

If and specify entries on different volumes, then specify a file. If name_full_old name_full_new name_full_old must name_full
 specifies a directory, an error will be returned._old

If and specify the same entry, the volume will not be modified and no error will be returned.name_full_old name_full_new
If specifies a file:name_full_old

name_full_new must specify a directory;not
if excl is and is a file, it will be removed.DEF_NO name_full_new

If specifies a directory:name_full_old
name_full_new must specify a filenot
if excl is and is a directory, be empty; if so, it will be removed.DEF_NO name_full_new name_full_newmust

If excl is , must not exist.DEF_NO name_full_new
The root directory may be renamed.not

FSEntry_TimeSet()

void FSEntry_TimeSet (CPU_CHAR *name_full,
 FS_DATE_TIME *p_time,
 CPU_INT08U flag,
 FS_ERR *p_err);

File Called from Code enabled by

fs_entry.c Application not FS_CFG_RD_ONLY_EN

Set a file or directory’s date/time.

Arguments

name_full

Name of the entry. See the sub-topic "µC/FS File and Directory Names and Paths" in the topic .Useful Information

p_time

Pointer to date/time.

flag

Flag to indicate which Date/Time should be set

FS_DATE_TIME_CREATE

Entry Created Date/Time will be set.

FS_DATE_TIME_MODIFY

Entry Modified Date/Time will be set.

FS_DATE_TIME_ACCESS

Entry Accessed Date will be set.

FS_DATE_TIME_ALL

All the above will be set.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Entry date/time set successfully.

FS_ERR_NAME_NULL

Argument or passed a NULL pointer.name_full p_time

FS_ERR_FILE_INVALID_DATE_TIME

Date/time specified invalid.

FS_ERR_NAME_INVALID

Entry name specified invalid OR volume could not be found.

FS_ERR_NAME_PATH_TOO_LONG

Entry name specified too long.

FS_ERR_VOL_NOT_OPEN

Volume was not open.

FS_ERR_VOL_NOT_MOUNTED

Volume was not mounted.

FS_ERR_BUF_NONE_AVAIL

Buffer not available.

FS_ERR_DEV

Device access error.

Returned Value

None.

Notes/Warnings

None.

File Functions

void

FSFile_BufAssign (FS_FILE *p_file,

void *p_buf,

FS_FLAGS mode,

CPU_SIZE_T size,

FS_ERR *p_err);

void

FSFile_BufFlush (FS_FILE *p_file,

FS_ERR *p_err);

void

FSFile_Close (FS_FILE *p_file,

FS_ERR *p_err);

void

FSFile_ClrErr (FS_FILE *p_file,

FS_ERR *p_err);

CPU_BOOLEAN

FSFile_IsEOF (FS_FILE *p_file,

FS_ERR *p_err);

CPU_BOOLEAN

FSFile_IsErr (FS_FILE *p_file,

FS_ERR *p_err);

CPU_BOOLEAN

FSFile_IsOpen (CPU_CHAR *name_full,

FS_FLAGS *p_mode,

FS_ERR *p_err);

void

FSFile_LockAccept(FS_FILE *p_file,

FS_ERR *p_err);

void

FSFile_LockGet (FS_FILE *p_file,

FS_ERR *p_err);

void

FSFile_LockSet (FS_FILE *p_file,

FS_ERR *p_err);

FS_FILE *

FSFile_Open (CPU_CHAR *name_full,

FS_FLAGS mode

FS_ERR *p_err);

FS_FILE_SIZE

FSFile_PosGet (FS_FILE *p_file,

FS_ERR *p_err);

void

FSFile_PosSet (FS_FILE *p_file,

FS_FILE_OFFSET offset,

FS_FLAGS origin,

FS_ERR *p_err);

void

FSFile_Query (FS_FILE *p_file,

FS_ENTRY_INFO *p_info,

FS_ERR *p_err);

CPU_SIZE_T

FSFile_Rd (FS_FILE *p_file,

void *p_dest,

CPU_SIZE_T size,

FS_ERR *p_err);

void

FSFile_Truncate (FS_FILE *p_file,

FS_FILE_SIZE size,

FS_ERR *p_err);

CPU_SIZE_T

FSFile_Wr (FS_FILE *p_file,

void *p_src,

CPU_SIZE_T size,

FS_ERR *p_err);

FSFile_BufAssign()

void FSFile_BufAssign (FS_FILE *p_file,
 void *p_buf,
 FS_FLAGS mode,
 CPU_SIZE_T size,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_setbuf();

fs_setvbuf()

FS_CFG_FILE_BUF_EN

Assign buffer to a file.

See for more information. fs_setvbuf()

Arguments

p_file

Pointer to a file.

p_buf

Pointer to buffer.

mode

Buffer mode:

FS_FILE_BUF_MODE_RD

Data buffered for reads.

FS_FILE_BUF_MODE_WR

Data buffered for writes.

FS_FILE_BUF_MODE_RD_WR

Data buffered for reads and writes.

FS_FILE_BUF_MODE_SEC_ALIGNED

Force buffers to be aligned on sector boundaries.

size

Size of buffer, in octets.

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

File buffer assigned.

FS_ERR_NULL_PTR

Argument or passed a NULL pointer.p_file p_buf

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_INVALID_BUF_MODE

Invalid buffer mode.

FS_ERR_FILE_INVALID_BUF_SIZE

Invalid buffer size.

FS_ERR_FILE_BUF_ALREADY_ASSIGNED

Buffer already assigned.

FS_ERR_FILE_NOT_OPEN

File open.not

Returned Value

None.

Notes/Warnings

None.

FSFile_BufFlush()

void FSFile_BufFlush (FS_FILE *p_file,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_fflush()

FS_CFG_FILE_BUF_EN

Flush buffer contents to file.

See for more information.fs_fflush()

Arguments

p_file

Pointer to a file.

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

File buffer flushed successfully.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_file

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_NOT_OPEN

File open.not

Returned Value

None.

Notes/Warnings

None.

FSFile_Close()

void FSFile_Close (FS_FILE *p_file,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_fclose()

N/A

Close and free a file.

See for more information.fs_fclose()

Arguments

p_file

Pointer to a file.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

File closed.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_file

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_NOT_OPEN

File open.not

Returned Value

None.

Notes/Warnings

None.

FSFile_ClrErr()

void FSFile_ClrErr (FS_FILE *p_file,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_clearerr()

N/A

Clear EOF and error indicators on a file.

See for more informationfs_clearerr()

Arguments

p_file

Pointer to a file.

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

Error and end-of-file indicators cleared.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_file

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_NOT_OPEN

File open.not

Returned Value

None.

Notes/Warnings

None.

FSFile_IsEOF()

CPU_BOOLEAN FSFile_IsEOF (FS_FILE *p_file,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_feof()

N/A

Test EOF indicator on a file.

See for more information.fs_feof()

Arguments

p_file

Pointer to a file.

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

EOF indicator obtained.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_file

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_NOT_OPEN

File open.not

Returned Value

DEF_NO if EOF indicator is set or if an error occurrednot

DEF_YES if EOF indicator is set.

Notes/Warnings

None.

FSFile_IsErr()

CPU_BOOLEAN FSFile_IsErr (FS_FILE *p_file,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_ferr()

N/A

Test error indicator on a file.

See for more information. fs_ferror()

Arguments

p_file

Pointer to a file.

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

Error indicator obtained.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_file

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_NOT_OPEN

File open.not

Returned Value

DEF_NO if error indicator is set or if an error occurrednot

DEF_YES if error indicator is set.

Notes/Warnings

None.

FSFile_IsOpen()

CPU_BOOLEAN FSFile_IsOpen (CPU_CHAR *name_full,
 FS_FLAGS *p_mode
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
FSFile_Open()

N/A

Test if file is already open.

Arguments

name_full

Name of the file. See the sub-topic "µC/FS File and Directory Names and Paths" in the topic .Useful Information

p_mode

Pointer to variable that will receive the file access mode (see for the description the file access mode).Opening Files

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

Error indicator obtained.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_file

FS_ERR_BUF_NONE_AVAIL

No buffer available.

FS_ERR_ENTRY_NOT_FILE

Entry a file.not

FS_ERR_NAME_INVALID

Invalid file name or path.

FS_ERR_VOL_INVALID_SEC_NBR

Invalid sector number found in directory entry.

Returned Value

DEF_NO if file is opennot

DEF_YES if file is open.

Notes/Warnings

None.

FSFile_LockAccept()

void FSFile_LockAccept (FS_FILE *p_file,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_ftrylockfile()

FS_CFG_FILE_LOCK_EN

Acquire task ownership of a file (if available).

See for more information.fs_flockfile()

Arguments

p_file

Pointer to a file.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

File lock acquired.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_file

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_NOT_OPEN

File open.not

FS_ERR_FILE_LOCKED

File owned by another task.

Returned Value

None.

Notes/Warnings

None.

FSFile_LockGet()

void FSFile_LockGet (FS_FILE *p_file,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_flockfile()

FS_CFG_FILE_LOCK_EN

Acquire task ownership of a file.

See for more information.fs_flockfile()

Arguments

p_file

Pointer to a file.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

File lock acquired.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_file

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_NOT_OPEN

File open.not

Returned Value

None.

Notes/Warnings

None.

FSFile_LockSet()

void FSFile_LockSet (FS_FILE *p_file,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_funlockfile()

FS_CFG_FILE_LOCK_EN

Release task ownership of a file.

See for more information.fs_funlockfile()

Arguments

p_file

Pointer to a file.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

File lock acquired.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_file

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_NOT_OPEN

File open.not

FS_ERR_FILE_NOT_LOCKED

1.

File locked or locked by different task.not

Returned Value

None.

Notes/Warnings

None.

FSFile_Open()

FS_FILE *FSFile_Open (CPU_CHAR *name_full,
 FS_FLAGS mode
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;

fs_fopen()

N/A

Open a file.

See for more information.fs_fopen()

Arguments

name_full

Name of the file. See the sub-topic "µC/FS File and Directory Names and Paths" in the topic .Useful Information

mode

File access mode (see Notes).

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

File opened.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_full

Or entry error (see).µC/FS Error Codes

Returned Value

None.

Notes/Warnings

The access mode should be the logical OR of one or more flags :

FS_FILE_ACCESS_MODE_RD File opened for reads.

FS_FILE_ACCESS_MODE_WR File opened for writes.

FS_FILE_ACCESS_MODE_CREATE File will be created, if necessary.

FS_FILE_ACCESS_MODE_TRUNC File length will be truncated to 0.

FS_FILE_ACCESS_MODE_APPEND All writes will be performed at EOF.

FS_FILE_ACCESS_MODE_EXCL File will be opened if and only if it does not already exist.

1.

2.
3.
4.
5.

FS_FILE_ACCESS_MODE_CACHED File data will be cached.

If is set, then must also be set.FS_FILE_ACCESS_MODE_TRUNC FS_FILE_ACCESS_MODE_WR
If is set, then must also be set.FS_FILE_ACCESS_MODE_EXCL FS_FILE_ACCESS_MODE_CREATE
FS_FILE_ACCESS_MODE_RD and/or must be set.FS_FILE_ACCESS_MODE_WR
The mode string argument of function can specify a subset of the possible valid modes for this function. The equivalentfs_fopen()
modes of mode strings are shown in the table below.fs_fopen()

fopen() Mode String mode Equivalent

“r” or “rb” FS_FILE_ACCESS_MODE_RD

“w” or “wb” FS_FILE_ACCESS_MODE_WR |
FS_FILE_ACCESS_MODE_CREATE |
FS_FILE_ACCESS_MODE_TRUNC

“a” or “ab” FS_FILE_ACCESS_MODE_WR |
FS_FILE_ACCESS_MODE_CREATE |
FS_FILE_ACCESS_MODE_APPEND

“r+” or “rb+” or “r+b” FS_FILE_ACCESS_MODE_RD |
FS_FILE_ACCESS_MODE_WR

“w+” or “wb+” or “w+b” FS_FILE_ACCESS_MODE_RD |
FS_FILE_ACCESS_MODE_WR |
FS_FILE_ACCESS_MODE_CREATE |
FS_FILE_ACCESS_MODE_TRUNC

“a+” or “ab+” or “a+b” FS_FILE_ACCESS_MODE_RD |

FS_FILE_ACCESS_MODE_WR |
FS_FILE_ACCESS_MODE_CREATE |

FS_FILE_ACCESS_MODE_APPEND

FSFile_PosGet()

FS_FILE_SIZE FSFile_PosGet (FS_FILE *p_file,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_ftell();

fs_fgetpos()

N/A

Set file position indicator.

See for more information.fs_ftell()

Arguments

p_file

Pointer to a file.

p_err

Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE

File position gotten successfully.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_file

FS_ERR_INVALID_TYPE

1.

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_NOT_OPEN

File open.not

FS_ERR_FILE_INVALID_POS

Invalid file position.

Returned Value

The current file position, if no errors (see Note).

0, otherwise.

Notes/Warnings

The file position returned is the number of bytes from the beginning of the file up to the current file position.

FSFile_PosSet()

void FSFile_PosSet (FS_FILE *p_file,
 FS_FILE_OFFSET offset,
 FS_FLAGS origin,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_fseek();

fs_fsetpos()

N/A

Get file position indicator.

See for more information.fs_fseek()

Arguments

p_file

Pointer to a file.

offset

Offset from the file position specified by origin.

origin

Reference position for offset:

FS_FILE_ORIGIN_START

Offset is from the beginning of the file.

FS_FILE_ORIGIN_CUR

Offset is from the current file position.

FS_FILE_ORIGIN_END

Offset is from the end of the file.

p_err

Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE

File position set successfully.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_file

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_INVALID_ORIGIN

Invalid origin specified.

FS_ERR_FILE_INVALID_OFFSET

Invalid offset specified.

FS_ERR_FILE_NOT_OPEN

File open.not

Returned Value

None.

Notes/Warnings

None.

FSFile_Query()

void FSFile_Query (FS_FILE *p_file,
 FS_ENTRY_INFO *p_info,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_fstat()

N/A

FSFile_Query() is used to get information about a file.

Arguments

p_file

Pointer to a file.

p_info

Pointer to structure that will receive the file information (see Note).

p_err

Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE

File information obtained successfully.

FS_ERR_NULL_PTR

Argument or passed a NULL pointer.p_file p_info

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_NOT_OPEN

File open.not

Returned Value

None.

Notes/Warnings

None.

FSFile_Rd()

CPU_SIZE_T FSFile_Rd (FS_FILE *p_file,
 void *p_dest,
 CPU_SIZE_T size,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_fread()

N/A

Read from a file.

See for more information.fs_fread()

Arguments

p_file

Pointer to a file.

p_dest

Pointer to destination buffer.

size

Number of octets to read.

p_err

Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE

File read successfully.

FS_ERR_EOF

End-of-file reached.

FS_ERR_NULL_PTR

Argument / passed a NULL pointer.p_file p_dest

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_NOT_OPEN

File open.not

FS_ERR_FILE_INVALID_OP

Invalid operation on file.

FS_ERR_DEV

Device access error.

Returned Value

The number of bytes read, if file read successful.

0, otherwise.

Notes/Warnings

None.

FSFile_Truncate()

void FSFile_Truncate (FS_FILE *p_file,
 FS_FILE_SIZE size,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;
fs_ftruncate()

not FS_CFG_RD_ONLY_EN

Truncate a file.

See for more information.fs_ftruncate()

Arguments

p_file

Pointer to a file.

size

Size of the file after truncation

p_err

Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE

File truncated successfully.

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_file

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_NOT_OPEN

File open.not

Returned Value

None.

Notes/Warnings

None.

FSFile_Wr()

CPU_SIZE_T FSFile_Wr (FS_FILE *p_file,
 void *p_src,
 CPU_SIZE_T size,
 FS_ERR *p_err);

File Called from Code enabled by

fs_file.c Application;

fs_fwrite()

not FS_CFG_RD_ONLY_EN

Write to a file.

See for more information.fs_fwrite()

Arguments

p_file

Pointer to a file.

p_src

Pointer to source buffer.

size

Number of octets to write.

p_err

Pointer to variable that will the receive return error code from the function:

FS_ERR_NONE

File write successfully.

FS_ERR_NULL_PTR

Argument / passed a NULL pointer.p_file p_src

FS_ERR_INVALID_TYPE

Argument 's type is invalid or unknown.p_file

FS_ERR_FILE_NOT_OPEN

File open.not

FS_ERR_FILE_INVALID_OP

Invalid operation on file.

FS_ERR_DEV

Device access error.

Returned Value

The number of bytes written, if file write successful.

0, otherwise.

Notes/Warnings

None.

Volume Functions

void

FSVol_Close (CPU_CHAR *name_vol,

FS_ERR *p_err);

void

FSVol_Fmt (CPU_CHAR *name_vol,

void *p_fs_cfg,

FS_ERR *p_err);

void

FSVol_GetDfltVolName (CPU_CHAR *name_vol);

FS_QTY

FSVol_GetVolCnt (void);

FS_QTY

FSVol_GetVolCntMax (void);

void

FSVol_GetVolName (FS_QTY vol_nbr,

CPU_CHAR *name_vol);

CPU_BOOLEAN

FSVol_IsMounted (CPU_CHAR *name_vol);

void

FSVol_LabelGet (CPU_CHAR *name_vol,

CPU_CHAR *label,

CPU_SIZE_T len_max,

FS_ERR *p_err);

void

FSVol_LabelSet (CPU_CHAR *name_vol,

CPU_CHAR *label,

FS_ERR *p_err);

void

FSVol_Open (CPU_CHAR *name_vol,

CPU_CHAR *name_dev,

FS_PARTITION_NBR partition_nbr,

FS_ERR *p_err);

void

FSVol_Query (CPU_CHAR *name_vol,

FS_VOL_INFO *p_info,

FS_ERR *p_err);

void

FSVol_Rd (CPU_CHAR *name_vol,

void *p_dest,

FS_SEC_NBR start,

FS_SEC_QTY cnt,

FS_ERR *p_err);

void

FSVol_Wr (CPU_CHAR *name_vol,

void *p_src,

FS_SEC_NBR start,

FS_SEC_QTY cnt,

FS_ERR *p_err);

FSVol_Close()

void FSVol_Close (CPU_CHAR *name_vol,
 FS_ERR *p_err);

File Called from Code enabled by

fs_vol.c Application N/A

Close and free a volume.

Arguments

name_vol

Volume name.

p_err

Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE

Volume opened.

FS_ERR_NAME_NULL

Argument passed a pointer.name_vol NULL

FS_ERR_VOL_NOT_OPEN

Volume not open.

Returned Value

None.

Notes/Warnings

None.

FSVol_Fmt()

void FSVol_Fmt (CPU_CHAR *name_vol,
 void *p_fs_cfg,
 FS_ERR *p_err);

File Called from Code enabled by

fs_vol.c Application not FS_CFG_RD_ONLY_EN

Format a volume.

Arguments

name_vol

Colume name.

p_fs_cfg

Pointer to file system driver-specific configuration. For all file system drivers, if this is a pointer to , then the default configuration will beNULL
selected. More information about the appropriate structure for the FAT file system driver can be found in .FS_FAT_SYS_CFG

p_err

Pointer to variable that will receive the return error code from this function

FS_ERR_NONE

Volume formatted.

FS_ERR_DEV

Device error.

FS_ERR_DEV_INVALID_SIZE

Invalid device size.

FS_ERR_NAME_NULL

Argument passed a pointer.name_vol NULL

FS_ERR_VOL_DIRS_OPEN

Directories open on volume.

FS_ERR_VOL_FILES_OPEN

Files open on volume.

FS_ERR_VOL_INVALID_SYS

Invalid file system parameters.

FS_ERR_VOL_NOT_OPEN

Volume not open.

Required Configuration

None.

Notes/Warnings

Function blocked if files or directories are open on the volume. All files and directories be closed prior to formatting the volume.must
For any file system driver, if is a pointer to , then the default configuration will be selected. If non- , the argumentp_fs_cfg NULL NULL
should be passed a pointer to the appropriate configuration structure. For the FAT file system driver, should be passed ap_fs_cfg
pointer to a .FS_FAT_SYS_CFG

FSVol_GetDfltVolName()

void FSVol_GetDfltVolName (CPU_CHAR *name_vol);

File Called from Code enabled by

fs_vol.c Application N/A

Get name of the default volume.

Arguments

name_vol

String buffer that will receive the volume name (see Note #2).

1.
2.

Returned Value

None.

Notes/Warnings

name_vol point to a character array of characters.must FS_CFG_MAX_VOL_NAME_LEN
If the volume does not exist, will receive an empty string.name_vol

FSVol_GetVolCnt()

FS_QTY FSVol_GetVolCnt (void);

File Called from Code enabled by

fs_vol.c Application N/A

Get the number of open volumes.

Arguments

None.

Returned Value

Number of volumes currently open.

Notes/Warnings

None.

FSVol_GetVolCntMax()

FS_QTY FSVol_GetVolCntMax (void);

File Called from Code enabled by

fs_vol.c Application N/A

Get the maximum possible number of open volumes.

Arguments

None.

Returned Value

The maximum number of open volumes.

Notes/Warnings

None.

FSVol_GetVolName()

void FSVol_GetVolName (FS_QTY vol_nbr,
 CPU_CHAR *name_vol);

File Called from Code enabled by

fs_vol.c Application N/A

Get name of the nth open volume. should be between 0 and the return value of (inclusive).vol_nbr FSVol_GetNbrVols()

1.
2.

Arguments

vol_nbr

Volume number.

name_vol

String buffer that will receive the volume name (see Note #2).

Returned Value

None.

Notes/Warnings

name_vol point to a character array of characters.must FS_CFG_MAX_VOL_NAME_LEN
If the volume does not exist, will receive an empty string.name_vol

FSVol_IsDflt()

CPU_BOOLEAN FSVol_IsDflt (CPU_CHAR *name_vol);

File Called from Code enabled by

fs_vol.c Application N/A

Determine whether a volume is the default volume.

Arguments

name_vol

Volume name.

Returned Value

DEF_YES, if the volume with name is the default volume.name_vol

DEF_NO, if no volume with name exists,name_vol

 or the volume with name is not the default volume.name_vol

Notes/Warnings

None.

FSVol_IsMounted()

CPU_BOOLEAN FSVol_IsMounted (CPU_CHAR *name_vol);

File Called from Code enabled by

fs_vol.c Application N/A

Determine whether a volume is mounted.

Arguments

name_vol

Volume name.

Returned Value

DEF_YES, if the volume is open and is mounted.

DEF_NO, if the volume is not open or is not mounted.

Notes/Warnings

None.

FSVol_LabelGet()

void FSVol_LabelGet (CPU_CHAR *name_vol,
 CPU_CHAR *label,
 CPU_SIZE_T len_max,
 FS_ERR *p_err);

File Called from Code enabled by

fs_vol.c Application N/A

Get volume label.

Arguments

name_vol

Volume name.

label

String buffer that will receive volume label.

len_max

Size of string buffer.

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

Label gotten.

FS_ERR_DEV_CHNGD

Device has changed.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_vol

FS_ERR_NULL_PTR

Argument label passed a NULL pointer.

FS_ERR_DEV

Device access error.

FS_ERR_VOL_LABEL_NOT_FOUND

Volume label was not found.

FS_ERR_VOL_LABEL_TOO_LONG

Volume label is too long.

FS_ERR_VOL_NOT_MOUNTED

Volume is not mounted.

FS_ERR_VOL_NOT_OPEN

Volume is not open.

1.

Required Configuration

None.

Notes/Warnings

len_max is the maximum length string that can be stored in the buffer label; it does include the final NULL character. The buffer labelnot
 be of at least + 1 characters.must len_max

FSVol_LabelSet()

void FSVol_LabelSet (CPU_CHAR *name_vol,
 CPU_CHAR *label,
 FS_ERR *p_err);

File Called from Code enabled by

fs_vol.c Application not FS_CFG_RD_ONLY_EN

Set volume label.

Arguments

name_vol

Volume name.

label

Volume label.

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

Label set.

FS_ERR_DEV_CHNGD

Device has changed.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_vol

FS_ERR_NULL_PTR

Argument label passed a NULL pointer.

FS_ERR_DEV

Device access error.

FS_ERR_DIR_FULL

Directory is full (space could not be allocated).

FS_ERR_DEV_FULL

Device is full (space could not be allocated).

FS_ERR_VOL_LABEL_INVALID

Volume label is invalid.

FS_ERR_VOL_LABEL_TOO_LONG

Volume label is too long.

FS_ERR_VOL_NOT_MOUNTED

Volume is not mounted.

1.

FS_ERR_VOL_NOT_OPEN

Volume is not open.

Returned Value

None.

Notes/Warnings

The label on a FAT volume must be no longer than 11-characters, each belonging to the set of valid short file name (SFN) characters.
Before it is committed to the volume, the label will be converted to upper case and will be padded with spaces until it is an 11-character
string.

FSVol_Open()

void FSVol_Open (CPU_CHAR *name_vol,
 CPU_CHAR *name_dev,
 FS_PARTITION_NBR partition_nbr,
 FS_ERR *p_err);

File Called from Code enabled by

fs_vol.c Application N/A

Open a volume.

Arguments

name_vol

Volume name. See for information about device names.Device and volume names

name_dev

Device name.

partition_nbr

Partition number. If 0, the default partition will be mounted.

p_err

Pointer to variable that will receive the return error code from this function. See . Note #2

FS_ERR_NONE

Volume opened.

FS_ERR_DEV_VOL_OPEN

Volume open on device.

FS_ERR_INVALID_SIG

Invalid MBR signature.

FS_ERR_NAME_NULL

Argument / passed a NULL pointer.name_vol name_dev

FS_ERR_PARTITION_INVALID_NBR

Invalid partition number.

FS_ERR_PARTITION_NOT_FOUND

Partition not found.

FS_ERR_VOL_ALREADY_OPEN

Volume is already open.

https://doc.micrium.com/display/fsdoc/Useful+Information#UsefulInformation-µC/FSDeviceandVolumeNames

1.

2.
3.
4.
5.

FS_ERR_VOL_INVALID_NAME

Volume name invalid.

FS_ERR_VOL_NONE_AVAIL

No volumes available.

Or device access error (see).Device Error Codes

Returned Value

None.

Notes/Warnings

If is returned, then no valid partition (or valid file system) was found on the device. It is still placed onFS_ERR_PARTITION_NOT_FOUND
the list of used volumes; however, it cannot be addressed as a mounted volume (e.g., files cannot be accessed). Thereafter, unless a
new device is inserted, the only valid commands are
FSVol_Fmt(), which creates a file system on the device;
FSVol_Close(), which frees the volume structure;
FSVol_Query(), which returns information about the device.
If , , or is returned, then the volume has beenFS_ERR_DEV FS_ERR_DEV_NOT_PRESENT FS_ERR_DEV_IO FS_ERR_DEV_TIMEOUT
added to the file system, though the underlying device is probably not present. The volume will need to be either closed and re-added, or
refreshed.

FSVol_Query()

void FSVol_Query (CPU_CHAR *name_vol,
 FS_VOL_INFO *p_info,
 FS_ERR *p_err);

File Called from Code enabled by

fs_vol.c Application N/A

Obtain information about a volume.

Arguments

name_vol

Volume name.

p_info

Pointer to structure that will receive volume information.

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

Volume information obtained.

FS_ERR_DEV

Device access error.

FS_ERR_NAME_NULL

Argument passed a pointer.name_vol NULL

FS_ERR_NULL_PTR

Argument passed a pointer.p_info NULL

FS_ERR_VOL_NOT_OPEN

Volume is not open.

https://doc.micrium.com/pages/viewpage.action?pageId=12856873#id-�C/FSErrorCodes-DeviceErrorCodes

Returned Value

None.

Notes/Warnings

None.

FSVol_Rd()

void FSVol_Rd (CPU_CHAR *name_vol,
 void *p_dest,
 FS_SEC_NBR start,
 FS_SEC_QTY cnt,
 FS_ERR *p_err);

File Called from Code enabled by

fs_vol.c Application N/A

Read data from volume sector(s).

Arguments

name_vol

Volume name.

p_dest

Pointer to destination buffer.

start

Start sector of read.

cnt

Number of sectors to read

p_err

Pointer to variable that will receive the return error code from this function

FS_ERR_NONE

Sector(s) read.

FS_ERR_DEV

Device access error.

FS_ERR_NAME_NULL

Argument passed a pointer.name_vol NULL

FS_ERR_NULL_PTR

Argument passed a pointer.p_dest NULL

FS_ERR_VOL_NOT_MOUNTED

Volume is not mounted.

FS_ERR_VOL_NOT_OPEN

Volume is not open.

Returned Value

None.

Required Configuration

None.

Notes/Warnings

None.

FSVol_Wr()

void FSVol_Wr (CPU_CHAR *name_vol,
 void *p_src,
 FS_SEC_NBR start,
 FS_SEC_QTY cnt,
 FS_ERR *p_err);

File Called from Code enabled by

fs_vol.c Application not FS_CFG_RD_ONLY_EN

Write data to volume sector(s).

Arguments

name_vol

Volume name.

p_src

Pointer to source buffer.

start

Start sector of write.

cnt

Number of sectors to write

p_err

Pointer to variable that will receive the return error code from this function

FS_ERR_NONE

Sector(s) written.

FS_ERR_DEV

Device access error.

FS_ERR_NAME_NULL

Argument passed a pointer.name_vol NULL

FS_ERR_NULL_PTR

Argument passed a pointer.p_src NULL

FS_ERR_VOL_NOT_MOUNTED

Volume is not mounted.

FS_ERR_VOL_NOT_OPEN

Volume is not open.

Returned Value

None.

Notes/Warnings

None.

Volume Cache Functions

void

FSVol_CacheAssign (CPU_CHAR *name_vol,

FS_VOL_CACHE_API *p_cache_api,

void *p_cache_data,

CPU_INT32U size,

CPU_INT08U pct_mgmt,

CPU_INT08U pct_dir,

FS_FLAGS mode,

FS_ERR *p_err);

void

FSVol_CacheInvalidate (CPU_CHAR *name_vol,

FS_ERR *p_err);

void

FSVol_CacheFlush (CPU_CHAR *name_vol,

FS_ERR *p_err);

FSVol_CacheAssign()

void FSVol_CacheAssign (CPU_CHAR *name_vol,
 FS_VOL_CACHE_API *p_cache_api,
 void *p_cache_data,
 CPU_INT32U size,
 CPU_INT08U pct_mgmt,
 CPU_INT08U pct_dir,
 FS_FLAGS mode,
 FS_ERR *p_err)

File Called from Code enabled by

fs_vol.c Application FS_CFG_CACHE_EN

Assign cache to a volume.

Arguments

name_vol

Volume name.

p_cache_api

Pointer to: (a) cache API to use; OR (b) NULL, if default cache API should be used.

p_cache_data

Pointer to cache data.

size

Size, in bytes, of cache buffer.

pct_mgmt

Percent of cache buffer dedicated to management sectors.

pct_dir

Percent of cache buffer dedicated to directory sectors.

mode

Cache mode

FS_VOL_CACHE_MODE_WR_THROUGH

FS_VOL_CACHE_MODE_WR_BACK

FS_VOL_CACHE_MODE_RD

p_err

Pointer to variable that will receive return error code from this function:

FS_ERR_NONE

Cache created.

FS_ERR_NAME_NULL

‘ ’ passed a NULL pointer.name_vol

FS_ERR_VOL_NOT_OPEN

Volume not open.

FS_ERR_NULL_PTR

‘ ’ passed a NULL pointer.p_cache_data

FS_ERR_CACHE_INVALID_MODE

Mode specified invalid

FS_ERR_CACHE_INVALID_SEC_TYPE

Sector type sepecified invalid.

FS_ERR_CACHE_TOO_SMALL

Size specified too small for cache.

Returned Value

None.

Notes/Warnings

None.

FSVol_CacheFlush()

void FSVol_CacheFlush (CPU_CHAR *name_vol,
 FS_ERR *p_err)

File Called from Code enabled by

fs_vol.c Application FS_CFG_CACHE_EN

Flush cache on a volume.

Arguments

name_vol

Volume name.

p_err

Pointer to variable that will receive return error code from this function:

FS_ERR_NONE

Cache created.

FS_ERR_NAME_NULL

‘ ’ passed a NULL pointer.name_vol

FS_ERR_DEV_CHNGD

Device has changed.

FS_ERR_VOL_NO_CACHE

No cache assigned to volume.

FS_ERR_VOL_NOT_OPEN

Volume not open.

FS_ERR_VOL_NOT_MOUNTED

Volume not mounted.

FS_ERR_DEV_INVALID_SEC_NBR

Sector start or count invalid.

FS_ERR_DEV_INVALID_lOW_FMT

Device needs to be low-level formatted.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout error.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

Returned Value

None.

Notes/Warnings

None.

FSVol_CacheInvalidate ()

void FSVol_CacheInvalidate (CPU_CHAR *name_vol,
 FS_ERR *p_err)

File Called from Code enabled by

fs_vol.c Application FS_CFG_CACHE_EN

Invalidate cache on a volume.

Arguments

name_vol

Volume name.

p_err

Pointer to variable that will receive return error code from this function:

FS_ERR_NONE

Cache created.

FS_ERR_NAME_NULL

‘ ’ passed a NULL pointer.name_vol

FS_ERR_DEV_CHNGD

Device has changed.

FS_ERR_VOL_NO_CACHE

No cache assigned to volume.

FS_ERR_VOL_NOT_OPEN

Volume not open.

FS_ERR_VOL_NOT_MOUNTED

Volume not mounted.

Returned Value

None.

Notes/Warnings

None.

SD/MMC Driver Functions

void

FSDev_SD_Card_QuerySD (CPU_CHAR *name_dev,

FS_DEV_SD_INFO *p_info,

FS_ERR *p_err);

void

FSDev_SD_SPI_QuerySD (CPU_CHAR *name_dev,

FS_DEV_SD_INFO *p_info,

FS_ERR *p_err);

void

FSDev_SD_Card_RdCID (CPU_CHAR *name_dev,

CPU_INT08U *p_info,

FS_ERR *p_err);

void

FSDev_SD_SPI_RdCID (CPU_CHAR *name_dev,

CPU_INT08U *p_info,

FS_ERR *p_err);

void

FSDev_SD_Card_RdCSD (CPU_CHAR *name_dev,

CPU_INT08U *p_info,

FS_ERR *p_err);

void

FSDev_SD_SPI_RdCSD (CPU_CHAR *name_dev,

CPU_INT08U *p_info,

FS_ERR *p_err);

FSDev_SD_xxx_QuerySD()

void FSDev_SD_Card_QuerySD (CPU_CHAR *name_dev,
 FS_DEV_SD_INFO *p_info,
 FS_ERR *p_err);

void FSDev_SD_SPI_QuerySD (CPU_CHAR *name_dev,
 FS_DEV_SD_INFO *p_info,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_sd_card.c, fs_dev_sd_spi.c Application N/A

Get low-level information about SD/MMC card.

Arguments

name_dev

Device name (see).Note #1

p_info

Pointer to structure that will receive SD/MMC card information.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

SD/MMC info obtained.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_info

FS_ERR_DEV_INVALID

Argument specifies an invalid devicename_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

1.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a SD/MMC device; (for , e.g., “ ”; for , e.g., “must FSDev_SD_Card_QuerySD() sdcard:0: FSDev_SD_SPI_QuerySD()
”).sd:0:

FSDev_SD_xxx_RdCID()

void FSDev_SD_Card_RdCID (CPU_CHAR *name_dev,
 CPU_INT08U *p_info,
 FS_ERR *p_err);

void FSDev_SD_SPI_RdCID (CPU_CHAR *name_dev,
 CPU_INT08U *p_info,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_sd_card.c, fs_dev_sd_spi.c Application N/A

Read SD/MMC Card ID (CID) register.

Arguments

name_dev

Device name (see).Note #1

p_dest

Pointer to 16-byte buffer that will receive SD/MMC Card ID register.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

SD/MMC Card ID register read.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_dest

FS_ERR_DEV_INVALID

Argument specifies an invalid devicename_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_IO

1.

2.

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a SD/MMC device; (for , e.g., “sdcard:0:”; for , e.g.,must FSDev_SD_Card_QuerySD() FSDev_SD_SPI_QuerySD()
“sd:0:”).
For SD cards, the structure of the CID is defined in the SD Card Association’s “Physical Layer Simplified Specification Version 2.00”,
Section 5.1. For MMC cards, the structure of the CID is defined in the JEDEC’s “MultiMediaCard (MMC) Electrical Standard, High
Capacity”, Section 8.2.

FSDev_SD_xxx_RdCSD()

void FSDev_SD_Card_RdCSD (CPU_CHAR *name_dev,
 CPU_INT08U *p_info,
 FS_ERR *p_err);

void FSDev_SD_SPI_RdCSD (CPU_CHAR *name_dev,
 CPU_INT08U *p_info,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_sd_card.c, fs_dev_sd_spi.c Application N/A

Read SD/MMC Card-Specific Data (CSD) register.

Arguments

name_dev

Device name (see).Note #1

p_dest

Pointer to 16-byte buffer that will receive SD/MMC Card-Specific Data register.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

SD/MMC Card-Specific Data register read.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_dest

FS_ERR_DEV_INVALID

Argument specifies an invalid devicename_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

1.

2.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a SD/MMC device; (for , e.g., “ ”; for , e.g., “must FSDev_SD_Card_QuerySD() sdcard:0: FSDev_SD_SPI_QuerySD()
”).sd:0:

For SD cards, the structure of the CSD is defined in the SD Card Association’s “Physical Layer Simplified Specification Version 2.00”,
Section 5.3.2 (v1.x and v2.0 standard capacity) or Section 5.3.3. (v2.0 high capacity). For MMC cards, the structure of the CSD is defined
in the JEDEC’s “MultiMediaCard (MMC) Electrical Standard, High Capacity”, Section 8.3.

NAND Driver Functions

void

FSDev_NAND_LowFmt (CPU_CHAR *name_dev,

FS_ERR *p_err);

void

FSDev_NAND_LowMount (CPU_CHAR *name_dev,

FS_ERR *p_err);

void

FSDev_NAND_LowUnmount (CPU_CHAR *name_dev,

FS_ERR *p_err);

FSDev_NAND_LowFmt()

void FSDev_NAND_LowFmt (CPU_CHAR *name_dev,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nand.c Application N/A

Low-level format a NAND device.

Arguments

name_dev

Device name (see).Note #1

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

Device low-level formatted successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

1.
2.

FS_ERR_DEV_INVALID

Argument specifies an invalid devicename_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT

Device needs to be low-level formatted.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a NAND device (e.g., “ ”).must nand:0:
A NAND medium be low-level formatted with this driver prior to access by the high-level file system, a requirement which the devicemust
module enforces.

FSDev_NAND_LowMount()

void FSDev_NAND_LowMount (CPU_CHAR *name_dev,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nand.c Application N/A

Low-level mount a NAND device.

Arguments

name_dev

Device name (see).Note #1

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

Device low-level mounted successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_DEV_INVALID

Argument specifies an invalid devicename_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

1.
2.

3.

4.

Device is not present.

FS_ERR_CORRUPT_LOW_FMT

Device low-level format corrupted.

FS_ERR_DEV_INVALID_LOW_FMT

Device needs to be low-level formatted.

FS_ERR_DEV_INCOMPATIBLE_LOW_PARAMS

Device configuration not compatible with existing format.

S_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a NAND device (e.g., “ ”).must nand:0:
Low-level mounting parses the on-device structure, detecting the presence of a valid low-level format. If FS_ERR_DEV_INVALID_LOW_F

 is returned, the device is low-level formatted.MT not
If an existing on-device low-level format is found but doesn't match the format prompted by specified device configuration, FS_ERR_DEV_

 will be returned. A low-level format is required.INCOMPATIBLE_LOW_PARAMS
If an existing and compatible on-device low-level format is found, but is not usable because of some metadata corruption, FS_ERR_DEV_

 will be returned. A chip erase and/or low-level format is required.CORRUPT_LOW_FMT

FSDev_NAND_LowUnmount()

void FSDev_NAND_LowUnmount (CPU_CHAR *name_dev,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nand.c Application N/A

Low-level unmount a NAND device.

Arguments

name_dev

Device name (see).Note #1

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Device low-level unmounted successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_DEV_INVALID

Argument specifies an invalid devicename_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

1.
2.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a NAND device (e.g., “ ”).must nand:0:
Low-level unmounting clears software knowledge of the on-disk structures, forcing the device to again be low-level mounted or formatted
prior to further use.

NOR Driver Functions

void

FSDev_NOR_LowFmt (CPU_CHAR *name_dev,

FS_ERR *p_err);

void

FSDev_NOR_LowMount (CPU_CHAR *name_dev,

FS_ERR *p_err);

void

FSDev_NOR_LowUnmount (CPU_CHAR *name_dev,

FS_ERR *p_err);

void

FSDev_NOR_LowCompact (CPU_CHAR *name_dev,

FS_ERR *p_err);

void

FSDev_NOR_LowDefrag (CPU_CHAR *name_dev,

FS_ERR *p_err);

void

FSDev_NOR_PhyRd (CPU_CHAR *name_dev,

void *p_dest,

CPU_INT32U start,

CPU_INT32U cnt,

FS_ERR *p_err);

void

FSDev_NOR_PhyWr (CPU_CHAR *name_dev,

void *p_src,

CPU_INT32U start,

CPU_INT32U cnt,

FS_ERR *p_err);

void

FSDev_NOR_PhyEraseBlk (CPU_CHAR *name_dev,

CPU_INT32U start,

CPU_INT32U size,

FS_ERR *p_err);

void

FSDev_NOR_PhyEraseChip (CPU_CHAR *name_dev,

FS_ERR *p_err);

FSDev_NOR_LowCompact()

 void FSDev_NOR_LowCompact (CPU_CHAR *name_dev,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A

Low-level compact a NOR device.

Arguments

name_dev

Device name (see).Note #1

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Device low-level compacted successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_DEV_INVALID

Argument specifies an invalid devicename_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT

1.
2.

Device needs to be low-level formatted.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a NOR device (e.g., “ ”).must nor:0:
Compacting groups sectors containing high-level data into as few blocks as possible. If an image of a file system is to be formed for
deployment, to be burned into chips for production, then it should be compacted after all files and directories are created.

FSDev_NOR_LowDefrag()

void FSDev_NOR_LowDefrag (CPU_CHAR *name_dev,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A

Low-level defragment a NOR device.

Arguments

name_dev

Device name (see). Note #1

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Device low-level defragmented successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_DEV_INVALID

Argument specifies an invalid devicename_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT

Device needs to be low-level formatted.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

1.
2.

1.
2.

Returned Value

None.

Notes/Warnings

The device be a NOR device (e.g., “ ”).must nor:0:
Defragmentation groups sectors containing high-level data into as few blocks as possible, in order of logical sector. A defragmented file
system should have near-optimal access speeds in a read-only environment.

FSDev_NOR_LowFmt()

void FSDev_NOR_LowFmt (CPU_CHAR *name_dev,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A

Low-level format a NOR device.

Arguments

name_dev

Device name (see).Note #1

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Device low-level formatted successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_DEV_INVALID

Argument specifies an invalid devicename_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT

Device needs to be low-level formatted.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a NOR device (e.g., “ ”).must nor:0:
Low-level formating associates physical areas (sectors) of the device with logical sector numbers. A NOR medium be low-levelmust
formatted with this driver prior to access by the high-level file system, a requirement which the device module enforces.

1.
2.

FSDev_NOR_LowMount()

void FSDev_NOR_LowMount (CPU_CHAR *name_dev,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A

Low-level mount a NOR device.

Arguments

name_dev

Device name (see).Note #1

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Device low-level mounted successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_DEV_INVALID

Argument specifies an invalid devicename_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT

Device needs to be low-level formatted.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a NOR device (e.g., “ ”).must nor:0:
Low-level mounting parses the on-device structure, detecting the presence of a valid low-level format. If FS_ERR_DEV_INVALID_LOW_F

 is returned, the device is low-level formatted.MT not

FSDev_NOR_LowUnmount()

void FSDev_NOR_LowUnmount (CPU_CHAR *name_dev,
 FS_ERR *p_err);

1.
2.

File Called from Code enabled by

fs_dev_nor.c Application N/A

Low-level unmount a NOR device.

Arguments

name_dev

Device name (see). Note #1

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Device low-level unmounted successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_DEV_INVALID

Argument specifies an invalid devicename_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a NOR device (e.g., “ ”).must nor:0:
Low-level unmounting clears software knowledge of the on-disk structures, forcing the device to again be low-level mounted or formatted
prior to further use.

FSDev_NOR_PhyEraseBlk()

void FSDev_NOR_PhyEraseBlk (CPU_CHAR *name_dev,
 CPU_INT32U start,
 CPU_INT32U size,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A

Erase block of NOR device.

Arguments

name_dev

1.
2.

Device name (see).Note #1

start

Start address of block (relative to start of device).

size

Size of block, in octets.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Block erased successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_DEV_INVALID

Argument specifies an invalid devicename_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT

Device needs to be low-level formatted.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a NOR device (e.g., “ ”).must nor:0:
Care should be taken if this function is used while a file system exists on the device, or if the device is low-level formatted. The erased
block is validated as being outside any existing file system or low-level format information.not

FSDev_NOR_PhyEraseChip()

void FSDev_NOR_PhyEraseChip (CPU_CHAR *name_dev,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A

Erase entire NOR device.

Arguments

name_dev

Device name (see).Note #1

p_err

1.
2.

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Device erased successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_DEV_INVALID

Argument specifies an invalid devicename_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT

Device needs to be low-level formatted.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a NOR device (e.g., “ ”).must nor:0:
This function should be used while a file system exists on the device, or if the device is low-level formatted, unless the intent is tonot
destroy all existing information.

FSDev_NOR_PhyRd()

void FSDev_NOR_PhyRd (CPU_CHAR *name_dev,
 void *p_dest,
 CPU_INT32U start,
 CPU_INT32U cnt,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A

Read from a NOR device and store data in buffer.

Arguments

name_dev

Device name (see).Note #1

p_dest

Pointer to destination buffer.

start

Start address of read (relative to start of device).

1.

cnt

Number of octets to read.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Octets read successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_dest

FS_ERR_DEV_INVALID

Argument specifies an invalid device.name_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT

Device needs to be low-level formatted.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a NOR device (e.g., “ ”).must nor:0:

FSDev_NOR_PhyWr()

void FSDev_NOR_PhyWr (CPU_CHAR *name_dev,
 void *p_src,
 CPU_INT32U start,
 CPU_INT32U cnt,
 FS_ERR *p_err);

File Called from Code enabled by

fs_dev_nor.c Application N/A

Write to a NOR device from a buffer.

Arguments

name_dev

Device name (see).Note #1

p_src

1.
2.

3.

Pointer to source buffer.

start

Start address of write (relative to start of device).

cnt

Number of octets to write.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Octets written successfully.

FS_ERR_NAME_NULL

Argument passed a NULL pointer.name_dev

FS_ERR_NULL_PTR

Argument passed a NULL pointer.p_src

FS_ERR_DEV_INVALID

Argument specifies an invalid device.name_dev

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_INVALID_LOW_FMT

Device needs to be low-level formatted.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

The device be a NOR device (e.g., “ ”).must nor:0:
Care should be taken if this function is used while a file system exists on the device, or if the device is low-level formatted. The octet
location(s) modified are validated as being outside any existing file system or low-level format information.not
During a program operation, only 1 bits can be changed; a 0 bit cannot be changed to a 1. The application know that the octetsmust
being programmed have not already been programmed.

FAT System Driver Functions

void

FS_FAT_JournalOpen (CPU_CHAR *name_vol,

FS_ERR *p_err);

void

FS_FAT_JournalClose (CPU_CHAR *name_vol,

FS_ERR *p_err);

void

FS_FAT_JournalStart (CPU_CHAR *name_vol,

FS_ERR *p_err);

void

FS_FAT_JournalStop (CPU_CHAR *name_vol,

FS_ERR *p_err);

void

FS_FAT_VolChk (CPU_CHAR *name_vol,

FS_ERR *p_err);

FS_FAT_JournalClose()

void FS_FAT_JournalClose (CPU_CHAR *name_vol,
 FS_ERR *p_err);

File Called from Code enabled by

fs_fat_journal.c Application FS_CFG_FAT_JOURNAL_EN

Close journal on volume.

Arguments

name_vol

Volume name.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Journal closed.

FS_ERR_DEV

Device access error.

Returned Value

None.

Notes/Warnings

None.

FS_FAT_JournalOpen()

void FS_FAT_JournalOpen (CPU_CHAR *name_vol,
 FS_ERR *p_err);

File Called from Code enabled by

fs_fat_journal.c Application FS_CFG_FAT_JOURNAL_EN

Open journal on volume.

Arguments

name_vol

Volume name.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Journal opened.

FS_ERR_DEV

Device access error.

Returned Value

None.

Notes/Warnings

None.

FS_FAT_JournalStart()

 void FS_FAT_JournalStart (CPU_CHAR *name_vol,
 FS_ERR *p_err);

File Called from Code enabled by

fs_fat_journal.c Application FS_CFG_FAT_JOURNAL_EN

Start journaling on volume.

Arguments

name_vol

Volume name.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Journaling started.

FS_ERR_DEV

Device access error.

Returned Value

None.

Notes/Warnings

None.

FS_FAT_JournalStop()

void FS_FAT_JournalStop (CPU_CHAR *name_vol,
 FS_ERR *p_err);

File Called from Code enabled by

fs_fat_journal.c Application FS_CFG_FAT_JOURNAL_EN

Stop journaling on volume.

Arguments

name_vol

Volume name.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Journaling stopped.

FS_ERR_DEV

Device access error.

Returned Value

None.

Notes/Warnings

None.

FS_FAT_VolChk()

void FS_FAT_VolChk (CPU_CHAR *name_vol,
 FS_ERR *p_err);

File Called from Code enabled by

fs_fat.c Application FS_CFG_FAT_VOL_CHK_EN

Check the file system on a volume.

Arguments

name_vol

Volume name.

p_err

Pointer to variable that will the receive return error code from this function:

FS_ERR_NONE

Volume checked without errors.

FS_ERR_NAME_NULL

Argument “name_vol” passed a null pointer.

FS_ERR_DEV

Device access error.

FS_ERR_VOL_NOT_OPEN

Volume not open.

FS_ERR_BUF_NONE_AVAIL

No buffers available.

Returned Value

None.

Notes/Warnings

None.

µC/FS Error Codes
System Error Codes
Buffer Error Codes
Cache Error Codes
Device Error Codes
Device Driver Error Codes
Directory Error Codes
ECC Error Codes
Entry Error Codes
File Error Codes
Name Error Codes
Partition Error Codes
Pools Error Codes
File System Error Codes
Volume Error Codes
OS Layer Error Codes

This section provides a brief explanation of µC/FS error codes defined in . Any error codes not listed here may be searched in fs_err.h fs_err
 for both their numerical value and usage..h

System Error Codes

Error Code Meaning

FS_ERR_NONE No error.

FS_ERR_INVALID_ARG Invalid argument.

FS_ERR_INVALID_CFG Invalid configuration.

FS_ERR_INVALID_CHKSUM Invalid checksum.

FS_ERR_INVALID_LEN Invalid length.

FS_ERR_INVALID_TIME Invalid date/time.

FS_ERR_INVALID_TIMESTAMP Invalid timestamp.

FS_ERR_INVALID_TYPE Invalid object type.

FS_ERR_MEM_ALLOC Mem could not be alloc'd.

FS_ERR_NULL_ARG Arg(s) passed NULL val(s).

FS_ERR_NULL_PTR Ptr arg(s) passed NULL ptr(s).

FS_ERR_OS OS err.

FS_ERR_OVF Value too large to be stored in type.

FS_ERR_EOF EOF reached.

FS_ERR_WORKING_DIR_NONE_AVAIL No working dir avail.

FS_ERR_WORKING_DIR_INVALID Working dir invalid.

Buffer Error Codes

Error Code Meaning

FS_ERR_BUF_NONE_AVAIL No buffer available.

Cache Error Codes

Error Code Meaning

FS_ERR_CACHE_INVALID_MODE Mode specified invalid.

FS_ERR_CACHE_INVALID_SEC_TYPE Device already open.

FS_ERR_CACHE_TOO_SMALL Device has changed.

Device Error Codes

Error Code Meaning

FS_ERR_DEV Device access error.

FS_ERR_DEV_ALREADY_OPEN Device already open.

FS_ERR_DEV_CHNGD Device has changed.

FS_ERR_DEV_FIXED Device is fixed (cannot be closed).

FS_ERR_DEV_FULL Device is full (no space could be allocated).

FS_ERR_DEV_INVALID Invalid device.

FS_ERR_DEV_INVALID_CFG Invalid dev cfg.

FS_ERR_DEV_INVALID_ECC Invalid ECC.

FS_ERR_DEV_INVALID_IO_CTRL I/O control invalid.

FS_ERR_DEV_INVALID_LOW_FMT Low format invalid.

FS_ERR_DEV_INVALID_LOW_PARAMS Invalid low-level device parameters.

FS_ERR_DEV_INVALID_MARK Invalid mark.

FS_ERR_DEV_INVALID_NAME Invalid device name.

FS_ERR_DEV_INVALID_OP Invalid operation.

FS_ERR_DEV_INVALID_SEC_NBR Invalid device sec nbr.

FS_ERR_DEV_INVALID_SEC_SIZE Invalid device sec size.

FS_ERR_DEV_INVALID_SIZE Invalid device size.

FS_ERR_DEV_INVALID_UNIT_NBR Invalid device unit nbr.

FS_ERR_DEV_IO Device I/O error.

FS_ERR_DEV_NONE_AVAIL No device avail.

FS_ERR_DEV_NOT_OPEN Device not open.

FS_ERR_DEV_NOT_PRESENT Device not present.

FS_ERR_DEV_TIMEOUT Device timeout.

FS_ERR_DEV_UNIT_NONE_AVAIL No unit avail.

FS_ERR_DEV_UNIT_ALREADY_EXIST Unit already exists.

FS_ERR_DEV_UNKNOWN Unknown.

FS_ERR_DEV_VOL_OPEN Vol open on dev.

FS_ERR_DEV_INCOMPATIBLE_LOW_PARAMS Incompatible low-level device parameters.

FS_ERR_DEV_INVALID_METADATA Device driver metadata is invalid.

FS_ERR_DEV_OP_ABORTED Operation aborted.

FS_ERR_DEV_CORRUPT_LOW_FMT Corrupted low-level fmt.

FS_ERR_DEV_INVALID_SEC_DATA Retrieved sec data is invalid.

FS_ERR_DEV_WR_PROT Device is write protected.

FS_ERR_DEV_OP_FAILED Operation failed.

FS_ERR_DEV_NAND_NO_AVAIL_BLK No blk avail.

FS_ERR_DEV_NAND_NO_SUCH_SEC This sector is not available.

FS_ERR_DEV_NAND_ECC_NOT_SUPPORTED The needed ECC scheme is not supported.

FS_ERR_DEV_NAND_ONFI_EXT_PARAM_PAGE NAND device extended parameter page must be read.

Device Driver Error Codes

Error Code Meaning

FS_ERR_DEV_DRV_ALREADY_ADDED Device driver already added.

FS_ERR_DEV_DRV_INVALID_NAME Invalid device driver name.

FS_ERR_DEV_DRV_NONE_AVAIL No driver available.

Directory Error Codes

Error Code Meaning

FS_ERR_DIR_ALREADY_OPEN Directory already open.

FS_ERR_DIR_DIS Directory module disabled.

FS_ERR_DIR_FULL Directory is full.

FS_ERR_DIR_NONE_AVAIL No directory avail.

FS_ERR_DIR_NOT_OPEN Directory not open.

ECC Error Codes

Error Code Meaning

FS_ERR_ECC_CORRECTABLE Correctable ECC error.

FS_ERR_ECC_UNCORRECTABLE Uncorrectable ECC error.

Entry Error Codes

Error Code Meaning

FS_ERR_ENTRIES_SAME Paths specify same file system entry.

FS_ERR_ENTRIES_TYPE_DIFF Paths do not both specify files OR directories.

FS_ERR_ENTRIES_VOLS_DIFF Paths specify file system entries on different vols.

FS_ERR_ENTRY_CORRUPT File system entry is corrupt.

FS_ERR_ENTRY_EXISTS File system entry exists.

FS_ERR_ENTRY_INVALID File system entry invalid.

FS_ERR_ENTRY_NOT_DIR File system entry a directory.not

FS_ERR_ENTRY_NOT_EMPTY File system entry empty.not

FS_ERR_ENTRY_NOT_FILE File system entry a file.not

FS_ERR_ENTRY_NOT_FOUND File system entry found.not

FS_ERR_ENTRY_PARENT_NOT_FOUND Entry parent found.not

FS_ERR_ENTRY_PARENT_NOT_DIR Entry parent a directory.not

FS_ERR_ENTRY_RD_ONLY File system entry marked read-only.

FS_ERR_ENTRY_ROOT_DIR File system entry is a root directory.

FS_ERR_ENTRY_TYPE_INVALID File system entry type is invalid.

FS_ERR_ENTRY_OPEN Operation not allowed on entry corresponding to an open file/dir.

File Error Codes

Error Code Meaning

FS_ERR_FILE_ALREADY_OPEN File already open.

FS_ERR_FILE_BUF_ALREADY_ASSIGNED Buf already assigned.

FS_ERR_FILE_ERR Error indicator set on file.

FS_ERR_FILE_INVALID_ACCESS_MODE Access mode is specified invalid.

FS_ERR_FILE_INVALID_ATTRIB Attributes are specified invalid.

FS_ERR_FILE_INVALID_BUF_MODE Buf mode is specified invalid or unknown.

FS_ERR_FILE_INVALID_BUF_SIZE Buf size is specified invalid.

FS_ERR_FILE_INVALID_DATE_TIME Date/time is specified invalid.

FS_ERR_FILE_INVALID_DATE_TIME_FLAG Date/time flag is specified invalid.

FS_ERR_FILE_INVALID_NAME Name is specified invalid.

FS_ERR_FILE_INVALID_ORIGIN Origin is specified invalid or unknown.

FS_ERR_FILE_INVALID_OFFSET Offset is specified invalid.

FS_ERR_FILE_INVALID_FILES Invalid file arguments.

FS_ERR_FILE_INVALID_OP File operation invalid.

FS_ERR_FILE_INVALID_OP_SEQ File operation sequence invalid.

FS_ERR_FILE_INVALID_POS File position invalid.

FS_ERR_FILE_LOCKED File locked.

FS_ERR_FILE_NONE_AVAIL No file available.

FS_ERR_FILE_NOT_OPEN File open.not

FS_ERR_FILE_NOT_LOCKED File locked.not

FS_ERR_FILE_OVF File size overflowed max file size.

FS_ERR_FILE_OVF_OFFSET File offset overflowed max file offset.

Name Error Codes

Error Code Meaning

FS_ERR_NAME_BASE_TOO_LONG Base name too long.

FS_ERR_NAME_EMPTY Name empty.

FS_ERR_NAME_EXT_TOO_LONG Extension too long.

FS_ERR_NAME_INVALID Invalid file name or path.

FS_ERR_NAME_MIXED_CASE Name is mixed case.

FS_ERR_NAME_NULL Name ptr arg(s) passed NULL ptr(s).

FS_ERR_NAME_PATH_TOO_LONG Entry path is too long.

FS_ERR_NAME_BUF_TOO_SHORT Buffer for name is too short.

FS_ERR_NAME_TOO_LONG Full name is too long.

Partition Error Codes

Error Code Meaning

FS_ERR_PARTITION_INVALID Partition invalid.

FS_ERR_PARTITION_INVALID_NBR Partition nbr specified invalid.

FS_ERR_PARTITION_INVALID_SIG Partition sig invalid.

FS_ERR_PARTITION_INVALID_SIZE Partition size invalid.

FS_ERR_PARTITION_MAX Max nbr partitions have been created in MBR.

FS_ERR_PARTITION_NOT_FINAL Prev partition is not final partition.

FS_ERR_PARTITION_NOT_FOUND Partition found.not

FS_ERR_PARTITION_ZERO Partition zero.

Pools Error Codes

Error Code Meaning

FS_ERR_POOL_EMPTY Pool is empty.

FS_ERR_POOL_FULL Pool is full.

FS_ERR_POOL_INVALID_BLK_ADDR Block not found in used pool pointers.

FS_ERR_POOL_INVALID_BLK_IN_POOL Block found in free pool pointers.

FS_ERR_POOL_INVALID_BLK_IX Block index invalid.

FS_ERR_POOL_INVALID_BLK_NBR Number blocks specified invalid.

FS_ERR_POOL_INVALID_BLK_SIZE Block size specified invalid.

File System Error Codes

Error Code Meaning

FS_ERR_SYS_TYPE_NOT_SUPPORTED File sys type not supported.

FS_ERR_SYS_INVALID_SIG Sec has invalid OR illegal sig.

FS_ERR_SYS_DIR_ENTRY_PLACE Dir entry could not be placed.

FS_ERR_SYS_DIR_ENTRY_NOT_FOUND Dir entry not found.

FS_ERR_SYS_DIR_ENTRY_NOT_FOUND_YET Dir entry not found (yet).

FS_ERR_SYS_SEC_NOT_FOUND Sec not found.

FS_ERR_SYS_CLUS_CHAIN_END Cluster chain ended.

FS_ERR_SYS_CLUS_CHAIN_END_EARLY Cluster chain ended before number clusters traversed.

FS_ERR_SYS_CLUS_INVALID Cluster invalid.

FS_ERR_SYS_CLUS_NOT_AVAIL Cluster not avail.

FS_ERR_SYS_SFN_NOT_AVAIL SFN is not avail.

FS_ERR_SYS_LFN_ORPHANED LFN entry orphaned.

Volume Error Codes

Error Code Meaning

FS_ERR_VOL_INVALID_NAME Invalid volume name.

FS_ERR_VOL_INVALID_SIZE Invalid volume size.

FS_ERR_VOL_INVALID_SEC_SIZE Invalid volume sector size.

FS_ERR_VOL_INVALID_CLUS_SIZE Invalid volume cluster size.

FS_ERR_VOL_INVALID_OP Volume operation invalid.

FS_ERR_VOL_INVALID_SEC_NBR Invalid volume sector number.

FS_ERR_VOL_INVALID_SYS Invalid file system on volume.

FS_ERR_VOL_NO_CACHE No cache assigned to volume.

FS_ERR_VOL_NONE_AVAIL No vol avail.

FS_ERR_VOL_NONE_EXIST No vols exist.

FS_ERR_VOL_NOT_OPEN Vol open.not

FS_ERR_VOL_NOT_MOUNTED Vol mounted.not

FS_ERR_VOL_ALREADY_OPEN Vol already open.

FS_ERR_VOL_FILES_OPEN Files open on vol.

FS_ERR_VOL_DIRS_OPEN Dirs open on vol.

FS_ERR_JOURNAL_ALREADY_OPEN Journal already open.

FS_ERR_JOURNAL_CFG_CHANGED File system suite cfg changed since log created.

FS_ERR_JOURNAL_FILE_INVALID Journal file invalid.

FS_ERR_JOURNAL_FULL Journal full.

FS_ERR_JOURNAL_LOG_INVALID_ARG Invalid arg read from journal log.

FS_ERR_JOURNAL_LOG_INCOMPLETE Log not completely entered in journal.

FS_ERR_JOURNAL_LOG_NOT_PRESENT Log not present in journal.

FS_ERR_JOURNAL_NOT_OPEN Journal not open

FS_ERR_JOURNAL_NOT_REPLAYING Journal not being replayed.

FS_ERR_JOURNAL_NOT_STARTED Journaling not started.

FS_ERR_JOURNAL_NOT_STOPPED Journaling not stopped.

FS_ERR_VOL_LABEL_INVALID Volume label is invalid.

FS_ERR_VOL_LABEL_NOT_FOUND Volume label was not found.

FS_ERR_VOL_LABEL_TOO_LONG Volume label is too long.

OS Layer Error Codes

Error Code Meaning

FS_ERR_OS_LOCK Lock not acquired.

FS_ERR_OS_INIT OS not initialized.

FS_ERR_OS_INIT_LOCK Lock signal not successfully initialized.

FS_ERR_OS_INIT_LOCK_NAME Lock signal name not successfully initialized.

µC/FS Porting Manual
µC/FS adapts to its environment via a number of ports. The simplest ones, common to all installations, interface with the application, OS kernel (if
any) and CPU. More complicated may be ports to media drivers, which require additional testing, validation and optimization; but many of those
are still straightforward. The figure below diagrams the relationship between µC/FS and external modules and hardware.

The sections in this chapter describe each required function and give hints for implementers. Anyone creating a new port should first check the
example ports that are included in the µC/FS distribution in the following directory:

\Micrium\Software\uC-FS\Examples\BSP\Dev

The port being contemplated may already exist; failing that, some similar CPU/device may have already be supported.

Figure - µC/FS ports architecture
(1)
 µC/Clk act as a centralized clock management module. If you use an external real-time clock, you will have to write functions to let µC/FS know
the date and time.

(2)
 The CPU port (within µC/CPU) adapts the file system suite to the CPU and compiler characteristics. The fixed-width types (e.g.,)CPU_INT16U
used in the file system suite are defined here.

(3)
 The RTOS port adapts the file system suite to the OS kernel (if any) included in the application. The files / contain functions primarilyFS_OS.C H
aimed at making accesses to devices and critical information in memory thread-safe.

(4)
 µC/FS interfaces with memory devices through drivers following a generic driver model. It is possible to create a driver for a different type of
device from this model/template.

(5)
 The SD/MMC driver can be ported to any SD/MMC host controller for cardmode access.

(6)
 The SD/MMC driver can be ported to any SPI peripheral for SPI mode access.

(7)
 The NAND driver can be ported for many physical organizations (page size, bus width, SLC/MLC, etc.).

(8)
 The NAND driver can be ported to any bus interface. A NAND device can also be located directly on GPIO and accessed by direct toggling of
port pins.

(9)
 The NOR driver can be ported to many physical organization (command set, bus type, etc.).

(10)
 The NOR driver can be ported to any bus interface.

(11)
 The NOR driver can be ported to any SPI peripheral (for SPI flash).

Date/Time Management

Depending on the settings of µC/Clk, you might have to write time management functions that are specific to your application. For example, you
might have to define the function to obtain the timestamp of your system provided by a real-time clock peripheral. PleaseClk_ExtTS_Get()
refer to the for more details.µC/Clk manual

CPU Port

µC/CPU is a processor/compiler port needed for µC/FS to be CPU/compiler-independant. Ports for the most popular architectures are already
available in the µC/CPU distribution. If the µC/CPU port for your target architecture is not available, you should create your own based on the port
template (also available in µC/CPU distribution). You should refer to the to know how you should use it in your project.µC/CPU user manual

OS Kernel

µC/FS can be used with or without an RTOS. Either way, an OS port must be included in your project. The port includes one code/header file pair:

fs_os.c
fs_os.h

µC/FS manages devices and data structures that may not be accessed by severally tasks simultaneously. An OS kernel port leverages the
kernel’s mutual exclusion services (mutexes) for that purpose.

These files are generally placed in a directory named according to the following rubric:

\Micrium\Software\uC-FS\OS\<os_name>

Four sets of files are included with the µC/FS distribution:

\Micrium\Software\uC-FS\OS\Template Template

\Micrium\Software\uC-FS\OS\None No OS kernel port

\Micrium\Software\uC-FS\OS\uCOS-II µC/OS-II port

\Micrium\Software\uC-FS\OS\uCOS-III µC/OS-III port

If you don’t use any OS, you should include the port for no OS in your project. You must also make sure that you manage interrupts correctly.

If you are using µC/OS-II or µC/OS-III, you should include the appropriate ports in your project. If you use another OS, you should create your
own port based on the template. The functions that need to be written in this port are described here.

FS_OS_Init(), FS_OS_Lock() and FS_OS_Unlock()

The core data structures are protected by a single mutex. creates this semaphore. and FS_OS_Init() FS_OS_Lock() FS_OS_Unlock(
 acquire and release the resource. Lock operations are never nested.)

FS_OS_DevInit(), FS_OS_DevLock() and FS_OS_DevUnlock()

File system device, generally, do not tolerate multiple simultaneous accesses. A different mutex controls access to each device and
information about it in RAM. creates one mutex for each possible device. and FS_OS_DevInit() FS_OS_DevLock() FS_OS_DevUnloc

 acquire and release access to a specific device. Lock operations for the same device are never nested.k()

FS_OS_FileInit(), FS_OS_FileAccept(), FS_OS_FileLock() and FS_OS_FileUnlock()

Multiple calls to file access functions may be required for a file operation that must be guaranteed atomic. For example, a file may be a
conduit of data from one task to several. If a data entry cannot be read in a single file read, some lock is necessary to prevent preemption
by another consumer. File locks, represented by API functions like and , provide a solution. FourFSFile_LockGet() flockfile()
functions implement the actual lock in the OS port. creates one mutex for each possible file. / FS_OS_FileInit() FS_OS_FileLock() F

 and acquire and release access to a specific file. Lock operations for the same file MAY beS_OS_FileAccept() FS_OS_FileUnlock()
nested, so the implementations must be able to determine whether the active task owns the mutex. If it does, then an associated lock count
should be incremented; otherwise, it should try to acquire the resource as normal.

FS_OS_WorkingDirGet() and FS_OS_WorkingDirSet()

File and directory paths are typically interpreted absolutely; they must start at the root directory, specifying every intermediate path
component. If much work will be accomplished upon files in a certain directory or a task requires a root directory as part of its context,
working directories are valuable. Once a working directory is set for a task, subsequent non-absolute paths will be interpreted relative to the
set directory.

https://doc.micrium.com/pages/viewpage.action?pageId=10753188
https://doc.micrium.com/display/cpudoc/uC-CPU+Documentation+Home

#if (FS_CFG_WORKING_DIR_EN == DEF_ENABLED)
CPU_CHAR *FS_OS_WorkingDirGet (void)
(1)
{
 OS_ERR os_err;
 CPU_INT32U reg_val;
 CPU_CHAR *p_working_dir;
 reg_val = OSTaskRegGet((OS_TCB *) 0,
 FS_OS_REG_ID_WORKING_DIR,
 &os_err);
 if (os_err != OS_ERR_NONE) {
 reg_val = 0u;
 }
 p_working_dir = (CPU_CHAR *)reg_val;
 return (p_working_dir);
}
#endif
#if (FS_CFG_WORKING_DIR_EN == DEF_ENABLED)
void FS_OS_WorkingDirSet (CPU_CHAR *p_working_dir,
 FS_ERR *p_err)
{
 OS_ERR os_err;
 CPU_INT32U reg_val;
 reg_val = (CPU_INT32U)p_working_dir;
 OSTaskRegSet((OS_TCB *) 0,
 FS_OS_RegIdWorkingDir,
 (OS_REG) reg_val,
 &os_err);
 if(os_err != OS_ERR_NONE) {
 *p_err = FS_ERR_OS;
 return;
 }
 *p_err = FS_ERR_NONE;
}
#endif

Listing - FS_OS_WorkingDirGet()/Set() (µC/OS-III)
(1)
 FS_OS_WorkingDirGet() gets the pointer to the working directory associated with the active task. In µC/OS-III, the pointer is stored in
one of the task registers, a set of software data that is part of the task context (just like hardware register values). The implantation casts
the integral register value to a pointer to a character. If no working directory has been assigned, the return value must be a pointer to NULL.
In the case of µC/OS-III, that will be done because the register values are cleared upon task creation.

(2)
 associates a working directory with the active task. The pointer is cast to the integral register data type andFS_OS_WorkingDirSet()
stored in a task register.

The application calls either of the core file system functions FS_WorkingDirSet() or fs_chdir() to set the working directory.

 The core function forms the full path of the working directory and “saves” it with the OS port function FS_OS_WorkingDirSet() .

 The port function should associate it with the task in some manner so that it can be retrieved with FS_OS_WorkingDirGet() even

after many context switches have occurred.

#if (FS_CFG_WORKING_DIR_EN == DEF_ENABLED)
void FS_OS_WorkingDirFree (OS_TCB *p_tcb)
{
 OS_ERR os_err;
 CPU_INT32U reg_val;
 CPU_CHAR *path_buf;
 reg_val = OSTaskRegGet(p_tcb,
 FS_OS_REG_ID_WORKING_DIR,
 &os_err);
 if (os_err != OS_ERR_NONE) {
 return;
 }
 if (reg_val == 0u) {
(1)
 return;
 }
 path_buf = (CPU_CHAR *)reg_val;
 FS_WorkingDirObjFree(path_buf);
(2)
}
#endif

Listing - FS_OS_WorkingDirFree() (C/OS-III)
(1)
 If the register value is zero, no working directory has been assigned and no action need be taken.

(2)
 frees the working directory object to the working directory pool. If this were not done, the unfreed objectFS_WorkingDirObjFree()
would constitute a memory leak that could deplete the heap memory eventually.

The character string for the working directory is allocated from the µC/LIB heap. If a task is deleted, it must be freed (made available for
future allocation) to avert a crippling memory leak. The internal file system function FS_WorkingDirObjFree() releases the string to

 an object pool. In the port for µC/OS-III, that function is called by FS_OS_WorkingDirFree() which must be called by the assigned

task delete hook.

FS_OS_Dly_ms()

Device drivers and example device driver ports delay task execution . Common functions allow BSP developers toFS_OS_Dly_ms()
optimize implementation easily. A millisecond delay may be accomplished with an OS kernel service, if available. The trivial implementation
of a delay (particularly a sub-millisecond delay) is a while loop; better performance may be achieved with hardware timers with semaphores
for wait and asynchronous notification. The best solution will vary from one platform to another, since the additional context switches may
prove burdensome. No matter which strategy is selected, the function delay for at least the specified time amount; otherwise, sporadicmust
errors can occur. Ideally, the actual time delay will equal the specified time amount to avoid wasting processor cycles.

void FS_BSP_Dly_ms (CPU_INT16U ms)
{
 /* $$$$ Insert code to delay for specified number of millieconds. */
}

Listing - FS_OS_Dly_ms()

FS_OS_Sem####()

The four generic OS semaphore functions provide a complete abstraction of a basic OS kernel service. creates aFS_OS_SemCreate()
semaphore which may later be deleted with . signals the semaphore (with or without timeout) and FS_OS_SemDel() FS_OS_SemPost() F

 waits until the semaphore is signaled. On systems without an OS kernel, the trivial implementations in S_OS_SemPend() Listing -
 in the page and inFS_OS_SemCreate()/Del() trivial implementation OS Kernel Listing - FS_OS_SemPend()/Post() trivial implementation

the page are recommended.OS Kernel

CPU_BOOLEAN FS_OS_SemCreate (FS_BSP_SEM *p_sem,
(1)
 CPU_INT16U cnt)
{
 p_sem = cnt; / $$$$ Create semaphore with initial count
'cnt'. */
 return (DEF_OK);
}
CPU_BOOLEAN FS_OS_SemDel (FS_BSP_SEM *p_sem)
(2)
{
 p_sem = 0u; / $$$$ Delete semaphore. */
 return (DEF_OK);
}

Listing - FS_OS_SemCreate()/Del() trivial implementation
(1)
 creates a semaphore in the variable . For this trivial implementation, is a integer type whichFS_OS_SemCreate() p_sem FS_BSP_SEM
stores the current count, i.e., the number of objects available.

(2)
 deletes a semaphore created by .FS_OS_SemDel() FS_OS_SemCreate()

CPU_BOOLEAN FS_OS_SemPend (FS_BSP_SEM *p_sem,
(1)
 CPU_INT32U timeout)
{
 CPU_INT32U timeout_cnts;
 CPU_INT16U sem_val;
 CPU_SR_ALLOC();
 if (timeout == 0u) {
 sem_val = 0u;
 while (sem_val == 0u) {
 CPU_CRITICAL_ENTER();
 sem_val = *p_sem; /* $$$$ If semaphore available ...
*/
 if (sem_val > 0u) {
 p_sem = sem_val - 1u; / ... decrement semaphore count.
*/
 }
 CPU_CRITICAL_EXIT();
 }
 } else {
 timeout_cnts = timeout * FS_BSP_CNTS_PER_MS;
 sem_val = 0;
 while ((timeout_cnts > 0u) &&
 (sem_val == 0u)) {
 CPU_CRITICAL_ENTER();
 sem_val = *p_sem; /* $$$$ If semaphore available ...
*/
 if (sem_val > 0) {
 p_sem = sem_val - 1u; / ... decrement semaphore count.
*/
 }
 CPU_CRITICAL_EXIT();
 timeout_cnts--;
 }
 }
 if (sem_val == 0u) {
 return (DEF_FAIL);
 } else {
 return (DEF_OK);
 }
}

CPU_BOOLEAN FS_OS_SemPost (FS_BSP_SEM *p_sem)
(2)
{
 CPU_INT16U sem_val;
 CPU_SR_ALLOC();
 CPU_CRITICAL_ENTER();
 sem_val = *p_sem; /* $$$$ Increment semaphore value. */
 sem_val++;
 *p_sem = sem_val;
 CPU_CRITICAL_EXIT();
 return (DEF_OK);
}

Listing - FS_OS_SemPend()/Post() trivial implementation
(1)
 waits until a semaphore is signaled. If a zero timeout is given, the wait is possibly infinite (it never times out).FS_OS_SemPend()

(2)
 signals a semaphore.FS_OS_SemPost()

Device Driver

Devices drivers for the most popular devices are already available for µC/FS. If you use a particular device for which no driver exist, you should
read this section to understand how to build your own driver.

A device driver is registered with the file system by passing a pointer to its API structure as the first parameter of . The APIFS_DevDrvAdd()
structure, , includes pointers to eight functions used to control and access the device:FS_DEV_API

const FS_DEV_API FSDev_#### = {
 FSDev_####_NameGet,
 FSDev_####_Init,
 FSDev_####_Open,
 FSDev_####_Close,
 FSDev_####_Rd,
#if (FS_CFG_RD_ONLY_EN == DEF_DISABLED)
 FSDev_####_Wr,
#endif
 FSDev_####_Query,
 FSDev_####_IO_Ctrl
};

The functions which must be implemented are listed and described in he table below.. The first two functions, and , act upont NameGet() Init()
the driver as a whole; neither should interact with any physical devices. The remaining functions act upon individual devices, and the first
argument of each is a pointer to a structure which holds device information, including the unit number which uniquely identifies the deviceFS_DEV
unit (member).UnitNbr

Function Description

NameGet() Get driver name.

Init() Initialize driver.

Open() Open a device.

Close() Close a device.

Rd() Read from a device.

Wr() Write to a device.

Query() Get information about a device.

IO_Ctrl() Execute device I/O control operation.

Table - Device driver API functions

Close() - Device Driver

static void FSDev_####_Close (FS_DEV *p_dev);

File Called from Code enabled by

fs_dev_####.c FSDev_Close() N/A

The device driver function should uninitialize the hardware and release or free any resources acquired in the function.Close() Open()

Arguments

p_dev

Pointer to device to close.

Returned Value

1.
2.
3.

1.

None.

Notes/Warnings

Tracking whether a device is open is not necessary, because this should ONLY be called when a device is open.
This will be called time the device is closed.every
The device driver function is called while the caller holds the device lock.Close()

Init() - Device Driver

static void FSDev_####_Init (void);

File Called from Code enabled by

fs_dev_####.c FS_DevDrvAdd() N/A

The device driver function should initialize any structures, tables or variables that are common to all devices or are used to manageInit()
devices accessed with the driver. This function initialize any devices; that will be done individually for each with the device driver’s should not Ope

 function.n()

Arguments

None.

Returned Value

None.

Notes/Warnings

The device driver function is called while the caller holds the FS lock.Init()

IO_Ctrl() - Device Driver

static void FSDev_####_IO_Ctrl (FS_DEV *p_dev,

FS_IO_CTRL_CMD cmd,

Void *p_buf,

FS_ERR *p_err);

File Called from Code enabled by

fs_dev_####.c various N/A

The device driver function performs an I/O control operation.IO_Ctrl()

Arguments

p_dev

Pointer to device to query.

p_buf

Buffer which holds data to be used for operations

OR

Buffer in which data will be stored as a result of operation.

p_err

Pointer to variable that will receive the return error code from this function

FS_ERR_NONE

Control operation performed successfully.

FS_ERR_DEV_INVALID_IO_CTRL

I/O control operation unknown to driver.

1.
2.

FS_ERR_DEV_INVALID_UNIT_NBR

Device unit number is invalid.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

Tracking whether a device is open is not necessary, because this should ONLY be called when a device is open.
Defined I/O control operations are

FS_DEV_IO_CTRL_REFRESH Refresh device.

FS_DEV_IO_CTRL_LOW_FMT Low-level format device.

FS_DEV_IO_CTRL_LOW_MOUNT Low-level mount device.

FS_DEV_IO_CTRL_LOW_UNMOUNT Low-level unmount device.

FS_DEV_IO_CTRL_LOW_COMPACT Low-level compact device.

FS_DEV_IO_CTRL_LOW_DEFRAH Low-level defragment device.

FS_DEV_IO_CTRL_SEC_RELEASE Release data in sector

FS_DEV_IO_CTRL_PHY_RD Read physical device

FS_DEV_IO_CTRL_PHY_WR Write physical device

FS_DEV_IO_CTRL_PHY_RD_PAGE Read physical device page

FS_DEV_IO_CTRL_PHY_WR_PAGE Write physical device page

FS_DEV_IO_CTRL_PHY_ERASE_BLK Erase physical device block

FS_DEV_IO_CTRL_PHY_ERASE_CHIP Erase physical device

The device driver function is called while the caller holds the device lock.IO_Ctrl()

NameGet() - Device Driver

static const CPU_CHAR *FSDev_####_NameGet (void);

File Called from Code enabled by

fs_dev_####.c various N/A

Device drivers are identified by unique names, on which device names are based. For example, the unique name for the NAND flash driver is
“nand”; the NAND devices will be named “nand:0:”, “nand:1:”, etc.

Arguments

None.

Returned Value

1.
2.
3.

Pointer to the device driver name.

Notes/Warnings

The name include the ‘:’ character.must not
The name be constant; each time this function is called, the same name be returned.must must
The device driver function is called while the caller holds the FS lock.NameGet()

Open() - Device Driver

static void FSDev_####_Open (FS_DEV *p_dev,

void *p_dev_cfg,

FS_ERR *p_err);

File Called from Code enabled by

fs_dev_####.c FSDev_Open() N/A

The device driver function should initialize the hardware to access a device and attempt to initialize that device. If this function isOpen()
successful (i.e., it returns), then the file system suite expects the device to be ready for read and write accesses.FS_ERR_NONE

Arguments

p_dev

Pointer to device to open.

p_dev_cfg

Pointer to device configuration.

p_err

Pointer to variable that will receive the return error code from this function:

FS_ERR_NONE

Device opened successfully.

FS_ERR_DEV_ALREADY_OPEN

Device unit is already opened.

FS_ERR_DEV_INVALID_CFG

Device configuration specified invalid.

FS_ERR_DEV_INVALID_LOW_FMT

Device needs to be low-level formatted.

FS_ERR_DEV_INVALID_LOW_PARAMS

Device low-level device parameters invalid.

FS_ERR_DEV_INVALID_UNIT_NBR

Device unit number is invalid.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_NOT_PRESENT

Device unit is not present.

FS_ERR_DEV_TIMEOUT

Device timeout.

FS_ERR_MEM_ALLOC

Memory could not be allocated.

Returned Value

1.
2.

3.
4.

5.

1.
2.

None.

Notes/Warnings

Tracking whether a device is open is not necessary, because this should NEVER be called when a device is already open.
Some drivers may need to track whether a device has been previously opened (indicating that the hardware has previously been
initialized).
This will be called time the device is opened.every
The driver should identify the device instance to be opened by checking . For example, if “template:2:” is to bep_dev->UnitNbr
opened, then will hold the integer 2.p_dev->UnitNbr
The device driver function is called while the caller holds the device lock.Open()

Query() - Device Driver

static void FSDev_####_Query (FS_DEV *p_dev,

FS_DEV_INFO *p_info,

FS_ERR *p_err);

File Called from Code enabled by

fs_dev_####.c FSDev_Open(),

FSDev_Refresh(),

FSDev_QueryLocked()

N/A

The device driver function gets information about a device.Query()

Arguments

p_dev

Pointer to device to query.

p_info

Pointer to structure that will receive device information.

p_err

Pointer to variable that will receive the return error code from this function

FS_ERR_NONE

Device information obtained.

FS_ERR_DEV_INVALID_UNIT_NBR

Device unit number is invalid.

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

Returned Value

None.

Notes/Warnings

Tracking whether a device is open is not necessary, because this should ONLY be called when a device is open.
The device driver function is called while the caller holds the device lock.Query()

For more information about the structure, see .FS_DEV_INFO FS_DEV_INFO

Rd() - Device Driver

1.
2.

static void FSDev_####_Rd (FS_DEV *p_dev,

void *p_dest,

FS_SEC_NBR start,

FS_SEC_QTY cnt,

FS_ERR *p_err);

File Called from Code enabled by

fs_dev_####.c FSDev_RdLocked() N/A

The device driver function should read from a device and store data in a buffer. If an error is returned, the file system suite assumes that noRd()
data is read; if not all data can be read, an error be returned.must

Arguments

p_dev

Pointer to device to read from.

p_dest

Pointer to destination buffer.

start

Start sector of read.

cnt

Number of sectors to read

p_err

Pointer to variable that will receive the return error code from this function

FS_ERR_NONE

Sector(s) read.

FS_ERR_DEV_INVALID_UNIT_NBR

Device unit number is invalid.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

Tracking whether a device is open is not necessary, because this should be called when a device is open.only
The device driver function is called while the caller holds the device lock.Rd()

Wr() - Device Driver

static void FSDev_####_Wr (FS_DEV *p_dev,

void *p_src,

1.
2.

FS_SEC_NBR start,

FS_SEC_QTY cnt,

FS_ERR *p_err);

File Called from Code enabled by

fs_dev_####.c FSDev_WrLocked() N/A

The device driver function should write to a device the data from a buffer. If an error is returned, the file system suite assumes that no dataWr()
has been written.

Arguments

p_dev

Pointer to device to write to.

p_src

Pointer to source buffer.

start

Start sector of write.

cnt

Number of sectors to write

p_err

Pointer to variable that will receive the return error code from this function

FS_ERR_NONE

Sector(s) written.

FS_ERR_DEV_INVALID_UNIT_NBR

Device unit number is invalid.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_NOT_OPEN

Device is not open.

FS_ERR_DEV_NOT_PRESENT

Device is not present.

FS_ERR_DEV_TIMEOUT

Device timeout.

Returned Value

None.

Notes/Warnings

Tracking whether a device is open is not necessary, because this should be called when a device is open.only
The device driver function is called while the caller holds the device lock.Wr()

SD/MMC Cardmode BSP

The SD/MMC cardmode protocol is unique to SD- and MMC-compliant devices. The generic driver handles the peculiarities for initializing, reading
and writing a card (including state transitions and error handling), but each CPU has a different host controller that must be individually ported. To
that end, a BSP, supplementary to the general µC/FS BSP, is required that abstracts the SD/MMC interface. The port includes one code file:

FS_DEV_SD_CARD_BSP.C

This file is generally placed with other BSP files in a directory named according to the following rubric:

\Micrium\Software\EvalBoards\<manufacturer>\<board_name>

\<compiler>\BSP\

Several example ports are included in the µC/FS distribution in files named according to the following rubric:

\Micrium\Software\uC-FS\Examples\BSP\Dev\SD\Card\<cpu_name>

Function Description

FSDev_SD_Card_BSP_Open() Open (initialize) SD/MMC card interface.

FSDev_SD_Card_BSP_Close() Close (uninitialize) SD/MMC card interface.

FSDev_SD_Card_BSP_Lock() Acquire SD/MMC card bus lock.

FSDev_SD_Card_BSP_Unlock() Release SD/MMC card bus lock.

FSDev_SD_Card_BSP_CmdStart() Start a command.

FSDev_SD_Card_BSP_CmdWaitEnd() Wait for a command to end and get response.

FSDev_SD_Card_BSP_CmdDataRd() Read data following command.

FSDev_SD_Card_BSP_CmdDataWr() Write data following command.

FSDev_SD_Card_BSP_GetBlkCntMax() Get max block count.

FSDev_SD_Card_BSP_GetBusWidthMax() Get maximum bus width, in bits.

FSDev_SD_Card_BSP_SetBusWidth() Set bus width.

FSDev_SD_Card_BSP_SetClkFreq() Set clock frequency.

FSDev_SD_Card_BSP_SetTimeoutData() Set data timeout.

FSDev_SD_Card_BSP_SetTimeoutResp() Set response timeout.

Table - SD/MMC cardmode BSP functions

Each BSP must implement the functions in the table above. (For information about creating a port for a platform accessing a SD/MMC device in
SPI mode, see . SD/MMC SPI Mode BSP This software interface was designed by reviewing common host implementations as well as the SD
card association’s SD Specification Part A2 – SD Host Controller Simplified Specification, Version 2.00, which recommends a host architecture
and provides the state machines that would guide operations. Example function implementations for a theoretical compliant host are provided in
this chapter. Common advanced requirements (such as multiple cards per slot) and optimizations (such as DMA) are possible. No attempt has
been made, however, to accommodate non-storage devices that are accessed on a SD/MMC cardmode, including SDIO devices.

The core operation being abstracted is the command/response sequence for high-level card transactions. The key functions, , CmdStart() CmdW
, and , are called within the state machine of he figure below. If return error from one of the functions willaitEnd() CmdDataRd() CmdDataWr() t

abort the state machine, so the requisite considerations, such as preparing for the next command or preventing further interrupts, must be
handled if an operation cannot be completed.

Figure - Command execution

The remaining functions either investigate host capabilities (,) or set operational parameters (GetBlkCntMax() GetBusWidthMax() SetBusWi
, , ,). Together, these function sets help configure a new card upon insertion.dth() SetClkFreq() SetTimeoutData() SetTimeoutResp()

Note that the parameters configured by the ‘set’ functions belong to the card, not the slot; if multiple cards may be multiplexed in a single slot,
these must be saved when set and restored whenever is called.Lock()

Two elements of host behavior routinely influence implementation and require design choices. First, block data can typically be read/written either
directly from a FIFO or transferred automatically by the peripheral to/from a memory buffer with DMA. While the former approach may be
simpler—no DMA controller need be setup—it may not be reliable. Unless the host can stop the host clock upon FIFO underrun (for write) or
overrun (for read), effectively pausing the operation from the card’s perspective, transfers at high clock frequency or multiple-bus configurations
will probably fail. Interrupts or other tasks can interrupt the operation, or the CPU just may be unable to fill the FIFO fast enough. DMA avoids
those pitfalls by offloading the responsibility for moving data directly to the CPU.

Second, the completion of operations such as command execution and data read/write are often signaled via interrupts (unless some error
occurs, whereupon a different interrupt is triggered). During large transfers, these operations occur frequently and the typical wait between
initiation and completion is measured in microseconds. On most platforms, polling the interrupt status register within the task performs better (i.e.,
results in faster reads and writes) than waiting on a semaphore for an asynchronous notification from the ISR, because the penalty of extra
context switches is not incurred.

FSDev_SD_Card_BSP_CmdDataRd()

void FSDev_SD_Card_BSP_CmdDataRd (FS_QTY unit_nbr,

FS_DEV_SD_CARD_CMD *p_cmd,

void *p_dest,

FS_DEV_SD_CARD_ERR *p_err);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_RdData() N/A

Read data following a command.

Arguments

unit_nbr

Unit number of SD/MMC card.

p_cmd

Pointer to command that was started.

p_dest

Pointer to destination buffer.

p_err

Pointer to variable that will receive the return error code from this function:

FS_DEV_SD_CARD_ERR_NONE

No error.

FS_DEV_SD_CARD_ERR_NO_CARD

No card present.

FS_DEV_SD_CARD_ERR_UNKNOWN

Unknown or other error.

FS_DEV_SD_CARD_ERR_WAIT_TIMEOUT

Timeout in waiting for data.

FS_DEV_SD_CARD_ERR_DATA_OVERRUN

Data overrun.

FS_DEV_SD_CARD_ERR_DATA_TIMEOUT

Timeout in receiving data.

FS_DEV_SD_CARD_ERR_DATA_CHKSUM

Error in data checksum.

FS_DEV_SD_CARD_ERR_DATA_START_BIT

Data start bit error.

FS_DEV_SD_CARD_ERR_DATA

Other data error.

Returned Value

None.

Notes/Warnings

None.

Example

The implementation of in the listing below is targeted for the same host controller as the other listings inFSDev_SD_Card_BSP_CmdDataRd()
this chapter; for more information, see .FSDev_SD_Card_BSP_CmdStart()

void FSDev_SD_Card_BSP_CmdDataRd (FS_QTY unit_nbr,
 FS_DEV_SD_CARD_CMD *p_cmd,
 void *p_dest,
 FS_DEV_SD_CARD_ERR *p_err)
{
 CPU_INT16U interrupt_status;
 CPU_INT16U error_status;
 CPU_INT16U timeout;
 timeout = 0u; /* Wait until data xfer compl. */
(1)
 interrupt_status = REG_INTERRUPT_STATUS;
 while (DEF_BIT_IS_CLR(interrupt_status,BIT_INTERRUPT_STATUS_ERROR |
 BIT_INTERRUPT_STATUS_TRANSFER_COMPLETE) ==
DEF_YES)) {
 timeout++;
 interrupt_status = REG_INTERRUPT_STATUS;
 if (timeout == TIMEOUT_TRANSFER_MAX) {
 *p_err = FS_DEV_SD_CARD_ERR_WAIT_TIMEOUT;
 return;
 }
 }
 /* Handle error. */
(2)
 if (DEF_BIT_IS_SET(interrupt_status, BIT_INTERRUPT_STATUS_ERROR) == DEF_YES) {
 error_status = REG_ERROR_STATUS;
 if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_DATA_END_BIT) == DEF_YES) {
 *p_err = FS_DEV_SD_CARD_ERR_DATA;
 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_DATA_CRC) == DEF_YES)
{
 *p_err = FS_DEV_SD_CARD_ERR_DATA_CRC;
 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_DATA_TIMEOUT) ==
DEF_YES) {
 *p_err = FS_DEV_SD_CARD_ERR_DATA_TIMEOUT;
 } else {
 *p_err = FS_DEV_SD_CARD_ERR_UNKONWN;
 }
 REG_ERROR_STATUS = error_status;
 REG_INTERRUPT_STATUS = interrupt_status;
 return;
 }

 *p_err = FS_DEV_SD_CARD_ERR_NONE;
(3)
}

Listing - FSDev_SD_Card_BSP_CmdDataRd()
(1)
 Wait until data transfer completes or an error occurs. The wait loop (or wait on semaphore) always have a timeout to avoid blocking theshould
task in the case of an unforeseen hardware malfunction or a software flaw.

(2)
 Check if an error occurred. The error status register is decoded to produce the actual error condition. That is not necessary, strictly, but error
counters that accumulate within the generic driver based upon returned error values may be useful while debugging a port.

(3)
 Return no error. The data has been transferred already to the memory buffer using DMA.

FSDev_SD_Card_BSP_CmdDataWr()

void FSDev_SD_Card_BSP_CmdDataWr (FS_QTY unit_nbr,

FS_DEV_SD_CARD_CMD *p_cmd,

void *p_src,

FS_DEV_SD_CARD_ERR *p_err);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_WrData() N/A

Write data following a command.

Arguments

unit_nbr

Unit number of SD/MMC card.

p_cmd

Pointer to command that was started.

p_src

Pointer to source buffer.

p_err

Pointer to variable that will receive the return error code from this function:

FS_DEV_SD_CARD_ERR_NONE

No error.

FS_DEV_SD_CARD_ERR_NO_CARD

No card present.

FS_DEV_SD_CARD_ERR_UNKNOWN

Unknown or other error.

FS_DEV_SD_CARD_ERR_WAIT_TIMEOUT

Timeout in waiting for data.

FS_DEV_SD_CARD_ERR_DATA_UNDERRUN

Data underrun.

FS_DEV_SD_CARD_ERR_DATA_CHKSUM

Error in data checksum.

FS_DEV_SD_CARD_ERR_DATA_START_BIT

Data start bit error.

FS_DEV_SD_CARD_ERR_DATA

Other data error.

Returned Value

None.

Notes/Warnings

None.

Example

The implementation of in in the FSDev_SD_Card_BSP_CmdDataWr() Listing - FSDev_SD_Card_BSP_CmdDataWr() FSDev_SD_Card_BSP_C
 page is targeted for the same host controller as the other listings in this chapter; for more information, see mdDataWr() FSDev_SD_Card_BSP_C
.mdStart()

void FSDev_SD_Card_BSP_CmdDataWr (FS_QTY unit_nbr,
 FS_DEV_SD_CARD_CMD *p_cmd,
 void *p_src,
 FS_DEV_SD_CARD_ERR *p_err)
{
 CPU_INT16U interrupt_status;
 CPU_INT16U error_status;
 CPU_INT16U timeout;
 timeout = 0u; /* Wait until data xfer compl. */
(1)
 interrupt_status = REG_INTERRUPT_STATUS;
 while (DEF_BIT_IS_CLR(interrupt_status,BIT_INTERRUPT_STATUS_ERROR |
 BIT_INTERRUPT_STATUS_TRANSFER_COMPLETE) ==
DEF_YES)) {
 timeout++;
 interrupt_status = REG_INTERRUPT_STATUS;
 if (timeout == TIMEOUT_TRANSFER_MAX) {
 *p_err = FS_DEV_SD_CARD_ERR_WAIT_TIMEOUT;
 return;
 }
 }
 /* Handle error. */
(2)
 if (DEF_BIT_IS_SET(interrupt_status, BIT_INTERRUPT_STATUS_ERROR) == DEF_YES) {
 error_status = REG_ERROR_STATUS;
 if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_DATA_END_BIT) == DEF_YES) {
 *p_err = FS_DEV_SD_CARD_ERR_DATA;
 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_DATA_CRC) == DEF_YES)
{
 *p_err = FS_DEV_SD_CARD_ERR_DATA_CRC;
 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_DATA_TIMEOUT) ==
DEF_YES) {
 *p_err = FS_DEV_SD_CARD_ERR_DATA_TIMEOUT;
 } else {
 *p_err = FS_DEV_SD_CARD_ERR_UNKONWN;
 }
 REG_ERROR_STATUS = error_status;
 REG_INTERRUPT_STATUS = interrupt_status;
 return;
 }

 *p_err = FS_DEV_SD_CARD_ERR_NONE;
(3)
}

Listing - FSDev_SD_Card_BSP_CmdDataWr()
(1)
 Wait until data transfer completes or an error occurs. The wait loop (or wait on semaphore) SHOULD always have a timeout to avoid blocking the
task in the case of an unforeseen hardware malfunction or a software flaw.

(2)
 Check if an error occurred. The error status register is decoded to produce the actual error condition. That is not necessary, strictly, but error
counters that accumulate within the generic driver based upon returned error values may be useful while debugging a port.

(3)
 Return no error. The data has been transferred already from the memory buffer using DMA.

FSDev_SD_Card_BSP_CmdStart()

void FSDev_SD_Card_BSP_CmdStart (FS_QTY unit_nbr,

1.

a.
b.
c.

2.
a.
b.
c.

FS_DEV_SD_CARD_CMD *p_cmd,

void *p_data,

FS_DEV_SD_CARD_ERR *p_err);

File Called from Code enabled by

fs_dev_sd_card_bsp.c SD/MMC cardmode driver N/A

Start a command.

Arguments

unit_nbr

Unit number of SD/MMC card.

p_cmd

Pointer to command to transmit (see Note #2).

p_data

Pointer to buffer address for DMA transfer (see Note #3).

p_err

Pointer to variable that will receive the return error code from this function:

FS_DEV_SD_CARD_ERR_NONE

No error.

FS_DEV_SD_CARD_ERR_NO_CARD

No card present.

FS_DEV_SD_CARD_ERR_BUSY

Controller is busy.

FS_DEV_SD_CARD_ERR_UNKNOWN

Unknown or other error.

Returned Value

None.

Notes/Warnings

The command start will be followed by zero, one or two additional BSP function calls, depending on whether data should be transferred
and on whether any errors occur.

FSDev_SD_Card_BSP_CmdStart() starts execution of the command. IT may also set up the DMA transfer (if necessary).
FSDev_SD_Card_BSP_CmdWaitEnd() waits for the execution of the command to end, getting the command response (if any).
If data should transferred from the card to the host, will read that data; if data should beFSDev_SD_Card_BSP_CmdDataRd()
transferred from the host to the card, will write that data.FSDev_SD_Card_BSP_CmdDataWr()

The command has the following parameters:p_cmd
p_cmd->Cmd is the command index.
p_cmd->Arg is the 32-bit argument (or 0 if there is no argument).
p_cmd->Flags is a bit-mapped variable with zero or more command flags:

FS_DEV_SD_CARD_CMD_FLAG_INIT Initialization sequence before command.

FS_DEV_SD_CARD_CMD_FLAG_BUSY Busy signal expected after command.

FS_DEV_SD_CARD_CMD_FLAG_CRC_VALID CRC valid after command.

FS_DEV_SD_CARD_CMD_FLAG_IX_VALID Index valid after command.

FS_DEV_SD_CARD_CMD_FLAG_OPEN_DRAIN Command line is open drain.

2.

c.

d.

e.

f.

g.

3.

FS_DEV_SD_CARD_CMD_FLAG_DATA_START Data start command.

FS_DEV_SD_CARD_CMD_FLAG_DATA_STOP Data stop command.

FS_DEV_SD_CARD_CMD_FLAG_RESP Response expected.

FS_DEV_SD_CARD_CMD_FLAG_RESP_LONG Long response expected.

p_cmd->DataDir indicates the direction of any data transfer that should follow this command, if any:

FS_DEV_SD_CARD_DATA_DIR_NONE No data transfer.

FS_DEV_SD_CARD_DATA_DIR_HOST_TO_CARD Transfer host-to-card (write).

FS_DEV_SD_CARD_DATA_DIR_CARD_TO_HOST Transfer card-to-host (read).

p_cmd->DataType indicates the type of the data transfer that should follow this command, if any:

FS_DEV_SD_CARD_DATA_TYPE_NONE No data transfer.

FS_DEV_SD_CARD_DATA_TYPE_SINGLE_BLOCK Single data block.

FS_DEV_SD_CARD_DATA_TYPE_MULTI_BLOCK Multiple data blocks.

FS_DEV_SD_CARD_DATA_TYPE_STREAM Stream data.

p_cmd->RespType indicates the type of the response that should be expected from this command:

FS_DEV_SD_CARD_RESP_TYPE_NONE No response.

FS_DEV_SD_CARD_RESP_TYPE_R1 R1 response: Normal Response Command.

FS_DEV_SD_CARD_RESP_TYPE_R1B R1b response.

FS_DEV_SD_CARD_RESP_TYPE_R2 R2 response: CID, CSD Register.

FS_DEV_SD_CARD_RESP_TYPE_R3 R3 response: OCR Register.

FS_DEV_SD_CARD_RESP_TYPE_R4 R4 response: Fast I/O Response (MMC).

FS_DEV_SD_CARD_RESP_TYPE_R5 R5 response: Interrupt Request Response (MMC).

FS_DEV_SD_CARD_RESP_TYPE_R5B R5B response.

FS_DEV_SD_CARD_RESP_TYPE_R6 R6 response: Published RCA Response.

FS_DEV_SD_CARD_RESP_TYPE_R7 R7 response: Card Interface Condition.

p_cmd->BlkSize and are the block size and block count of the data transfer that should follow thisp_cmd->BlkCnt
command, if any.

The pointer to the data buffer that will receive the data transfer that should follow this command, , is given so that a DMA transferp_data
can be set up.

Example

The example implementation of in , like the examples in subsequent sections, targets a generic hostFSDev_SD_Card_BSP_CmdStart()
conformant to the SD card association’s host controller specification. While few hosts do conform, most have a similar mixture of registers and
registers fields and require the same sequences of basic actions.

void FSDev_SD_Card_BSP_CmdStart (FS_QTY unit_nbr,
 FS_DEV_SD_CARD_CMD *p_cmd,
 void *p_data,
 FS_DEV_SD_CARD_ERR *p_err)
{
 CPU_INT16U command;
 CPU_INT32U present_state;
 CPU_INT16U transfer_mode;
 present_state = REG_STATE; /* Chk if controller busy. */
(1)

 if (DEF_BIT_IS_SET_ANY(present_state, BIT_STATE_CMD_INHIBIT_DAT |
 BIT_STATE_CMD_INHIBIT_CMD) == DEF_YES) {
 *p_err = FS_DEV_SD_CARD_ERR_BUSY;
 return;
 }
 transfer_mode = DEF_BIT_NONE; /* Calc transfer mode reg value. */
(2)
 if (p_cmd->DataType == FS_DEV_SD_CARD_DATA_TYPE_MULTIPLE_BLOCK) {
 transfer_mode |= BIT_TRANSFER_MODE_MULTIPLE_BLOCK
 | BIT_TRANSFER_MODE_AUTO_CMD12
 | BIT_TRANSFER_MODE_BLOCK_COUNT_ENABLE;
 }
 if (p_cmd->DataDir == FS_DEV_SD_CARD_DATA_DIR_CARD_TO_HOST) {
 transfer_mode |= BIT_TRANSFER_MODE_READ | BIT_TRANSFER_MODE_DMA_ENABLE;
 } else {
 transfer_mode |= BIT_TRANSFER_MODE_DMA_ENABLE;
 }
 command = (CPU_INT16U)p_cmd->Cmd << 8; /* Calc command register value */
(3)
 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_DATA_START) ==
DEF_YES) {
 command |= BIT_COMMAND_DATA_PRESENT;
 }
 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_IX_VALID) == DEF_YES) {
 command |= BIT_COMMAND_DATA_COMMAND_IX_CHECK;
 }
 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_CRC_VALID) == DEF_YES) {
 command |= BIT_COMMAND_DATA_COMMAND_CRC_CHECK;
 }
 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_RESP) == DEF_YES) {
 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_RESP_LONG) ==
DEF_YES) {
 command |= BIT_COMMAND_DATA_COMMAND_RESPONSE_LENGTH_136;
 } else {
 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_BUSY) == DEF_YES)
{
 command |= BIT_COMMAND_DATA_COMMAND_RESPONSE_LENGTH_48;
 } else {
 command |= BIT_COMMAND_DATA_COMMAND_RESPONSE_LENGTH_48_BUSY;
 }
 }
 }
 /* Write registers to exec cmd. */
(4)
 REG_SDMA_ADDESS = p_data;
 REG_BLOCK_COUNT = p_cmd->BlkCnt;
 REG_BLOCK_SIZE = p_cmd->BlkSize;
 REG_ARGUMENT = p_cmd->Arg;
 REG_TRANSFER_MODE = transfer_mode;
 REG_COMMAND = command;

 *p_err = FS_DEV_SD_CARD_ERR_NONE;
}

Listing - FSDev_SD_Card_BSP_CmdStart()
(1)
 Check whether the controller is busy. Though no successful operation should return without the controller idle, an error condition, programming
mistake or unexpected condition could make an assumption about initial controller state false. This simple validation is recommended to avoid
side-effects and to aid port debugging.

(2)
 Calculate the transfer mode register value. The command’s DataType and DataDir members specify the type and direction of any transfer. Since
this examples uses DMA, DMA is enabled in the transfer mode register.

(3)
 Calculate the command register value. The command index is available in the command’s Cmd member, which is supplemented by the bits OR’d
into Flags to describe the expected result—response and data transfer—following the command execution.

(4)
 The hardware registers are written to execute the command. The sequence in which the registers are written is important. Typically, as in this
example, the assignment to the command register actually triggers execution.

FSDev_SD_Card_BSP_CmdWaitEnd()

void FSDev_SD_Card_BSP_CmdWaitEnd (FS_QTY unit_nbr,

FS_DEV_SD_CARD_CMD *p_cmd,

CPU_INT32U *p_resp,

FS_DEV_SD_CARD_ERR *p_err);

File Called from Code enabled by

fs_dev_sd_card_bsp.c SD/MMC cardmode driver N/A

Wait for command to end and get command response.

Arguments

unit_nbr

Unit number of SD/MMC card.

p_cmd

Pointer to command that is ending.

p_resp

Pointer to buffer that will receive command response, if any.

p_err

Pointer to variable that will receive the return error code from this function:

FS_DEV_SD_CARD_ERR_NONE

No error.

FS_DEV_SD_CARD_ERR_NO_CARD

No card present.

FS_DEV_SD_CARD_ERR_UNKNOWN

Unknown or other error.

FS_DEV_SD_CARD_ERR_WAIT_TIMEOUT

Timeout in waiting for command response.

FS_DEV_SD_CARD_ERR_RESP_TIMEOUT

Timeout in receiving command response.

1.
2.
3.

a.
b.

FS_DEV_SD_CARD_ERR_RESP_CHKSUM

Error in response checksum.

FS_DEV_SD_CARD_ERR_RESP_CMD_IX

Response command index error.

FS_DEV_SD_CARD_ERR_RESP_END_BIT

Response end bit error.

FS_DEV_SD_CARD_ERR_RESP

Other response error.

FS_DEV_SD_CARD_ERR_DATA

Other data error.

Returned Value

None.

Notes/Warnings

This function will be called even if no response is expected from the command.
This function will be called if returned an error.not FSDev_SD_Card_BSP_CmdStart()
The data stored in the response buffer should include only the response data, i.e., should not include the start bit, transmission bit,
command index, CRC and end bit.

For a command with a normal (48-bit) response, a 4-byte response should be stored in .p_resp
For a command with a long (136-bit) response, a 16-byte response should be returned in :p_resp

The first 4-byte word should hold bits 127..96 of the response.

The second 4-byte word should hold bits 95..64 of the response.

The third 4-byte word should hold bits 63..32 of the response.

The four 4-byte word should hold bits 31.. 0 of the response.

Example

The implementation of in is targeted for the same host controller as the other listings in this chapter; forFSDev_SD_Card_BSP_CmdWaitEnd()
more information, see .FSDev_SD_Card_BSP_CmdStart()

void FSDev_SD_Card_BSP_CmdWaitEnd (FS_QTY unit_nbr,
 FS_DEV_SD_CARD_CMD *p_cmd,
 CPU_INT32U *p_resp,
 FS_DEV_SD_CARD_ERR *p_err)
{
 CPU_INT16U interrupt_status;
 CPU_INT16U error_status;
 CPU_INT16U timeout;
 timeout = 0u; /* Wait until cmd exec complete.*/
(1)
 interrupt_status = REG_INTERRUPT_STATUS;
 while (DEF_BIT_IS_CLR(interrupt_status, BIT_INTERRUPT_STATUS_ERROR |
 BIT_INTERRUPT_STATUS_COMMAND_COMPLETE) ==
DEF_YES)) {
 timeout++;
 interrupt_status = REG_INTERRUPT_STATUS;
 if (timeout == TIMEOUT_RESP_MAX) {
 *p_err = FS_DEV_SD_CARD_ERR_WAIT_TIMEOUT;
 return;
 }
 }
 /* Handle error. */

(2)
 if (DEF_BIT_IS_SET(interrupt_status, BIT_INTERRUPT_STATUS_ERROR) == DEF_YES) {
 error_status = REG_ERROR_STATUS;
 if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_COMMAND_INDEX) == DEF_YES) {
 *p_err = FS_DEV_SD_CARD_ERR_RESP_CMD_IX;
 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_COMMAND_END_BIT) ==
DEF_YES) {
 *p_err = FS_DEV_SD_CARD_ERR_RESP_END_BIT;
 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_COMMAND_CRC) ==
DEF_YES) {
 *p_err = FS_DEV_SD_CARD_ERR_RESP_CRC;
 } else if (DEF_BIT_IS_SET(error_status, REG_ERROR_STATUS_COMMAND_TIMEOUT) ==
DEF_YES) {
 *p_err = FS_DEV_SD_CARD_ERR_RESP_TIMEOUT;
 } else {
 *p_err = FS_DEV_SD_CARD_ERR_RESP;
 }
 REG_ERROR_STATUS = error_status;
 REG_INTERRUPT_STATUS = interrupt_status;
 return;
 }
 /* Read response. */
(3)
 REG_INTERRUPT_STATUS = BIT_INTERRUPT_STATUS_COMMAND_COMPLETE;
 if (DEF_BIT_IS_SET(p_cmd->;Flags, FS_DEV_SD_CARD_CMD_FLAG_RESP) == DEF_YES) {
 if (DEF_BIT_IS_SET(p_cmd->Flags, FS_DEV_SD_CARD_CMD_FLAG_RESP_LONG) ==
DEF_YES) {
 *(p_resp + 3) = REG_RESPONSE_00
 *(p_resp + 2) = REG_RESPONSE_01
 *(p_resp + 1) = REG_RESPONSE_02
 *(p_resp + 0) = REG_RESPONSE_03
 } else {
 *(p_resp + 0) = REG_RESPONSE_00
 }
 }

1.

2.
3.
4.

 *p_err = FS_DEV_SD_CARD_ERR_NONE;
}

Listing - FSDev_SD_Card_BSP_CmdWaitEnd()
(1)
 Wait until command execution completes or an error occurs. The wait loop (or wait on semaphore) always have a timeout to avoidshould
blocking the task in the case of an unforeseen hardware malfunction or a software flaw.

(2)
 Check if an error occurred. The error status register is decoded to produce the actual error condition. That is not necessary, strictly, but error
counters that accumulate within the generic driver based upon returned error values may be useful while debugging a port.

(3)
 Read the response, if any. Note that the order in which a long response is stored in the buffer may oppose its storage in the controller’s register
or FIFO.

FSDev_SD_Card_BSP_GetBlkCntMax()

CPU_INT32U FSDev_SD_Card_BSP_GetBlkCntMax (FS_QTY unit_nbr,

CPU_INT32U blk_size);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh() N/A

Get maximum number of blocks that can be transferred with a multiple read or multiple write command.

Arguments

unit_nbr

Unit number of SD/MMC card.

blk_size

Block size, in octets.

Returned Value

Maximum number of blocks.

Notes/Warnings

The DMA region from which data is read or written may be a limited size. The count returned by this function should be the maximum
number of blocks of size that can fit into this region.blk_size
If the controller is not capable of multiple block reads or writes, 1 should be returned.
If the controller has no limit on the number of blocks in a multiple block read or write, should be returned.DEF_INT_32U_MAX_VAL
This function always return the same value. If hardware constraints change at run-time, the device be closed and re-openedshould must
for any changes to be effective.

FSDev_SD_Card_BSP_GetBusWidthMax()

CPU_INT08U FSDev_SD_Card_BSP_GetBusWidthMax (FS_QTY unit_nbr);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh() N/A

Get maximum bus width, in bits.

Arguments

unit_nbr

Unit number of SD/MMC card.

Returned Value

Maximum bus width.

1.
2.

1.

2.

1.

Notes/Warnings

Legal values are typically 1, 4 and 8.
This function always return the same value. If hardware constraints change at run-time, the device be closed and re-openedshould must
for any changes to be effective.

FSDev_SD_Card_BSP_Lock/Unlock()

void FSDev_SD_Card_BSP_Lock (FS_QTY unit_nbr);

void FSDev_SD_Card_BSP_Unlock (FS_QTY unit_nbr);

File Called from Code enabled by

fs_dev_sd_card_bsp.c SD/MMC cardmode driver N/A

Acquire/release SD/MMC card bus lock.

Arguments

unit_nbr

Unit number of SD/MMC card.

Returned Value

None.

Notes/Warnings

FSDev_SD_Card_BSP_Lock() will be called before the driver begins to access the SD/MMC card bus. The application should usenot
the same bus to access another device until the matching call to has been made.FSDev_SD_Card_BSP_Unlock()
The clock frequency, bus width and timeouts set by the functions are parameters of the card, notFSDev_SD_Card_BSP_Set####()
the bus. If multiple cards are located on the same bus, those parameters must be saved (in memory) when set and restored when FSDev

 is called._SD_Card_BSP_Lock()

FSDev_SD_Card_BSP_Open()

CPU_BOOLEAN FSDev_SD_Card_BSP_Open (FS_QTY unit_nbr);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh() N/A

Open (initialize) SD/MMC card interface.

Arguments

unit_nbr

Unit number of SD/MMC card.

Returned Value

DEF_OK, if interface was opened.

DEF_FAIL, otherwise.

Notes/Warnings

This function will be called time the device is opened.every

FSDev_SD_Card_BSP_SetBusWidth()

void FSDev_SD_Card_BSP_SetBusWidth (FS_QTY unit_nbr,

CPU_INT08U width);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh(), N/ASet bus width.

1.

FSDev_SD_Card_SetBusWidth()Arguments

unit_nbr

Unit number of SD/MMC card.

width

Bus width, in bits.

Returned Value

None.

Notes/Warnings

None.

Example

The implementation of in he listing below is targeted for the same host controller as the other listings inFSDev_SD_Card_BSP_SetBusWidth() t
this chapter; for more information, see .FSDev_SD_Card_BSP_CmdStart()

void FSDev_SD_Card_BSP_SetBusWidth (FS_QTY unit_nbr,
 CPU_INT08U width)
{
 if (width == 1u) {
 REG_HOST_CONTROL &= ~BIT_HOST_CONTROL_DATA_TRANSFER_WIDTH;
 } else {
 REG_HOST_CONTROL |= BIT_HOST_CONTROL_DATA_TRANSFER_WIDTH;
 }
}

Listing - FSDev_SD_Card_BSP_SetBusWidth()

FSDev_SD_Card_BSP_SetClkFreq()

void FSDev_SD_Card_BSP_SetClkFreq (FS_QTY unit_nbr,

CPU_INT32U freq);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh() N/A

Set clock frequency.

Arguments

unit_nbr

Unit number of SD/MMC card.

freq

Clock frequency, in Hz.

Returned Value

None.

Notes/Warnings

The effective clock frequency be no more than freq. If the frequency cannot be configured equal to freq, it should be configured lessmust
than freq.

FSDev_SD_Card_BSP_SetTimeoutData()

void FSDev_SD_Card_BSP_SetTimeoutData (FS_QTY unit_nbr,

CPU_INT32U to_clks);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh() N/A

Set data timeout.

Arguments

unit_nbr

Unit number of SD/MMC card.

to_clks

Timeout, in clocks.

Returned Value

None.

Notes/Warnings

None.

FSDev_SD_Card_BSP_SetTimeoutResp()

void FSDev_SD_Card_BSP_SetTimeoutResp (FS_QTY unit_nbr,

CPU_INT32U to_ms);

File Called from Code enabled by

fs_dev_sd_card_bsp.c FSDev_SD_Card_Refresh() N/A

Set data timeout.

Arguments

unit_nbr

Unit number of SD/MMC card.

to_ms

Timeout, in milliseconds.

Returned Value

None.

Notes/Warnings

None.

SD/MMC SPI Mode BSP

SD/MMC card can also be accessed through an SPI bus (also described as the one-wire mode). Please refer to for the details on how toSPI BSP
implement the software port for your SPI bus.

SPI BSP

Among the most common—and simplest—serial interfaces supported by built-in CPU peripherals is Serial Peripheral Interface (SPI). Four
hardware signals connect a defined master (or host) to each slave (or device): a slave select, a clock, a slave input and a slave output. Three of
these, all except the slave select, may be shared among all slaves, though hosts often have several SPI controllers to simplify integration and
allow simultaneous access to multiple slaves. Serial flash, serial EEPROM and SD/MMC cards are among the many devices which use SPI.

Signal Description

SSEL (CS) Slave select

SCLK Clock

SO (MISO) Slave output (master input)

SI (MOSI) Slave input (master output)

Table - SPI signals

No specification exists for SPI, a condition which invites technological divergence. So though the simplicity of the interface limits variations
between implementations, the required transfer unit length, shift direction, clock frequency and clock polarity and phase do vary from device to
device. Take as an example he figure below which gives the bit form of a basic command/response exchange on a typical serial flash. Thet
command and response both divide into 8-bit chunks, the transfer unit for the device. Within these units, the data is transferred from most
significant bit (MSB) to least significant bit (LSB), which is the slave’s shift direction. Though not evident from the diagram—the horizontal axis
being labeled in clocks rather than time—the slave cannot operate at a frequency higher than 20-MHz. Finally, the clock signal prior to slave
select activation is low (clock polarity or CPOL is 0), and data is latched on the rising clock edge (clock phase or CPHA is 0). Together, those are
the aspects of SPI communication that may need to be configured:

Transfer unit length. A transfer unit is the underlying unit of commands, responses and data. The most common value is eight bits,
though slaves commonly require (and masters commonly support) between 8 and 16 bits.
Shift direction. Either the MSB or LSB of each transfer unit can be the first transmitted on the data line.
Clock frequency. Limits are usually imposed upon the frequency of the clock signal. Of all variable SPI communication parameters, only
this one is explicitly set by the device driver.
Clock polarity and phase (CPOL and CPHA). SPI communication takes place in any of four modes, depending on the clock phase and
clock polarity settings:

If CPOL = 0, the clock is low when inactive.
If CPOL = 1, the clock is high when inactive.
If CPHA = 0, data is “read” on the leading edge of the clock and “changed” on the following edge.
If CPHA = 1, data is “changed” on the leading edge of the clock and “read” on the leading edge.

The most commonly-supported settings are {CPOL, CPHA} = {0, 0} and {1, 1}.
Slave select polarity. The “active” level of the slave select may be electrically high or low. Low is ubiquitous, high rare.

Figure - Example SPI transaction

A BSP is required that abstracts a CPU’s SPI peripheral. The port includes one code file named according to the following rubric:

FS_DEV_<dev_name>_BSP.C or FS_DEV_<dev_name>_SPI_BSP.c

This file is generally placed with other BSP files in a directory named according to the following rubric:

\Micrium\Software\EvalBoards\<manufacturer>\<board_name>

\<compiler>\BSP\

Several example ports are included in the µC/FS distribution in files named according to the following rubric:

\Micrium\Software\uC-FS\Examples\BSP\Dev\NAND\<manufacturer>\<cpu_name>

\Micrium\Software\uC-FS\Examples\BSP\Dev\NOR\<manufacturer>\<cpu_name>

\Micrium\Software\uC-FS\Examples\BSP\Dev\SD\SPI\<manufacturer>\<cpu_name>

Check all of these directories for ports for a CPU if porting any SPI device; the CPU may be been used with a different type of device, but the port
should support another with none or few modifications. Each port must implement the functions to be placed into a structure:FS_DEV_SPI_API

const FS_DEV_SPI_API FSDev_####_BSP_SPI = {
 FSDev_BSP_SPI_Open,
 FSDev_BSP_SPI_Close,
 FSDev_BSP_SPI_Lock,
 FSDev_BSP_SPI_Unlock,
 FSDev_BSP_SPI_Rd,
 FSDev_BSP_SPI_Wr,
 FSDev_BSP_SPI_ChipSelEn,
 FSDev_BSP_SPI_ChipSelDis,
 FSDev_BSP_SPI_SetClkFreq
};

The functions which must be implemented are listed and described in he table below. SPI is no more than a physical interconnect. The protocolt
of command-response interchange the master follows to control a slave is specified on a per-slave basis. Control of the chip select (SSEL) is
separated from the reading and writing of data to the slave because multiple bus transactions (e.g., a read then a write then another read) are
often performed without breaking slave selection. Indeed, some slaves require bus transactions (or “empty” clocks) AFTER the select has been
disabled.

Function Description

Open() Open (initialize) hardware for SPI.

Close() Close (uninitialize) hardware for SPI.

Lock() Acquire SPI bus lock.

Unlock() Release SPI bus lock.

Rd() Read from SPI bus.

Wr() Write to SPI bus.

ChipSelEn() Enable device chip select.

ChipSelDis() Disable device chip select

SetClkFreq() Set SPI clock frequency

Table - SPI port functions

The first argument of each of these port functions is the device unit number, an identifier unique to each driver/device type—after all, it is the
number in the device name. For example, “sd:0:” and “nor:0:” both have unit number 1. If two SPI devices are located on the same SPI bus, either
of two approaches can resolve unit number conflicts:

Unique unit numbers. All devices on the same bus can use the same SPI BSP if and only if each device has a unique unit number. For
example, the SD/MMC card “sd:0:” and serial NOR “nor:1:” require only one BSP.
Unique SPI BSPs. Devices of different types (e.g., a SD/MMC card and a serial NOR) can have the same unit number if and only if each
device uses a separate BSP. For example, the SD/MMC card “sd:0:” and serial “nor:0:” require separate BSPs.

ChipSelEn() / ChipSelDis() - SPI BSP

void FSDev_BSP_SPI_ChipSelEn (FS_QTY unit_nbr);

void FSDev_BSP_SPI_ChipSelDis (FS_QTY unit_nbr);

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A

Enable/disable device chip select.

Arguments

unit_nbr

Unit number of device.

1.

1.

1.

2.

Returned Value

None.

Notes/Warnings

The chip select is typically “active low”. To enable the device, the chip select pin should be cleared; to disable the device, the chip select
pin should be set.

Close() - SPI BSP

void FSDev_BSP_SPI_Close (FS_QTY unit_nbr);

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A

Close (uninitialize) hardware for SPI.

Arguments

unit_nbr

Unit number of device.

Returned Value

None.

Notes/Warnings

This function will be called every time the device is closed.

Lock() / Unlock() - SPI BSP

void FSDev_BSP_SPI_Lock (FS_QTY unit_nbr);

void FSDev_BSP_SPI_Unlock (FS_QTY unit_nbr);

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A

Acquire/release SPI bus lock.

Arguments

unit_nbr

Unit number of device.

Returned Value

None.

Notes/Warnings

Lock() will be called before the driver begins to access the SPI. The application should use the same bus to access another devicenot
until the matching call to has been made.Unlock()
The clock frequency set by the function is a parameter of the device, not the bus. If multiple devices are located on theSetClkFreq()
same bus, those parameters must be saved (in memory) when set and restored by . The same should be done for initializationLock()
parameters such as transfer unit size and shift direction that vary from device to device.

Open() - SPI BSP

CPU_BOOLEAN FSDev_BSP_SPI_Open (FS_QTY unit_nbr);

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A

Open (initialize) hardware for SPI.

1.
2.

3.

4.

Arguments

unit_nbr

Unit number of device.

Returned Value

DEF_OK, if interface was opened.

DEF_FAIL, otherwise.

Notes/Warnings

This function will be called every time the device is opened.
Several aspects of SPI communication may need to be configured, including:

Transfer unit length
Shift direction
Clock frequency
Clock polarity and phase (CPOL and CPHA)
Slave select polarity

For a SD/MMC card, the following settings should be used:
Transfer unit length: 8-bits
Shift direction: MSB first
Clock frequency: 400-kHz (initially)
Clock polarity and phase (CPOL and CPHA): CPOL = 0, CPHA = 0
Slave select polarity: active low.

The slave select (SSEL or CS) be configured as a GPIO output; it should not be controlled by the CPU’s SPI peripheral. The SPImust
port’s and functions manually enable and disable the SSEL.ChipSelEn() ChipSelDis()

Rd() - SPI BSP

void FSDev_BSP_SPI_Rd (FS_QTY unit_nbr,

void *p_dest,

CPU_SIZE_T cnt);

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A

Read from SPI bus.

Arguments

unit_nbr

Unit number of device.

p_dest

Pointer to destination buffer.

cnt

Number of octets to read.

Returned Value

None.

Notes/Warnings

None.

SetClkFreq() - SPI BSP

void FSDev_BSP_SPI_SetClkFreq (FS_QTY unit_nbr,

CPU_INT32U freq);

File Called from Code enabled by

1.

fs_dev_<dev_name>_bsp.c Device driver N/A

Set SPI clock frequency.

Arguments

unit_nbr

Unit number of device.

Returned Value

None.

Notes/Warnings

The effective clock frequency be no more than freq. If the frequency cannot be configured equal to freq, it should be configured lessmust
than freq.

Wr() - SPI BSP

void FSDev_BSP_SPI_Wr (FS_QTY unit_nbr,

void *p_src,

CPU_SIZE_T cnt);

File Called from Code enabled by

fs_dev_<dev_name>_bsp.c Device driver N/A

Write to SPI bus.

Arguments

unit_nbr

Unit number of device.

p_src

Pointer to source buffer.

cnt

Number of octets to write.

Returned Value

None.

Notes/Warnings

None.

NAND Flash Physical-Layer Driver

The information about porting the NAND driver to a new platform, through either a controller layer implementation or a generic controller BSP is
available in .NAND Flash Driver

NOR Flash Physical-Layer Driver

The NOR driver is divided into three layers. The topmost layer, the generic driver, requires an intermediate physical-layer driver to effect flash
operations like erasing blocks and writing octets. The physical-layer driver includes one code/header file pair named according to the following
rubric:

FS_DEV_NOR_<device_name>.C

FS_DEV_NOR_<device_name>.H

A non-uniform flash—a flash with some blocks of one size and some blocks of another—will require a custom driver adapted from the generic
driver for the most similar medium type. Multiple small blocks should be grouped together to form large blocks, effectively making the flash appear
uniform to the generic driver. A custom physical-layer driver can also implement advanced program operations unique to a NOR device family.

The physical-layer driver acts via a BSP. The generic drivers for traditional NOR flash require a BSP as described in . The driversNOR Flash BSP
for SPI flash require a SPI BSP as described in .NOR Flash SPI BSP

Figure - NOR driver architecture

Each physical-layer driver must implement the functions to be placed into a structure:FS_DEV_NOR_PHY_API

const FS_DEV_NOR_PHY_API FSDev_NOR_#### {
 FSDev_NOR_PHY_Open,
 FSDev_NOR_PHY_Close,
 FSDev_NOR_PHY_Rd,
 FSDev_NOR_PHY_Wr,
 FSDev_NOR_PHY_EraseBlk,
 FSDev_NOR_PHY_IO_Ctrl,
};

The functions which must be implemented are listed and described in he table below. The first argument of each of these is a pointer to a t FS_DE
 structure which holds physical device information. Specific members will be described in subsequent sections as necessary.V_NOR_PHY_DATA

The NOR driver populates an internal instance of this type based upon configuration information. Before the file system suite has been initialized,
the application may do the same if raw device accesses are a necessary part of its start-up procedure.

Function Description

Open() Open (initialize) a NOR device and get NOR device information.

Close() Close (uninitialize) a NOR device.

Rd() Read from a NOR device and store data in buffer.

Wr() Write to a NOR device from a buffer.

EraseBlk() Erase block of NOR device.

IO_Ctrl() Perform NOR device I/O control operation.

Table - NOR flash physical-layer driver functions

Close() - NOR Flash Driver

void Close (FS_DEV_NOR_PHY_DATA *p_phy_data);

File Called from Code enabled by

NOR physical-layer driver FSDev_NOR_Close() N/A

Close (uninitialize) a NOR device instance.

Arguments

p_phy_data

Pointer to NOR phy data.

Returned Value

None.

Notes/Warnings

None.

EraseBlk() - NOR Flash Driver

void EraseBlk (FS_DEV_NOR_PHY_DATA *p_phy_data,

CPU_INT32U start,

CPU_INT32U size,

FS_ERR *p_err);

File Called from Code enabled by

NOR physical-layer driver FSDev_NOR_PhyEraseBlkHandler() N/A

Erase block of NOR device.

Arguments

p_phy_data

Pointer to NOR phy data.

start

Start address of block (relative to start of device).

size

Size of block, in octets

p_err

Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE

Block erased successfully.

FS_ERR_DEV_INVALID_OP

Invalid operation for device.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout error.

Returned Value

None.

Notes/Warnings

None.

IO_Ctrl() - NOR Flash Driver

void IO_Ctrl (FS_DEV_NOR_PHY_DATA *p_phy_data,

CPU_INT08U opt,

void *p_data,

FS_ERR *p_err);

File Called from Code enabled by

NOR physical-layer driver various N/A

Perform NOR device I/O control operation.

Arguments

p_phy_data

Pointer to NOR phy data.

opt

Control command.

p_data

Buffer which holds data to be used for operation.

OR

Buffer in which data will be stored as a result of operation.

p_err

Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE

Control operation performed successfully.

FS_ERR_DEV_INVALID_IO_CTRL I/O

Control unknown to driver.

FS_ERR_DEV_INVALID_OP

Invalid operation for device.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout error.

Returned Value

None.

Notes/Warnings

None.

Open() - NOR Flash Driver

1.
2.
3.
4.
5.
6.

void Open (FS_DEV_NOR_PHY_DATA *p_phy_data,

FS_ERR *p_err);

File Called from Code enabled by

NOR physical-layer driver FSDev_NOR_Open() N/A

Open (initialize) a NOR device instance and get NOR device information.

Arguments

p_phy_data

Pointer to NOR phy data.

p_err

Pointer to variable that will receive the return error code from this function.

Returned Value

None.

Notes/Warnings

Several members of may need to be used/assigned:p_phy_data

BlkCnt and be assigned the block count and block size of the device, respectively.BlkSize must
RegionNbr specifies the block region that will be used. be assigned the start address of this block region.AddrRegionStartmust
DataPtr may store a pointer to any driver-specific data.
UnitNbr is the unit number of the NOR device.
MaxClkFreq specifies the maximum SPI clock frequency.
BusWIdth, and specify the bus configuration. specifies the base address of the NOR flashBusWidthMax PhyDevCnt AddrBase
memory.

Rd() - NOR Flash Driver

void Rd (FS_DEV_NOR_PHY_DATA *p_phy_data,

void *p_dest,

CPU_INT32U start,

CPU_INT32U cnt,

FS_ERR *p_err);

File Called from Code enabled by

NOR physical-layer driver FSDev_NOR_PhyRdHandler() N/A

Read from a NOR device and store data in buffer.

Arguments

p_phy_data

Pointer to NOR phy data.

p_dest

Pointer to destination buffer.

start

Start address of read (relative to start of device).

cnt

Number of octets to read.

p_err

Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE

Octets read successfully.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout error.

Returned Value

None.

Notes/Warnings

None.

Wr() - NOR Flash Driver

void Wr (FS_DEV_NOR_PHY_DATA *p_phy_data,

void *p_src,

CPU_INT32U start,

CPU_INT32U cnt,

FS_ERR *p_err);

File Called from Code enabled by

NOR physical-layer driver FSDev_NOR_PhyWrHandler() N/A

Write to a NOR device from a buffer.

Arguments

p_phy_data

Pointer to NOR phy data.

p_src

Pointer to source buffer.

start

Start address of write (relative to start of device).

cnt

Number of octets to write.

p_err

Pointer to variable that will receive the return error code from this function.

FS_ERR_NONE

Octets written successfully.

FS_ERR_DEV_IO

Device I/O error.

FS_ERR_DEV_TIMEOUT

Device timeout error.

Returned Value

None.

1.

Notes/Warnings

None.

NOR Flash BSP

A “traditional” NOR flash has two buses, one for addresses and another for data. For example, the host initiates a data read operation with the
address of the target location latched onto the address bus; the device responds by outputting a data word on the data bus.

A BSP abstracts the flash interface for the physical layer driver. The port includes one code file:

FS_DEV_NOR_BSP.C

This file is generally placed with other BSP files in a directory named according to the following rubric:

\Micrium\Software\EvalBoards\<manufacturer>\<board_name>

\<compiler>\BSP\

Function Description

FSDev_NOR_BSP_Open() Open (initialize) bus for NOR

FSDev_NOR_BSP_Close() Close (uninitialize) bus for NOR.

FSDev_NOR_BSP_Rd_08()/16() Read from bus interface.

FSDev_NOR_BSP_RdWord_08()/16() Read word from bus interface.

FSDev_NOR_BSP_WrWord_08()/16() Write word to bus interface.

FSDev_NOR_BSP_WaitWhileBusy() Wait while NOR is busy.

Table - NOR BSP functions

FSDev_NOR_BSP_Close()

void FSDev_NOR_BSP_Close (FS_QTY unit_nbr);

File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A

Close (uninitialize) bus for NOR.

Arguments

unit_nbr

Unit number of NOR.

Returned Value

None.

Notes/Warnings

This function will be called time the device is closed.every

FSDev_NOR_BSP_Open()

CPU_BOOLEAN FSDev_NOR_BSP_Open (FS_QTY unit_nbr,

CPU_ADDR addr_base,

CPU_INT08U bus_width,

CPU_INT08U phy_dev_cnt);

File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A

Open (initialize) bus for NOR.

1.

Arguments

unit_nbr

Unit number of NOR.

addr_base

Base address of NOR.

bus_width

Bus width, in bits.

phy_dev_cnt

Number of devices interleaved.

Returned Value

DEF_OK, if interface was opened.

DEF_FAIL, otherwise.

Notes/Warnings

This function will be called time the device is opened.every

FSDev_NOR_BSP_Rd_XX()

void FSDev_NAND_BSP_Rd_08 (FS_QTY unit_nbr,

void *p_dest,

CPU_ADDR addr_src,

CPU_SIZE_T cnt);

void FSDev_NAND_BSP_Rd_16 (FS_QTY unit_nbr,

void *p_dest,

CPU_ADDR addr_src,

CPU_SIZE_T cnt);

File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A

Read data from bus interface.

Arguments

unit_nbr

Unit number of NOR.

p_dest

Pointer to destination memory buffer.

addr_src

Source address.

cnt

Number of words to read.

Returned Value

None.

1.

1.

Notes/Warnings

Data should be read from the bus in words sized to the data bus; for any unit, only the function with its access width will be called.

FSDev_NOR_BSP_RdWord_XX()

CPU_INT08U FSDev_NAND_BSP_RdWord_08 (FS_QTY unit_nbr,

CPU_ADDR addr_src);

CPU_INT16U FSDev_NAND_BSP_RdWord_16 (FS_QTY unit_nbr,

CPU_ADDR addr_src);

File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A

Read data from bus interface.

Arguments

unit_nbr

Unit number of NOR.

addr_src

Source address.

Returned Value

Word read.

Notes/Warnings

Data should be read from the bus in words sized to the data bus; for any unit, only the function with its access width will be called.

FSDev_NOR_BSP_WaitWhileBusy()

CPU_BOOLEAN

FSDev_NOR_BSP_WaitWhileBusy

(FS_QTY unit_nbr,

FS_DEV_NOR_PHY_DATA *p_phy_data,

CPU_BOOLEAN (*poll_fnct)(FS_DEV_NOR_PHY_DATA *),

CPU_INT32U to_us);

File Called from Code enabled by

fs_dev_nor_bsp.c NOR physical-layer driver N/A

Wait while NAND is busy.

Arguments

unit_nbr

Unit number of NOR.

p_phy_data

Pointer to NOR phy data.

poll_fnct

Pointer to function to poll, if there is no hardware ready/busy signal.

to_us

Timeout, in microseconds.

Returned Value

DEF_OK, if NAND became ready.

DEF_FAIL, otherwise.

Notes/Warnings

None.

CPU_BOOLEAN FSDev_NOR_BSP_WaitWhileBusy
 (FS_QTY unit_nbr,
 FS_DEV_NOR_PHY_DATA *p_phy_data,
 CPU_BOOLEAN
(*poll_fnct)(FS_DEV_NOR_PHY_DATA *),
 CPU_INT32U to_us)
{
 CPU_INT32U time_cur_us;
 CPU_INT32U time_start_us;
 CPU_BOOLEAN rdy;
 time_cur_us = /* $$$$ GET CURRENT TIME, IN MICROSECONDS. */;
 time_start_us = time_cur_us;
 while (time_cur_us - time_start_us < to_us) {
(1)
 rdy = poll_fnct(p_phy_data);
(2)
 if (rdy == DEF_OK) {
 return (DEF_OK);
 }
 time_cur_us = /* $$$$ GET CURRENT TIME, IN MICROSECONDS. */;
 }
 return (DEF_FAIL);
(3)
}

Listing - FSDev_NOR_BSP_WaitWhileBusy() (without hardware read/busy signal)
(1)
 At least microseconds should elapse before the function gives up and returns. Returning early can cause disruptive timeout errors withinto_us
the physical-layer driver.

(2)
 should be called with as its sole argument. If it returns DEF_OK, then the device is ready and the function shouldpoll_fnct p_phy_data
return .DEF_OK

(3)
 If microseconds elapse without the poll function or hardware ready/busy signaling indicating success, the function should return to_us DEF_FAI

.L

FSDev_NOR_BSP_WrWord_XX()

void FSDev_NAND_BSP_WrWord_08 (FS_QTY unit_nbr,

CPU_ADDR addr_src,

CPU_INT08U datum);

void FSDev_NAND_BSP_WrWord_16 (FS_QTY unit_nbr,

CPU_ADDR addr_src,

CPU_INT16U datum);

File Called from Code enabled by

1.

fs_dev_nor_bsp.c NOR physical-layer driver N/A

Write data to bus interface.

Arguments

unit_nbr

Unit number of NOR.

addr_src

Source address.

datum

Word to write.

Returned Value

None.

Notes/Warnings

Data should be written o the bus in words sized to the data bus; for any unit, only the function with its access width will be called.

NOR Flash SPI BSP

The NOR driver must adapt to the specific hardware using a BSP. A serial NOR Flash will be interfaced on a SPI bus. See for the detailsSPI BSP
on how to implement the software port for your SPI bus.

µC/FS Types and Structures
Your application may need to access or populate the types and structures described in this appendix. Each of the user-accessible structures is
presented in alphabetical order. The following information is provided for each entry:

A brief description of the type or structure.
The definition of the type or structure.
The filename of the source code.
A description of the meaning of the type or the members of the structure.
Specific notes and warnings regarding use of the type.

FS_CFG

typedef struct fs_cfg {

FS_QTY DevCnt;

FS_QTY VolCnt;

FS_QTY FileCnt;

FS_QTY DirCnt;

FS_QTY BufCnt;

FS_QTY DevDrvCnt;

FS_SEC_SIZE MaxSecSize;

} FS_CFG;

File Used for

fs.h First argument of FS_Init()

A pointer to a structure is the argument of . It configures the number of devices, files and other objects in the file systemFS_CFG FS_Init()
suite.

Members

DevCnt

The maximum number of devices that can be open simultaneously. be greater than or equal to 1.must

VolCnt

The maximum number of volumes that can be open simultaneously. be greater than or equal to 1.must

FileCnt

The maximum number of files that can be open simultaneously. be greater than or equal to 1.must

DirCnt

Maximum number of directories that can be open simultaneously. If DirCnt is 0, the directory module functions will be blocked after
successful initialization, and the file system will operate as if compiled with directory support disabled. If directory support is disabled, DirCnt
is ignored; otherwise, if directories will be used, DirCnt should be greater than or equal to 1.

BufCnt

Maximum number of buffers that can be used successfully. The minimum necessary BufCnt can be calculated from the number of volumes:

BufCnt >= VolCnt * 2

If or is used, then up to one additional buffer for each volume may be necessary.FSEntry_Copy() FSEntry_Rename()

DevDrvCnt

Maximum number of device drivers that can be added. It be greater than or equal to 1.must

MaxSecSize

Maximum sector size, in octets. It must be 512, 1024, 2048 or 4096. No device with a sector size larger than MaxSecSize can be opened.

Notes

None.

FS_DEV_INFO

typedef struct fs_dev_info {

FS_STATE State;

FS_SEC_QTY Size;

FS_SEC_SIZE SecSize;

CPU_BOOLEAN Fixed;

} FS_DEV_INFO;

File Used for

fs_dev.h Second argument of FSDev_Query()

Receives information about a device.

Members

State

The device state:

FS_DEV_STATE_CLOSED

Device is closed.

FS_DEV_STATE_CLOSING

Device is closing.

FS_DEV_STATE_OPENING

Device is opening.

FS_DEV_STATE_OPEN

Device is open, but not present.

FS_DEV_STATE_PRESENT

Device is present, but not low-level formatted.

FS_DEV_STATE_LOW_FMT_VALID

Device low-level format is valid.

Size

The number of sectors on the device.

SecSize

The size of each device sector.

Fixed

Indicates whether the device is fixed or removable.

Notes

None.

FS_DEV_NOR_CFG

typedef struct fs_dev_nor_cfg {

CPU_ADDR AddrBase;

CPU_INT08U RegionNbr;

CPU_ADDR AddrStart;

CPU_INT32U DevSize;

FS_SEC_SIZE SecSize;

CPU_INT08U PctRsvd;

CPU_INT16U EraseCntDiffTh;

FS_DEV_NOR_PHY_API *PhyPtr;

CPU_INT08U BusWidth;

CPU_INT08U BusWidthMax;

CPU_INT08U PhyDevCnt;

CPU_INT32U MaxClkFreq;

} FS_DEV_NOR_CFG;

File Used for

fs_dev_nor.h Second argument of (when opening a NOR device)FSDev_Open()

Configures the properties of a NOR device that will be opened. A pointer to this structure is passed as the second argument of foFSDev_Open()
r a NOR device.

Members

AddrBase

must specify

1. the base address of the NOR flash memory, for a parallel NOR.

2. 0x00000000 for a serial NOR.

RegionNbr

must specify the block region which will be used for the file system area. Block regions are enumerated by the physical-layer driver; for
more information, see the physical-layer driver header file. (on monolithic devices, devices with only one block region, this be 0).must

AddrStart

must specify

1. the absolute start address of the file system area in the NOR flash memory, for a paralel NOR.

2. the offset of the start of the file system in the NOR flash, for a serial NOR.

The address specified by lie within the region RegionNbr.AddrStart must

DevSize

must specify the number of octets that will belong to the file system area.

SecSize

must specify the sector size for the NOR flash (either 512, 1024, 2048 or 4096).

PctRsvd

must specify the percentage of sectors on the NOR flash that will be reserved for extra-file system storage (to improve efficiency). This
value must be between 5% and 35%, except if 0 is specified whereupon the default will be used (10%).

EraseCntDiffTh

must specify the difference between minimum and maximum erase counts that will trigger passive wear-leveling. This value must be
between 5 and 100, except if 0 is specified whereupon the default will be used (20).

PhyPtr

must point to the appropriate physical-layer driver:

FSDev_NOR_AMD_1x08

CFI-compatible parallel NOR implementing AMD command set, 8-bit data bus.

FSDev_NOR_AMD_1x16

CFI-compatible parallel NOR implementing AMD command set, 16-bit data bus.

FSDev_NOR_Intel_1x16

CFI-compatible parallel NOR implementing Intel command set, 16-bit data bus

FSDev_NOR_SST39

SST SST39 Multi-Purpose Flash

FSDev_NOR_STM25

ST M25 serial flash

FSDev_NOR_SST25

SST SST25 serial flash

Other

User-developed

For a parallel NOR, the bus configuration is specified via , and :BusWidth BusWidthMax PhyDevCnt

BusWidth

is the bus width, in bits, between the MCU/MPU and each connected device.

BusWidthMax

is the maximum width supported by each connected device.

PhyDevCnt

is the number of devices interleaved on the bus.

For a serial flash, the maximum clock frequency is specified via .MaxClkFreq

Notes

None.

FS_DEV_RAM_CFG

typedef struct fs_dev_ram_cfg {

FS_SEC_SIZE SecSize;

FS_SEC_QTY Size;

void *DiskPtr;

} FS_DEV_RAM_CFG;

File Used for

fs_dev_ramdisk.h Second argument of (when opening a RAM disk)FSDev_Open()

Configures the properties of a RAM disk that will be opened. A pointer to this structure is passed as the second argument of for aFSDev_Open()
RAM disk.

Members

SecSize

The sector size of RAM disk, either 512, 1024, 2048 or 4096.

Size

The size of the RAM disk, in sectors.

DiskPtr

The pointer to the RAM disk.

Notes

None.

FS_DIR_ENTRY (struct fs_dirent)

typedef struct fs_dirent {

CPU_CHAR Name[FS_CFG_MAX_FILE_NAME_LEN + 1u];

FS_ENTRY_INFO Info;

} FS_DIR_ENTRY;

File Used for

fs_dir.h Second argument of and fs_readdir_r() FSDir_Rd()

Receives information about a directory entry.

Members

Name

The name of the file.

Info

Entry information. For more information, see .FS_ENTRY_INFO

Notes

None.

FS_ENTRY_INFO

typedef struct fs_entry_info {

FS_FLAGS Attrib;

FS_FILE_SIZE Size;

CLK_TS_SEC DateTimeCreate;

CLK_TS_SEC DateAccess;

CLK_TS_SEC DateTimeWr;

FS_SEC_QTY BlkCnt;

FS_SEC_SIZE BlkSize;

} FS_ENTRY_INFO;

File Used for

fs_entry.h Second argument of and ;FSEntry_Query() FSFileQuery()

The Info member of ()FS_DIR_ENTRY struct fs_dirent

Receives information about a file or directory.

Members

Attrib

The file or directory attributes (see).File and Directory Attributes

Size

The size of the file, in octets.

DateTimeCreate

The creation timestamp of the file or directory.

DateAccess

The last access date of the file or directory.

DateTimeWr

The last write (or modification) timestamp of the file or directory.

BlkCnt

The number of blocks allocated to the file. For a FAT file system, this is the number of clusters occupied by the file data.

BlkSize

The size of each block allocated in octets. For a FAT file system, this is the size of a cluster.

Notes

None.

FS_FAT_SYS_CFG

typedef struct fs_fat_sys_cfg {

FS_SEC_QTY ClusSize;

FS_FAT_SEC_NBR RsvdAreaSize;

CPU_INT16U RootDirEntryCnt;

CPU_INT08U FAT_Type;

CPU_INT08U NbrFATs;

} FS_FAT_SYS_CFG;

File Used for

fs_fat_type.h Second argument of when opening a FAT volume (optional)FSVol_Fmt()

A pointer to a structure may be passed as the second argument of . It configures the properties of the FAT fileFS_FAT_SYS_CFG FSVol_Fmt()
system that will be created.

1.

Members

ClusSize

The size of a cluster, in sectors. This should be 1, 2, 4, 8, 16, 32, 64 or 128. The size of a cluster, in bytes, must be less than or equal to
65536, so some of the upper values may be invalid for devices with large sector sizes.

RsvdAreaSize

The size of the reserved area on the disk, in sectors. For FAT12 and FAT16 volumes, the reserved area should be 1 sector; for FAT32
volumes, 32 sectors.

RootDirEntryCnt

The number of entries in the root directory. This applies only to FAT12 and FAT16 volumes, on which the root directory is a separate area
of the file system and is a fixed size. The root directory entry count caps the number of files and directories that can be located in the root
directory.

FAT_Type

The type of FAT. This should be 12 (for FAT12), 16 for (FAT16) or 32 (for FAT32). Ths choice of FAT type must observe restrictions on the
maximum number a clusters. A FAT12 file system may have no more than 4085 clusters; a FAT16 file system, no more than 65525.

NbrFATs

The number of actual FATs (file allocation tables) to create on the disk. The typical value is 2 (one for primary use, a secondary for
backup).

Notes

Further restrictions on the members of this structure can be found in .FAT File System

FS_PARTITION_ENTRY

typedef struct fs_partition_entry {

FS_SEC_NBR Start;

FS_SEC_QTY Size;

CPU_INT08U Type;

} FS_PARTITION_ENTRY;

File Used for

fs_partition.h Third argument of FSDev_PartitionFind()

Receives information about a partition entry.

Members

Start

The start sector of partition.

Size

The size of partition, in sectors.

Type

The type of data in the partition.

Notes

None.

FS_VOL_INFO

typedef struct fs_vol_info {

FS_STATE State;

FS_STATE DevState;

FS_SEC_QTY DevSize;

FS_SEC_SIZE DevSecSize;

FS_SEC_QTY PartitionSize;

FS_SEC_QTY VolBadSecCnt;

FS_SEC_QTY VolFreeSecCnt;

FS_SEC_QTY VolUsedSecCnt;

FS_SEC_QTY VolTotSecCnt;

} FS_VOL_INFO;

File Used for

fs_vol.h Second argument of FSVol_Query()

Receives information about a volume.

Members

State
The volume state:

FS_VOL_STATE_CLOSED Volume is closed.

FS_VOL_STATE_CLOSING Volume is closing.

FS_VOL_STATE_OPENING Volume is opening.

FS_VOL_STATE_OPEN Volume is open.

FS_VOL_STATE_PRESENT Volume device is present.

FS_VOL_STATE_MOUNTED Volume is mounted.

DevState
The device state:

FS_DEV_STATE_CLOSED Device is closed.

FS_DEV_STATE_CLOSING Device is closing.

FS_DEV_STATE_OPENING Device is opening.

FS_DEV_STATE_OPEN Device is open, but not present.

FS_DEV_STATE_PRESENT Device is present, but not low-level formatted.

FS_DEV_STATE_LOW_FMT_VALID Device low-level format is valid.

DevSize

The number of sectors on the device.

DevSecSize

The size of each device sector.

PartitionSize

The number of sectors in the partition.

VolBadSecCnt

The number of bad sectors on the volume.

VolFreeSecCnt

The number of free sectors on the volume.

VolUsedSecCnt

The number of used sectors on the volume.

VolTotSecCnt

The total number of sectors on the volume.

Notes

None.

µC/FS Configuration
µC/FS is configurable at compile time via approximately 30 #defines in an application’s file. µC/FS uses #defines because they allowfs_cfg.h
code and data sizes to be scaled at compile time based on enabled features. In other words, this allows the ROM and RAM footprints of µC/FS to
be adjusted based on your requirements.

Most of the #defines should be configured with the default configuration values. This leaves about a dozen or so values that should be configured
with values that may deviate from the default configuration.

File System Configuration

Core file system modules may be selectively disabled.

FS_CFG_BUILD

FS_CFG_BUILD selects the file system build. Should always be set to in this release.FS_BUILD_FULL

FS_CFG_SYS_DRV_SEL

FS_CFG_SYS_DRV_SEL selects which file system driver(s) will be included. Currently, there is only one option. When FS_SYS_DRV_SEL_F
, the FAT system driver will be included.AT

FS_CFG_CACHE_EN
FS_CFG_CACHE_EN enables (when set to) or disables (when set to) code generation of volume cacheDEF_ENABLED DEF_DISABLED
functions.

Function File

FSVol_CacheAssign() fs_vol.c

FSVol_CacheFlush() fs_vol.c

FSVol_CacheInvalidate() fs_vol.c

Table - Cache function exclusion

These functions are not included if is .FS_CFG_CACHE_EN DEF_DISABLED

FS_CFG_BUF_ALIGN_OCTETS

FS_CFG_BUF_ALIGN_OCTETS configures the minimum alignment of the internal buffers in octets. This should be set to the maximum
alignment required by the any of the CPU, system buses and, if relevant, the peripherals and DMA controller involved in the file system
operations. When no minimum alignment is required should generally be set to the platform naturalFS_CFG_BUF_ALIGN_OCTETS
alignment for performance reasons.

FS_CFG_API_EN

FS_CFG_API_EN enables (when set to) or disables (when set to) code generation of the POSIX APIDEF_ENABLED DEF_DISABLED
functions. This API includes functions like or which mirror standard POSIX functions like or fs_fopen() fs_opendir() fopen() opend

.ir()

FS_CFG_DIR_EN
FS_CFG_DIR_EN enables (when set to) or disables (when set to) code generation of directory accessDEF_ENABLED DEF_DISABLED
functions. When disabled, the functions in the following table will not be available.

Function File

fs_opendir() fs_api.c

fs_closedir() fs_api.c

fs_readdir_r() fs_api.c

FSDir_Open() fs_dir.c

FSDir_Close() fs_dir.c

FSDir_Rd() fs_dir.c

Table - Directory function exclusion

These functions are not included if is .FS_CFG_DIR_EN DEF_DISABLED

Feature Inclusion Configuration

Individual file system features may be selectively disabled.

FS_CFG_FILE_BUF_EN
FS_CFG_BUF_EN enables (when set to) or disables (when set to) code generation of file buffer functions.DEF_ENABLED DEF_DISABLED
When disabled, the functions in the following table will not be available.

Function File

fs_fflush() fs_api.c

fs_setbuf() fs_api.c

fs_setvbuf() fs_api.c

FSFile_BufAssign() fs_file.c

FSFile_BufFlush() fs_file.c

Table - File buffer function exclusion

These functions are not included if is FS_CFG_FILE_BUF_EN DEF_DISABLED

FS_CFG_FILE_LOCK_EN
FS_CFG_FILE_LOCK_EN enables (when set to) or disables (when set to) code generation of file lockDEF_ENABLED DEF_DISABLED
functions. When enabled, a file can be locked across several operations; when disabled, a file is only locked during a single operation and
the functions in the following table will not be available.

Function File

fs_flockfile() fs_api.c

fs_funlockfile() fs_api.c

fs_ftrylockfile() fs_api.c

FSFile_LockGet() fs_file.c

FSFile_LockSet() fs_file.c

FSFile_LockAccept() fs_file.c

Table - File lock function exclusion

These functions are not included if is .FS_CFG_FILE_LOCK_EN DEF_DISABLED

FS_CFG_PARTITION_EN
When is enabled (). volumes can be opened on secondary partitions and partitions can beFS_CFG_PARTITION_EN DEF_ENABLED
created. When it is disabled (), volumes can be opened only on the first partition and the functions in the following table willDEF_DISABLED
not be available. The function , which initializes the partition structure on a volume, will be included in bothFSDev_PartitionInit()
configurations.

Function File

FSDev_GetNbrPartitions() fs_dev.c

FSDev_PartitionAdd() fs_dev.c

FSDev_PartitionFind() fs_dev.c

Table - Partition function exclusion

These functions are is .not included if FS_CFG_PARTITION_EN DEF_DISABLED

FS_CFG_WORKING_DIR_EN
When is enabled (), file system operations can be performed relative to a working directory.FS_CFG_WORKING_DIR_EN DEF_ENABLED
When it is disabled (), all file system operations must be performed on absolute paths and the functions in the followingDEF_DISABLED
table will not be available.

Function File

fs_chdir() fs_api.c

fs_getcwd() fs_api.c

FS_WorkingDirGet() fs.h

FS_WorkingDirSet() fs.h

Table - Working directory function exclusion

These functions are not included if is .FS_CFG_WORKING_DIR_EN DEF_DISABLED

FS_CFG_UTF8_EN

FS_CFG_UTF8_EN selects whether file names may be specified in UTF-8. When enabled (), file names may be specified inDEF_ENABLED
UTF-8; when disabled (), file names must be specified in ASCII.DEF_DISABLED

FS_CFG_CONCURRENT_ENTRIES_ACCESS_EN

FS_CFG_CONCURRENT_ENTRIES_ACCESS_EN selects whether one file can be open multiple times (in one or more task). When enabled (D
), files may be open concurrently multiple times and without protection. When disabled (), files may be openEF_ENABLED DEF_DISABLED

concurrently only in read-only mode, but may not be open concurrently in write mode. This option makes the file system safer when
disabled.

FS_CFG_RD_ONLY_EN
FS_CFG_RD_ONLY_EN selects whether write access to files, volumes and devices will be possible. When , files, volumesDEF_ENABLED
and devices may only be read—code for write operations will not be included and the functions in the following table will not be available.

Function File

fs_fwrite() fs_api.c

fs_remove() fs_api.c

fs_rename() fs_api.c

fs_mkdir() fs_api.c

fs_truncate() fs_api.c

fs_rmdir() fs_api.c

FSDev_PartitionAdd() fs_dev.c

FSDev_PartitionInit() fs_dev.c

FSDev_Wr() fs_dev.c

FSEntry_AttribSet() fs_entry.c

FSEntry_Copy() fs_entry.c

FSEntry_Create() fs_entry.c

FSEntry_TimeSet() fs_entry.c

FSEntry_Del() fs_entry.c

FSEntry_Rename() fs_entry.c

FSFile_Truncate() fs_file.c

FSFile_Wr() fs_file.c

FSVol_Fmt() fs_vol.c

FSVol_LabelSet() fs_vol.c

FSVol_Wr() fs_vol.c

Table - Read only function exclusion (continued)

These functions are not included if is .FS_CFG_RD_ONLY_EN DEF_ENABLED

FS_CFG_64_BITS_LBA_EN

FS_CFG_64_BIT_LBA_EN selects whether support for 64 logical block addressing (LBA) is enabled. When support 64-bitDEF_ENABLED
LBA will be included otherwise LBA will be limited to 32 bit. Applications that need support for 48-bit LBA should set this feature to DEF_EN

.ABLED

Name Restriction Configuration

Individual file system features may be selectively disabled.

FS_CFG_MAX_PATH_NAME_LEN

FS_CFG_MAX_PATH_NAME_LEN configures the maximum path name length, in characters (not including the final NULL character). The
default value is 260 (the maximum path name length for paths on FAT volumes).

FS_CFG_MAX_FILE_NAME_LEN

FS_CFG_MAX_FILE_NAME_LEN configures the maximum file name length, in characters (not including the final NULL character). The
default value is 255 (the maximum file name length for FAT long file names).

FS_CFG_MAX_DEV_DRV_NAME_LEN

FS_CFG_MAX_DEV_DRV_NAME_LEN configures the maximum device driver name length, in characters (not including the final NULL
character). The default value is 10.

FS_CFG_MAX_DEV_NAME_LEN

FS_CFG_MAX_DEV_NAME_LEN configures the maximum device name length, in characters (not including the final NULL character). The
default value is 15.

FS_CFG_MAX_VOL_NAME_LEN

FS_CFG_MAX_VOL_NAME_LEN configures the maximum volume name length, in characters (not including the final NULL character). The
default value is 10.

Debug Configuration

A fair amount of code in µC/FS has been included to simplify debugging. There are several configuration constants used to aid debugging.

FS_CFG_DBG_MEM_CLR_EN

FS_CFG_DBG_MEM_CLR_EN is used to clear internal file system data structures when allocated or deallocated. When ,DEF_ENABLED
internal file system data structures will be cleared.

FS_CFG_DBG_WR_VERIFY_EN

FS_CFG_DBG_WR_VERIFY_EN is used verify writes by reading back data. This is a particularly convenient feature while debugging a driver.

Argument Checking Configuration

Most functions in µC/FS include code to validate arguments that are passed to it. Specifically, µC/FS checks to see if passed pointers are NULL, if
arguments are within valid ranges, etc. The following constants configure additional argument checking.

FS_CFG_ARG_CHK_EXT_EN

FS_CFG_ARG_CHK_EXT_EN allows code to be generated to check arguments for functions that can be called by the user and for functions
which are internal but receive arguments from an API that the user can call.

FS_CFG_ARG_CHK_DBG_EN

FS_CFG_ARG_CHK_DBG_EN allows code to be generated which checks to make sure that pointers passed to functions are not NULL, that

arguments are within range, etc.:

File System Counter Configuration

µC/FS contains code that increments counters to keep track of statistics such as the number of packets received, the number of packets
transmitted, etc. Also, µC/FS contains counters that are incremented when error conditions are detected.

FS_CFG_CTR_STAT_EN

FS_CFG_CTR_STAT_EN determines whether the code and data space used to keep track of statistics will be included. When DEF_ENABLE
, statistics counters will be maintained.D

FS_CFG_CTR_ERR_EN

FS_CFG_CTR_STAT_EN determines whether the code and data space used to keep track of errors will be included. When ,DEF_ENABLED
error counters will be maintained.

FAT Configuration

Configuration constants can be used to enable/disable features within the FAT file system driver.

FS_FAT_CFG_LFN_EN

FS_FAT_CFG_LFN_EN is used to control whether long file names (LFNs) are supported. When , all file names must beDEF_DISABLED
valid 8.3 short file names.

FS_FAT_CFG_FAT12_EN

FS_FAT_CFG_FAT12_EN is used to control whether FAT12 is supported. When , FAT12 volumes can not be opened, norDEF_DISABLED
can a device be formatted as a FAT12 volume.

FS_FAT_CFG_FAT16_EN

FS_FAT_CFG_FAT16_EN is used to control whether FAT16 is supported. When , FAT16 volumes can not be opened, norDEF_DISABLED
can a device be formatted as a FAT16 volume.

FS_FAT_CFG_FAT32_EN

FS_FAT_CFG_FAT32_EN is used to control whether FAT32 is supported. When , FAT32 volumes can not be opened, norDEF_DISABLED
can a device be formatted as a FAT32 volume.

FS_FAT_CFG_JOURNAL_EN
FS_FAT_CFG_JOURNAL_EN selects whether journaling functions will be present. When , journaling functions are present;DEF_ENABLED
when , journaling functions are present. If disabled, the functions in the table below will not be available.DEF_DISABLED not

Function File

FS_FAT_JournalOpen() fs_fat_journal.c/.h

FS_FAT_JournalClose() fs_fat_journal.c/.h

FS_FAT_JournalStart() fs_fat_journal.c/.h

FS_FAT_JournalEnd() fs_fat_journal.c/.h

Table - Journaling function exclusion

These functions are not included if FS_FAT_CFG_JOURNAL_EN is DEF_DISABLED .

FS_FAT_CFG_VOL_CHK_EN

FS_FAT_CFG_VOL_CHK_EN selects whether volume check is supported. When , volume check is supported; when DEF_ENABLED DEF_DI
, the function will not be available.SABLED FS_FAT_VolChk()

FS_FAT_CFG_VOL_CHK_MAX_LEVELS

FS_FAT_CFG_VOL_CHK_MAX_LEVELS specifies the maximum number of directory levels that will be checked by the volume check
function. Each level requires an additional 12 bytes stack space.

SD/MMC SPI Configuration

FS_DEV_SD_SPI_CFG_CRC_EN

Data blocks received from the card are accompanied by CRCs, as are the blocks transmitted to the card. FS_DEV_SD_SPI_CFG_CRC_EN
enables CRC validation by the card, as well as the generation and checking of CRCs. If , CRC generation and checking willDEF_ENABLED
be performed.

Trace Configuration

The file system debug trace is enabled by #define‘ing in your application’s :FS_TRACE_LEVEL fs_cfg.h

#define FS_TRACE_LEVEL TRACE_LEVEL_DBG

The valid trace levels are described in the table below. A trace functions should also be defined:

#define FS_TRACE printf
This should be a printf-type function that redirects the trace output to some accessible terminal (for example, the terminal I/O window within
your debugger, or a serial port) . When porting a driver to a new platform, this information can be used to debug the fledgling port.

Trace Level Meaning

TRACE_LEVEL_OFF No trace.

TRACE_LEVEL_INFO Basic event information (e.g., volume characteristics).

TRACE_LEVEL_DBG Debug information.

TRACE_LEVEL_LOG Event log.

Table - Trace levels

Shell Commands
The command line interface is a traditional method for accessing the file system on a remote system, or in a device with a serial port (be that
RS-232 or USB). A group of shell commands, derived from standard UNIX equivalents, are available for µC/FS. These may simply expedite
evaluation of the file system suite, or become part a primary method of access (or gathering debug information) in your final product.

Figure - µC/FS shell command usage

Files and Directories

µC/FS with the shell commands (and µC/Shell) is organized into the directory structure shown in in the Figure - Directory structure Files and
 page. The files constituting the shell commands ares outlined in this section; the generic file-system files, outlined in Directories µC/FS Directories

, are also required.and Files

Figure - Directory structure

\Micrium\Software\uC-FS\Cmd

fs_shell.* contain the shell commands for µC/FS.

\Micrium\Software\uC-FS\Cmd\Template\Cfg

fs_shell_cfg.h is the template configuration file for the µC/FS shell commands. This file should be copied to your application directory
and modified.

\Micrium\Software\uC-Shell

This directory contains µC/Shell, which is used to process the commands. See the for more information.µC/Shell user manual

Using the Shell Commands

To use shell commands, four files, in addition to the generic file system files, must be included in the build:

fs_shell.c
fs_shell.h
shell.c (located in)\Micrium\Software\uC-Shell\Source
shell.h (located in)\Micrium\Software\uC-Shell\Source

The file and must also be #included in any application or header files initialize µC/Shell or handle shell commands. Thefs_shell.h shell.h
shell command configuration file () should be copied to your application directory and modified. The following directories mustfs_shell_cfg.h
be on the project include path:

\Micrium\Software\uC-FS\Cmd
\Micrium\Software\uC-Shell\Source

µC/Shell with the µC/FS shell commands is initialized in in the page. The file systemListing - Initializing µC/Shell Using the Shell Commands
initialization () function should have previously been called.FS_Init()

https://doc.micrium.com/pages/viewpage.action?pageId=10753210

CPU_BOOLEAN App_ShellInit (void)
{
 CPU_BOOLEAN ok;
 ok = Shell_Init();
 if (ok == DEF_FAIL) {
 return (DEF_FAIL);
 }

 ok = FSShell_Init();
 if (ok == DEF_FAIL) {
 return (DEF_FAIL;
 }
 return (DEF_OK);
}

Listing - Initializing µC/Shell

It’s assumed that the application will create a task to receive input from a terminal; this task should be written as shown in Listing - Executing shell
 in the page.commands & handling shell output Using the Shell Commands

void App_ShellTask (void *p_arg)
{
 CPU_CHAR cmd_line[MAX_CMD_LEN];
 SHELL_ERR err;
 SHELL_CMD_PARAM cmd_param;
 CPU_CHAR cwd_path[FS_CFG_FULL_ NAME_LEN + 1u];

 (1)
 Str_Copy(&cwd_path[0], (CPU_CHAR *)"\\");
 cmd_param.pcur_working_dir = (void *)cwd_path[0];
 cmd_param.pout_opt = (void *)0;

 while (DEF_TRUE) {
 App_ShellIn(cmd_line, MAX_CMD_LEN); (2)
 (3)
 Shell_Exec(cmd_line, App_ShellOut, &cmd_param, &err);
 switch (err) {
 case SHELL_ERR_CMD_NOT_FOUND:
 case SHELL_ERR_CMD_SEARCH:
 case SHELL_ERR_ARG_TBL_FULL:
 App_ShellOut("Command not found\r\n", 19, cmd_param.pout_opt);
 break;
 default:
 break;
 }
 }
}

/*
**
* App_ShellIn()
**
*/
CPU_INT16S App_ShellIn (CPU_CHAR *pbuf,
 CPU_INT16U buf_len)
{
 /* $$$$ Store line from terminal/command line into ‘pbuf’; return length of line.
*/
}
/*
**
* App_ShellOut()
**
*/
CPU_INT16S App_ShellOut (CPU_CHAR *pbuf,
 CPU_INT16U buf_len,
 void *popt)
{
 /* $$$$ Output ‘pbuf’ data on terminal/command line; return nbr bytes tx’d. */
}

Listing - Executing shell commands & handling shell output
(1)
 The structure that will be passed to must be initialized. The member beSHELL_CMD_PARAM Shell_Exec() pcur_working_dir must
assigned a pointer to a string of at least characters. This string must have been initialized to the default workingFS_SHELL_CFG_MAX_PATH_LEN
directory path; if the root directory, “\”.

(2)
 The next command, ending with a newline, should be read from the command line.

(3)
 The received command should be executed with . If the command is a valid command, the appropriate command function will beShell_Exec()
called. For example, the command “ ” will result in in being called. will then print the entriesfs_ls FSShell_ls() fs_shell.c FSShell_ls()
in the working directory to the command line with the output function , passed as the second argument of .App_ShellOut() Shell_Exec()

Commands

The supported commands, listed in the table below, are equivalent to the standard UNIX commands of the same names, though the functionality
is typically simpler, with few or no special options.

Command Description

fs_cat Print file contents to the terminal output.

fs_cd Change the working directory.

fs_cp Copy a file.

fs_date Write the date and time to terminal output, or set the system date and time

fs_df Report disk free space.

fs_ls List directory contents.

fs_mkdir Make a directory.

fs_mkfs Format a volume.

fs_mount Mount volume.

fs_mv Move files.

fs_od Dump file contents to terminal output.

fs_pwd Write to terminal output pathname of current working directory.

fs_rm Remove a directory entry.

fs_rmdir Remove a directory.

fs_touch Change file modification time.

fs_umount Unmount volume.

fs_wc Determine the number of newlines, words and bytes in a file.

Table - Commands

Information about each command can be obtained using the help (-h) option:

Figure - Help option output

fs_cat

Print file contents to the terminal output.

Usages

fs_cat [file]

Arguments

file

1.

2.
a.
b.

c.

3.

Path of file to print to terminal output.

Output

File contents, in the ASCII character set. Non-printable/non-space characters are transmitted as full stops (“periods”, character code 46). For a
more convenient display of binary files use .fs_od

Required Configuration

Available only if is .FS_SHELL_CFG_CAT_EN DEF_ENABLED

Notes/Warnings

None.

fs_cd

Change the working directory.

Usages

fs_cd [dir]

Arguments

dir

Absolute directory path.

OR

Path relative to current working directory.

Output

None.

Required Configuration

Available only if is .FS_SHELL_CFG_CD_EN DEF_ENABLED

Notes/Warnings

The new working directory is formed in three steps:

If the argument dir begins with the path separator character (slash, ‘\’) or a volume name, it will be interpreted as an absolute directory
path and will become the preliminary working directory. Otherwise the preliminary working directory path is formed by the concatenation
of the current working directory, a path separator character and dir.
The preliminary working directory path is then refined, from the first to last path component:

If the component is a ‘dot’ component, it is removed
If the component is a ‘dot dot’ component, and the preliminary working directory path is not NULL, the previous path component
is removed. In any case, the ‘dot dot’ component is removed.
Trailing path separator characters are removed, and multiple path separator characters are replaced by a single path separator
character.

The volume is examined to determine whether the preliminary working directory exists. If it does, it becomes the new working directory.
Otherwise, an error is output, and the working directory is unchanged.

fs_cp

Copy a file.

Usages

fs_cp [source_file] [dest_file]
fs_cp [source_file] [dest_dir]

Arguments

source_file

Source file path.

dest_file

1.

2.

Destination file path.

dest_dir

Destination directory path.

Output

None.

Required Configuration

Available only if is and is .FS_SHELL_CFG_CP_EN DEF_ENABLED FS_CFG_RD_ONLY_EN DEF_DISABLED

Notes/Warnings

In the first form of this command, neither argument may be an existing directory. The contents of will be copied to a filesource_file
named located in the same directory as .dest_file source_file
In the second form of this command, the first argument must not be an existing directory and the second argument must be an existing
directory. The contents of will be copied to a file with name formed by concatenating , a path separatorsource_file dest_dir
character and the final component of .source_file

fs_date

Write the date and time to terminal output, or set the system date and time.

Usages

fs_date

fs_date [time]

Arguments

time
If specified, time to set, in the form :mmddhhmmccyy

1st mm the month (1-12)

dd the day (1-29, 30 or 31)

hh the hour (0-23)

2nd mm the minute (0-59)

ccyy the year (1900 or larger)

Output

If no argument, date and time.

Required Configuration

Available only if is .FS_SHELL_CFG_DATE_EN DEF_ENABLED

Notes/Warnings

None.

Figure - fs_date output

fs_df

Report disk free space.

1.

Usages

fs_df

fs_df [vol]

Arguments

vol

If specified, volume on which to report free space. Otherwise, information about all volumes will be output..

Output

Name, total space, free space and used space of volumes.

Required Configuration

Available only if is .FS_SHELL_CFG_DF_EN DEF_ENABLED

Notes/Warnings

None.

Figure - fs_df output

fs_ls

List directory contents.

Usages

fs_ls

Arguments

None.

Output

List of directory contents.

Required Configuration

Available only if is .FS_SHELL_CFG_LS_EN DEF_ENABLED

Notes/Warnings

The output resembles the output from the standard UNIX command ls -l. See the figure below.

Figure - fs_ls output

fs_mkdir

Make a directory.

Usages

fs_mkdir [dir]

Arguments

dir

Directory path.

Output

None.

Required Configuration

Available only if is and is .FS_SHELL_CFG_MKDIR_EN DEF_ENABLED FS_CFG_RD_ONLY_EN DEF_DISABLED

Notes/Warnings

None.

fs_mkfs

Format a volume.

Usages

fs_mkfs [vol]

Arguments

vol

Volume name.

Output

None.

Required Configuration

Available only if is and is .FS_SHELL_CFG_MKFS_EN DEF_ENABLED FS_CFG_RD_ONLY_EN DEF_DISABLED

Notes/Warnings

None.

fs_mount

Mount volume.

1.

2.

3.

Usages

fs_mount [dev] [vol]

Arguments

dev

Device to mount.

vol

Name which will be given to volume.

Output

None.

Required Configuration

Available only if is .FS_SHELL_CFG_MOUNT_EN DEF_ENABLED

Notes/Warnings

None.

fs_mv

Move files.

Usages

fs_mv [source_entry] [dest_entry]
fs_mv [source_entry] [dest_dir]

Arguments

source_entry

Source entry path.

dest_entry

Destination entry path.

dest_dir

Destination directory path.

Output

None.

Required Configuration

Available only if is and is .FS_SHELL_CFG_MV_EN DEF_ENABLED FS_CFG_RD_ONLY_EN DEF_DISABLED

Notes/Warnings

In the first form of this command, the second argument must not be an existing directory. The file will be renamed source_entry dest_
.entry

In the second form of this command, the second argument must be an existing directory. will be renamed to an entrysource_entry
with name formed by concatenating , a path separator character and the final component of .dest_dir source_entry
In both forms, if is a directory, the entire directory tree rooted at will be copied and then deleted.source_entry source_entry
Additionally, both and or must specify locations on the same volume.source_entry dest_entry dest_dir

fs_od

Dump file contents to the terminal output.

Usages

fs_od [file]

Arguments

file

Path of file to dump to terminal output.

Output

File contents, in hexadecimal form.

Required Configuration

Available only if is .FS_SHELL_CFG_OD_EN DEF_ENABLED

Notes/Warnings

None.

Figure - fs_od output

fs_pwd

Write to terminal output pathname of current working directory.

Usages

fs_pwd

Arguments

None.

Output

Pathname of current working directory..

Required Configuration

Available only if is .FS_SHELL_CFG_PWD_EN DEF_ENABLED

Notes/Warnings

None.

fs_rm

Remove a file.

1.

Usages

fs_rm [file]

Arguments

file

File path.

Output

None.

Required Configuration

Available only if is and is .FS_SHELL_CFG_RM_EN DEF_ENABLED FS_CFG_RD_ONLY_EN DEF_DISABLED

Notes/Warnings

None.

fs_rmdir

Remove a directory.

Usages

fs_rmdir [dir]

Arguments

dir

Directory path.

Output

None.

Required Configuration

Available only if is and is .FS_SHELL_CFG_RMDIR_EN DEF_ENABLED FS_CFG_RD_ONLY_EN DEF_DISABLED

Notes/Warnings

None.

fs_touch

Change file modification time.

Usages

fs_touch [file]

Arguments

file

File path.

Output

None.

Required Configuration

Available only if is and is .FS_SHELL_CFG_TOUCH_EN DEF_ENABLED FS_CFG_RD_ONLY_EN DEF_DISABLED

Notes/Warnings

1. The file modification time is set to the current time.

fs_umount

Unount volume.

Usages

fs_umount [vol]

Arguments

vol

Volume to unmount.

Output

None.

Required Configuration

Available only if is .FS_SHELL_CFG_UMOUNT_EN DEF_ENABLED

Notes/Warnings

None.

fs_wc

Determine the number of newlines, words and bytes in a file.

Usages

fs_wc [file]

Arguments

file

Path of file to examine.

Output

Number of newlines, words and bytes; equivalent to:

printf("%d %d %d %s", newline_cnt, word_cnt, byte_cnt, file);

Required Configuration

Available only if is .FS_SHELL_CFG_WC_EN DEF_ENABLED

Notes/Warnings

None.

Figure - fs_wc output

Configuration

Configuration constants can be used to enable/disable features within the µC/FS shell commands.

FS_SHELL_CFG_BUF_LEN

FS_FAT_CFG_BUF_LEN defines the length of the buffer, in octets, used to read/write from files during file access operations. Since this
buffer is placed on the task stack, the task stack must be sized appropraitely.

FS_SHELL_CFG_CMD_####_EN
Each separately enables/disables a particular command:FS_FAT_CFG_CMD_####_EN fs_####

FS_FAT_CFG_CMD_CAT_EN Enable/disable .fs_cat

FS_FAT_CFG_CMD_CD_EN Enable/disable .fs_cd

FS_FAT_CFG_CMD_CP_EN Enable/disable .fs_cp

FS_FAT_CFG_CMD_DF_EN Enable/disable .fs_df

FS_FAT_CFG_CMD_DATE_EN Enable/disable .fs_date

FS_FAT_CFG_CMD_LS_EN Enable/disable .fs_ls

FS_FAT_CFG_CMD_MKDIR_EN Enable/disable .fs_mkdir

FS_FAT_CFG_CMD_MKFS_EN Enable/disable .fs_mkfs

FS_FAT_CFG_CMD_MOUNT_EN Enable/disable .fs_mount

FS_FAT_CFG_CMD_MV_EN Enable/disable .fs_mv

FS_FAT_CFG_CMD_OD_EN Enable/disable .fs_od

FS_FAT_CFG_CMD_PWD_EN Enable/disable .fs_pwd

FS_FAT_CFG_CMD_RM_EN Enable/disable .fs_rm

FS_FAT_CFG_CMD_RMDIR_EN Enable/disable .fs_rmdir

FS_FAT_CFG_CMD_TOUCH_EN Enable/disable .fs_touch

FS_FAT_CFG_CMD_UMOUNT_EN Enable/disable .fs_umount

FS_FAT_CFG_CMD_WC_EN Enable/disable .fs_wc

Bibliography
Labrosse, Jean J. 2009, , Micrium Press, 2009, ISBN 978-0-98223375-3-0.µC/OS-III, The Real-Time Kernel

Légaré, Christian 2010, , Micrium Press, 2010, ISBN 978-0-98223375-0-9.µC/TCP-IP, The Embedded Protocol Stack

POSIX:2008 The Open Group Base Specifications Issue 7, IEEE Standard 1003.1-2008.

Programming Lauguages -- C, ISO/IEC 9899:1999.

The Motor Industry Software Reliability Association, , Guidelines for the Use of the C Language in Critical Systems, October 2004.MISRA-C:2004
www.misra-c.com.

http://www.clusterbuilder.org/

Cho, H., Shin, D., Eom, Y. I. 2009, Architecture,KAST: K-Associative Sector Translation for NAND Flash Memory in Real-Time Systems,
507-512. IEEE.

µC/FS Release Notes
Version 4.07.00
Version 4.06.01
Version 4.06.00
Version 4.05.03
Version 4.05.02
Version 4.05.01
Version 4.05.00
Version 4.04.05
Version 4.04.04
Version 4.04.03
Previous versions

Version 4.07.00

Release date: 2014-02-14

Requirements

µC/Clk V3.09.03
µC/CPU V1.29.01
µC/CRC V1.09.01
µC/LIB V1.38.00
[OPTION] µC/OS-II OS Port: µC/OS-II V2.92.07
[OPTION] µC/OS-III OS Port: µC/OS-II V3.03.01
[OPTION] USB Mass Storage Class driver: µC/USB-Host V3.40.02

New features & improvements

µC/LIB V1.38.00 compatibility: version 1.38.00 of µC/LIB has deprecated some APIs that were used by previous versions of µC/FS, most
notably and .Mem_PoolBlkGetUsedAtIx() Mem_PoolBlkIxGet() Updating to µC/FS V4.07.00 is required if updating other Micrium
products that require µC/FS V1.38.00.
NAND Driver: 16-bit NAND compatibility for generic parallel NAND controller.
Journaling module: significantly reduced performance hit due to new journal clearing algorithm.

API changes

NAND generic controller BSPs now have an added ' ' parameter in functions and . Existing NAND genericwidth DataRd() DataWr()
controller BSPs will need to be updated. See for more details.µC/FS Migration Guide

Bug fixes

SD Driver: issue STOP_TRANSMISSION command only once per stop operation.
Missing err code init in FSDev_Access(Lock|Unlock).
Mounting logical partition fails if extended partition type is LBA extended (0xF).
NAND Driver: incorrect data size allocation for Micron ECC and Soft ECC.
FS_FAT_JournalOpen(): erroneous journal file's cluster count calculation when the journal size is smaller than the cluster size.
NOR Driver: PrepareBlk called without wear leveling check.
NAND Driver errors in 16 bits defect mark checking.
NAND Driver: add support for switching to 16 bits width.

Version 4.06.01

Release date: 2013-07-10

Requirements

µC/Clk V3.09.03
µC/CPU V1.29.01
µC/CRC V1.09.01
µC/LIB V1.37.01
[OPTION] µC/OS-II OS Port: µC/OS-II V2.92.07
[OPTION] µC/OS-III OS Port: µC/OS-II V3.03.01
[OPTION] USB Mass Storage Class driver: µC/USB-Host V3.40.02

New features & improvements

None.

API changes

None.

Bug fixes

FAT: EOC handling does not account for all possible values

Version 4.06.00

Release date: 2013-06-27

Requirements

µC/Clk V3.09.03
µC/CPU V1.29.01
µC/CRC V1.09.01
µC/LIB V1.37.01
[OPTION] µC/OS-II OS Port: µC/OS-II V2.92.07
[OPTION] µC/OS-III OS Port: µC/OS-II V3.03.01
[OPTION] USB Mass Storage Class driver: µC/USB-Host V3.40.02

New features & improvements

Journaling module: The journaling module has been redesigned in order to improve robustness and achieve lower footprint (both ROM
and RAM).
NOR Driver: Added support for SST25VFxxxC family.
NAND Driver: Major bugfix release: update is highly recommended.
NAND Driver: Added support for dumping raw NAND images.

API changes

Due to the journaling module redesign, any journaled volume used under µC/FS V4.05.03 or prior version must be cleanly unmounted
before upgrading to V4.06.00.
Unused fields removed from most core µC/FS structures (shouldn't affect applications).
FS_CFG_BUILD configuration option removed.
See for more details.µC/FS Migration Guide

Bug fixes

FS_FAT_VolFmt() ignores the RsvdSec parameters
FAT corruption after partial cluster chain allocation
FSBuf_Free() can shadow write errors in many cases
Incorrect corner cases in default format configuration tables
NAND Driver: some incorrect use of MEM_VAL_COPY_GET/SET macros on big endian CPUs
NAND Driver: MetaBlkFoldNeeded may be uninitialized
fs_fstat: directories reported as files
Possible buffer leak when returning from FSPartition_Add()
NAND Driver: new block is not removed from available blocks table in refresh operations
NAND Driver: dirty bitmap pointer not updated after search
FS_FAT_VolChk() erroneously consider an empty file as invalid
FS_FAT_LowEntryFind() discard clusters allocated to a zero sized file
UTF8_MAX_VAL_4BYTE undeclared when FS_UNICODE_CFG_WCHAR_SIZE is configured to 32
Deleting a file or directory with a cluster chain longer than expected will leave a lost chain
FS_FAT_FileRd() should not set the EOF indicator
Opening a file of size 0 should not set the EOF indicator
NAND Driver: retries performed on unwritten sectors at mount time in MetaBlkFind()
NOR: Possible infinite loop in the Intel PHY

Version 4.05.03

Release date: 2013-01-21

Requirements

µC/Clk V3.09.03
µC/CPU V1.29.01
µC/CRC V1.09.01
µC/LIB V1.37.01
[OPTION] µC/OS-II OS Port: µC/OS-II V2.92.07
[OPTION] µC/OS-III OS Port: µC/OS-II V3.03.01
[OPTION] USB Mass Storage Class driver: µC/USB-Host V3.40.02

New features & improvements

NOR Driver: Added support for Atmel AT45 devices.

API changes

None.

Bug fixes

NAND Driver: wrong buffer name SpareBufPtr used when FS_NAND_CFG_XXXX_CACHE_EN is disabled
Check for LIB_MEM_HEAP_ALLOC_EN breaks build with uC/LIB V1.37.01
FSVol_LabelGet() returns malformed string
NAND Driver: wrong pointer is passed to SecRdPhyNoRefresh() in BlkRefresh()
os_err possibly undeclared in FS_OS_Init() function of the uCOS-II port
fs_app should open the volume even if the media is not present
FSVol_ReleaseUnlock() called when FSVol_Release() is appropriate
Volume not always released on lock failure
FS_OS lock not always released when returning from a fatal error
FSDev_NOR_PhyEraseChip() returns with error FS_ERR_DEV_INVALID_IO_CTRL
Invalid memory macro usage on big endian architectures

Version 4.05.02

Release date: 2012-10-26

Requirements

µC/Clk V3.09.03
µC/CPU V1.29.01
µC/CRC V1.09.01
µC/LIB V1.37.00
[OPTION] µC/OS-II OS Port: µC/OS-II V2.92.07
[OPTION] µC/OS-III OS Port: µC/OS-II V3.03.01

New features & improvements

NOR Driver: Added support for Micron NP5Q phase change memory (PCM) devices.

API changes

None.

Bug fixes

Partition mount fails on big-endian platforms
Buffer leak when closing a journaled volume
Journal creation may fail or be corrupted if the maximum sector size is larger than the volume cluster size
IOCTL calls cannot be done on a device with no media present
NAND Driver: existing meta block not checked when formatting a device with incompatible low-fmt parameters.
FS_WorkingDirGet returns the wrong error when given a size of 0

Version 4.05.01

Release date: 2012-08-17

Requirements

µC/Clk V3.09.03
µC/CPU V1.29.01
µC/CRC V1.09.01
µC/LIB V1.37.00
[OPTION] µC/OS-II OS Port: µC/OS-II V2.92.07
[OPTION] µC/OS-III OS Port: µC/OS-II V3.03.01

New features & improvements

NAND generic controller BSP: allow most BSP functions to report errors through a new p_err argument.

API changes

FS_NAND_PART_STATIC_CFG structure: NbrOfPgmPerPage renamed to NbrPgmPerPg.
NAND generic controller BSP API: all functions except Close(), ChipSelEn() and ChipSelDis() now have a FS_ERR* argument. Open()
and WaitWhileBusy() return type changed from CPU_BOOLEAN to void.

Bug fixes

Misspelled include file in fs_entry.c
FSDir_Rd() fails to read the last entry of a full root directory
VolFreeSecCnt isn't cleared when calling FSVol_Query on an unmounted volume
FS_WorkingDirSet and FSEntry_Query returns wrong error code when given a null name pointer
Documentation and code comments mention the wrong error for null strings
Cluster allocation may fail when only one free cluster is left on volume
NAND Driver: FS_NAND_Close() causes memory access error if no instance has been opened
Multiple calls to FSVol_Query may give invalid results
Opening the journal may cause FSVol_Query() to report an increased number of total sector
Erroneous return value in the fs_rmdir() comment header block
File creation may fail in the root of a FAT12/16 volume full of deleted entries
Erroneous prototype in the fs_setbuf() API reference
SD SPI preprocessor warning mention app_cfg.h instead of crc_cfg.h
Improperly closed comment in fs_dev_nor_sst25.c
NAND Driver: generic controller BSP template uses wrong API structure type
Comments about FS_CFG_RD_ONLY_EN are reversed in fs_cfg.h
Duplicate entry FS_ERR_NAME_INVALID for FSEntry_Rename()

Version 4.05.00

Release date: 2012-08-17

Requirements

µC/Clk V3.09.03
µC/CPU V1.29.01
µC/CRC V1.09.01
µC/LIB V1.37.00
[OPTION] µC/OS-II OS Port: µC/OS-II V2.92.07
[OPTION] µC/OS-III OS Port: µC/OS-II V3.03.01

New features & improvements

NAND Flash Driver: a new driver has been added and supports most parralel NAND devices (SLC, MLC, small and large page). Support
for 1-bit software ECC correction. Has a flexible architecture allowing use of hardware ECC engines.
Multi-Cluster Writes and Reads: µC/FS can now perform writes or reads across cluster boundaries. This will result in a performance
increase when writing or reading using large application buffers.

API changes

Error codes returned from some API functions were corrected. Important changes are listed in the migration guide.

Bug fixes

Incorrect SFN tail when creating repeated SFN entries of less than 8 characters
FSEntry_Del() does not validate correctly its entry_type argument
FSEntry_Rename() fails to delete the source after copying between different volumes
FSEntry_Rename() fails over two existing files without an allocated cluster
NOR Driver: SST25 PHY assumes device is not in AA mode when opening
Cluster size is not validated by FS_FAT_VolFmt()
Possible buffer leak in FS_FAT_VolFmt()
Trying to format a small enough FAT12 volume may generate invalid device access
Volume is closed after a failed call to FSVol_Fmt()
FS_FAT_VolFmt() miscalculates the crossings between FAT 12, 16 and 32
Wrong error returned when out of heap or pool space in some cases
Garbage may be written in the last sector's slack space of a file
Possible spurious cache miss when reading sector 0
FSCache_Create returns an unrelated error message when given invalid configuration
Path names longer than FS_CFG_MAX_PATH_NAME_LEN are silently truncated
FSentry_* class of functions do not check for invalid file name length
Shell extension command 'fs_ls' reports the wrong year
Possible FAT table corruption when formating FAT32 volumes
FSFile_Query() blocks buffer assignment
Unreachable code in FSFile_BufWr() related to the FS_FILE_BUF_MODE_SEC_ALIGNED flag
FSFile_SetPos() breaks when trying to set the file position to a negative value
Some functions return the wrong error when given a null string

Inconsistent behavior between FSDir_IsOpen() and FSFile_IsOpen() when given the wrong file type as input
Some file system functions return the wrong error when using the root dir as target
FSFile_Truncate() can't increase the size of a file as documented
FSEntry_Create doesn't report any error when trying to create a directory that has a name conflict with a file when the exclusive flag isn't
set

Version 4.04.05

Release date: 2012-06-12

Requirements

µC/Clk V3.09.03
µC/CPU V1.29.01
µC/CRC V1.09.01
µC/LIB V1.37.00

New features & improvements

None.

API changes

None.

Bug fixes

FSDev_Open(): name_dev_copy allocation size is incorrect.

Version 4.04.04

Release date: 2012-06-06

Requirements

µC/Clk V3.09.03
µC/CPU V1.29.01
µC/CRC V1.09.01
µC/LIB V1.37.00

New features & improvements

Device Query: FSDev_Query() will now return correct data for the 'Fixed' and 'State' fields even when the device is not accessible.
SD Card Driver: Better support for high capacity MMCplus and eMMC devices.

API changes

None.

Bug fixes

Wasted stack space for name_dev_copy in FSDev_Open().
RAMDisk driver reports device as removable. FSDev_Query() on a RAMDisk device will now correctly report the device as fixed.
Missing calls to FSDev_Release when returning from a lock failure in the dev layer.

Version 4.04.03

Release date: 2012-05-18

Requirements

µC/Clk V3.09.03
µC/CPU V1.29.01

µC/CRC V1.09.01
µC/LIB V1.37.00

New features & improvements

Device Access Locks: These locks needs to be acquired for all direct device layer (FSDev_####()) API calls. The filesystem core
functions (FSFile_####(), FSDir_####(), etc.) will acquire these locks automatically needed.
Device Invalidation: Allows user to invalidate a device. Invalidating a device prevents any further operation on an open volume or entry
associated with the specified device to succeed. Errors will be returned by any function accessing an invalidated entry or volume until
those entries and volumes are closed and reopened. This is useful when devices are accessed externally directly through the device
layer, as those access can cause the file system to be modified, and thus cause cached data related to volume or entries to become
invalid. This is required for interoperation with USB Device Mass Storage Class (MSC).
Sector-aligned file buffers: New file buffer mode that forces file buffers start positions to be aligned with sector boundaries, for increased
performance.

API changes

OS Port Layer: FS_OS_WorkingDirSet() now takes an error pointer as last argument and may fail.

Bug fixes

fs_fstat(): modification time and creation time are interchanged.
FSDir_NameParseChk() might modify the entry name it receives.
FAT12: ClusValWr and ClusValRd incorrectly write/read cluster values across sector boundaries, for odd numbered FAT table entries.
Extending a directory table beyond a cluster causes entries to vanish.
Creating a directory without exclusive flag set fails when directory already exists.

Previous versions

Older versions' release notes are in the following PDF document: uC-FS-ReleaseNotesArchive.pdf

µC/FS Migration Guide
Migrating from V4.06.01 to V4.07.00
Previous versions

Migrating from V4.06.01 to V4.07.00

The following is a comprehensive list of the modifications you must apply to your µC/FS projects to update them to V4.07.00 from V4.06.01.
The changes are easy to make and updating your project should take a short time.

New source code

µC/FS V4.07.00 is comprised of mostly bugfixes and minor changes in existing modules. The first step is to replace every file of your project
by the new ones.

Updated requirements

An update of µC/LIB to V1.38.00 is required for µC/FS V4.07.00 to successfully build due to the usage of a new macro introduced in
V1.38.00.

API changes

NAND Generic controller Board Support Package (BSP) API changes

The NAND generic controller now supports 16-bit NAND parallel devices. The and functions now take the width, inDataWr() DataRd()
bits, of the requested bus access. See for API details.Board Support Package

Existing implementations may ignore the ' ' argument and assume 8-bit operation and return error code ifwidth FS_ERR_INVALID_ARG 'w
 is set to 16, as in the following example:idth'

https://doc.micrium.com/download/attachments/12859069/uC-FS-ReleaseNotesArchive.pdf?version=1&modificationDate=1391692288000&api=v2

static void FS_NAND_BSP_DataWr
(void *p_src,

CPU_SIZE_T cnt,

FS_ERR *p_err)
{
 CPU_INT08U *p_dest =
SAM9M10_NAND_DATA;
 CPU_INT08U *p_src_08 =
(CPU_INT08U *)p_src;
 CPU_SIZE_T i;

 for (i = 0u; i < cnt, i++) {
 *(p_dest++) = *(p_src_08++);
 }
 *p_err = FS_ERR_NONE;
}

static void FS_NAND_BSP_DataRd
(void *p_dest,

CPU_SIZE_T cnt,

FS_ERR *p_err)
{
 CPU_INT08U *p_src =
SAM9M10_NAND_DATA;
 CPU_INT08U *p_dest_08 =
(CPU_INT08U *)p_dest;
 CPU_SIZE_T i;

 for (i = 0u; i < cnt, i++) {
 *(p_dest_08++) = *(p_src++);
 }
 *p_err = FS_ERR_NONE;
}

Listing - DataWr() and DataRd() functions before migration

static void FS_NAND_BSP_DataWr
(void *p_src,

CPU_SIZE_T cnt,

CPU_INT08U width,

FS_ERR *p_err)
{
 CPU_INT08U *p_dest =
SAM9M10_NAND_DATA;
 CPU_INT08U *p_src_08 =
(CPU_INT08U *)p_src;
 CPU_SIZE_T i;

 if (width != 8u) { /* <-- Added
check. */
 *p_err = FS_ERR_INVALID_ARG;
 return;
 }

 for (i = 0u; i < cnt, i++) {
 *(p_dest++) = *(p_src_08++);
 }
 *p_err = FS_ERR_NONE;
}

static void FS_NAND_BSP_DataRd
(void *p_dest,

CPU_SIZE_T cnt,

CPU_INT08U width,

FS_ERR *p_err)
{
 CPU_INT08U *p_src =
SAM9M10_NAND_DATA;
 CPU_INT08U *p_dest_08 =
(CPU_INT08U *)p_dest;
 CPU_SIZE_T i;

 if (width != 8u) {
/* <-- Added check. */
 *p_err = FS_ERR_INVALID_ARG;
 return;
 }

 for (i = 0u; i < cnt, i++) {
 *(p_dest_08++) = *(p_src++);
 }
 *p_err = FS_ERR_NONE;
}

Listing - DataWr() and DataRd() functions after migration

Previous versions

The migration guide for previous versions of µC/FS is available in PDF: uC-FS-MigrationGuide.pdf

µC/FS Licensing Policy
If you plan or intend to use µC/FS in a commercial application/product then, you need to contact Micrium to properly license µC/FS for its use in
your application/product. We provide the source code for your convenience and to help you experience uC/FS. The fact that the source isall
provided does mean that you can use it commercially without paying a licensing fee.not

It is necessary to purchase this license when the decision to use µC/FS in a design is made, not when the design is ready to go to production.

If you are unsure about whether you need to obtain a license for your application, please contact Micrium and discuss the intended use with a
sales representative.

µC/FS Maintenance Renewal

Licensing µC/FS provides one year of limited technical support and maintenance and source code updates. Renew the maintenance agreement
for continued support and source code updates.Contact for additional information.sales@micrium.com

µC/FS Source Code Updates

If you are under maintenance, updates to the µC/FS sources packages will be available in your account on the Micriµm purchased software
. If you are no longer under maintenance, or forget your account username or password, please contact .download portal sales@micrium.com

µC/FS Support

Support is available for licensed customers. Please visit the customer support section in . If you are not a current user, pleasewww.Micriµm.com
register to create your account. A web form will be offered to you to submit your support question,

Licensed customers can also use the following contact

Contact Micriµm

1290 Weston Road, Suite 306
Weston, FL 33326
USA

Phone: +1 954 217 2036
Fax: +1 954 217 2037

E-mail: Licensing@Micrium.com
Web: www.Micrium.com

https://doc.micrium.com/download/attachments/12859109/uC-FS-MigrationGuide.pdf?version=1&modificationDate=1391695823000&api=v2
https://login.salesforce.com/secur/login_portal.jsp?orgId=00D80000000LXYY&portalId=06080000000Mk5n
https://login.salesforce.com/secur/login_portal.jsp?orgId=00D80000000LXYY&portalId=06080000000Mk5n
http://www.Micri�m.com
http://www.micrium.com/

	µC/FS Documentation 4.07.00 Home
	µC/FS User Manual
	Introduction
	µC/FS Architecture
	µC/FS Directories and Files
	Useful Information
	Devices and Volumes
	Device Operations
	Using Devices
	Using Removable Devices
	Raw Device I/O
	Partitions
	Volume Operations
	Using Volumes
	Using Volume Cache

	Files
	File System File Access Functions
	Opening Files
	Getting Information About a File
	Configuring a File Buffer
	File Error Functions
	Atomic File Operations Using File Lock

	File System Entry Access Functions
	File and Directory Attributes
	Creating New Files and Directories
	Deleting Files and Directories

	Directories
	POSIX API
	Supported Functions - POSIX
	Working Directory Functions - POSIX
	File Access Functions - POSIX
	Opening, Reading and Writing Files - POSIX
	Getting or Setting the File Position - POSIX
	Configuring a File Buffer - POSIX
	Diagnosing a File Error - POSIX
	Atomic File Operations Using File Lock - POSIX

	Directory Access Functions - POSIX
	Entry Access Functions - POSIX

	Device Drivers
	Provided Device Drivers
	Driver Characterization

	Drivers Comparison

	FAT File System
	Why Embedded Systems Use FAT
	Organization of a FAT Volume
	Organization of Directories and Directory Entries

	Organization of the File Allocation Table
	FAT12 / FAT16 / FAT32
	Short and Long File Names

	Formatting
	Types of Corruption in FAT Volumes
	Optional Journaling System
	What Journaling Guarantees
	How Journaling Works
	How To Use Journaling
	Limitations of Journaling

	Licensing Issues

	RAM Disk Driver
	Files and Directories - RAM Disk
	Using the RAM Disk Driver

	SD/MMC Drivers
	Files and Directories - SD/MMC
	Using the SD/MMC CardMode Driver
	SD/MMC CardMode Communication
	SD/MMC CardMode Communication Debugging
	SD/MMC CardMode BSP Overview

	Using the SD/MMC SPI Driver
	SD/MMC SPI Communication
	SD/MMC SPI Communication Debugging
	SD/MMC SPI BSP Overview

	NAND Flash Driver
	Getting Started
	Architecture Overview
	NAND Translation Layer
	Translation Layer Configuration
	Translation Layer Source Files

	Controller Layer
	Generic Controller Layer Implementation

	Part Layer
	Board Support Package
	Performance Considerations
	Development Guide
	BSP Development Guide - Generic Controller
	Generic Controller Extension Development Guide
	ECC Module Development Guide
	Controller Layer Development Guide

	NOR Flash Driver
	Files and Directories - NOR Flash
	NOR Driver and Device Characteristics
	Using a Parallel NOR Device
	Driver Architecture - Parallel NOR
	Hardware - Parallel NOR
	NOR BSP Overview

	Using a Serial NOR Device
	Hardware - Serial NOR
	NOR SPI BSP Overview

	Physical-Layer Drivers
	FSDev_NOR_AMD_1x08 & FSDev_NOR_AMD_1x16
	FSDev_NOR_Intel_1x16
	FSDev_NOR_SST39
	FSDev_NOR_STM25
	FSDev_NOR_SST25

	MSC Driver
	Files and Directories - MSC
	Using the MSC Driver

	IDE/CF Driver
	Files and Directories - IDE/CF
	Using the IDE/CF Driver
	ATA (True IDE) Communication
	IDE BSP Overview

	µC/FS Reference Guide
	µC/FS API Reference
	General File System Functions
	FS_DevDrvAdd()
	FS_Init()
	FS_VersionGet()
	FS_WorkingDirGet()
	FS_WorkingDirSet()

	Posix API Functions
	fs_asctime_r()
	fs_chdir()
	fs_clearerr()
	fs_closedir()
	fs_ctime_r()
	fs_fclose()
	fs_feof()
	fs_ferror()
	fs_fflush()
	fs_fgetpos()
	fs_flockfile()
	fs_fopen()
	fs_fread()
	fs_fseek()
	fs_fsetpos()
	fs_ftell()
	fs_ftruncate()
	fs_ftrylockfile()
	fs_funlockfile()
	fs_fwrite()
	fs_getcwd()
	fs_localtime_r()
	fs_mkdir()
	fs_mktime()
	fs_opendir()
	fs_readdir_r()
	fs_remove()
	fs_rename()
	fs_rewind()
	fs_rmdir()
	fs_setbuf()
	fs_setvbuf()

	Device Functions
	FSDev_AccessLock()
	FSDev_AccessUnlock()
	FSDev_Close()
	FSDev_GetDevCnt()
	FSDev_GetDevCntMax()
	FSDev_GetDevName()
	FSDev_GetNbrPartitions()
	FSDev_Invalidate()
	FSDev_Open()
	FSDev_PartitionAdd()
	FSDev_PartitionFind()
	FSDev_PartitionInit()
	FSDev_Query()
	FSDev_Rd()
	FSDev_Refresh()
	FSDev_Wr()

	Directory Access Functions
	FSDir_Close()
	FSDir_IsOpen()
	FSDir_Open()
	FSDir_Rd()

	Entry Access Functions
	FSEntry_AttribSet()
	FSEntry_Copy()
	FSEntry_Create()
	FSEntry_Del()
	FSEntry_Query()
	FSEntry_Rename()
	FSEntry_TimeSet()

	File Functions
	FSFile_BufAssign()
	FSFile_BufFlush()
	FSFile_Close()
	FSFile_ClrErr()
	FSFile_IsEOF()
	FSFile_IsErr()
	FSFile_IsOpen()
	FSFile_LockAccept()
	FSFile_LockGet()
	FSFile_LockSet()
	FSFile_Open()
	FSFile_PosGet()
	FSFile_PosSet()
	FSFile_Query()
	FSFile_Rd()
	FSFile_Truncate()
	FSFile_Wr()

	Volume Functions
	FSVol_Close()
	FSVol_Fmt()
	FSVol_GetDfltVolName()
	FSVol_GetVolCnt()
	FSVol_GetVolCntMax()
	FSVol_GetVolName()
	FSVol_IsDflt()
	FSVol_IsMounted()
	FSVol_LabelGet()
	FSVol_LabelSet()
	FSVol_Open()
	FSVol_Query()
	FSVol_Rd()
	FSVol_Wr()

	Volume Cache Functions
	FSVol_CacheAssign()
	FSVol_CacheFlush()
	FSVol_CacheInvalidate ()

	SD/MMC Driver Functions
	FSDev_SD_xxx_QuerySD()
	FSDev_SD_xxx_RdCID()
	FSDev_SD_xxx_RdCSD()

	NAND Driver Functions
	FSDev_NAND_LowFmt()
	FSDev_NAND_LowMount()
	FSDev_NAND_LowUnmount()

	NOR Driver Functions
	FSDev_NOR_LowCompact()
	FSDev_NOR_LowDefrag()
	FSDev_NOR_LowFmt()
	FSDev_NOR_LowMount()
	FSDev_NOR_LowUnmount()
	FSDev_NOR_PhyEraseBlk()
	FSDev_NOR_PhyEraseChip()
	FSDev_NOR_PhyRd()
	FSDev_NOR_PhyWr()

	FAT System Driver Functions
	FS_FAT_JournalClose()
	FS_FAT_JournalOpen()
	FS_FAT_JournalStart()
	FS_FAT_JournalStop()
	FS_FAT_VolChk()

	µC/FS Error Codes
	µC/FS Porting Manual
	Date/Time Management
	CPU Port
	OS Kernel
	Device Driver
	Close() - Device Driver
	Init() - Device Driver
	IO_Ctrl() - Device Driver
	NameGet() - Device Driver
	Open() - Device Driver
	Query() - Device Driver
	Rd() - Device Driver
	Wr() - Device Driver

	SD/MMC Cardmode BSP
	FSDev_SD_Card_BSP_CmdDataRd()
	FSDev_SD_Card_BSP_CmdDataWr()
	FSDev_SD_Card_BSP_CmdStart()
	FSDev_SD_Card_BSP_CmdWaitEnd()
	FSDev_SD_Card_BSP_GetBlkCntMax()
	FSDev_SD_Card_BSP_GetBusWidthMax()
	FSDev_SD_Card_BSP_Lock/Unlock()
	FSDev_SD_Card_BSP_Open()
	FSDev_SD_Card_BSP_SetBusWidth()
	FSDev_SD_Card_BSP_SetClkFreq()
	FSDev_SD_Card_BSP_SetTimeoutData()
	FSDev_SD_Card_BSP_SetTimeoutResp()

	SD/MMC SPI Mode BSP
	SPI BSP
	ChipSelEn() / ChipSelDis() - SPI BSP
	Close() - SPI BSP
	Lock() / Unlock() - SPI BSP
	Open() - SPI BSP
	Rd() - SPI BSP
	SetClkFreq() - SPI BSP
	Wr() - SPI BSP

	NAND Flash Physical-Layer Driver
	NOR Flash Physical-Layer Driver
	Close() - NOR Flash Driver
	EraseBlk() - NOR Flash Driver
	IO_Ctrl() - NOR Flash Driver
	Open() - NOR Flash Driver
	Rd() - NOR Flash Driver
	Wr() - NOR Flash Driver

	NOR Flash BSP
	FSDev_NOR_BSP_Close()
	FSDev_NOR_BSP_Open()
	FSDev_NOR_BSP_Rd_XX()
	FSDev_NOR_BSP_RdWord_XX()
	FSDev_NOR_BSP_WaitWhileBusy()
	FSDev_NOR_BSP_WrWord_XX()

	NOR Flash SPI BSP

	µC/FS Types and Structures
	FS_CFG
	FS_DEV_INFO
	FS_DEV_NOR_CFG
	FS_DEV_RAM_CFG
	FS_DIR_ENTRY (struct fs_dirent)
	FS_ENTRY_INFO
	FS_FAT_SYS_CFG
	FS_PARTITION_ENTRY
	FS_VOL_INFO

	µC/FS Configuration
	File System Configuration
	Feature Inclusion Configuration
	Name Restriction Configuration
	Debug Configuration
	Argument Checking Configuration
	File System Counter Configuration
	FAT Configuration
	SD/MMC SPI Configuration
	Trace Configuration

	Shell Commands
	Files and Directories
	Using the Shell Commands
	Commands
	fs_cat
	fs_cd
	fs_cp
	fs_date
	fs_df
	fs_ls
	fs_mkdir
	fs_mkfs
	fs_mount
	fs_mv
	fs_od
	fs_pwd
	fs_rm
	fs_rmdir
	fs_touch
	fs_umount
	fs_wc

	Configuration

	Bibliography

	µC/FS Release Notes
	µC/FS Migration Guide
	µC/FS Licensing Policy

