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Designing Stable Control Loops
By Dan Mitchell and Bob Mammano

ABSTRACT

The objective of this topic is to provide the designer with a practical review of loop compensation
techniques applied to switching power supply feedback control. A top-down system approach is taken
starting with basic feedback control concepts and leading to step-by-step design procedures, initially
applied to a simple buck regulator and then expanded to other topologies and control algorithms.
Sample designs are demonstrated with Mathcad simulations to illustrate gain and phase margins and
their impact on performance analysis.

I. INTRODUCTION

Insuring stability of a proposed power supply
solution is often one of the more challenging
aspects of the design process. Nothing is more
disconcerting than to have your lovingly crafted
breadboard break into wild oscillations just as it
is being demonstrated to the boss or customer,
but insuring against this unfortunate event takes
some analysis which many designers view as
formidable. Paths taken by design engineers often
emphasize either cut-and-try empirical testing in
the laboratory or computer simulations looking
for numerical solutions based on complex
mathematical models. While both of these
approaches have a place in circuit design, a basic
understanding of feedback theory will usually
allow the definition of an acceptable
compensation network with a minimum of
computational effort.

II. STABILITY DEFINED

Fig. 1 gives a quick illustration of at least one
definition of stability. In its simplest terms, a
system is stable if, when subjected to a
perturbation from some source, its response to
that perturbation eventually dies out. Note that in
any practical system, instability cannot result in a
completely unbounded response as the system
will either reach a saturation level – or fail.
Oscillation in a switching regulator can, at most,
vary the duty cycle between zero and 100% and
while that may not prevent failure, it will ultimate
limit the response of an unstable system.
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Fig. 1. Definition of stability.
Another way of visualizing stability is shown

in Fig. 2. While this graphically illustrates the
concept of system stability, it also points out that
we must make a further distinction between
large-signal and small-signal stability. While
small-signal stability is an important and
necessary criterion, a system could satisfy this
requirement and yet still become unstable with a
large-signal perturbation. It is important that
designers remember that all the gain and phase
calculations we might perform are only to insure
small-signal stability. These calculations are
based upon – and only applicable to - linear
systems, and a switching regulator is – by
definition – a non-linear system. We solve this
conundrum by performing our analysis using
small-signal perturbations around a large-signal
operating point, a distinction which will be
further clarified in our design procedure
discussion.
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Fig. 2. Large-signal vs. small-signal stability.

III. FEEDBACK CONTROL PRINCIPLES

The basic regulator is shown in Fig. 3 where
an uncontrolled source of voltage (or current, or
power) is applied to the input of our system with
the expectation that the voltage (or current, or
power) at the output will be very well controlled.
The basis of our control is some form of
reference, and any deviation between the output
and the reference becomes an error. In a
feedback-controlled system, negative feedback is
used to reduce this error to an acceptable value –
as close to zero as we want to spend the effort to
achieve. Typically, however, we also want to
reduce the error quickly, but inherent with
feedback control is the tradeoff between system
response and system stability. The more
responsive the feedback network is, the greater
becomes the risk of instability.
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Fig. 3. The basic regulator.

At this point we should also mention that
there is another method of control – feedforward.
With feedforward control, a control signal is
developed directly in response to an input
variation or perturbation. Feedforward is less
accurate than feedback since output sensing is not
involved, however, there is no delay waiting for
an output error signal to be developed, and
feedforward control cannot cause instability. It
should be clear that feedforward control will
typically not be adequate as the only control
method for a voltage regulator, but it is often
used together with feedback to improve a
regulator’s response to dynamic input variations.

The basis for feedback control is illustrated
with the flow diagram of Fig. 4 where the goal is
for the output to follow the reference predictably
and for the effects of external perturbations, such
as input voltage variations, to be reduced to
tolerable levels at the output.
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Fig. 4. Flow graph of feedback control.
Without feedback, the reference-to-output

transfer function y/u is equal to G, and we can
express the output as

Guy =
With the addition of feedback (actually the

subtraction of the feedback signal)
yHGGuy −=

and the reference-to-output transfer function
becomes
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If we assume that 1GH �� , then the overall
transfer function simplifies to

H
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u
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Not only is this result now independent of G,
it is also independent of all the parameters of the
system which might impact G (supply voltage,
temperature, component tolerances, etc.) and is
determined instead solely by the feedback
network H (and, of course, by the reference).
Note that the accuracy of H (usually resistor
tolerances) and in the summing circuit (error
amplifier offset voltage) will still contribute to an
output error. In practice, the feedback control
system, as modeled in Fig. 4, is designed so that

HG ��  and 1GH ��  over as wide a frequency
range as possible without incurring instability.

We can make a further refinement to our
generalized power regulator with the block
diagram shown in Fig. 5. Here we have separated
the power system into two blocks – the power
section and the control circuitry. The power
section handles the load current and is typically
large, heavy, and subject to wide temperature
fluctuations. Its switching functions are by
definition, large-signal phenomenon, normally
simulated in most stability analyses as just a two-
state switch with a duty cycle. The output filter is
also considered as a part of the power section but
can be considered as a linear block. The control
circuitry will normally be made up of a gain
block – the error amplifier – and the pulse-width
modulator, used to define the duty cycle for the
power switches.

Source
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Reference

Feedforward Feedback

Control

Power System

Fig. 5. The general power regulator.

IV. THE BUCK CONVERTER

The simplest form of the above general power
regulator is the buck – or stepdown – topology
whose power stage is shown in Fig. 6. In this
configuration, a DC input voltage is switched at
some repetitive rate as it is applied to an output
filter. The filter averages the duty cycle
modulation of the input voltage to establish an
output DC voltage lower than the input value.
The transfer function for this stage is defined by
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Fig. 6. The buck converter.
Since we assume that the switch and the filter

components are lossless, the ideal efficiency of
this conversion process is 100%, and regulation
of the output voltage level is achieved by
controlling the duty cycle. The waveforms of Fig.
6 assume a continuous conduction mode (CCM)
meaning that current is always flowing through
the inductor – from the switch when it is closed,
and from the diode when the switch is open. The
analysis presented in this topic will emphasize
CCM operation because it is in this mode that
small-signal stability is generally more difficult
to achieve. In the discontinuous conduction mode
(DCM), there is a third switch condition in which
the inductor, switch, and diode currents are all
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zero. Each switching period starts from the same
state (with zero inductor current), thus effectively
reducing the system order by one and making
small-signal stable performance much easier to
achieve. Although beyond the scope of this topic,
there may be specialized instances where the
large-signal stability of a DCM system is of
greater concern than small-signal stability.

There are several forms of PWM control for
the buck regulator including,
•  Fixed frequency (fS) with variable tON and

variable tOFF
•  Fixed tON with variable tOFF and variable fS
•  Fixed tOFF with variable tON and variable fS
•  Hysteretic (or “bang-bang”) with tON, tOFF,

and fS all variable
Each of these forms have their own set of

advantages and limitations and all have been
successfully used, but since all switch mode
regulators generate a switching frequency
component and its associated harmonics as well
as the intended DC output, electromagnetic
interference and noise considerations have made
fixed frequency operation by far the most
popular.

With the exception of hysteretic, all other
forms of PWM control have essentially the same
small-signal behavior. Thus, without much loss
in generality, fixed fS will be the basis for our
discussion of classical, small-signal stability.

Hysteretic control is fundamentally different
in that the duty factor is not controlled, per se.
Switch turn-off occurs when the output ripple
voltage reaches an upper trip point and turn-on
occurs at a lower threshold. By definition, this is
a large-signal controller to which small-signal
stability considerations do not apply. In a small-
signal sense, it is already unstable and, in a
mathematical sense, its fast response is due more
to feedforward than feedback.

V. CONTROLLING PULSE-WIDTH MODULATION

A typical implementation for PWM control
(in a form which we now call “voltage-mode
control”) is illustrated in Fig. 7. From the block
diagram it can be seen that the “width” of the
PWM signal is determined by the point in time
where the sawtooth, or ramp waveform (VR)
crosses the voltage level at the output of the error

amplifier (VE). Since VR traverses from zero to
VP within a switching period, it follows that
when VE = zero, the width of the output pulse
will be zero, and it will increase linearly reaching
100% when VE = VP. Therefore the duty cycle of
the modulator will be VE / VP and since, in a
buck converter, the duty cycle has already been
determined to be VO /Vi, the control gain of the
modulator is:
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Fig. 7. Typical PWM control implementation.
Note that if VP is made proportional to VI, a

feature which can be accomplished with
feedforward, then the duty cycle will vary
inversely proportional to the input voltage and
input-to-output voltage regulation can ideally be
achieved with no change in VE.

In this analysis we have assumed complete
linearity and that the output of the error amplifier,
VE, is a DC voltage. If, in addition to the
intended DC component, VE contains excessive
“ripple”, due to error amplifier gain at the
switching frequency, then those switching
frequency components can mix with the sawtooth
frequency components causing the regulator to
exhibit large-signal “switching instability”, even
if it has excellent small-signal stability. This type
of instability can cause the regulator to produce
even more ripple, usually at a subharmonic of the
switching frequency, although it may still
regulate at the proper output voltage.
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VI. CHARACTERISTICS OF A LOADED L-C
FILTER

The schematic of Fig. 8 shows an L-C filter
with a load, R, where the components have been
converted to impedances in the frequency domain
through the use of Laplace transforms. The
overall transfer function of this network is
described by the use of Kirchhoff’s law as
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Fig. 8. Frequency response of a loaded LC filter.
By setting the transfer function numerator

and denominator each equal to zero, we can
derive the roots of both the numerator, which are
the zeros of the system (none in this equation),
and the denominator which gives us the poles.
This second-order expression contains two poles,

d2d1 jpandjp ω−α−=ω+α−=
where:

1jand,
LC
1,

RC2
1 2

d −=α−=ω=α

For lightly damped filters (typical of
switching regulators), we can often use the
approximation of:

LC
1

d =ω≈ω

With ω= js , we see that transfer functions
are complex numbers containing a real part and
an imaginary part. The amplitude of a complex
number is the square root of the sum of the
squares of the real and imaginary parts. The
phase is the inverse tangent (arctan) of the ratio
of the imaginary part to the real part. By
evaluating the transfer functions as a function of
frequency, we can determine the point where
both the magnitude and the phase make
transitions. The most common way of doing this
is to plot the gain in dB (20 times the log of
gain), and the phase in degrees, against the log of
frequency. These are called Bode plots and allow
easy visualization of the characteristics that we
will use to help define system stability. From the
transfer function equations for Fig. 8, we can
determine that:
•  The gain = 1 and the phase = 0 for

LC
1

��ω .

•  The gain = 
L
CR and the phase = �90  for

LC
1=ω .

•  The gain slope = 
LC
1

2ω
−  and the phase

= �180  for 
LC
1

��ω .

For this example of a loaded L-C filter,
Mathcad was used to draw the plots shown in
Fig. 9, with the assumption of an arbitrarily
assigned set of numerical values (which we will
later use for our buck converter example):

Ω=µ=µ= 5.0Rand,F540C,H16L

from which 31085.1 ⋅=α and 41006.1 ⋅=ω .
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From Fig. 9 we substantiate that the gain of
this filter is unity at low frequencies, experiences
a resonant peak (determined by R) at the second-
order pole frequency, and then falls with a slope
of 12 dB/octive (20 dB/decade) at higher
frequencies; while the phase goes through a shift
from zero to a 180o lag. This higher frequency
slope is sometimes called a –2 slope since, in this
region, the function is proportional to 21 ω , or

2−ω .
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Fig. 9. Bode plot of a sample loaded LC filter.

It is worth reinforcing that a system must be
linear before frequency-domain techniques, such
as Laplace transforms and Bode plots, apply. A
switching regulator is not even continuous, let
alone linear. Therefore, approximations will have
to be made – first, to average the switching
effects so that we have a continuous system, and
secondly, to apply a small-signal approximation
in order to assume linearity. And, of course, all
this is done under the additional assumptions of
linear passive components and ideal switches.

VII. LINEARIZING THE BUCK CONVERTER

With ideal components, a switching regulator
is a linear circuit for any given switch condition.
The concept of averaging can be applied when
the switching rate is fast with respect to the rate
of change of any other parameters of interest. To
quantify this, we can say that the accuracy of the
approximations is excellent up to one-tenth the
switching frequency, “pretty good” for one-third,
and one-half is the theoretical limit based on the
Nyquist sampling criterion.

Fig. 10 shows the process of averaging the
operation of the circuit by combining the
condition when the active switch is closed with
that when it is open. The relationship between
these two conditions is the duty cycle of the
switching and its effect is accounted for through
the use of a hypothetical DC transformer with a
turns ratio of the duty cycle, d. With this model,
the primary current is now ILd and the secondary
voltage is Vid. This DC transformer is an artifact
from Dave Middlebrook at Caltech. It is not a
real component but it is valid for your Spice
library. We now have a continuous system but it
is nonlinear because the transformer turns-ratio,
d, is a variable - namely the control variable - and
not a constant.
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Fig. 10. Averaged buck converter.
With an averaged, continuous model, the next

step is to linearize it. We do this exactly the same
way we would linearize any nonlinear,
continuous system, namely we define the small-
signal parameters based on a large-signal
operating point. This is shown in Fig. 11.
Mathematically, the linearization process
involves separating each variable into its DC (in
capitals) and signal frequency ac (with a “hat”)
components, and neglecting the products of two
hat terms. For the example calculation shown in
Fig. 11, the product Vid is linearized about the
operating point, ViD.
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Fig. 11. Linearized buck converter.
The advantage of linearization is that Laplace

transforms (i.e. impedance concepts) apply so
that closed-form algebraic solutions can be found
and plotted (e.g. Bode plots). The range over
which the linear approximations are valid
depends upon the accuracy desired. In general, as
long as the signals are small enough so that the
duty factor is not clamped either full on or full
off for several switching cycles, the linear
approximation works very well. And in any case,
small-signal stability as evidenced using Bode
plots is still a necessary condition for overall
stability.

VIII. APPLYING THE LINEARIZED MODEL

The flow diagram of the closed-loop
linearized buck regulator can be derived by
applying the generalized control law to the
linearized power circuit described above, as
shown in Fig. 12. This control law determines
how d(s), the Laplace transformed control
variable, varies as a function of key circuit
parameters. For a second-order system, such as
the buck regulator with one input voltage, it can
be expressed as:

)s(V̂)s(Q)s(V̂)s(F)s(Î)s(F)s(d i1C2L1 +−−=
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That is, the inductor current variable, the
output voltage variable, and the input voltage
variable, can each individually contribute to the
system control variable. As it pertains to
switching regulators, the expression “voltage-
mode control” implies that there is no current
feedback, i.e. F1(s) = 0. “Current-mode control”
means that there is a current loop as well as a
voltage loop. In either case, there may or may not
be feedforward control, Q1(s). And finally, note
that in this case, F2(s) includes the reference and
feedback summing components.

This generalized control law can then be
made specific to our voltage-mode controlled,
buck regulator as shown in Fig. 13, where the
feedback summing point is the differential input
to the Error Amplifier.
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Fig. 12. Flow graph / schematic of linearized
buck converter with general control law.
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Fig. 13. Flow graph of linearized buck converter
with voltage-mode control.

The overall open-loop gain is equal to the
product of the individual gains of the error
amplifier, the modulator, and the output filter,
and is shown as:
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There are several points which could be made
relative to the above equation: First, note that this
expression is independent of the DC duty factor
D but is dependent upon the DC input voltage Vi.
Hence, as would be expected, the open-loop gain
function is dependent upon the DC operating
point. Secondly, the second term in the
denominator contains the load resistance, R. If R
were to go to infinity, this term would go to zero
indicating an unstable system, however, the
reality is that the circuit would first go to DCM
where its small-signal operation becomes
essentially first order. Finally, the expression
above also assumes that the output voltage level
is equal to the reference (H = 1). If this is not the
case, the appropriate scale factor would be added
to either the reference or the output voltage prior
to the error amplifier input.

Note that we have assumed that G(s)H(s) is
positive in this expression. This is just a
simplification in that we are assuming negative
feedback, so the first 180o is implicit and
instability will occur at 180o rather than the 360o

which some control theory texts describe.
With Mathcad as a simulation tool, and

utilizing the parameters of our earlier example,
the above general transfer equation can be solved
as a function of frequency to yield the Bode plots
shown in Fig. 14.

This example again uses:
Ω0.5RµF,540CµH,16L ===

and additionally,

f2js
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Fig. 14. Bode plot of a 100 W, 12 V-to-5 V, buck
converter open loop gain with DC error amp
gain [K(s) = K].

From these values, the Bode plots give us the
gain and the phase of the open-loop transfer
function from which we can see that at low
frequencies,

dB30
V
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and at the higher frequencies,
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The peak gain at resonance is:
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At this point we should define some terms
important to our stability analysis:

A. Gain Margin
The difference between unity gain (zero dB)

and the actual gain when the phase reaches 180o.
(In this case it is a positive number.) The
recommended value is -6 dB to –12 dB.

B. Phase Margin
The difference between 180o and the actual

phase when the gain reaches unity gain. (In this
case it is approaching zero.) The recommended
value is 45o to 60o.

C. Stability Criteria
A commonly used derivative from the above

two definitions is that if the slope of the gain
response as it crosses the unity-gain axis is not
more than -6 dB / octave, the phase margin will
be greater than 45o and the system will be stable.
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These simulations have made no
approximations other than those required for
linearizing the system. It should be understood,
however, that phase shift is caused not only by
reactive components but also by time delay, such
as transistor storage time or hold time in a
sampling system. Switch delays normally have
little effect as long as there is no explicit sample-
and-hold function, and the frequencies of interest
are well below the switching frequency. For
example, the effect of a 1 µs delay in a 100 kHz
system is a phase shift of less than 4o. There will
also be potential phase lags due to the op amp
and parasitic components. Thus, although
technically a second-order system could
potentially be stable since 180o phase lag is only
asymptotically approached, we can expect that
this system, as currently defined, will be unstable
in practice and, in any case, would suffer serious
ringing under any external disturbance. In fact,
the plots of Fig. 14 show a system with
essentially negative gain margin and zero phase
margin. We had assumed a value for the
amplifier gain of 5.6 only because we will use
this value later, but even if it were unity, the gain
of the modulator alone could be enough for
instability since we already have 180o phase shift
just from the output filter.

IX. FREQUENCY COMPENSATION

Recognizing that we have thus far defined
what amounts to an unstable system, we will now
consider techniques to shape the open-loop gain
function to provide adequate gain and phase
margins. Our first approach will be to reduce the
gain at a lower frequency such that the unity-gain
point will be reached with positive phase margin.
This is done by rolling off the gain of the error
amplifier with local feedback as shown in Fig.
15. With the addition of C2 (R1 and R2 are what
gave us the amplifier gain of 5.6), we now have
an amplifier gain of:
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Fig. 15. Lag compensation.
This single-pole compensation is called lag

compensation and from the asymptotic
approximated plots above, the phase shift
changes from zero at 1/10 the corner frequency to
90o at 10 times the corner frequency. Right at the
corner frequency, the phase is 45o since the
denominator is 1 + j , where the real and
imaginary parts are equal. Since the amplitude of
1 + j is 2 , the actual gain amplitude at the
corner frequency is reduced by 3 dB (commonly
called the half-power point).

Remember: The product/division of two
complex numbers is equal to the sum/difference
of their amplitudes in dB and the sum/difference
of their phase angles.
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The amplitude of the compensated error
amplifier gain in dB adds directly to the
amplitude of the other elements in the control
loop, as the amplifier’s phase adds to the overall
phase lag.

The Bode plots for lag compensation
(implemented in this form as a proportional
integrator without R2) are shown in Fig. 16. The
asymptotic transfer function equations now
become:

At low frequencies,

21P

I

CRfV2
V)f(H)f(G

π
≈

At high frequencies,

LCCRV)f2(
V)f(H)f(G

21P
3

I

π
≈

f2js π=

The resonant peak = 
L
CR

CRfV2
V

21P

I ⋅
π

For a 6 dB gain margin at f = 1.71 kHz, we
set the peak gain equal to ½ which yields an R1C2
product equal to 299. From this we have set R1 =
167 kΩ and C2 = 0.02 µF. Note that the gain-
bandwidth (the unity gain crossover frequency) is
now less than 300 Hz, an order of magnitude
below the resonant frequency. Another point of
interest is that the gain margin of 6 dB was based
on the resonant peak, which in turn is dependent
upon the output loading, R, meaning that
decreasing the regulator’s load could also
decrease the gain margin. In practice, one would
use the smallest load (largest R) for which the
converter is still in CCM. While the phase margin
is now 90o, the dominant pole has reduced the
bandwidth to the point where dynamic response
will be very poor. (Note that in the complex
plane, +90o is the same as –270o. The lag
compensator contributes –90o from the DC value,
and above resonance, the LC output filter
contributes another –180o.)
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Fig. 16. Bode plot of lag-compensated sample
buck converter open-loop gain function.
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A second alternative is lead compensation
which is described in Fig. 17. Here, instead of
decreasing the gain we will increase the phase by
adding a lead capacitor, C1, to the error amplifier,
introducing a network zero (the opposite of a
pole). Of course, this also increases the gain but
if we make the break frequency of this zero, Zω ,
the same as the unity gain frequency of the
uncompensated buck regulator, we have provided
a phase margin of 45o.

The gain equation for the error amplifier with
lead compensation is:

1

112

IN

OUT

R
)sCR1(R

)s(V
)s(V)s(K +=−=

This amounts to the original DC gain with an

added zero at 
11

Z CR
1=ω

K(j�)

K(jω)
(deg)

(dB)

0

90
45
0

�Z = 1/R1C1
log�

log�
10�Z�Z/10

20 log(R2/R1)

Valid only for
K(s) << Op Amp Gain

1

112

IN

OUT
R

)sCR1(R
)s(V

)s(V)s(K +=−=

Error Amplifier

R2

R1

C1

VR+

_ VIN
VOUT

Fig. 17. Lead compensation.
In practice, pure lead compensation is

physically unrealizable since the gain cannot
continue to rise indefinitely due to limitations in
the open loop gain-bandwidth of the amplifier.
Naturally, the gain-bandwidth of the operational
amplifier used with lead compensation must be

much higher than that required for lag
compensation.

It should be noted that the error amplifier is
not the only place in a switching regulator to
experience a compensating zero. The parasitic
equivalent series resistance (ESR) inherent in
non-ideal capacitors selected for use as an output
filter will react with the output capacitance value
to introduce a circuit zero to the system. Many
designers have relied on this as a “free” (but also
relatively uncontrolled) method for achieving
some added positive phase margin. (Try to get
your favorite capacitor supplier to guarantee a
minimum ESR!)

The circuit of Fig. 18 combines both a lead
and a lag in an attempt to gain the best features of
both – namely low DC error as well as higher
bandwidth. In this circuit, a zero capacitor is
placed in parallel with the input resistor while a
pole capacitor is added in series with the
feedback resistor. The intent here is to provide a
high gain at low frequencies while still achieving
acceptable phase margin at crossover. The gain
equation for the error amplifier now becomes:

sCR
)sCR1)(sCR1(

)s(V
)s(V)s(K

21

1122

IN

OUT ++=−=

K(j�)

K(jω)
(deg)
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( )( )
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)s(V)s(K
21

1122

IN

OUT ++=−=

R2
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C2

VR+

_ VIN
VOUT

Error Amplifier

C1

Fig. 18. Achieving “zero” DC error.
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The phase lead associated with R2C2 cannot
completely cancel out the initial 90o phase lag
caused by the integrating capacitor until the

frequency 
22CR

10  is reached. Therefore, in order

to ensure that the phase margin due to the zero

associated with R1C1 is not degraded, 
22CR

1

must be at least an order of magnitude below the
resonant frequency of the system. That is, the
phase shift due to the zero caused by R2C2 should
be “over” before any other phase shift in the
system “starts” so that the system is otherwise
transparent to the effects of integrating out the
DC error.

X. LARGE-SIGNAL CONSIDERATIONS

We have made several references to the fact
that while small-signal stability is a necessary
requirement for a stable regulator, large-signal
effects cannot be ignored. To illustrate the
potential for a large-signal problem, Fig. 19
demonstrates how the amplified output ripple
waveform can interfere with the PWM operation.
For simplicity, this illustration assumes a
constant error amplifier gain. Although this is not
very realistic, since we have already
demonstrated that a buck converter with constant
feedback gain is likely to be small-signal
unstable, it will still serve to demonstrate the
concept that there is a limit to the amount of gain
that the system can have at the switching
frequency. Beyond this limit, the system will
exhibit large-signal instability, regardless of the
margins shown in the Bode plot.

VE

PWM

VP

t

t

t
Ripple

Voltage

m1

m2

TT/2

Fig. 19. Large-signal stability considerations for
voltage-mode control.

In this example, the output ripple voltage
(assumed as being largely caused by the output
capacitor ESR) is amplified by the error amplifier
gain to appear in inverted form as VE, the voltage
which is compared in the PWM modulator to the
ramp waveform. A necessary condition for large-
signal stability is that the slope of VE, designated
m2, must be less that the slope of the ramp, m1. A
sample problem can demonstrate the impact of
this requirement. If we assume that the duty cycle
D = 0.5, output ripple = 0.05 volts p-to-p, and
VP = 2 volts, then:

T
K1.0

2T
K05.0mand

T
2m 21 ===

Therefore, K must be less than 20.
In reality, the problem can be more severe if

there is an unbounded lead network which would
then act as a differentiator at the switching
frequency such that the output from the error
amplifier might approximate a square wave more
than a triangular shape shown in this illustration.
While there is no widely accepted design
criterion to define a solution, an empirical rule of
thumb is to insure that that the total system gain
is –20 dB or below at the switching frequency. In
any case, this issue is highly application specific
and designers should make this determination for
each individual system in the course of their
evaluation.
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XI. DESIGN PROCEDURE

To summarize the design procedure for the lead-compensated, voltage-mode, buck regulator, the
step-by-step approach is demonstrated in the accompanying box.

Design Procedure for Lead-Compensated Voltage-
Mode Controlled Buck Converter
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In this example, we have added C3 for a high-
frequency roll-off, chosen so that the pole

frequency,
32CR

1 , cancels the zero frequency at

C)ESR(
1 . This reduction in nominal gain-

bandwidth is required to ensure both small-signal
stability - with 45o phase margin – and at least
20 dB rejection at the switching frequency in
applications where the ESR can vary widely. Our
example uses three paralleled 180 µF solid
tantalum capacitors where the total capacitance is
3X and the ESR is 1/3 of a single unit. Note that
the value of K is much less than the maximum of
20 calculated for large-signal stability.

The calculated Bode plots for this example
are shown in Fig. 20 from which we can see that
the gain bandwidth of this lead-compensated
circuit is nearly an order of magnitude greater
that the resonant frequency of the uncompensated
system. This is particularly significant in
remembering that the lag-compensated solution
required a gain-bandwidth an order of magnitude
lower than resonance. The approximate equations
which are active in defining the gain within the
various regions of operating frequency are given
below:

21P

i
CRVf2

V)f(H)f(GI
π

≈

1P

2i
RV
RV)f(H)f(GII ≈
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π
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Fig. 20. Bode plot of lead-compensated sample
buck converter open-loop gain function with
“zero” DC error.

The final value for gain-bandwidth is
12.7 kHz while the phase margin is nearly 55o.
The gain margin is well over -20 dB and any
higher frequency phase lag (as, for example,
operational amplifier limitations) would cause the
gain to be further reduced.
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We can use Mathcad to plot other
characteristics of our demonstration example as
shown in Fig. 21. These plots show output
impedance (a measure of load regulation) and
audiosusceptibility (line regulation) as a function
of frequency. The benefits of feedback to
dynamic performance are graphically illustrated
by the comparative curves in these plots.

V
O

 / 
V

i

10 100 103 104 105

Frequency

0.01

10-3

0.1

V
O

 / 
I O

10 100 103 104 105

Frequency

1

-40

-60

-20

0

Output Impedance

Audiosusceptibility

Without
Feedback

With
Feedback

Without
Feedback

With
Feedback

Fig. 21. Output impedance and
audiosusceptibility for the lead-compensated
sample buck converter.

XII. PEAK CURRENT-MODE CONTROL

The voltage-mode algorithm which we have
been using as a model for the preceding analysis
achieves its PWM control by comparing the error
amplifier command signal with an artificially-
generated sawtooth, or ramp waveform. With
peak current-mode (C/M) control, this
comparison ramp is derived from the output
inductor current waveform and thus forms an
inner current feedback loop. While there is still
an outer voltage loop, its function is to program
the output inductor current rather than the duty
cycle directly. With the open loop characteristics
of a programmable current source, current-mode
control effectively hides the inductor within the
inner loop, changing the resonant two-pole output
filter to a single lower frequency dominant pole,
plus a higher frequency pole at or beyond the
gain-bandwidth of the system. In so doing, the
task of compensation is significantly eased. A
simplified block diagram of this topology is
shown in Fig. 22 and its operation is described as
follows:

A fixed-frequency oscillator initially sets the
latch which turns on the power switch, causing
inductor current to rise according to:

L
)VV(

dt
di oi −= .

This current is sensed and converted to a
voltage ramp which is compared to the error
signal from the voltage error amplifier.

When the current ramp crosses the error
signal, the comparator resets the latch turning off
the power switch, allowing the inductor current

to decay according to 
L

V
dt
di o−= . While both

DCM and CCM operation are possible, this
example assumes CCM.

The power switch is held off by the latch until
the clock initiates the next cycle.
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Fig. 22. Peak current-mode control
implementation for buck converter.

Current sensing can be accomplished with
either a sensing resistor or a current sense
transformer (as used in this example) but, in
either case, a proportionate voltage waveform is
derived for the comparator. One problem with
current-mode control is that this waveform often
also contains leading-edge noise spikes caused by
parasitic capacitance and diode recovery. These
spikes need to be controlled by either blanking or
filtering or else the comparator may reset the
latch right at the beginning of the power pulse.

Note that this example actually measures
switch current rather than inductor current since
the only information needed for control is the
peak value of the inductor current and this is
usually more conveniently done in series with the
power switch. What happens to the inductor
current after the switch opens is, in principle,
unimportant.

However, in CCM applications where the
duty cycle may extend beyond 50%, a large-
signal, sub-harmonic instability can occur which
is described in Fig. 23.

m1

vE

-m2

VE

d

� Actual analog waveform for m1 < m2(D > 0.5)
� Any perturbation δ will result in switching

instabilitly (switching frequency subharmonics)
� Need to add external ramp m3 for stabilization

� Ideal analog waveform

� Effective analog waveform with stabilizing ramp m3

m3

m1+m3

VE m3-m2

m1IL
-m2

Fig. 23. Peak current-mode switching instability.
The waveforms in the upper portion of this

illustration show the switch current in a CCM
application with a rising inductor current slope
equal to m1 and a falling slope (when the switch
is off) of –m2. Under stable operating conditions,
the end of m2 has to match the beginning of m1.
With less than 50% duty cycle, |-m2| < m1 and
any small perturbation (δ) which might occur
during the switch on-time will be reduced by the
time the next period starts and eventually die out
with successive switching cycles. But with more
than 50% duty cycle, |-m2| > m1 and δ will be
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larger at the start of the next period, resulting in
regenerative oscillation.

The cure for this is the addition of an
additional ramp (m3) on top of the current
waveform so that the controller sees an up-slope
of )mm( 31 +  and a downslope of )mm( 32 +− .

If m3 is chosen so that  
2

)mm(m 12
3

−> , then

3123 mmmm +<−  and the system will be
stable. The minimum value of m3 for the buck
converter (for the impractical condition of just
borderline stability) is then

LN2
)1D2(RV

2
)m-(mm

t

Si12
3

−==

To determine a more practical value for m3,
we first need to determine the overall closed loop
gain of the system because this added ramp also
has the effect of reducing the gain of both the
voltage and current loops by a factor of:

31

1
m2m

m
+

=γ

With the constraint that 
2

)mm(m 12
3

−> ,

then it is also implied that ( )
D

D1−<γ . (This

expression is true for any of the three basic
switching regulator topologies.)

As shown in Fig. 24, the generalized control
law first presented back in Fig. 12 can be used to
develop individual expressions for the small-
signal gains for both the current and voltage
loops. This stems from the fact that, in
accordance with basic flow graph theory, the
total loop gain )s(H)s(G  of a system with two
touching loops can be expressed as the sum of the
individual open-loop gains, namely

)s(2H)s(2G)s(1H)s(1G + . Note that the s term in
the numerator of )s(1H)s(1G  provides the
opportunity for lead compensation, which is why
the inner current loop in current-mode control
can be thought to compensate the outer voltage
loop.

Any transfer function can be expressed

as
)]s(H)s(G1[

)s(T
+

 where T(s) is the transfer

function without feedback and 0)s(H)s(G1 =+  is
the feedback related characteristic equation of the
system.
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Fig. 24. Individual loop gains for linearized buck
converter with peak current-mode control.
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For our two-loop system, the feedback related
characteristic equation becomes

0)s(H)s(G)s(H)s(G1 2211 =++ . However, as
long as )s(H)s(G 11  is never –1 (in this case the
current loop phase shift is never greater than 90o),
we can divide both sides of the characteristic
equation by 1+ )s(H)s(G 11  to form a new “single-
loop” characteristic equation

0
)}s(H)s(G1{
)s(H)s(G1

11

22 =
+
+

 where the new “single-

loop” open-loop gain function is:

[ ])s(H)s(G1
)s(H)s(G)s(H)s(G

11

22

+
=

This single-loop representation is illustrated
with the flow graph shown in Fig. 25 and results
in a new open-loop voltage gain equation:
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Fig. 25. Single-loop flow graph of linearized
buck converter with peak current-mode control.

for the original circuit with the current-loop
closed. In other words, instead of a resonant

circuit with a double-pole at �
�

�
�
�

�

LC
1 , we now

have a new power circuit with a dominant low

frequency pole at �
�

�
�
�

�
��

LC
1

RC
1 , and another

higher frequency pole at �
�

�
�
�

�
��

−
γ

LC
1

)D1(
f2 s .

If we make the assumption that
1)s(H)s(G 11 ��  (which is the case with

)D1(
ff s
−π
γ

�� ) the single-loop gain can now be

reduced to simply:

RC
1s

CR
)s(KN

)s(H)s(G
)s(H)s(G)s(H)s(G S

t

11

22

+
≈=

and the system is essentially first order.
An additional feature achieved with the

combination of the voltage and current loops into
the single-loop flow graph of Fig. 25, we can see
that the gain block associated with the input
voltage Vi(s) goes to zero for γ = 1 – D,
corresponding to, theoretically, zero
audiosusceptibility. Thus, γ = 1 – D implies an
“optimum” ramp for m3 = (VO/L)(RS/2Nt), which
is independent of D and is greater than the
minimum requirement previously discussed. If
we assume that we have applied this optimum
amount of slope compensation such that γ = 1-D,
then the generalized equation given in the Fig.
reverts to the same simplified form that we have
calculated earlier for all f << fS / π.
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XIII. DESIGN PROCEDURE FOR PEAK CURRENT-
MODE BUCK REGULATOR

To illustrate the design procedure for a buck
regulator using a single-loop peak current-mode
control algorithm, a typical example using a
current sense transformer and slope
compensation is presented in the accompanying
sidebar box and the results are shown in the Bode
Plots of Fig. 26.

This example assumes transformer current
sensing and slope compensation, the latter
because, even though the nominal input-to-output
voltage ratio predicts a duty cycle of less that
50%, operating extremes and circuit tolerances
could potentially push the duty cycle higher and,
of course, we have also seen the benefit of
improved audio susceptability. The design
criterion here is to achieve at least 45o of phase
margin, which corresponds to setting the higher
frequency pole at the unity gain crossover
frequency, with a gain of -20 dB at the switching
frequency. This corresponds to an asymptotically
predicted gain-bandwidth of fS/ 10 , or
approximately fS/π, as compared to the gain-
bandwidth of approximately fS/10 for our lead
compensated voltage-mode control example.
Note that in push-pull applications, where the
possibility of signal reinforcement at fS/2 exists,
additional attenuation at the switching frequency
may be necessary to prevent subharmonic
oscillations. More sophisticated analyses,
simulations and/or empirical studies could help to
adequately address these large-signal issues for
nonlinear systems.
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Fig. 26. Bode plot of peak current-mode
controlled sample buck converter open-loop gain
function with optimum ramp.

The compensation-related benefits of current-
mode control are seen in the plots of Fig. 26,
which shows what is essentially a first-order
system within the gain-bandwidth. The actual
gain-bandwidth of 25 kHz (fS/4) is less than the
asymptotic prediction (fS/π) because the curves
are actually rounded at the break points.
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XIV. THE BOOST CONVERTER

The basic boost converter topology is shown
in Fig. 27 operating in the continuous conduction
mode, (CCM). The operation of this circuit is a
two-step process where, with the switch on,
energy is added to the inductor as current

increases according to 
L
V

dt
di i= . When the switch

is opened, the current is shunted to the diode and
the inductor discharges with a decreasing current

according to 
L

)VV(
dt
di io −−= . For steady-state

operation, the average current in the inductor
must equal the DC current in the load and the
average dc voltage across the inductor must equal
zero. As distinguished from the buck regulator
where the filter inductor and capacitor
continuously work together as a “team”, in a
boost (and flyback) topology they essentially
alternate in a “bucket-brigade” mode. While
energy is being stored in the inductor, the
capacitor is working alone to deliver energy to
the load, and then with the switch open, the
inductor replenishes the delivered energy by
recharging the capacitor to prepare it for the next
cycle. Since the average (DC) voltage across the
inductor must be zero, we can then write (for
CCM)

( )d1
vVusgiveswhich
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Fig. 27. The boost converter.
An important characteristic of both the boost

and the flyback topologies in CCM is the
presence of a “right-half-plane” zero, a
characteristic which gives a gain increase but
with a phase lag. This RHP zero is caused by the
delay between controlling and delivering energy
to the load. For example, a sudden increase in
load current causes a droop in the output voltage,
upon which the controller calls for an increase in
the switch duty cycle to store more energy in the
inductor. Increasing the switch on-time, however,
causes a decrease in the off-time, meaning that
less energy is going into the capacitor and the
output voltage thus falls further. Eventually a
new balance is reached to regulate at the new
load but this RHP delay is almost impossible to
compensate and usually requires a relatively low
frequency system gain rolloff for simple voltage-
mode control.



5-23

XV. DEVELOPING THE SMALL-SIGNAL BOOST
MODEL

As we did with the buck topology, a small-
signal model for analysis needs to be developed
from the equivalent circuit by a process of
averaging and linearizing. Fig. 28 shows the
development of the average model by the process
of first deriving an equivalent circuit for each
state. Switch condition I corresponds to S1 on and
S2 off while switch condition II has S1 off and S2
on. Then using the duty cycle relationships, one
can determine the average voltage across the
switch branches of the loops involving inductors,
and the average currents through the switch
branches into the nodes involving capacitors.
These relationships are then connected using a
DC transformer with the appropriate turns ratio.
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Fig. 28. Averaged boost converter.

Fig. 29 then shows the linearization process
which also follows as it did for the buck but,
unlike the buck, the open loop gain function is
dependent upon the DC duty factor.

Vi

+

_

Ii

L

VC

+

_

RC
VO

+

_

IL(1 - d)

(1- d):1

VO(1 - d)
+

_

 IL

Vi VC

+ +

_ _

R

Ii

L

C
VO

+

_

(1 - D):1

VO(1 - D)
+

_

IL(1 - D)IL
+_VOd

ILd

Fig. 29. Linearized boost converter.
The closed loop flow graph for the resultant

linearized boost converter, using voltage-mode
control, is presented in Fig. 30. From this flow
graph, we can derive the overall closed loop gain
equation as:
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Fig. 30. Flow graph of linearized boost converter
with voltage-mode control.
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Note that due to the duty factor dependency,
the term (1 – D) appears in the terms relating to
both the resonant frequency and the RHP zero.
The duty factor dependent pole is easy to
rationalize as the L and C are only connected
during the (1 – d) portion of the period. There is
also no question about the circuit’s
uncompensated instability since the RHP zero
contributes an added 90o of phase shift beyond
resonance, for a total of 270o. As we have already
determined, this phase lag is related to the extra
time delay (as compared to the buck) in getting
energy from the source out to the load, however,
it is also a function of the load. The lighter the
load (larger R), the further the RHP pole moves
out in frequency and the less it will impact circuit
behavior.

In stabilizing the voltage-mode controlled
boost converter, generally only lag compensation
is applicable because a set of fixed-frequency
lead networks would work for only a very narrow
range of input voltage and output loading. Thus,
the typical voltage-mode boost converter exhibits
very low gain-bandwidth and a poor dynamic
response. In particular, any sudden line or load
perturbation will result in a damped oscillation at
the effective resonant frequency of the converter.
The lag network must be designed for the lowest
resonant frequency, corresponding to the
maximum D, and at the lightest load for which
the circuit is still in CCM operation.

These arguments apply to virtually all non-
buck topologies. The similarities are evident in
comparing the boost flow diagram above with the
flyback shown in Fig. 31. The gain equation for
an equivalent flyback topology is:

LCN
)D1(
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LDN
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Fig. 31. Flow graph of flyback converter with
voltage-mode control.

In this equation, L is the transformer
inductance reflected to the primary, and N is the
secondary-to-primary turns ratio. With stability
issues and closed-loop dynamics virtually the
same as the boost converter, the design
procedures are effectively the same and, by
extension, can also be applied to the Cuk and
SEPIC topologies. As we shall see, the use of
current-mode control will significantly improve
performance, allowing these topologies to
operate with a much higher gain-bandwidth.

XVI. CURRENT-MODE CONTROL FOR THE
BOOST CONVERTER

The boost converter with current/mode
control is shown schematically in Fig. 32 and 33
– Fig. 32 with peak C/M, and Fig. 33 with
average C/M implementation. As we have
already mentioned, these circuits are shown
assuming the use of current transformers for
current sensing. If a resistor was used for sensing,
RS still applies but Nt in the equations becomes
unity. Peak C/M control allows sensing switch
current in place of inductor current and the
switch off-time allows time for the current sense
transformer to reset. With average C/M, we use
the entire inductor waveform, which contains a
DC component that would saturate a single
current transformer. Therefore, two are shown in
the schematic, alternating in measuring switch
and diode current. These two signals are then
summed to reconstruct the total equivalent
inductor current. A current sense resistor in the
input or return line may be a more practical
solution in all except higher power applications
but, again, this just means that Nt = 1 and we
have kept the equations consistent.



5-25

Vi
VC

+ +

_ _
R

L

C
S1

S2

Drive

vE

PWM

K2(s)
_

RS

Comp
+

_

1:Nt

IL

RSIS1/Nt

VO

LatchClock

PWM

VE

IS1

IS2

RSIS1/Nt RSIS2/Nt

t

t

1/fSd/fS

CLK

t

Clock controls turn-on

Peak current controls turn-off

IS1 = IL during on time

Fig. 32. Peak current-mode control for boost
converter.
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While there are distinct differences between
peak and average current-mode control, they are
primarily large-signal characteristics, such as:
•  Peak C/M often requires slope compensation

where average C/M does not.
•  Average C/M requires an additional error

amplifier.
•  Peak C/M offers some input voltage feed

forward (but not generally as effective as in
the buck).

•  There is a peak-to-average control error with
peak C/M.

•  Average C/M often allows painless crossing
of the CCM / DCM mode boundary.

•  Peak C/M is highly subject to noise
triggering.
Naturally, these differences cause some

applications to be inherently better suited to one
or the other and, in practice, different
applications may impose significantly different
design criteria (e.g., a slow voltage loop in a PFC
application vs. a high-speed voltage regulator).
However, while these distinctions between peak
and average control can influence individual
large-signal design criteria, their small-signal
performance and closed-loop requirements can be
virtually identical for the same application.

Fig. 34 illustrates the large-signal differences
between peak and average C/M control for the
boost converter. With average C/M, the inductor
current ripple creates an opposite-phased signal
at the output of the added current error amplifier
(K1), amplified by its closed-loop gain. Again,
large-signal criterion demands that m2 < m1 but
dynamic current loop response is improved as m2
approaches m1. With average C/M control, slope
compensation is unnecessary so the slope
equations are:

SP
P

1 fV
T

Vm ==

LN
DVRK

LN
)VV(RKm

t

os1

t

ios1
2 =−=

DVR
LNfV

K
OS

tSP
1 <

With peak C/M control, we need to consider
slope compensation in the same manner as with
the buck converter. Here the external ramp
criterion is:

L2
)1D2(RV

m SO
3

−
>

which corresponds to γ < (1-D)/D where
gamma is the gain reduction factor introduced
earlier. Although adding an external
compensating ramp improves line regulation for
the boost topology, it is not possible to null out
input voltage sensitivity completely as it was
with the buck regulator. Therefore, there is no
“optimum” ramp slope for the boost converter
but setting γ = (1 – D) as we did for the buck is
still a reasonable decision since (1-D) < (1-D)/D.
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The overall closed-loop gain equation for the
linearized, C/M controlled, boost converter is
derived from the flow graph in Fig. 35 as:
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Fig. 35. Flow graph of single-loop linearized c/m
controlled boost converter.

The generalized control terms, F1 and F2(s),
allow this equation to be used for either peak or
average current-mode control by defining them
as:
Peak:

I

S
1 V

Lf2F γ=
S

12
2 R

F)s(K)s(F =

Average:

tP

1S
1 NV

KR
F +

P

12
2 V

)K1)(s(K)s(F +=

Remember that F1 represents the dependency
of the control variable, d, upon the inductor
current while F2(s) relates d to the output voltage.
Note that the conditions for equal gain between
peak and average control can be determined from
the values of the terms that make F1 and F2(s)
(peak) equal to F1 and F2(s) (average). As it did
with the buck topology, the two resonant poles of
the output filter have been transformed into two
first-order poles: a dominate low-frequency pole
and a second pole at a much higher frequency.
Note that the RHP zero is included in the
numerator.
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XVII. COMPENSATING THE BOOST CONVERTER

The basic boost circuit gain equations and
their effect are shown in Fig. 36. Note that the
gain amplitude characteristic appears to be a first-
order system which, in theory, should not need
compensation of the voltage error amplifier to
achieve stability. One could say either that the
current loop compensates the voltage loop or that
C/M control reduces the second-order system to a
first-order, at least up to the cutoff frequency, fC.
Nevertheless, we still do have a second-order
power system with a right-half-plane zero, so
there is still the potential for a total of 270o of
phase shift. Remember that the pole or zero phase
shift shows up an order of magnitude lower in
frequency than a change in amplitude.
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Fig. 36. Open-loop gain considerations for C/M
controlled boost converter.

Since F1 is limited by the large-signal
stability criterion, one should avoid the
temptation to assume that the high-frequency
pole is beyond the frequency range of interest.
While that pole and the RHP zero tend to cancel
in terms of magnitude, their phase shifts add.
However, it can be shown that if XPZ fff == ,
and there is a 6  dB gain margin, (i.e., where the
phase shift is 180o) then the phase shift at

crossover is �127
3
1tan180290 1 =�
�

�
�
�

�
�
�

�
�
�

�

π
+ − ,

corresponding to a 53o phase margin. Thus,
meeting a 6 dB gain margin should automatically
insure at least a 45o phase margin. With this, a
design strategy could be the following:
•  If fZ < fP, then set fX = fZ
•  If fP < fZ, then set fx = fP
•  Worst case when fZ = fP
•  Set the gain of K2 for an open-loop gain

magnitude < 0.5 at f = fX for at least 6 dB
gain margin.
As an example of this overall procedure, the

design steps for a hypothetical average C/M
boost converter are outlined in the accompanying
sidebar box. This example, of course, assumes
100% efficiency with ideal switches. The choice
of L = 3.2 times critical inductance for DCM is
somewhat arbitrary since increasing L in the
boost topology does not result in a corresponding
reduction in C as it does with the buck topology,
however, it does reduce the peak currents that the
switches must accommodate. In this case, the
additional motivation is to show that one can go
deep into CCM with the boost topology (and, in
fact, any non-buck topology) and still achieve a
wide-band stable system using current-mode
control.
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The gain and phase plots for this example are
shown in Fig. 37. Note that this circuit behaves as
a first-order system until the RHP zero and
higher frequency poles take over; and then the
phase changes doubly fast. This result shows a
gain-bandwidth of > 9 kHz. By comparison, the
gain-bandwidth of an equivalent, lag-
compensated, voltage-mode control design would
be in the range of only 130 Hz.

Again, it should be emphasized that
essentially identical small-signal performance
can be achieved with either peak or average C/M
control, regardless of whether one places the
integrating capacitor in the voltage error
amplifier (as described above), or in the current
amplifier (as it might be in power-factor
correction circuits).

Obviously, there is much more which could
be included on this subject but it is hoped that
with the description and examples presented
herein, the reader will be able to extrapolate to
applications specific to the design problems at
hand. Additional information on other circuit
topologies may be found in the references given
below.

XVIII. FOR FURTHER STUDY

Dan Mitchell teaches a two-day course
covering an in-depth presentation of design,
stability, and performance analyses of DC/DC
converters entitled “Switching Regulator Design
and Analysis”. This course is a part of the
Modern Power Conversion Design Techniques
program offered by e/j BLOOM associates, Inc.
For additional information, Dan may be reached
by phone at (319) 363-8066, or by e-mail at
dmmitch@home.com
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