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Abstract 

In the realization of Viterbi decoders with fi- 
nite precision arithmetic, the values of the sur- 
vivor metrics computed by the Add-Compare- 
Select (ACS) recursion must remain within a fi- 
nite numerical range to avoid catastrophic over- 
flow (or underflow) situations. In this paper, we 
compare several metric normalization techniques 
which are suitable for VLSI implementations with 
fixed-point arithmetic. The modulo technique is 
found to be the most localand uniform approach. 
An efficient VLSI design of the ACS units based 
on this technique is discussed. 

1 Introduction 

The Viterbi algorithm is widely used in communications 
applications to derive maximum-likelihood sequence esti- 
mates of transmitted data on channels with intersymbol 
interference (ISI) and/or coding. Based upon a trellis de- 
scription of the channel outputs, the algorithm recursively 
computes for each state of the trellis the best fit to  the re- 
ceived (noisy) sequence among the trellis sequences which 
end in the specific state. These “best fit” sequences are 
called “survivor sequences”, and associated with each is a 
measure of how well the survivor matches the received se- 
quence in the sense of a prescribed measure, e.g. squared 
Euclidean differences. 

“branch metric increment” corresponding to  this tran- 
sition, which represents the squared difference be- 
tween the received sample(s) and the branch label. 

2. The resulting metrics are compared to  determine 
which augmented metric is smallest, thus indicating 
the best fit to the received sample sequence. 

3. The smallest metric is selected as the metric for the 
new state. 

The steps mentioned above correspond to minimizing 
the negative log likelihood function, which is proportional 
to the squared Euclidean distance, under the assumption 
of independent, identically-distributed, additive Gaussian 
noise. An alternative metric definition [9] based on the log 
likelihood function would lead to  selecting the largest met- 
ric as the metric for the new state. In digital implementa- 
tions, where metrics are represented as binary fixed-point 
values in finite-length registers, metric normalization is re- 
quired to prevent errors due to  overflow/underflow during 
the updating and storage of the metrics. Several methods 
of metric normalization have been proposed and used in 
the past. Among these are: 

1. Reset: 
Redundancy is introduced into the channel input se- 
quence in order to  force the survivor sequences to  
merge after some number N of ACS recursions for each 
state. 

2. Difference Metric ACS: 
The Viterbi algorithm is reformulated to  keep track 
only of differences between metrics for each pair of 
states. 

This numerical measure is called the “survivor metric”. 
At the heart of the algorithm are the Add-Compare-Select 
(ACS) operations which for each new state in the trellis 
perform the following functions: 

3. Variable Shift: 
After some fixed number N of recursions, the min- 
imum survivor metric is subtracted from all of the 
survivor metrics [9]. 

4. Fixed Shift: 1. The survivor metric of each preceding state with 
a transition to the new state is augmented by the When all survivor metrics become negative (or all pos- 
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itive), the survivor metrics are shifted up (or down) 
by a fixed amount [3]. 

5. Modulo Normalizat ion:  

Use two’s complement representation of branch and 
survivor metrics and modular arithmetic during ACS 
operations. 

Methods 2 through 5 attempt to  exploit the fact that ,  
despite the potential unbounded magnitude of survivor 
metrics, the differences between them remain bounded in 
magnitude by a fixed quantity A, independent of the num- 
ber of ACS recursion iterations. A bound which has been 
used [1,4,10] is of the form 2nB where n is the minimum 
number of stages to  ensure complete connectivity among 
the trellis states, and B is the upper bound on the branch 
metrics. Recently, an improved method for exact calcula- 
tion of A and related bounds for the “extended survivor 
metrics” has been developed [6]. 

In section 2 ,  we review the normalization techniques 1-4 
mentioned above. These techniques are found to be global 
and/or non-uniform and hence unsuitable for VLSI imple- 
mentation. In section 3, we review the modulo normal- 
ization technique [4]. As mentioned in [4], this technique 
seemed to  be known among several experts in the field 
without being published; it has in fact been used in re- 
search prototypes since 1979, and in commercial modem 
products since 1985 [8]. In [4], the proposed technique 
cannot be mapped directly into ACS hardware; instead, a 
subtractor has to  be used in place of a comparator. We’ll 
show in section 4 a modified comparison rule that results 
in a more efficient ACS implementation of the modulo nor- 
malization technique, which is shown to be local and uni- 
form and hence the most attractive choice. 

RESET 

2 Normalization Techniques 1-4 

In VISI  implementation of the normalization techniques, 
the two most desirable properties are locality and uni- 
formity.  Metric normalization is considered local if it is 
accomplished within each ACS without information from 
other ACS’s. It is considered uniform if the ACS opera- 
tion is not interrupted to perform metric normalization. 
Locality minimizes the global signal communications and 
hence reduces the wiring area. Uniformity not only simpli- 
fies the control but also minimizes the variety of required 
functional units. Moreover, a non-uniform technique usu- 
ally reduces the achievable data rate. The following com- 
parison of the first four normalization techniques focuses 
on these two properties. 

2.1 Reset 

The reset technique periodically resets the encoder to  a 
ground state. It was proposed [5] for generating indepen- 
dent data blocks from the same data source to exploit the 
decoder concurrency. Without loss of generality, let the 
state 0 be the ground state. Reset can be accomplished by 
(1) shifting in zeros in case of a convolutional encoder or 
(2) forcing the encoder into state 0 in case of a finite-state 
machine encoder. The resultant trellises are shown in Fig- 
ure l(a)(b) [5]. The,reset technique is relatively simple, 
but not uniform. Moreover, the precision required in the 
ACS depends on the reset period, unless another normal- 
ization technique is employed within each period. 

RESET RESET 

Figure l(a). Trellis Diagram with Zero-shift 

RESET 

... ... 
RESET RESET 

Figure l(b).  Trellis Diagram with Abrupt Reset 
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2.2 Difference Metric ACS 

The Viterbi algorithm is reformulated to  keep track only of 
differences between metrics for each pair of states. Based 
on the “bounded difference” property of the Viterbi algo- 
rithm, the technique renders metric normalization unnec- 
essary. It was proven useful for binary partial response 
channels [2], such as 1 3z D. However, as Ferguson con- 
cluded 121, ”The extension to multilevel signaling destroys 
the beauty and simplicity of the binary scheme”. In gen- 
eral this technique is difficult to formulate and offers no 
clear advantage when the number of trellis states exceeds 
2. 

2.3 Variable Shift 

After some fixed number N of recursions, the minimum sur- 
vivor metric is subtracted from all of the survivor metrics. 
Its ACS architecture is shown in Figure 2. A subtractor is 
required to  subtract the minimum survivor metric. If met- 
ric normalization is performed in every trellis stage, then 
the subtractor increases the ACS delay. If metric normal- 
ization is performed occasionally by interrupting the ACS 
operation, which results in a variable rate decoder, then 
the control becomes more complex. 

This technique is non-uniform and extremely global, but 
is probably also the most frequently used. In addition to 
the hardware penalty for the subtractors and minimum 
metric selection, it calls for a significant amount of signal 
communications to  select the minimum survivor metric, 
and to  distribute the minimum metric to  all ACS units to 
be subtracted. 

2.4 Fixed Shift 

When the Hamming distance is used as branch metric, the 
survivor metrics tend to increase. On the other hand, when 
the Euclidean distance (with the square of the received 
sample term cancelled) is used as branch metric, the sur- 
vivor metrics tends to decrease. This technique shifts all 
the survivor metrics up  (or down) by a fixed amount when 
all the survivor metrics become negative (or all positive). 

It can be implemented by inspecting the sign bit of all 
survivor metrics and resetting (or presetting) all the sign 
bits when all of them become 1 (or 0). The ACS architec- 
ture is shown in Figure 3. Compared to the Variable Shift, 
this method requires much less global signal communica- 
tions. However, because the sign bit monitoring and the 
subsequent fixed shifts are performed within the ACS re- 
cursion, this approach reduces the data rate that  can be 

path metriA-1 

branch 

path 

branch 

Figure 2. ACS Architecture for Variable-Shift Normalization 
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Figure 3. ACS Architecture for Fixed-Shift Normalization 
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Figure 3. ACS Architecture for Fixed-Shift Normalization 

347.4.3. 
1725 



achieved. Moreover, this technique requires one extra bit 
in precision. 

ml 
complement I 

branch metric 1 adder - 
2 ’s- 

complement - mux 

path metric 2 - 2’s- 
complement - 

3 Modulo Normalization 

survivor metric - 

In modular arithmetic the metric mj is replaced by the nor- 
malized metric m, % (m, + $) (mod C) - $, as in Figure 
4. One can think of the quantities (Ej} as positions on the 
circumference of a circle with diameter $, with mj at  angle 
y. Note that -: 5 mj < f .  The normalized metrics 
are obtained by wrapping the real line around the circle, 
with the real number 0 mapped to the point a t  angle 0 
on the circle, and the direction of increasing real numbers 
corresponding to counterclockwise motion around the cir- 
cle. It was found [4,8] that the differences of the survivor 
metrics remain unchanged using modular arithmetic pro- 
vided that A < $, where A is the bound of the differences 
between survivor metrics. 

branch metri- 

Proposition: (its proof is straightforward, as can be 
seen from Figure 4): Let ml,  m2 be real numbers with 

adder 

Let a be the angle swept out by counterclockwise motion 
along the arc from the projection to E 2 .  Then, 

if and only if 
a < T .  

We can interpret the proposition in less mathematical 
terms by thinking of the survivor metrics as “runners in a 
race”. The constraint that  the difference between metrics 
is less than half of the circumference is like saying it is 
a very competitive race. At all times all the runners are 
running in one half of the circumference. Therefore, it is 
very easy to determine which one is leading. 

I --I 2’s- 
path metric 1 

Figure 4. Modulo comparison of normalized metrics 

The modular arithmetic can be implemented by 2’s- 
complement adders and subtractors [4,8]. In particular, a 
subtractor is used in place of a comparator as in a normal 
ACS. This is based on the observations that (1) 2’s com- 
plement subtraction produces a, the angle between and 
mz, and (2) ml - E ~  = ml - m2 if Iml - mzl < :. The 
sign bit (1 if a > T ,  0 otherwise) can be used to drive the 
multiplexer to  perform the selection. 

The VLSI architecture of an ACS using modulo normal- 
ization is shown in Figure 5. This technique normalizes the 
survivor metrics locally (inside the 2’s complement adder 
and subtractor) and uniformly (no interruption for metric 
normalization). The penalty is the extra bit required in the 
ACS because C’ = 2A. In the next section we will present a 
more efficient ACS architecture for modulo normalization. 
It is based on a modified comparison rule because direct 
(either signed or unsigned) comparison cannot determine 
the relative order of ‘ifii and i r i z  due to  the modular arith- 
metic. 

4 Modified Comparison Rule 

Let Z ( F E ~ , V Z ~ )  denote the logical result of the comparison 
of the survivor metrics ml and mz, given by 

sign bit 
n 

Figure 5. VLSI architecture for Modulo Normalized ACS 
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Let f i 1  = (WTlP,. . . , iTt lo)  and iTt2 = (mzp1.. . , ~ 2 2 0 )  be the 
two’s-complement representations of the normalized met- 
rics m1 and TE~.  Or 

P 
TEl = Cmlj2j 

j = O  

P 
E2 = cE2j2J 

j=O 

Let hj E mj (mod $-)! or 

P-1 

j=O 
rizl = Cmlj23 

P-1 , 

r i ~ ~  = ~ ~ ~ ~ 2 3  
j=O 

Let denote the exclusive-or operation. 

Modified Comparison Rule: 

where y(., .) denotes the unsigned comparison. In 
words, z( i~t l ,mz)  equals y ( h l , h 2 )  (or logical inverse of 
y(&, 612)) if T E ~  and m2 have the same (or opposite) sign. 

AS an example, in Figure 6, TE~ and m2 have opposite 
sign, &I(=  WTl) > &(= m,-g), y(riL1,7jz2) = 0.  From the 
modified comparison rule, we conclude that z(i7tl, T E ~ )  = 1, 
or mi < m2. Since CY < R ,  the proposition confirms this 
conclusion. 

The VLSI architecture for an ACS which implements 
modulo normalization with modified comparison rule is 
shown in Figure 7. In general the comparator is smaller 
and faster than the subtractor (Figure 6). In addition, the 
computation of y(hl,7jL2) and ml, @ W C ~ ~  can be performed 
in parallel. Thus the implementation based on the modi- 
fied comparison rule further removes one-bit delay. As a 

branch 

path 

branch 

Figure 6. An Example for the Modified Comparison Rule 

result, the VLSI architecture for ACS based on the modi- 
fied comparison rule is more efficient in area and speed than 
the one based on 2’s-complement subtraction. 

The modulo normalization technique with the modified 
comparison rule has been used in the VLSI design of a 
Viterbi decoder for partial-response signals encoded with 
a rate-8/10 trellis code [7]. 

5 Conclusion 

Five metric normalization techniques and their implemen- 
tations are described and compared. The inodulo normal- 
ization technique offers the most local and uniform archi- 
tecture and hence is the most suitable for VLSI implemen- 
tation. The modified comparison rule is found to  produce a 
more efficient ACS architecture than previous results based 
on subtraction. 

- 

Acknowledgment 
The authors wish to thank C. Cox and F. Dolivo for 

many helpful discussions. 

vivor 

complement 
metric 1 adder 

modified metric 

Figure 7. VLSI Architecture for Modulo Normalized ACS 
with Modified Comparison Rule 
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