
Literature Number: SW-RDK-ACIM-UG-5450
December 02, 2009

USER’S GUIDE

RDK-ACIM Firmware Development Package

www.ti.com

Copyright
Copyright © 2007-2008 Texas Instruments Incorporated. All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments.
ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of
others.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this data sheet.

Texas Instruments
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.luminarymicro.com

Revision Information
This is version 5450 of this document, last updated on December 02, 2009.

2 SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Table of Contents

Table of Contents
Copyright . 2

Revision Information . 2

1 Introduction . 5
1.1 Overview . 5
1.2 Code Size . 5
1.3 Processor Usage . 6
1.4 Memory Layout . 6
1.5 Debugging . 7

2 Applications . 9
2.1 Boot Loader (boot_serial) . 9
2.2 A/C Induction Motor Controller (qs-acim) . 9

3 Development System Utilities . 11

4 ADC Control . 13
4.1 Introduction . 13
4.2 Definitions . 13

5 Dynamic Brake Control . 17
5.1 Definitions . 17

6 Faults . 21
6.1 Introduction . 21
6.2 Definitions . 22

7 In-rush Current Control . 25
7.1 Introduction . 25
7.2 Definitions . 25

8 Main Application . 27
8.1 Introduction . 27
8.2 Definitions . 28

9 On-board User Interface . 45
9.1 Introduction . 45
9.2 Definitions . 45

10 Pin Definitions . 51
10.1 Introduction . 51
10.2 Definitions . 51

11 PWM Control . 61
11.1 Introduction . 61
11.2 Definitions . 62

12 Serial Interface . 73
12.1 Introduction . 73
12.2 Definitions . 75

13 Sine Wave Modulation . 111
13.1 Introduction . 111
13.2 Definitions . 111

14 Space Vector Modulation . 113
14.1 Introduction . 113
14.2 Definitions . 114

SW-RDK-ACIM-UG-5450 - December 02, 2009 Table of Contents 3

http://www.ti.com

Table of Contents www.ti.com

15 Speed Sensing . 117
15.1 Introduction . 117
15.2 Definitions . 117

16 User Interface . 123
16.1 Introduction . 123
16.2 Definitions . 123

17 V/f Control . 153
17.1 Introduction . 153
17.2 Definitions . 153

18 CPU Usage Module . 155
18.1 Introduction . 155
18.2 API Functions . 155
18.3 Programming Example . 156

19 Flash Parameter Block Module . 159
19.1 Introduction . 159
19.2 API Functions . 159
19.3 Programming Example . 162

20 Sine Calculation Module . 163
20.1 Introduction . 163
20.2 API Functions . 163
20.3 Programming Example . 164

IMPORTANT NOTICE . 166

4 Table of Contents SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Introduction

1 Introduction
Overview .5
Code Size .5
Processor Usage .6
Memory Layout . 6
Debugging . 7

1.1 Overview

This document describes the functions, variables, structures, and symbolic constants in the soft-
ware for the AC induction motor RDK. The firmware runs on a Stellaris® LM3S818 microcon-
troller, utilizing the provided six-channel motion control PWM module, six-channel ADC, UART, and
quadrature encoder module. The Stellaris Peripheral Driver Library is used to configure and operate
these peripherals.

The AC induction motor application has the following features:

Drives three-phase AC induction motors

Drives permanent split capacitor and shaded-pole single-phase AC induction motors

Operation from 0 to 400 Hz with 0.1 Hz steps

Acceleration and deceleration from 1 to 100 Hz/sec

PWM frequency of 8 KHz, 12.5 KHz, 16 KHz, or 20 KHz

V/f control

DC bus ripple compensation

Sine wave modulation

Space vector modulation

Closed-loop speed control

Dynamic braking

DC injection braking

DC bus regeneration control

Real-time data monitoring

Fault monitoring and handling

See the Stellaris AC Induction Motor Reference Design Kit User’s Manual for details of these fea-
tures, how to run the application, and details of the various motor drive parameters.

1.2 Code Size

The size of the final application binary depends upon the source code, the compiler used, and the
version of the compiler. This makes it difficult to give an absolute size for the application since
changes to any of these variables will likely change the size of the application (if only slightly).

SW-RDK-ACIM-UG-5450 - December 02, 2009 Introduction 5

http://www.ti.com

Processor Usage www.ti.com

Typical numbers for the application are 16 KB of flash and 1.25 KB of SRAM. Of this, 5.5 KB of
flash and 0.5 KB of SRAM is consumed by the user interface, which is much more complicated
than what would typically be used in a final motor drive application (unless the final application is a
generic motor drive such as the RDK). This leaves 10.5 KB of flash and 0.75 KB of SRAM for the
actual motor drive application, parts of which are also more complicated than required due to the
run-time reconfigurability.

1.3 Processor Usage

The two factors that have the largest impact on the processor usage are the PWM frequency and
the PWM update rate. The following table provides some data points for a few combinations of
these two factors; the actual processor usage may vary slightly, especially when other parameters
are changed (this should be viewed only as indicative information).

PWM Frequency
Update 8 KHz 12.5 KHz 16 KHz 20 KHz

1 19% 30% 38% 47%
2 14% 21% 26% 33%
3 12% 18% 22% 28%
4 11% 16% 20% 25%
5 10% 15% 19% 24%

An update rate of 1 means that the waveform update frequency matches the PWM frequency.
From the table above, a PWM frequency of 20 KHz with a waveform update frequency of 20 KHz
consumes around 47% of the processor. An update rate of 5, on the other hand, is a waveform
update frequency of 1/5 the PWM frequency; a PWM frequency of 20 KHz with a waveform update
rate of 4 KHz consumes around 24% of the processor.

1.4 Memory Layout

The AC induction motor firmware works in cooperation with the Stellaris boot loader to provide a
means of updating the firmware over the serial port. When a request is made to perform a firmware
update, the AC induction motor firmware transfers control back to the boot loader. After a reset, the
boot loader runs and simply passes control to the AC induction motor firmware.

In addition to the boot loader and the AC induction motor firmware, there is a region of flash re-
served for storing the motor drive parameters. This allows these values to be persistent between
power cycles of the board, though they are only written to flash based on an explicit request.

The 64 KB of flash on the LM3S818 is organized as follows:

6 Introduction SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Debugging

0x0000.0000
Boot Loader

0x0000.07ff
0x0000.0800

ACIM Firmware
0x0000.efff
0x0000.f000

Parameter Storage
0x0000.ffff

1.5 Debugging

The AC induction motor firmware is a difficult application to debug. If the firmware is stopped while
the motor is running, the PWM outputs shut off, causing the motor to start coasting. When the
firmware starts executing again (either because of a run or a single step), the PWM outputs start
up again as if they had never stopped. But, the motor will be running much slower at this point, so
the slip will have increased (possibly significantly). This likely results in either a power module fault
or a motor over current fault. Both faults result in the motor drive being shut off, meaning that the
debug event has caused catastrophic results on the behavior of the application (but no permanent
hardware damage). The use (and abuse) of the real-time data stream is typically the best way to
“debug” a running system like this; the abuse of the real-time data stream is to replace the current
frequency real-time data item value (for example) with a different internal variable and view its value
in real time on the GUI. Obviously not ideal, but this is better than nothing.

The JTAG opto-isolation interface provided on the RDK provides only unidirectional transmission
of the JTAG signals, from board to emulator for TDO and from emulator to board for the remaining
signals. This allows JTAG to operate with no problems, so long as the signal edge rate and prop-
agation delay of the opto-isolators does not become an issue. If JTAG fails to operate, or operates
in an intermittent fashion, a slower JTAG clock rate should be tried.

The new Serial Wire Debug (SWD) available in the ARM® Cortex™-M3 microprocessor provides a
two-signal debugging interface (as opposed to the four- or five-signal interface required by JTAG).
One of these signals is a clock that is provided by the emulator. The other signal is a bidirectional
data signal whose direction is known based on the current state of the transfer protocol. SWD
provides the same capabilities as JTAG with fewer pins consumed on the microcontroller.

As of November 2008, the Sourcery G++ USB Debug Sprite for Stellaris from CodeSourcery uses
the SWD debug protocol to communicate with the Stellaris microcontroller. It is therefore unable
to operate on the AC induction motor RDK. An alternative for advanced users is the open source
project OpenOCD (http://openocd.berlios.de/web), which utilizes JTAG to communicate
with the Stellaris microcontroller but continues to use a standard GNU toolchain (such as Code-
Sourcery’s) for the compiler and debugger.

The use of OpenOCD is recommended only for those capable of building open source projects,
following limited on-line tutorials, and utilizing on-line forums and mailing lists for help.
http://www.siwawi.arubi.uni-kl.de/avr_projects/arm_projects/openocd_-
cortex/index.html provides a good starting point for the use of OpenOCD with the
CodeSourcery toolchain and a Stellaris microcontroller.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Introduction 7

http://www.ti.com
http://openocd.berlios.de/web
http://www.siwawi.arubi.uni-kl.de/avr_projects/arm_projects/openocd_cortex/index.html
http://www.siwawi.arubi.uni-kl.de/avr_projects/arm_projects/openocd_cortex/index.html

Debugging www.ti.com

8 Introduction SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Applications

2 Applications
The boot loader (boot_serial) and quickstart (qs-acim) are programmed onto the MDL-ACIM. The
boot loader can be used to update the quickstart application using the serial port, eliminating the
need for a JTAG debugger.

There is an IAR workspace file (rdk-acim.eww) that contains the peripheral driver library project,
along with the A/C Induction Motor Controller software project, in a single, easy to use workspace
for use with Embedded Workbench version 5.

There is a Keil multi-project workspace file (rdk-acim.mpw) that contains the peripheral driver
library project, along with the A/C Induction Motor Controller software project, in a single, easy to
use workspace for use with uVision.

All of these examples reside in the boards/rdk-acim subdirectory of the firmware development
package source distribution.

2.1 Boot Loader (boot_serial)

The boot loader is a small piece of code that can be programmed at the beginning of flash to act
as an application loader as well as an update mechanism for an application running on a Stellaris
microcontroller, utilizing either UART0, I2C0, SSI0, or Ethernet. The capabilities of the boot loader
are configured via the bl_config.h include file. For this example, the boot loader uses UART0 to
load an application.

2.2 A/C Induction Motor Controller (qs-acim)

This application is a motor drive for single and three phase A/C induction motors. The following
features are supported:

V/f control

Sine wave modulation

Space vector modulation

Closed loop speed control

DC bus voltage monitoring and control

AC in-rush current control

Regenerative braking control

DC braking control

Simple on-board user interface (via a potentiometer and push button)

Comprehensive serial user interface

Over 30 configurable drive parameters

Persistent storage of drive parameters in flash

SW-RDK-ACIM-UG-5450 - December 02, 2009 Applications 9

http://www.ti.com

A/C Induction Motor Controller (qs-acim) www.ti.com

10 Applications SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Development System Utilities

3 Development System Utilities
These are tools that run on the development system, not on the embedded target. They are pro-
vided to assist in the development of firmware for Stellaris microcontrollers.

These tools reside in the tools subdirectory of the firmware development package source distri-
bution.

Serial Flash Downloader
Usage:

sflash [OPTION]... [INPUT FILE]

Description:
Downloads a firmware image to a Stellaris board using a UART connection to the Stellaris
Serial Flash Loader or the Stellaris Boot Loader. This has the same capabilities as the serial
download portion of the Stellaris Flash Programmer.

The source code for this utility is contained in tools/sflash, with a pre-built binary contained
in tools/bin.

Arguments:
-b BAUD specifies the baud rate. If not specified, the default of 115,200 will be used.
-c PORT specifies the COM port. If not specified, the default of COM1 will be used.
-d disables auto-baud.
-h displays usage information.
-l FILENAME specifies the name of the boot loader image file.
-p ADDR specifies the address at which to program the firmware. If not specified, the default

of 0 will be used.
-r ADDR specifies the address at which to start processor execution after the firmware has

been downloaded. If not specified, the processor will be reset after the firmware has been
downloaded.

-s SIZE specifies the size of the data packets used to download the firmware date. This must
be a multiple of four between 8 and 252, inclusive. If using the Serial Flash Loader, the
maximum value that can be used is 76. If using the Boot Loader, the maximum value that
can be used is dependent upon the configuration of the Boot Loader. If not specified, the
default of 8 will be used.

INPUT FILE specifies the name of the firmware image file.

Example:
The following will download a firmware image to the board over COM2 without auto-baud sup-
port:

sflash -c 2 -d image.bin

SW-RDK-ACIM-UG-5450 - December 02, 2009 Development System Utilities 11

http://www.ti.com

Development System Utilities www.ti.com

12 Development System Utilities SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com ADC Control

4 ADC Control
Introduction . 13
Definitions . 13

4.1 Introduction

The ADC is used to monitor the motor current, DC bus voltage, and ambient temperature of the
microcontroller. Each of these values is sampled every PWM period based on a trigger from the
PWM module, which allows the motor current to be measured when the low side switch for each
phase is turned on.

Each reading from the ADC is passed through a single-pole IIR low pass filter. This helps to reduce
the effects of high frequency noise (such as switching noise) on the sampled data. A coefficient
of 0.75 is used to simplify the integer math (requiring only a multiplication by 3, an addition, and a
division by four).

The measured current in each motor phase is passed through a peak detect that resets every
cycle of the output motor drive waveforms. The peak value is then divided by the square root of 2
(approximated by 1.4) in order to obtain the RMS current of each phase of the motor. The RMS
current of the motor is the average of the RMS current though each phase.

The individual motor phase RMS currents, motor RMS current, DC bus voltage, and ambient tem-
perature are used outside this module.

The code for handling the ADC is contained in adc_ctrl.c, with adc_ctrl.h containing the
definitions for the variables and functions exported to the remainder of the application.

4.2 Definitions

Functions
void ADC0IntHandler (void)
void ADCInit (void)

Variables
static unsigned short g_pusFilteredData[5]
volatile unsigned short g_pusPhaseCurrentRMS[3]
static unsigned short g_pusPhaseMax[3]
volatile unsigned char g_ucAmbientTemp
static unsigned long g_ulPrevAngle
volatile unsigned short g_usBusVoltage
volatile unsigned short g_usMotorCurrent

SW-RDK-ACIM-UG-5450 - December 02, 2009 ADC Control 13

http://www.ti.com

Definitions www.ti.com

4.2.1 Function Documentation

4.2.1.1 ADC0IntHandler

Handles the ADC sample sequence zero interrupt.

Prototype:
void
ADC0IntHandler(void)

Description:
This function is called when sample sequence zero asserts an interrupt. It handles clearing
the interrupt and processing the new ADC data in the FIFO.

Returns:
None.

4.2.1.2 ADCInit

Initializes the ADC control routines.

Prototype:
void
ADCInit(void)

Description:
This function initializes the ADC module and the control routines, preparing them to monitor
currents and voltages on the motor drive.

Returns:
None.

4.2.2 Variable Documentation

4.2.2.1 g_pusFilteredData [static]

Definition:
static unsigned short g_pusFilteredData[5]

Description:
An array containing the raw low pass filtered ADC readings. This is maintained in a raw form
since it is required as an input to the next iteration of the IIR low pass filter.

4.2.2.2 g_pusPhaseCurrentRMS

Definition:
volatile unsigned short g_pusPhaseCurrentRMS[3]

14 ADC Control SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

Description:
The RMS current passing through the three phases of the motor, specified in amperes as an
unsigned 8.8 fixed point value.

4.2.2.3 g_pusPhaseMax [static]

Definition:
static unsigned short g_pusPhaseMax[3]

Description:
An array containing the maximum phase currents seen during the last half cycle of each phase.
This is used to perform a peak detect on the phase currents.

4.2.2.4 g_ucAmbientTemp

Definition:
volatile unsigned char g_ucAmbientTemp

Description:
The ambient case temperature of the microcontroller, specified in degrees Celsius.

4.2.2.5 g_ulPrevAngle [static]

Definition:
static unsigned long g_ulPrevAngle

Description:
The angle of the motor drive on the previous ADC interrupt.

4.2.2.6 g_usBusVoltage

Definition:
volatile unsigned short g_usBusVoltage

Description:
The DC bus voltage, specified in volts.

4.2.2.7 g_usMotorCurrent

Definition:
volatile unsigned short g_usMotorCurrent

Description:
The total RMS current passing through the motor, specified in amperes as an unsigned 8.8
fixed point value.

SW-RDK-ACIM-UG-5450 - December 02, 2009 ADC Control 15

http://www.ti.com

Definitions www.ti.com

16 ADC Control SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Dynamic Brake Control

5 Dynamic Brake Control
Introduction .??
Definitions . 17

5.1 Definitions

Defines
STATE_BRAKE_COOL
STATE_BRAKE_OFF
STATE_BRAKE_ON

Functions
void BrakeInit (void)
void BrakeTick (void)

Variables
static unsigned long g_ulBrakeCount
static unsigned long g_ulBrakeState

5.1.1 Define Documentation

5.1.1.1 STATE_BRAKE_COOL

Definition:
#define STATE_BRAKE_COOL

Description:
The dynamic brake is forced off to allow the power resistor to cool. After the minimum cooling
period has expired, an automatic transition to STATE_BRAKE_OFF will occur if the bus voltage
is below the trigger level and to STATE_BRAKE_ON if the bus voltage is above the trigger level.

5.1.1.2 STATE_BRAKE_OFF

Definition:
#define STATE_BRAKE_OFF

Description:
The dynamic brake is turned off. The bus voltage going above the trigger level will cause a
transition to the STATE_BRAKE_ON state.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Dynamic Brake Control 17

http://www.ti.com

Definitions www.ti.com

5.1.1.3 STATE_BRAKE_ON

Definition:
#define STATE_BRAKE_ON

Description:
The dynamic brake is turned on. The bus voltage going below the trigger level will cause a
transition to the STATE_BRAKE_OFF state, and the brake being on for too long will cause a
transition to STATE_BRAKE_COOL.

5.1.2 Function Documentation

5.1.2.1 BrakeInit

Initializes the dynamic braking control routines.

Prototype:
void
BrakeInit(void)

Description:
This function initializes the ADC module and the control routines, preparing them to monitor
currents and voltages on the motor drive.

Returns:
None.

5.1.2.2 BrakeTick

Updates the dynamic brake.

Prototype:
void
BrakeTick(void)

Description:
This function will update the state of the dynamic brake. It must be called at the PWM frequency
to provide a time base for determining when to turn off the brake to avoid overheating.

Returns:
None.

5.1.3 Variable Documentation

5.1.3.1 g_ulBrakeCount [static]

Definition:
static unsigned long g_ulBrakeCount

18 Dynamic Brake Control SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

Description:
The number of milliseconds that the dynamic brake has been on. For each brake update period,
this is incremented if the brake is on and decremented if it is off. This effectively represents the
heat buildup in the power resistor; when on heat will increase and when off it will decrease.

5.1.3.2 g_ulBrakeState [static]

Definition:
static unsigned long g_ulBrakeState

Description:
The current state of the dynamic brake. Will be one of STATE_BRAKE_OFF, STATE_BRAKE_-
ON, or STATE_BRAKE_COOL.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Dynamic Brake Control 19

http://www.ti.com

Definitions www.ti.com

20 Dynamic Brake Control SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Faults

6 Faults
Introduction . 21
Definitions . 22

6.1 Introduction

There are several fault conditions that can occur during the operation of the motor drive. Those fault
conditions are enumerated here and provide the definition of the fault status read-only parameter
and real-time data item.

The faults are:

Emergency stop: This occurs as a result of a command request. An emergency stop is one
where the motor is stopped immediately without regard for trying to maintain normal control of
it (this is, without the normal deceleration ramp). From the motor drive perspective, the motor
is left to its own devices to stop, meaning it will coast to a stop under the influence of friction
unless a mechanical braking mechanism is provided.

DC bus under-voltage: This occurs when the voltage level of the DC bus drops too low. Typi-
cally, this is the result of the loss of mains power.

DC bus over-voltage: This occurs when the voltage level of the DC bus rises too high. When
the motor is being decelerated, it becomes a generator, increasing the voltage level of the
DC bus. If the level of regeneration is more than can be controlled, the DC bus will rise to a
dangerous level and could damage components on the board.

Motor under-current: This occurs when the current through the motor drops too low. Typically,
this is the result of an open connection to the motor.

Motor over-current: This occurs when the current through the motor rises too high. When the
motor is being accelerated, more current flows through the windings than when running at a
set speed. If accelerated too quickly, the current through the motor may rise above the current
rating of the motor or of the motor drive, possibly damaging either.

Power module fault: This occurs when the smart power module detects a fault condition. The
smart power module will signal a fault on a supply under-voltage condition and an output
over-current condition.

Ambient over-temperature: This occurs when the case temperature of the microcontrollers
rises too high. The motor drive generates lots of heat; if in an enclosure with inadequate
ventilation, the heat could rise high enough to exceed the operating range of the motor drive
components and/or cause physical damage to the board. Note that the temperature measure-
ment that is of more interest is directly on the heat sink where the smart power module is
attached, though this would require an external thermocouple in order to measure.

The definitions for the fault conditions are contained in faults.h.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Faults 21

http://www.ti.com

Definitions www.ti.com

6.2 Definitions

Defines
FAULT_CURRENT_HIGH
FAULT_CURRENT_LOW
FAULT_EMERGENCY_STOP
FAULT_POWER_MODULE
FAULT_TEMPERATURE_HIGH
FAULT_VBUS_HIGH
FAULT_VBUS_LOW

6.2.1 Define Documentation

6.2.1.1 FAULT_CURRENT_HIGH

Definition:
#define FAULT_CURRENT_HIGH

Description:
The fault flag that indicates that the motor current rose too high.

6.2.1.2 FAULT_CURRENT_LOW

Definition:
#define FAULT_CURRENT_LOW

Description:
The fault flag that indicates that the motor current dropped too low.

6.2.1.3 FAULT_EMERGENCY_STOP

Definition:
#define FAULT_EMERGENCY_STOP

Description:
The fault flag that indicates that an emergency stop operation was performed.

6.2.1.4 FAULT_POWER_MODULE

Definition:
#define FAULT_POWER_MODULE

Description:
The fault flag that indicates that the power module asserted its fault signal.

22 Faults SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

6.2.1.5 FAULT_TEMPERATURE_HIGH

Definition:
#define FAULT_TEMPERATURE_HIGH

Description:
The fault flag that indicates that the ambient temperature rose too high.

6.2.1.6 FAULT_VBUS_HIGH

Definition:
#define FAULT_VBUS_HIGH

Description:
The fault flag that indicates that the DC bus voltage rose too high.

6.2.1.7 FAULT_VBUS_LOW

Definition:
#define FAULT_VBUS_LOW

Description:
The fault flag that indicates that the DC bus voltage dropped too low.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Faults 23

http://www.ti.com

Definitions www.ti.com

24 Faults SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com In-rush Current Control

7 In-rush Current Control
Introduction . 25
Definitions . 25

7.1 Introduction

On initial power-up, an in-rush current limiting resistor is applied in series with the AC power line
input. This slows the flow of current into the DC bus capacitors, preventing damage to the power
supply section of the board.

Once the DC bus voltage reaches a reasonable level (200 V), the in-rush resistor is bypassed by
closing a relay. At this point, the DC bus voltage quickly rises to its operating level.

This current limiting function is a one-time process that occurs when the application first starts. The
in-rush resistor is sized such that it could remain active for extended periods of time (for example,
if the flash of the microcontroller is erased and there is no code to turn on the relay). The motor
should never be run when the in-rush resistor is active.

The code for handling in-rush current limiting is contained in inrush.c, with inrush.h containing
the definition for the functions exported to the remainder of the application.

7.2 Definitions

Functions
void InRushDelay (void)
void InRushRelayAdjust (void)

7.2.1 Function Documentation

7.2.1.1 InRushDelay

Handles the in-rush current control.

Prototype:
void
InRushDelay(void)

Description:
This function delays while the in-rush current control resistor slows the buildup of voltage in
the DC bus capacitors. Once the voltage is at an adequate level, the in-rush current control
resistor is taken out of the circuit to allow current to freely flow from the AC line into the DC bus
capacitors. This is called on startup to avoid excessive current into the DC bus.

SW-RDK-ACIM-UG-5450 - December 02, 2009 In-rush Current Control 25

http://www.ti.com

Definitions www.ti.com

Returns:
None.

7.2.1.2 InRushRelayAdjust

Adjusts the in-rush control relay drive signal for operating from the crystal.

Prototype:
void
InRushRelayAdjust(void)

Description:
This function adjusts the drive signal to the in-rush control relay to achieve the desired drive
frequency when operating the microcontroller from the crystal instead of from the PLL.

Returns:
None.

26 In-rush Current Control SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Main Application

8 Main Application
Introduction . 27
Definitions . 28

8.1 Introduction

This is the main AC induction motor application code. It contains a state machine that controls the
operation of the drive, an interrupt handler for the waveform update software interrupt, an interrupt
handler for the millisecond frequency update software interrupt, and the main application startup
code.

The waveform update interrupt handler is responsible for computing new values for the waveforms
being driven to the inverter bridge. Based on the update rate, it will advance the drive angle and
recompute new waveforms. The V/f tables is used to determine the amplitude and the appropriate
modulation is performed. The new waveform values are passed to the PWM module to be supplied
to the PWM hardware at the correct time.

The millisecond frequency update interrupt handler is responsible for handling the dynamic brake,
computing the new drive frequency, and checking for fault conditions. If the drive is just starting,
this is where the precharging of the high-side gate drivers is handled. If the drive has just stopped,
this is where the DC injection braking is handled. Dynamic braking is handled by simply calling the
update function for the dynamic braking module.

When running, a variety of things are done to adjust the drive frequency. First, the target frequency
is adjusted by a PI controller if closed-loop mode is enabled, moving the target frequency such that
the rotor will reach the desired frequency. Then, the acceleration or deceleration rate is applied as
appropriate to move the output frequency towards the target frequency. In the case of deceleration,
the deceleration rate may be reduced based on the DC bus voltage. The result of this frequency
adjustment is a new step angle, which is subsequently used by the waveform update interrupt
handler to generate the output waveforms.

The over-temperature, DC bus under-voltage, DC bus over-voltage, motor under-current, and motor
over-current faults are all checked for by examining the readings from the ADC. Fault conditions are
handled by turning off the drive output and indicating the appropriate fault, which must be cleared
before the drive will run again.

The state machine that controls the operation of the drive is woven throughout the millisecond
frequency update interrupt handler and the routines that start, stop, and adjust the parameters of
the motor drive. Together, it ensures that the motor drive responds to commands and parameter
changes in a logical and predictable manner.

The application startup code performs high-level initialization of the microcontroller (such as en-
abling peripherals) and calls the initialization routines for the various support modules. Since all the
work within the motor drive occurs with interrupt handlers, its final task is to go into an infinite loop
that puts the processor into sleep mode. This serves two purposes; it allows the processor to wait
until there is work to be done (for example, an interrupt) before it executes any further code, and it
allows the processor usage meter to gather the data it needs to determine processor usage.

The main application code is contained in main.c, with main.h containing the definitions for the
defines, variables, and functions exported to the remainder of the application.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Main Application 27

http://www.ti.com

Definitions www.ti.com

8.2 Definitions

Defines
CRYSTAL_CLOCK
FLASH_PB_END
FLASH_PB_START
STATE_BACK_PRECHARGE
STATE_BACK_REV
STATE_BACK_RUN
STATE_BACK_STOPPING
STATE_BRAKE
STATE_FLAG_BACKWARD
STATE_FLAG_BRAKE
STATE_FLAG_FORWARD
STATE_FLAG_PRECHARGE
STATE_FLAG_REV
STATE_FLAG_RUN
STATE_FLAG_STOPPING
STATE_PRECHARGE
STATE_REV
STATE_RUN
STATE_STOPPED
STATE_STOPPING
SYSTEM_CLOCK

Functions
int main (void)
static void MainCheckFaults (void)
void MainClearFaults (void)
static void MainDCBrakeHandler (void)
void MainEmergencyStop (void)
unsigned long MainFrequencyController (void)
static void MainFrequencyHandler (unsigned long ulTarget)
unsigned long MainIsFaulted (void)
unsigned long MainIsRunning (void)
static long MainLongMul (long lX, long lY)
void MainMillisecondTick (void)
static void MainPrechargeHandler (void)
void MainRun (void)
void MainSetDirection (tBoolean bForward)
void MainSetFault (unsigned long ulFaultFlag)
void MainSetFrequency (void)
void MainSetLoopMode (tBoolean bClosed)

28 Main Application SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

void MainSetPWMFrequency (void)
void MainStop (void)
void MainUpdateFAdjI (long lNewFAdjI)
void MainWaveformTick (void)

Variables
static long g_lFrequencyIntegrator
static long g_lFrequencyIntegratorMax
unsigned char g_ucMotorStatus
static unsigned long g_ulAccelRate
unsigned long g_ulAngle
static unsigned long g_ulAngleDelta
static unsigned long g_ulDecelRate
unsigned long g_ulFaultFlags
static unsigned long g_ulFrequency
static unsigned long g_ulFrequencyFract
static unsigned long g_ulFrequencyWhole
static unsigned long g_ulState
static unsigned long g_ulStateCount
static unsigned long g_ulTargetFrequency

8.2.1 Define Documentation

8.2.1.1 CRYSTAL_CLOCK

Definition:
#define CRYSTAL_CLOCK

Description:
The frequency of the crystal attached to the microcontroller. This must match the crystal value
passed to SysCtlClockSet() in main().

8.2.1.2 FLASH_PB_END

Definition:
#define FLASH_PB_END

Description:
The address of the last block of flash to be used for storing parameters. Since the end of flash
is used for parameters, this is actually the first address past the end of flash.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Main Application 29

http://www.ti.com

Definitions www.ti.com

8.2.1.3 FLASH_PB_START

Definition:
#define FLASH_PB_START

Description:
The address of the first block of flash to be used for storing parameters.

8.2.1.4 STATE_BACK_PRECHARGE

Definition:
#define STATE_BACK_PRECHARGE

Description:
The motor drive is precharging the bootstrap capacitors on the high side gate drivers while
running in the backward direction. Once the capacitors are charged, the state machine will
automatically transition to STATE_BACK_RUN.

8.2.1.5 STATE_BACK_REV

Definition:
#define STATE_BACK_REV

Description:
The motor drive is decelerating down to a stop while running in the backward direction, at which
point the state machine will automatically transition to STATE_RUN. This results in a direction
change of the motor drive.

8.2.1.6 STATE_BACK_RUN

Definition:
#define STATE_BACK_RUN

Description:
The motor drive is running in the backward direction, either at the target frequency or slewing
to the target frequency.

8.2.1.7 STATE_BACK_STOPPING

Definition:
#define STATE_BACK_STOPPING

Description:
The motor drive is decelerating down to a stop while running in the backward direction, at which
point the state machine will automatically transition to STATE_STOPPED. This results in the
motor drive being stopped.

30 Main Application SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

8.2.1.8 STATE_BRAKE

Definition:
#define STATE_BRAKE

Description:
The motor drive is performing DC injection braking. Once the braking has completed, the state
machine will automatically transition to STATE_STOPPED.

8.2.1.9 STATE_FLAG_BACKWARD

Definition:
#define STATE_FLAG_BACKWARD

Description:
A state flag that indicates that the motor drive is in the backward direction.

8.2.1.10 STATE_FLAG_BRAKE

Definition:
#define STATE_FLAG_BRAKE

Description:
A state flag that indicates that the motor drive is performing DC injection braking.

8.2.1.11 STATE_FLAG_FORWARD

Definition:
#define STATE_FLAG_FORWARD

Description:
A state flag that indicates that the motor drive is in the forward direction.

8.2.1.12 STATE_FLAG_PRECHARGE

Definition:
#define STATE_FLAG_PRECHARGE

Description:
A state flag that indicates that the motor drive is precharging the bootstrap capacitors on the
high side gate drivers.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Main Application 31

http://www.ti.com

Definitions www.ti.com

8.2.1.13 STATE_FLAG_REV

Definition:
#define STATE_FLAG_REV

Description:
A state flag that indicates that the motor drive is reversing direction.

8.2.1.14 STATE_FLAG_RUN

Definition:
#define STATE_FLAG_RUN

Description:
A state flag that indicates that the motor drive is running.

8.2.1.15 STATE_FLAG_STOPPING

Definition:
#define STATE_FLAG_STOPPING

Description:
A state flag that indicates that the motor drive is stopping.

8.2.1.16 STATE_PRECHARGE

Definition:
#define STATE_PRECHARGE

Description:
The motor drive is precharging the bootstrap capacitors on the high side gate drivers. Once
the capacitors are charged, the state machine will automatically transition to STATE_RUN.

8.2.1.17 STATE_REV

Definition:
#define STATE_REV

Description:
The motor drive is decelerating down to a stop, at which point the state machine will automati-
cally transition to STATE_BACK_RUN. This results in a direction change of the motor drive.

32 Main Application SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

8.2.1.18 STATE_RUN

Definition:
#define STATE_RUN

Description:
The motor drive is running, either at the target frequency or slewing to the target frequency.

8.2.1.19 STATE_STOPPED

Definition:
#define STATE_STOPPED

Description:
The motor drive is stopped. A run request will cause a transition to the STATE_PRECHARGE
or STATE_BACK_PRECHARGE states, depending upon the direction flag.

8.2.1.20 STATE_STOPPING

Definition:
#define STATE_STOPPING

Description:
The motor drive is decelerating down to a stop, at which point the state machine will automati-
cally transition to STATE_STOPPED. This results in the motor drive being stopped.

8.2.1.21 SYSTEM_CLOCK

Definition:
#define SYSTEM_CLOCK

Description:
The frequency of the processor clock, which is also the clock rate of all the peripherals. This
must match the value configured by SysCtlClockSet() in main().

8.2.2 Function Documentation

8.2.2.1 main

Handles setup of the application on the AC induction motor drive.

Prototype:
int
main(void)

SW-RDK-ACIM-UG-5450 - December 02, 2009 Main Application 33

http://www.ti.com

Definitions www.ti.com

Description:
This is the main application entry point for the AC induction motor drive. It is responsible for
basic system configuration, initialization of the various application drivers and peripherals, and
the main application loop.

Returns:
Never returns.

8.2.2.2 MainCheckFaults [static]

Checks for motor drive faults.

Prototype:
static void
MainCheckFaults(void)

Description:
This function checks for fault conditions that may occur during the operation of the motor drive.
The ambient temperature, DC bus voltage, and motor current are all monitored for fault condi-
tions.

Returns:
None.

8.2.2.3 MainClearFaults

Clears the latched fault conditions.

Prototype:
void
MainClearFaults(void)

Description:
This function will clear the latched fault conditions and turn off the fault LED.

Returns:
None.

8.2.2.4 MainDCBrakeHandler [static]

Handles the DC braking mode of the motor drive.

Prototype:
static void
MainDCBrakeHandler(void)

Description:
This function performs the processing and state transitions associated with the DC braking
mode of the motor drive.

Returns:
None.

34 Main Application SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

8.2.2.5 MainEmergencyStop

Emergency stops the motor drive.

Prototype:
void
MainEmergencyStop(void)

Description:
This function performs an emergency stop of the motor drive. The outputs will be shut down
immediately, the drive put into the stopped state with the frequency at zero, and the emergency
stop fault condition will be asserted.

Returns:
None.

8.2.2.6 MainFrequencyController

Adjusts the motor drive frequency based on the rotor frequency.

Prototype:
unsigned long
MainFrequencyController(void)

Description:
This function uses a PI controller to adjust the motor drive frequency in order to get the rotor
frequency to match the target frequency (meaning that the motor drive frequency will actually
be above the target frequency).

Returns:
Returns the new motor drive target frequency.

8.2.2.7 MainFrequencyHandler [static]

Adjusts the motor drive frequency based on the target frequency.

Prototype:
static void
MainFrequencyHandler(unsigned long ulTarget)

Parameters:
ulTarget is the target frequency of the motor drive, specified as a 16.16 fixed-point value.

Description:
This function adjusts the motor drive frequency towards a given target frequency. Limitations
such as acceleration and deceleration rate, along with precautions such as limiting the decel-
eration rate to control the DC bus voltage, are handled by this function.

Returns:
None.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Main Application 35

http://www.ti.com

Definitions www.ti.com

8.2.2.8 MainIsFaulted

Determines if a latched fault condition exists.

Prototype:
unsigned long
MainIsFaulted(void)

Description:
This function determines if a fault condition has occurred but not been cleared.

Returns:
Returns 1 if there is an uncleared fault condition and 0 otherwise.

8.2.2.9 MainIsRunning

Determines if the motor drive is currently running.

Prototype:
unsigned long
MainIsRunning(void)

Description:
This function will determine if the motor drive is currently running. By this definition, running
means not stopped; the motor drive is considered to be running even when it is precharging
before starting the waveforms and DC injection braking after stopping the waveforms.

Returns:
Returns 0 if the motor drive is stopped and 1 if it is running.

8.2.2.10 MainLongMul [static]

Multiplies two 16.16 fixed-point numbers.

Prototype:
static long
MainLongMul(long lX,

long lY)

Parameters:
lX is the first multiplicand.
lY is the second multiplicand.

Description:
This function takes two fixed-point numbers, in 16.16 format, and multiplies them together,
returning the 16.16 fixed-point result. It is the responsibility of the caller to ensure that the
dynamic range of the integer portion of the value is not exceeded; if it is exceeded the result
will not be correct.

Returns:
Returns the result of the multiplication, in 16.16 fixed-point format.

36 Main Application SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

8.2.2.11 MainMillisecondTick

Handles the millisecond frequency update software interrupt.

Prototype:
void
MainMillisecondTick(void)

Description:
This function is called as a result of the frequency update software interrupt being asserted.
This interrupted is asserted every millisecond by the PWM interrupt handler.

The frequency of the motor drive will be updated, along with handling state changes of the
drive (such as initiating braking when the motor drive has come to a stop).

Note:
Since this interrupt is software triggered, there is no interrupt source to clear in this handler.

Returns:
None.

8.2.2.12 MainPrechargeHandler [static]

Handles the gate driver precharge mode of the motor drive.

Prototype:
static void
MainPrechargeHandler(void)

Description:
This function performs the processing and state transitions associated with the gate driver
precharge mode of the motor drive.

Returns:
None.

8.2.2.13 MainRun

Starts the motor drive.

Prototype:
void
MainRun(void)

Description:
This function starts the motor drive. If the motor is currently stopped, it will begin the process
of starting the motor. If the motor is currently stopping, it will cancel the stop operation and
return the motor to the target frequency.

Returns:
None.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Main Application 37

http://www.ti.com

Definitions www.ti.com

8.2.2.14 MainSetDirection

Sets the direction of the motor drive.

Prototype:
void
MainSetDirection(tBoolean bForward)

Parameters:
bForward is a boolean that is true if the motor drive should be run in the forward direction.

Description:
This function changes the direction of the motor drive. If required, the state machine will be
transitioned to a new state in order to change the direction of the motor drive.

Returns:
None.

8.2.2.15 MainSetFault

Indicate that a fault condition has been detected.

Prototype:
void
MainSetFault(unsigned long ulFaultFlag)

Parameters:
ulFaultFlag is a flag that indicates the fault condition that was detected.

Description:
This function is called when a fault condition is detected. It will update the fault flags to indicate
the fault condition that was detected, and cause the fault LED to blink to indicate a fault.

Returns:
None.

8.2.2.16 MainSetFrequency

Changes the target frequency of the motor drive.

Prototype:
void
MainSetFrequency(void)

Description:
This function changes the target frequency of the motor drive. If required, the state machine
will be transitioned to a new state in order to move the motor drive to the target frequency.

Returns:
None.

38 Main Application SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

8.2.2.17 MainSetLoopMode

Sets the open-/closed-loop mode of the motor drive.

Prototype:
void
MainSetLoopMode(tBoolean bClosed)

Parameters:
bClosed is a boolean that is true if the motor drive should be run in closed-loop mode.

Description:
This function changes the open-/closed-loop mode of the motor drive. When enabling closed-
loop mode, the integrator is initialized as if the current motor frequency was achieved in closed-
loop mode; this provides a smoother transition into closed-loop mode.

Returns:
None.

8.2.2.18 MainSetPWMFrequency

Changes the PWM frequency of the motor drive.

Prototype:
void
MainSetPWMFrequency(void)

Description:
This function changes the period of the PWM signals produced by the motor drive. It is simply a
wrapper function around the PWMSetFrequency() function; the PWM frequency-based timing
parameters of the motor drive are adjusted as part of the PWM frequency update.

Returns:
None.

8.2.2.19 MainStop

Stops the motor drive.

Prototype:
void
MainStop(void)

Description:
This function stops the motor drive. If the motor is currently running, it will begin the process of
stopping the motor.

Returns:
None.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Main Application 39

http://www.ti.com

Definitions www.ti.com

8.2.2.20 MainUpdateFAdjI

Updates the I coefficient of the frequency PI controller.

Prototype:
void
MainUpdateFAdjI(long lNewFAdjI)

Parameters:
lNewFAdjI is the new value of the I coefficient.

Description:
This function updates the value of the I coefficient of the frequency PI controller. In addition to
updating the I coefficient, it recomputes the maximum value of the integrator and the current
value of the integrator in terms of the new I coefficient (eliminating any instantaneous jump in
the output of the PI controller).

Returns:
None.

8.2.2.21 MainWaveformTick

Handles the waveform update software interrupt.

Prototype:
void
MainWaveformTick(void)

Description:
This function is periodically called as a result of the waveform update software interrupt being
asserted. This interrupt is asserted at the requested rate (based on the update rate parameter)
by the PWM interrupt handler.

The angle of the motor drive will be updated, and new waveform values computed and supplied
to the PWM module.

Note:
Since this interrupt is software triggered, there is no interrupt source to clear in this handler.

Returns:
None.

8.2.3 Variable Documentation

8.2.3.1 g_lFrequencyIntegrator [static]

Definition:
static long g_lFrequencyIntegrator

Description:
The accumulator for the integral term of the PI controller for the motor drive frequency.

40 Main Application SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

8.2.3.2 g_lFrequencyIntegratorMax [static]

Definition:
static long g_lFrequencyIntegratorMax

Description:
The maximum value that of the PI controller accumulator (g_lFrequencyIntegrator). This limit is
based on the I coefficient and the maximum frequency of the motor drive, and is used to avoid
"integrator windup", a potential pitfall of PI controllers.

8.2.3.3 g_ucMotorStatus

Definition:
unsigned char g_ucMotorStatus

Description:
The current operation state of the motor drive.

8.2.3.4 g_ulAccelRate [static]

Definition:
static unsigned long g_ulAccelRate

Description:
The current rate of acceleration. This will start as the parameter value, but may be reduced in
order to manage increases in the motor current.

8.2.3.5 g_ulAngle

Definition:
unsigned long g_ulAngle

Description:
The current angle of the motor drive output, expressed as a 0.32 fixed-point value that is the
percentage of the way around a circle.

8.2.3.6 g_ulAngleDelta [static]

Definition:
static unsigned long g_ulAngleDelta

Description:
The amount by which the motor drive angle is updated for a single PWM period, expressed
as a 0.32 fixed-point value. For example, if the motor drive is being updated every fifth PWM
period, this value should be multiplied by five to determine the amount to adjust the angle.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Main Application 41

http://www.ti.com

Definitions www.ti.com

8.2.3.7 g_ulDecelRate [static]

Definition:
static unsigned long g_ulDecelRate

Description:
The current rate of deceleration. This will start as the parameter value, but may be reduced in
order to manage increases in the DC bus voltage.

8.2.3.8 g_ulFaultFlags

Definition:
unsigned long g_ulFaultFlags

Description:
The latched fault status flags for the motor drive, enumerated by FAULT_EMERGENCY_STOP,
FAULT_VBUS_LOW, FAULT_VBUS_HIGH, FAULT_CURRENT_LOW, FAULT_CURRENT_-
HIGH, FAULT_POWER_MODULE, and FAULT_TEMPERATURE_HIGH.

8.2.3.9 g_ulFrequency [static]

Definition:
static unsigned long g_ulFrequency

Description:
The current motor drive frequency, expressed as a 16.16 fixed-point value.

8.2.3.10 g_ulFrequencyFract [static]

Definition:
static unsigned long g_ulFrequencyFract

Description:
The fractional part of the current motor drive frequency. This value is expressed as the numer-
ator of a fraction whose denominator is the PWM frequency. This is used in conjunction with
g_ulFrequencyWhole to compute the value for g_ulFrequency.

8.2.3.11 g_ulFrequencyWhole [static]

Definition:
static unsigned long g_ulFrequencyWhole

Description:
The whole part of the current motor drive frequency. This is used in conjunction with g_ul-
FrequencyFract to compute the value for g_ulFrequency.

42 Main Application SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

8.2.3.12 g_ulState [static]

Definition:
static unsigned long g_ulState

Description:
The current state of the motor drive state machine. This state machine controls acceleration,
deceleration, starting, stopping, braking, and reversing direction of the motor drive.

8.2.3.13 g_ulStateCount [static]

Definition:
static unsigned long g_ulStateCount

Description:
A count of the number of milliseconds to remain in a particular state.

8.2.3.14 g_ulTargetFrequency [static]

Definition:
static unsigned long g_ulTargetFrequency

Description:
The target frequency for the motor drive, expressed as a 16.16 fixed-point value.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Main Application 43

http://www.ti.com

Definitions www.ti.com

44 Main Application SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com On-board User Interface

9 On-board User Interface
Introduction . 45
Definitions . 45

9.1 Introduction

The on-board user interface consists of a push button and a potentiometer. The push button triggers
actions when pressed, released, and when held for a period of time. The potentiometer specifies
the value of a parameter.

The push button is debounced using a vertical counter. A vertical counter is a method where
each bit of the counter is stored in a different word, and multiple counters can be incremented
simultaneously. They work really well for debouncing switches; up to 32 switches can be debounced
at the same time. Although only one switch is used, the code is already capable of debouncing an
additional 31 switches.

A callback function can be called when the switch is pressed, when it is released, and when it is
held. If held, the press function will not be called for that button press.

The potentiometer input is passed through a low-pass filter and then a stable value detector. The
low-pass filter reduces the noise introduced by the potentiometer and the ADC. Even the low-
pass filter does not remove all the noise and does not produce an unchanging value when the
potentiometer is not being turned. Therefore, a stable value detector is used to find when the
potentiometer value is only changing slightly. When this occurs, the output value is held constant
until the potentiometer value has changed significantly. Because of this, the parameter value that
is adjusted by the potentiometer will not jitter around when the potentiometer is left alone.

The application is responsible for reading the value of the switch(es) and the potentiometer on a
periodic basis. The routines provided here perform all the processing of those values.

The code for handling the on-board user interface elements is contained in ui_onboard.c, with
ui_onboard.h containing the definitions for the structures and functions exported to the remain-
der of the application.

9.2 Definitions

Data Structures
tUIOnboardSwitch

Functions
void UIOnboardInit (unsigned long ulSwitches, unsigned long ulPotentiometer)
unsigned long UIOnboardPotentiometerFilter (unsigned long ulValue)
void UIOnboardSwitchDebouncer (unsigned long ulSwitches)

SW-RDK-ACIM-UG-5450 - December 02, 2009 On-board User Interface 45

http://www.ti.com

Definitions www.ti.com

Variables
static unsigned long g_ulUIOnboardClockA
static unsigned long g_ulUIOnboardClockB
static unsigned long g_ulUIOnboardFilteredPotValue
static unsigned long g_ulUIOnboardPotCount
static unsigned long g_ulUIOnboardPotMax
static unsigned long g_ulUIOnboardPotMin
static unsigned long g_ulUIOnboardPotSum
static unsigned long g_ulUIOnboardPotValue
static unsigned long g_ulUIOnboardSwitches

9.2.1 Data Structure Documentation

9.2.1.1 tUIOnboardSwitch

Definition:
typedef struct
{

unsigned char ucBit;
unsigned long ulHoldTime;
void (*pfnPress)(void);
void (*pfnRelease)(void);
void (*pfnHold)(void);

}
tUIOnboardSwitch

Members:
ucBit The bit position of this switch.
ulHoldTime The number of sample periods which the switch must be held in order to invoke

the hold function.
pfnPress A pointer to the function to be called when the switch is pressed. For switches that

do not have a hold function, this is called as soon as the switch is pressed. For switches
that have a hold function, it is called when the switch is released only if it was held for less
than the hold time (if held longer, this function will not be called). If no press function is
required then this can be NULL.

pfnRelease A pointer to the function to be called when the switch is released. if no release
function is required then this can be NULL.

pfnHold A pointer to the function to be called when the switch is held for the hold time. If no
hold function is required then this can be NULL.

Description:
This structure contains a set of variables that describe the properties of a switch.

9.2.2 Function Documentation

9.2.2.1 UIOnboardInit

Initializes the on-board user interface elements.

46 On-board User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

Prototype:
void
UIOnboardInit(unsigned long ulSwitches,

unsigned long ulPotentiometer)

Parameters:
ulSwitches is the initial state of the switches.
ulPotentiometer is the initial state of the potentiometer.

Description:
This function initializes the internal state of the on-board user interface handlers. The initial
state of the switches are used to avoid spurious switch presses/releases, and the initial state of
the potentiometer is used to make the filtered potentiometer value track more accurately when
first starting (after a short period of time it will track correctly regardless of the initial state).

Returns:
None.

9.2.2.2 UIOnboardPotentiometerFilter

Filters the value of a potentiometer.

Prototype:
unsigned long
UIOnboardPotentiometerFilter(unsigned long ulValue)

Parameters:
ulValue is the current sample for the potentiometer.

Description:
This function performs filtering on the sampled value of a potentiometer. First, a single pole
IIR low pass filter is applied to the raw sampled value. Then, the filtered value is examined to
determine when the potentiometer is being turned and when it is not. When the potentiometer
is not being turned (and variations in the value are therefore the result of noise in the system),
a constant value is returned instead of the filtered value. When the potentiometer is being
turned, the filtered value is returned unmodified.

This second filtering step eliminates the flutter when the potentiometer is not being turned so
that processes that are driven from its value (such as a motor position) do not result in the
motor jiggling back and forth to the potentiometer flutter. The downside to this filtering is a
larger turn of the potentiometer being required before the output value changes.

Returns:
Returns the filtered potentiometer value.

9.2.2.3 UIOnboardSwitchDebouncer

Debounces a set of switches.

Prototype:
void
UIOnboardSwitchDebouncer(unsigned long ulSwitches)

SW-RDK-ACIM-UG-5450 - December 02, 2009 On-board User Interface 47

http://www.ti.com

Definitions www.ti.com

Parameters:
ulSwitches is the current state of the switches.

Description:
This function takes a set of switch inputs and performs software debouncing of their state.
Changes in the debounced state of a switch are reflected back to the application via callback
functions. For each switch, a press can be distinguished from a hold, allowing two functions
to coexist on a single switch; a separate callback function is called for a hold as opposed to a
press.

For best results, the switches should be sampled and passed to this function on a periodic ba-
sis. Randomness in the sampling time may result in degraded performance of the debouncing
routine.

Returns:
None.

9.2.3 Variable Documentation

9.2.3.1 g_ulUIOnboardClockA [static]

Definition:
static unsigned long g_ulUIOnboardClockA

Description:
This is the low order bit of the clock used to count the number of samples with the switches in
the non-debounced state.

9.2.3.2 g_ulUIOnboardClockB [static]

Definition:
static unsigned long g_ulUIOnboardClockB

Description:
This is the high order bit of the clock used to count the number of samples with the switches in
the non-debounced state.

9.2.3.3 g_ulUIOnboardFilteredPotValue [static]

Definition:
static unsigned long g_ulUIOnboardFilteredPotValue

Description:
The detected stable value of the potentiometer. This will be 0xffff.ffff when the value of the
potentiometer is changing and will be a value within the potentiometer range when the poten-
tiometer value is stable.

48 On-board User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

9.2.3.4 g_ulUIOnboardPotCount [static]

Definition:
static unsigned long g_ulUIOnboardPotCount

Description:
The count of samples that have been collected into the accumulator (g_ulUIOnboardPotSum).

9.2.3.5 g_ulUIOnboardPotMax [static]

Definition:
static unsigned long g_ulUIOnboardPotMax

Description:
The maximum value of the potentiometer over a small period. This is used to detect a stable
value of the potentiometer.

9.2.3.6 g_ulUIOnboardPotMin [static]

Definition:
static unsigned long g_ulUIOnboardPotMin

Description:
The minimum value of the potentiometer over a small period. This is used to detect a stable
value of the potentiometer.

9.2.3.7 g_ulUIOnboardPotSum [static]

Definition:
static unsigned long g_ulUIOnboardPotSum

Description:
An accumulator of the low pass filtered potentiometer values for a small period. When a stable
potentiometer value is detected, this is used to compute the average value (and therefore the
stable value of the potentiometer).

9.2.3.8 g_ulUIOnboardPotValue [static]

Definition:
static unsigned long g_ulUIOnboardPotValue

Description:
The value of the potentiometer after being passed through the single pole IIR low pass filter.

SW-RDK-ACIM-UG-5450 - December 02, 2009 On-board User Interface 49

http://www.ti.com

Definitions www.ti.com

9.2.3.9 g_ulUIOnboardSwitches [static]

Definition:
static unsigned long g_ulUIOnboardSwitches

Description:
The debounced state of the switches.

50 On-board User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Pin Definitions

10 Pin Definitions
Introduction . 51
Definitions . 51

10.1 Introduction

The pins on the microcontroller are connected to a variety of external devices. The defines in this
file provide a name more descriptive than "PB0" for the various devices connected to the microcon-
troller pins.

These defines are provided in pins.h.

10.2 Definitions

Defines
PIN_BRAKE_PIN
PIN_BRAKE_PORT
PIN_CCP0_PIN
PIN_CCP0_PORT
PIN_CCP1_PIN
PIN_CCP1_PORT
PIN_ENCA_PIN
PIN_ENCA_PORT
PIN_ENCB_PIN
PIN_ENCB_PORT
PIN_FAULT_PIN
PIN_FAULT_PORT
PIN_I_PHASEU
PIN_I_PHASEV
PIN_I_PHASEW
PIN_INDEX_PIN
PIN_INDEX_PORT
PIN_ISENSE_PIN
PIN_ISENSE_PORT
PIN_LEDFAULT_PIN
PIN_LEDFAULT_PORT
PIN_LEDRUN_PIN
PIN_LEDRUN_PORT
PIN_LEDSTATUS1_PIN
PIN_LEDSTATUS1_PORT

SW-RDK-ACIM-UG-5450 - December 02, 2009 Pin Definitions 51

http://www.ti.com

Definitions www.ti.com

PIN_LEDSTATUS2_PIN
PIN_LEDSTATUS2_PORT
PIN_PHASEU_HIGH_PIN
PIN_PHASEU_HIGH_PORT
PIN_PHASEU_LOW_PIN
PIN_PHASEU_LOW_PORT
PIN_PHASEV_HIGH_PIN
PIN_PHASEV_HIGH_PORT
PIN_PHASEV_LOW_PIN
PIN_PHASEV_LOW_PORT
PIN_PHASEW_HIGH_PIN
PIN_PHASEW_HIGH_PORT
PIN_PHASEW_LOW_PIN
PIN_PHASEW_LOW_PORT
PIN_POTENTIOMETER_PIN
PIN_POTENTIOMETER_PORT
PIN_SWITCH_PIN
PIN_SWITCH_PIN_BIT
PIN_SWITCH_PORT
PIN_UART0RX_PIN
PIN_UART0RX_PORT
PIN_UART0TX_PIN
PIN_UART0TX_PORT
PIN_VSENSE

10.2.1 Define Documentation

10.2.1.1 PIN_BRAKE_PIN

Definition:
#define PIN_BRAKE_PIN

Description:
The GPIO pin on which the brake pin resides.

10.2.1.2 PIN_BRAKE_PORT

Definition:
#define PIN_BRAKE_PORT

Description:
The GPIO port on which the brake pin resides.

52 Pin Definitions SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

10.2.1.3 PIN_CCP0_PIN

Definition:
#define PIN_CCP0_PIN

Description:
The GPIO pin on which the CCP0 pin resides.

10.2.1.4 PIN_CCP0_PORT

Definition:
#define PIN_CCP0_PORT

Description:
The GPIO port on which the CCP0 pin resides.

10.2.1.5 PIN_CCP1_PIN

Definition:
#define PIN_CCP1_PIN

Description:
The GPIO pin on which the CCP1 pin resides.

10.2.1.6 PIN_CCP1_PORT

Definition:
#define PIN_CCP1_PORT

Description:
The GPIO port on which the CCP1 pin resides.

10.2.1.7 PIN_ENCA_PIN

Definition:
#define PIN_ENCA_PIN

Description:
The GPIO pin on which the quadrature encoder channel A pin resides.

10.2.1.8 PIN_ENCA_PORT

Definition:
#define PIN_ENCA_PORT

Description:
The GPIO port on which the quadrature encoder channel A pin resides.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Pin Definitions 53

http://www.ti.com

Definitions www.ti.com

10.2.1.9 PIN_ENCB_PIN

Definition:
#define PIN_ENCB_PIN

Description:
The GPIO pin on which the quadrature encoder channel B pin resides.

10.2.1.10 PIN_ENCB_PORT

Definition:
#define PIN_ENCB_PORT

Description:
The GPIO port on which the quadrature encoder channel B pin resides.

10.2.1.11 PIN_FAULT_PIN

Definition:
#define PIN_FAULT_PIN

Description:
The GPIO pin on which the PWM fault pin resides.

10.2.1.12 PIN_FAULT_PORT

Definition:
#define PIN_FAULT_PORT

Description:
The GPIO port on which the PWM fault pin resides.

10.2.1.13 PIN_I_PHASEU

Definition:
#define PIN_I_PHASEU

Description:
The ADC channel on which the phase U current sense resides.

10.2.1.14 PIN_I_PHASEV

Definition:
#define PIN_I_PHASEV

Description:
The ADC channel on which the phase V current sense resides.

54 Pin Definitions SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

10.2.1.15 PIN_I_PHASEW

Definition:
#define PIN_I_PHASEW

Description:
The ADC channel on which the phase W current sense resides.

10.2.1.16 PIN_INDEX_PIN

Definition:
#define PIN_INDEX_PIN

Description:
The GPIO pin on which the quadrature encoder index pin resides.

10.2.1.17 PIN_INDEX_PORT

Definition:
#define PIN_INDEX_PORT

Description:
The GPIO port on which the quadrature encoder index pin resides.

10.2.1.18 PIN_ISENSE_PIN

Definition:
#define PIN_ISENSE_PIN

Description:
The GPIO pin on which the overall current sense pin resides.

10.2.1.19 PIN_ISENSE_PORT

Definition:
#define PIN_ISENSE_PORT

Description:
The GPIO port on which the overall current sense pin resides.

10.2.1.20 PIN_LEDFAULT_PIN

Definition:
#define PIN_LEDFAULT_PIN

Description:
The GPIO pin on which the fault LED resides.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Pin Definitions 55

http://www.ti.com

Definitions www.ti.com

10.2.1.21 PIN_LEDFAULT_PORT

Definition:
#define PIN_LEDFAULT_PORT

Description:
The GPIO port on which the fault LED resides.

10.2.1.22 PIN_LEDRUN_PIN

Definition:
#define PIN_LEDRUN_PIN

Description:
The GPIO pin on which the run LED resides.

10.2.1.23 PIN_LEDRUN_PORT

Definition:
#define PIN_LEDRUN_PORT

Description:
The GPIO port on which the run LED resides.

10.2.1.24 PIN_LEDSTATUS1_PIN

Definition:
#define PIN_LEDSTATUS1_PIN

Description:
The GPIO pin on which the status one LED resides.

10.2.1.25 PIN_LEDSTATUS1_PORT

Definition:
#define PIN_LEDSTATUS1_PORT

Description:
The GPIO port on which the status one LED resides.

10.2.1.26 PIN_LEDSTATUS2_PIN

Definition:
#define PIN_LEDSTATUS2_PIN

Description:
The GPIO pin on which the status two LED resides.

56 Pin Definitions SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

10.2.1.27 PIN_LEDSTATUS2_PORT

Definition:
#define PIN_LEDSTATUS2_PORT

Description:
The GPIO port on which the status two LED resides.

10.2.1.28 PIN_PHASEU_HIGH_PIN

Definition:
#define PIN_PHASEU_HIGH_PIN

Description:
The GPIO pin on which the phase U high side pin resides.

10.2.1.29 PIN_PHASEU_HIGH_PORT

Definition:
#define PIN_PHASEU_HIGH_PORT

Description:
The GPIO port on which the phase U high side pin resides.

10.2.1.30 PIN_PHASEU_LOW_PIN

Definition:
#define PIN_PHASEU_LOW_PIN

Description:
The GPIO pin on which the phase U low side pin resides.

10.2.1.31 PIN_PHASEU_LOW_PORT

Definition:
#define PIN_PHASEU_LOW_PORT

Description:
The GPIO port on which the phase U low side pin resides.

10.2.1.32 PIN_PHASEV_HIGH_PIN

Definition:
#define PIN_PHASEV_HIGH_PIN

Description:
The GPIO pin on which the phase V high side pin resides.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Pin Definitions 57

http://www.ti.com

Definitions www.ti.com

10.2.1.33 PIN_PHASEV_HIGH_PORT

Definition:
#define PIN_PHASEV_HIGH_PORT

Description:
The GPIO port on which the phase V high side pin resides.

10.2.1.34 PIN_PHASEV_LOW_PIN

Definition:
#define PIN_PHASEV_LOW_PIN

Description:
The GPIO pin on which the phase V low side pin resides.

10.2.1.35 PIN_PHASEV_LOW_PORT

Definition:
#define PIN_PHASEV_LOW_PORT

Description:
The GPIO port on which the phase V low side pin resides.

10.2.1.36 PIN_PHASEW_HIGH_PIN

Definition:
#define PIN_PHASEW_HIGH_PIN

Description:
The GPIO pin on which the phase W high side pin resides.

10.2.1.37 PIN_PHASEW_HIGH_PORT

Definition:
#define PIN_PHASEW_HIGH_PORT

Description:
The GPIO port on which the phase W high side pin resides.

10.2.1.38 PIN_PHASEW_LOW_PIN

Definition:
#define PIN_PHASEW_LOW_PIN

Description:
The GPIO pin on which the phase W low side pin resides.

58 Pin Definitions SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

10.2.1.39 PIN_PHASEW_LOW_PORT

Definition:
#define PIN_PHASEW_LOW_PORT

Description:
The GPIO port on which the phase W low side pin resides.

10.2.1.40 PIN_POTENTIOMETER_PIN

Definition:
#define PIN_POTENTIOMETER_PIN

Description:
The GPIO pin on which the potentiometer oscillator resides.

10.2.1.41 PIN_POTENTIOMETER_PORT

Definition:
#define PIN_POTENTIOMETER_PORT

Description:
The GPIO port on which the potentiometer oscillator resides.

10.2.1.42 PIN_SWITCH_PIN

Definition:
#define PIN_SWITCH_PIN

Description:
The GPIO pin on which the user push button resides.

10.2.1.43 PIN_SWITCH_PIN_BIT

Definition:
#define PIN_SWITCH_PIN_BIT

Description:
The bit lane of the GPIO pin on which the user push button resides.

10.2.1.44 PIN_SWITCH_PORT

Definition:
#define PIN_SWITCH_PORT

Description:
The GPIO port on which the user push button resides.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Pin Definitions 59

http://www.ti.com

Definitions www.ti.com

10.2.1.45 PIN_UART0RX_PIN

Definition:
#define PIN_UART0RX_PIN

Description:
The GPIO pin on which the UART0 Rx pin resides.

10.2.1.46 PIN_UART0RX_PORT

Definition:
#define PIN_UART0RX_PORT

Description:
The GPIO port on which the UART0 Rx pin resides.

10.2.1.47 PIN_UART0TX_PIN

Definition:
#define PIN_UART0TX_PIN

Description:
The GPIO pin on which the UART0 Tx pin resides.

10.2.1.48 PIN_UART0TX_PORT

Definition:
#define PIN_UART0TX_PORT

Description:
The GPIO port on which the UART0 Tx pin resides.

10.2.1.49 PIN_VSENSE

Definition:
#define PIN_VSENSE

Description:
The ADC channel on which the DC bus voltage sense resides.

60 Pin Definitions SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com PWM Control

11 PWM Control
Introduction . 61
Definitions . 62

11.1 Introduction

The generated motor drive waveforms are driven to the inverter bridge with the PWM module. The
PWM generators are run in a fully synchronous manner; the counters are synchronized (that is,
the values of the three counters are always the same) and updates to the duty cycle registers are
synchronized to the zero value of the PWM counters.

The dead-band unit in each PWM generator is used to prevent shoot-through current in the inverter
bridge when switching between the high side to the low of a phase. Shoot-through occurs because
the turn-on time of one gate doesn’t always match the turn-off time of the other, so both may be on
for a short period despite the fact that only one of their inputs is on. By providing a period of time
where both inputs are off when making the transition, shoot-through is not possible.

The PWM outputs can be in one of four modes during the operation of the motor drive. The
first is off, where all six outputs are in the inactive state. This is the state used when the motor
drive is stopped; the motor is electrically disconnected during this time (effectively the same as
disconnecting the cable) and is free to spin as if it were unplugged.

The next mode is precharge, where the three outputs to the high side switches are inactive and
the three outputs to the low side switches are switches at a 50% duty cycle. The high side gate
drivers have a bootstrap circuit for generating the voltage to drive the gates that only charges when
the low side is switching; this precharge mode allows the bootstrap circuit to generate the required
gate drive voltage before real waveforms are driven. Failure to precharge the high side gate drivers
would simply result in distortion of the first part of the output waveform (until the bootstrap circuit
generates a voltage high enough to turn on the high side gate). This mode is used briefly when
going from a non-driving state to a driving state.

The next mode is running, where all six outputs are actively toggling. This will create a magnetic
field in the stator of the motor, inducing a magnetic field in the rotor and causing it to spin. This
mode is used to drive the motor.

The final mode is DC injection braking, where the first PWM pair are actively toggling, the low side
of the second PWM pair is always on, and the third PWM pair is inactive. This results in a fixed DC
voltage being applied across the motor, resulting in braking. This mode is optionally used briefly
when going from a driving state to a non-driving state in order to completely stop the rotation of
the rotor. For loads with high inertia, or low friction rotors, this can reduce the rotor stop time from
minutes to seconds. Applying a DC voltage to an AC induction motor does generate a lot of heat in
the windings, so it should only be used for as long as required to stop the rotor and no longer.

The PWM outputs are configured to immediately switch to the inactive state when the processor is
stopped by a debugger. This prevents the current PWM state from becoming a DC voltage (since
the processor is no longer running to change the duty cycles) and damaging the motor. In general,
though, it is not a good idea to stop the processor when the motor is running. When no longer
driven, the motor will start to slow down due to friction; when the processor is restarted, it will
continue driving at the previous drive frequency. The difference between rotor and stator frequency
(that is, the slip) has become much greater due to the time that the motor was not being driven.

SW-RDK-ACIM-UG-5450 - December 02, 2009 PWM Control 61

http://www.ti.com

Definitions www.ti.com

This will likely result in an immediate motor over-current fault since the increased slip will result in a
rise motor current. While not harmful, it does not allow the typically desired behavior of being able
to stop the application, look at the internal state, and then restart the application as if nothing had
happened.

An interrupt is generated at each zero value of the counter in PWM generator zero; this is used as
a time base for the generation of waveforms as well as a time to queue the next duty cycle update
into the hardware. At any given time, the PWM module is outputting the duty cycle for period N,
has the duty cycle for period N+1 queued in its holding registers waiting for the next zero value of
the counter, and the microcontroller is computing the duty cycle for period N+2.

Two “software” interrupts are generated by the PWM interrupt handler. One is used to update the
waveform; this occurs at a configurable rate of every X PWM period. The other is used to update
the drive frequency and perform other periodic system tasks such as fault monitoring; this occurs
every millisecond. The unused interrupts from the second and third PWM generator are used for
these “software” interrupts; the ability to fake the assertion of an interrupt through the NVIC software
interrupt trigger register is used to generate these “software” interrupts.

The code for handling the PWM module is contained in pwm_ctrl.c, with pwm_ctrl.h containing
the definitions for the variables and functions exported to the remainder of the application.

11.2 Definitions

Defines
PWM_CLOCK
PWM_CLOCK_WIDTH
PWM_FLAG_NEW_DUTY_CYCLE
PWM_FLAG_NEW_FREQUENCY

Functions
void GPIOBIntHandler (void)
void PWM0IntHandler (void)
void PWMFaultHandler (void)
unsigned long PWMGetPeriodCount (void)
void PWMInit (void)
void PWMOutputDCBrake (unsigned long ulVoltage)
void PWMOutputOff (void)
void PWMOutputOn (void)
void PWMOutputPrecharge (void)
void PWMReducePeriodCount (unsigned long ulCount)
void PWMSetDeadBand (void)
void PWMSetDutyCycle (unsigned long ulDutyCycleU, unsigned long ulDutyCycleV, unsigned
long ulDutyCycleW)
void PWMSetFrequency (void)
void PWMSetMinPulseWidth (void)
void PWMSetUpdateRate (unsigned char ucUpdateRate)
static void PWMUpdateDutyCycle (void)

62 PWM Control SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

Variables
static unsigned long g_ulMinPulseWidth
static unsigned long g_ulPWMClock
static unsigned long g_ulPWMDutyCycleU
static unsigned long g_ulPWMDutyCycleV
static unsigned long g_ulPWMDutyCycleW
static unsigned long g_ulPWMFlags
unsigned long g_ulPWMFrequency
static unsigned long g_ulPWMMillisecondCount
static unsigned long g_ulPWMPeriodCount

11.2.1 Define Documentation

11.2.1.1 PWM_CLOCK

Definition:
#define PWM_CLOCK

Description:
The frequency of the clock that drives the PWM generators.

11.2.1.2 PWM_CLOCK_WIDTH

Definition:
#define PWM_CLOCK_WIDTH

Description:
The width of a single PWM clock, in nanoseconds.

11.2.1.3 PWM_FLAG_NEW_DUTY_CYCLE

Definition:
#define PWM_FLAG_NEW_DUTY_CYCLE

Description:
The bit number of the flag in g_ulPWMFlags that indicates that a new duty cycle (that is,
compare) is ready to be supplied to the PWM module.

11.2.1.4 PWM_FLAG_NEW_FREQUENCY

Definition:
#define PWM_FLAG_NEW_FREQUENCY

Description:
The bit number of the flag in g_ulPWMFlags that indicates that a new PWM frequency (that is,
period) is ready to be supplied to the PWM module.

SW-RDK-ACIM-UG-5450 - December 02, 2009 PWM Control 63

http://www.ti.com

Definitions www.ti.com

11.2.2 Function Documentation

11.2.2.1 GPIOBIntHandler

Handles the PWM fault interrupt.

Prototype:
void
GPIOBIntHandler(void)

Description:
This function is called as a result of the interrupt generated by the assertion of the PWM fault
input. It is treated as a sticky fault condition and will emergency stop the motor drive.

Returns:
None.

11.2.2.2 PWM0IntHandler

Handles the PWM interrupt.

Prototype:
void
PWM0IntHandler(void)

Description:
This function is called as a result of the interrupt generated by the PWM module when the
counter reaches zero. If an updated PWM frequency or duty cycle is available, they will be
updated in the hardware by this function.

Returns:
None.

11.2.2.3 PWMFaultHandler

Handles the PWM fault interrupt.

Prototype:
void
PWMFaultHandler(void)

Description:
This function is called as a result of the interrupt generated by the assertion of the PWM fault
input. It is treated as a sticky fault condition and will emergency stop the motor drive.

Returns:
None.

64 PWM Control SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

11.2.2.4 PWMGetPeriodCount

Gets the number of PWM interrupts that have occurred.

Prototype:
unsigned long
PWMGetPeriodCount(void)

Description:
This function returns the number of PWM interrupts that have been counted. Used in conjunc-
tion with the desired update rate, missed waveform updates can be detected and compensated
for.

Returns:
The number of PWM interrupts that have been counted.

11.2.2.5 PWMInit

Initializes the PWM control routines.

Prototype:
void
PWMInit(void)

Description:
This function initializes the PWM module and the control routines, preparing them to produce
PWM waveforms to drive the power module.

Returns:
None.

11.2.2.6 PWMOutputDCBrake

Sets the PWM outputs to DC injection brake the motor.

Prototype:
void
PWMOutputDCBrake(unsigned long ulVoltage)

Parameters:
ulVoltage is the DC voltage to be applied to the motor. This value must be less than 160V,

half the nominal DC bus voltage (and likely much less than that).

Description:
This function configures the PWM outputs such that they will provide DC injection braking of
the motor.

Note:
Once the motor comes to a complete stop, DC injection braking will simply generate heat within
the motor, likely causing damage. It is important that the DC injection braking be disabled to
avoid this situation.

SW-RDK-ACIM-UG-5450 - December 02, 2009 PWM Control 65

http://www.ti.com

Definitions www.ti.com

Returns:
None.

11.2.2.7 PWMOutputOff

Turns off all the PWM outputs.

Prototype:
void
PWMOutputOff(void)

Description:
This function turns off all of the PWM outputs, preventing them from being propagates to the
gate drivers.

Returns:
None.

11.2.2.8 PWMOutputOn

Turns on all the PWM outputs.

Prototype:
void
PWMOutputOn(void)

Description:
This function turns on all of the PWM outputs, allowing them to be propagated to the gate
drivers.

Returns:
None.

11.2.2.9 PWMOutputPrecharge

Sets the PWM outputs to precharge the high side gate drives.

Prototype:
void
PWMOutputPrecharge(void)

Description:
This function configures the PWM outputs such that they will start charging the bootstrap ca-
pacitor on the high side gate drives. Without this step, the high side gates will not turn on
properly for the first several PWM cycles when starting the motor drive.

Returns:
None.

66 PWM Control SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

11.2.2.10 PWMReducePeriodCount

Reduces the count of PWM interrupts.

Prototype:
void
PWMReducePeriodCount(unsigned long ulCount)

Parameters:
ulCount is the number by which to reduce the PWM interrupt count.

Description:
This function reduces the PWM interrupt count by a given number. When the waveform values
are updated, the interrupt count can be reduced by the appropriate amount to maintain a proper
indication of when the next waveform update should occur.

If the PWM interrupt count is not reduced when the waveforms are recomputed, the waveform
update software interrupt will not be triggered as desired.

Returns:
None.

11.2.2.11 PWMSetDeadBand

Configures the dead timers for the PWM generators.

Prototype:
void
PWMSetDeadBand(void)

Description:
This function configures the dead timers for all three PWM generators based on the dead time
parameter.

Returns:
None.

11.2.2.12 PWMSetDutyCycle

Sets the duty cycle of the generated PWM waveforms.

Prototype:
void
PWMSetDutyCycle(unsigned long ulDutyCycleU,

unsigned long ulDutyCycleV,
unsigned long ulDutyCycleW)

Parameters:
ulDutyCycleU is the duty cycle of the waveform for the U phase of the motor, specified as a

16.16 fixed point value between 0.0 and 1.0.

SW-RDK-ACIM-UG-5450 - December 02, 2009 PWM Control 67

http://www.ti.com

Definitions www.ti.com

ulDutyCycleV is the duty cycle of the waveform for the V phase of the motor, specified as a
16.16 fixed point value between 0.0 and 1.0.

ulDutyCycleW is the duty cycle of the waveform for the W phase of the motor, specified as a
16.16 fixed point value between 0.0 and 1.0.

Description:
This function configures the duty cycle of the generated PWM waveforms. The duty cycle
update will not occur immediately; the change will be registered for synchronous application to
the output waveforms to avoid discontinuities.

Returns:
None.

11.2.2.13 PWMSetFrequency

Sets the frequency of the generated PWM waveforms.

Prototype:
void
PWMSetFrequency(void)

Description:
This function configures the frequency of the generated PWM waveforms. The frequency up-
date will not occur immediately; the change will be registered for synchronous application to
the output waveforms to avoid discontinuities.

Returns:
None.

11.2.2.14 PWMSetMinPulseWidth

Computes the minimum PWM pulse width.

Prototype:
void
PWMSetMinPulseWidth(void)

Description:
This function computes the minimum PWM pulse width based on the minimum pulse width
parameter and the dead time parameter. The dead timers will reduce the width of a PWM
pulse, so their value must be considered to avoid pulses shorter than the parameter value
being produced.

Returns:
None.

68 PWM Control SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

11.2.2.15 PWMSetUpdateRate

Changes the update rate of the motor drive.

Prototype:
void
PWMSetUpdateRate(unsigned char ucUpdateRate)

Parameters:
ucUpdateRate is the number of PWM periods between updates.

Description:
This function changes the rate at which the motor drive waveforms are recomputed. Lower
update values recompute the waveforms more frequently, providing more accurate waveforms
at the cost of increased processor usage.

Returns:
None.

11.2.2.16 PWMUpdateDutyCycle [static]

Updates the duty cycle in the PWM module.

Prototype:
static void
PWMUpdateDutyCycle(void)

Description:
This function programs the duty cycle of the PWM waveforms into the PWM module. The
changes will be written to the hardware and the hardware instructed to start using the new
values the next time its counters reach zero.

Returns:
None.

11.2.3 Variable Documentation

11.2.3.1 g_ulMinPulseWidth [static]

Definition:
static unsigned long g_ulMinPulseWidth

Description:
The minimum width of an output PWM pulse, in PWM clocks.

11.2.3.2 g_ulPWMClock [static]

Definition:
static unsigned long g_ulPWMClock

SW-RDK-ACIM-UG-5450 - December 02, 2009 PWM Control 69

http://www.ti.com

Definitions www.ti.com

Description:
The number of PWM clocks in a single PWM period.

11.2.3.3 g_ulPWMDutyCycleU [static]

Definition:
static unsigned long g_ulPWMDutyCycleU

Description:
The duty cycle of the waveform output to the U phase of the bridge.

11.2.3.4 g_ulPWMDutyCycleV [static]

Definition:
static unsigned long g_ulPWMDutyCycleV

Description:
The duty cycle of the waveform output to the V phase of the bridge.

11.2.3.5 g_ulPWMDutyCycleW [static]

Definition:
static unsigned long g_ulPWMDutyCycleW

Description:
The duty cycle of the waveform output to the W phase of the bridge.

11.2.3.6 g_ulPWMFlags [static]

Definition:
static unsigned long g_ulPWMFlags

Description:
A set of flags that control the operation of the PWM control routines. The flags are PWM_-
FLAG_NEW_FREQUENCY, and PWM_FLAG_NEW_DUTY_CYCLE.

11.2.3.7 g_ulPWMFrequency

Definition:
unsigned long g_ulPWMFrequency

Description:
The frequency of the output PWM waveforms.

70 PWM Control SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

11.2.3.8 g_ulPWMMillisecondCount [static]

Definition:
static unsigned long g_ulPWMMillisecondCount

Description:
A counter that is used to determine when a millisecond has passed. The millisecond software
interrupt is triggered based on this count.

11.2.3.9 g_ulPWMPeriodCount [static]

Definition:
static unsigned long g_ulPWMPeriodCount

Description:
A count of the number of PWM periods have occurred, based on the number of PWM module
interrupts. This is incremented when a PWM interrupt is handled and decremented by the
waveform generation handler.

SW-RDK-ACIM-UG-5450 - December 02, 2009 PWM Control 71

http://www.ti.com

Definitions www.ti.com

72 PWM Control SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Serial Interface

12 Serial Interface
Introduction . 73
Definitions . 75

12.1 Introduction

A generic, packet-based serial protocol is utilized for communicating with the motor drive board.
This provides a method to control the motor drive, adjust its parameters, and retrieve real-time
performance data. The serial interface is run at 115,200 baud, with an 8-N-1 data format. Some of
the factors that influenced the design of this protocol include:

The same serial protocol should be used for all motor drive boards, regardless of the motor
type (that is, AC induction, stepper, and so on).
The protocol should make reasonable attempts to protect against invalid commands being
acted upon.
It should be possible to connect to a running motor drive board and lock on to the real-time
data stream without having to restart the data stream.

The code for handling the serial protocol is contained in ui_serial.c, with ui_serial.h con-
taining the definitions for the structures, functions, and variables exported to the remainder of the
application. The file commands.h contains the definitions for the commands, parameters, real-time
data items, and responses that are used in the serial protocol.

12.1.1 Command Message Format

Commands are sent to the motor drive with the following format:

{tag} {length} {command} {optional command data byte(s)} {checksum}

The {tag} byte is 0xff.

The {length} byte contains the overall length of the command packet, starting with the {tag}
and ending with the {checksum}. The maximum packet length is 255 bytes.

The {command} byte is the command being sent. Based on the command, there may be
optional command data bytes that follow.

The {checksum} byte is the value such that the sum of all bytes in the command packet (in-
cluding the checksum) will be zero. This is used to validate a command packet and allow the
target to synchronize with the command stream being sent by the host.

For example, the 0x01 command with no data bytes would be sent as follows:

0xff 0x04 0x01 0xfc

And the 0x02 command with two data bytes (0xab and 0xcd) would be sent as follows:

0xff 0x06 0x02 0xab 0xcd 0x81

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 73

http://www.ti.com

Introduction www.ti.com

12.1.2 Status Message Format

Status messages are sent from the motor drive with the following format:

{tag} {length} {data bytes} {checksum}

The {tag} byte is 0xfe for command responses and 0xfd for real-time data.

The {length} byte contains the overall length of the status packet, starting with the {tag} byte
and ending with the {checksum}.

The contents of the data bytes are dependent upon the tag byte.

The {checksum} is the value such that the sum of all bytes in the status packet (including the
checksum) will be zero. This is used to validate a status packet and allow the user interface to
synchronize with the status stream being sent by the target.

For command responses ({tag} = 0xfe), the first data byte is the command that is being responded
to. The remaining bytes are the response, and are dependent upon the command.

For real-time data messages ({tag} = 0xfd), each real-time data item is transmitted as a little-endian
value (for example, for a 16-bit value, the lower 8 bits first then the upper 8 bits). The data items
are in the same order as returned by the data item list (CMD_GET_DATA_ITEMS) regardless of the
order that they were enabled.

For example, if data items 1, 5, and 17 were enabled, and each was two bytes in length, there
would be 6 data bytes in the packet:

0xfd 0x09 {d1[0:7]} {d1[8:15]} {d5[0:7]} {d5[8:15]} {d17[0:7]}
{d17[8:15]} {checksum}

12.1.3 Parameter Interpretation

The size and units of the parameters are dependent upon the motor drive; the units are not con-
veyed in the serial protocol. Each parameter value is transmitted in little endian format. Not all
parameters are necessarily supported by a motor drive, only those that are appropriate.

12.1.4 Interface To The Application

The serial protocol handler takes care of all the serial communications and command interpreta-
tion. A set of functions provided by the application and an array of structures that describe the
parameters and real-time data items supported by the motor drive. The functions are used when
an application-specific action needs to take place as a result of the serial communication (such
as starting the motor drive). The structures are used to handle the parameters and real-time data
items of the motor drive.

74 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2 Definitions

Defines
CMD_DISABLE_DATA_ITEM
CMD_DISCOVER_TARGET
CMD_EMERGENCY_STOP
CMD_ENABLE_DATA_ITEM
CMD_GET_DATA_ITEMS
CMD_GET_PARAM_DESC
CMD_GET_PARAM_VALUE
CMD_GET_PARAMS
CMD_ID_TARGET
CMD_LOAD_PARAMS
CMD_RUN
CMD_SAVE_PARAMS
CMD_SET_PARAM_VALUE
CMD_START_DATA_STREAM
CMD_STOP
CMD_STOP_DATA_STREAM
CMD_UPGRADE
DATA_ANALOG_INPUT
DATA_BUS_VOLTAGE
DATA_DEBUG_INFO
DATA_DIRECTION
DATA_FAULT_STATUS
DATA_MOTOR_CURRENT
DATA_MOTOR_POSITION
DATA_MOTOR_POWER
DATA_MOTOR_STATUS
DATA_NUM_ITEMS
DATA_PHASE_A_CURRENT
DATA_PHASE_B_CURRENT
DATA_PHASE_C_CURRENT
DATA_PROCESSOR_USAGE
DATA_ROTOR_SPEED
DATA_STATOR_SPEED
DATA_TEMPERATURE
MOTOR_STATUS_ACCEL
MOTOR_STATUS_DECEL
MOTOR_STATUS_RUN
MOTOR_STATUS_STOP
PARAM_ACCEL
PARAM_ACCEL_CURRENT
PARAM_ACCEL_POWER

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 75

http://www.ti.com

Definitions www.ti.com

PARAM_BEMF_SKIP_COUNT
PARAM_BLANK_OFF
PARAM_BRAKE_COOL_TIME
PARAM_BRAKE_OFF_VOLTAGE
PARAM_BRAKE_ON_VOLTAGE
PARAM_CAN_RX_COUNT
PARAM_CAN_TX_COUNT
PARAM_CLOSED_LOOP
PARAM_CONTROL_MODE
PARAM_CURRENT_POS
PARAM_CURRENT_POWER
PARAM_CURRENT_SPEED
PARAM_DATA_RATE
PARAM_DC_BRAKE_TIME
PARAM_DC_BRAKE_V
PARAM_DECAY_MODE
PARAM_DECEL
PARAM_DECEL_POWER
PARAM_DECEL_VOLTAGE
PARAM_DIRECTION
PARAM_ENCODER_PRESENT
PARAM_ETH_RX_COUNT
PARAM_ETH_TCP_TIMEOUT
PARAM_ETH_TX_COUNT
PARAM_FAULT_STATUS
PARAM_FIRMWARE_VERSION
PARAM_FIXED_ON_TIME
PARAM_GPIO_DATA
PARAM_HOLDING_CURRENT
PARAM_MAX_BRAKE_TIME
PARAM_MAX_BUS_VOLTAGE
PARAM_MAX_CURRENT
PARAM_MAX_POWER
PARAM_MAX_SPEED
PARAM_MAX_TEMPERATURE
PARAM_MIN_BUS_VOLTAGE
PARAM_MIN_CURRENT
PARAM_MIN_POWER
PARAM_MIN_SPEED
PARAM_MODULATION
PARAM_MOTOR_STATUS
PARAM_MOTOR_TYPE
PARAM_NUM_LINES
PARAM_NUM_POLES
PARAM_POWER_I
PARAM_POWER_P

76 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

PARAM_PRECHARGE_TIME
PARAM_PWM_DEAD_TIME
PARAM_PWM_FREQUENCY
PARAM_PWM_MIN_PULSE
PARAM_PWM_UPDATE
PARAM_RESISTANCE
PARAM_SENSOR_POLARITY
PARAM_SENSOR_PRESENT
PARAM_SENSOR_TYPE
PARAM_SPEED_I
PARAM_SPEED_P
PARAM_STARTUP_COUNT
PARAM_STARTUP_DUTY
PARAM_STARTUP_ENDSP
PARAM_STARTUP_ENDV
PARAM_STARTUP_RAMP
PARAM_STARTUP_STARTSP
PARAM_STARTUP_STARTV
PARAM_STARTUP_THRESH
PARAM_STEP_MODE
PARAM_TARGET_CURRENT
PARAM_TARGET_POS
PARAM_TARGET_POWER
PARAM_TARGET_SPEED
PARAM_USE_BUS_COMP
PARAM_USE_DC_BRAKE
PARAM_USE_DYNAM_BRAKE
PARAM_USE_ONBOARD_UI
PARAM_VF_RANGE
PARAM_VF_TABLE
RESP_ID_TARGET_ACIM
RESP_ID_TARGET_BLDC
RESP_ID_TARGET_STEPPER
TAG_CMD
TAG_DATA
TAG_STATUS
UISERIAL_MAX_RECV
UISERIAL_MAX_XMIT

Functions
void UART0IntHandler (void)
static unsigned long UISerialFindParameter (unsigned char ucID)
void UISerialInit (void)
static void UISerialRangeCheck (unsigned long ulIdx)
static void UISerialScanReceive (void)
void UISerialSendRealTimeData (void)
static tBoolean UISerialTransmit (unsigned char ∗pucBuffer)

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 77

http://www.ti.com

Definitions www.ti.com

Variables
static tBoolean g_bEnableRealTimeData
static unsigned char g_pucUISerialData[UISERIAL_MAX_XMIT]
static unsigned char g_pucUISerialReceive[UISERIAL_MAX_RECV]
static unsigned char g_pucUISerialResponse[UISERIAL_MAX_XMIT]
static unsigned char g_pucUISerialTransmit[UISERIAL_MAX_XMIT]
static unsigned long g_pulUIRealTimeData[(DATA_NUM_ITEMS+31)/32]
static unsigned long g_ulUISerialReceiveRead
static unsigned long g_ulUISerialReceiveWrite
static unsigned long g_ulUISerialTransmitRead
static unsigned long g_ulUISerialTransmitWrite

12.2.1 Define Documentation

12.2.1.1 CMD_DISABLE_DATA_ITEM

Definition:
#define CMD_DISABLE_DATA_ITEM

Description:
Removes a real-time data item from the real-time data output stream. To avoid a change in
the real-time data output stream at an unexpected time, this command should only be issued
when the real-time data output stream is disabled.

Command:

TAG_CMD 0x05 CMD_DISABLE_DATA_ITEM {item} {checksum}

{item} is the real-time data item to be removed from the real-time data output stream;
must be one of the DATA_xxx values.

Response:

TAG_STATUS 0x04 CMD_DISABLE_DATA_ITEM {checksum}

12.2.1.2 CMD_DISCOVER_TARGET

Definition:
#define CMD_DISCOVER_TARGET

Description:
This command is used to discover the motor drive board(s) that may be connected to the
networked communication channel (e.g. CAN, Ethernet). This command is similar to the
CMD_ID_TARGET command, but intended for networked operation. Additional parameters
are available in the response that will allow the networked device to provide board-specific in-
formation (e.g. configuration switch settings) that can be used to identify which board is to be
selected for operation.

Command:

78 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

TAG_CMD 0x04 CMD_DISCOVER_TARGET {checksum}

Response:

TAG_STATUS 0x0A CMD_DISCOVER_TARGET {type} {id} {remote-ip} {checksum}

{type} identifies the motor drive type; will be one of RESP_ID_TARGET_BLDC, RESP_-
ID_TARGET_STEPPER, or RESP_ID_TARGET_ACIM.
{id} is a board-specific identification value; will typically be the setting read from a set of
configuration switches on the board.
{config} is used to provide additional (if needed) board configuration information. The
interpretation of this field will vary with the board type.

12.2.1.3 CMD_EMERGENCY_STOP

Definition:
#define CMD_EMERGENCY_STOP

Description:
Stops the motor, if it is not already stopped. This may take more aggressive action than CMD_-
STOP at the cost of precision. For example, for a stepper motor, the stop command would
ramp the speed down before stopping the motor while emergency stop would stop stepping
immediately; in the later case, it is possible that the motor will spin a couple of additional steps,
so position accuracy is sacrificed. This is needed for safety reasons.

Command:

TAG_CMD 0x04 CMD_EMERGENCY_STOP {checksum}

Response:

TAG_STATUS 0x04 CMD_EMERGENCY_STOP {checksum}

12.2.1.4 CMD_ENABLE_DATA_ITEM

Definition:
#define CMD_ENABLE_DATA_ITEM

Description:
Adds a real-time data item to the real-time data output stream. To avoid a change in the real-
time data output stream at an unexpected time, this command should only be issued when the
real-time data output stream is disabled.

Command:

TAG_CMD 0x05 CMD_ENABLE_DATA_ITEM {item} {checksum}

{item} is the real-time data item to be added to the real-time data output stream; must
be one of the DATA_xxx values.

Response:

TAG_STATUS 0x04 CMD_ENABLE_DATA_ITEM {checksum}

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 79

http://www.ti.com

Definitions www.ti.com

12.2.1.5 CMD_GET_DATA_ITEMS

Definition:
#define CMD_GET_DATA_ITEMS

Description:
Gets a list of the real-time data items supported by this motor drive. This command returns a
list of real-time data item numbers, in no particular order, along with the size of the data item;
each data item will be one of the DATA_xxx values.

Command:

TAG_CMD 0x04 CMD_GET_DATA_ITEMS {checksum}

Response:

TAG_STATUS {length} CMD_GET_DATA_ITEMS {item} {size}
[{item} {size} ...] {checksum}

{item} is a list of one or more DATA_xxx values.
{size} is the size of the data item immediately preceding.

12.2.1.6 CMD_GET_PARAM_DESC

Definition:
#define CMD_GET_PARAM_DESC

Description:
Gets the description of a parameter. The size of the parameter value, the minimum and max-
imum values for the parameter, and the step between valid values for the parameter. If the
minimum, maximum, and step values don’t make sense for a parameter, they may be omitted
from the response, leaving only the size.

Command:

TAG_CMD 0x05 CMD_GET_PARAM_DESC {param} {checksum}

{param} is one of the PARAM_xxx values.

Response:

TAG_STATUS {length} CMD_GET_PARAM_DESC {size} {min} [{min} ...]
{max} [{max} ...] {step} [{step} ...] {checksum}

{size} is the size of the parameter in bytes.
{min} is the minimum valid value for this parameter. The number of bytes for this value is
determined by the size of the parameter.
{max} is the maximum valid value for this parameter. The number of bytes for this value
is determined by the size of the parameter.
{step} is the increment between valid values for this parameter. It should be the case
that “min + (step ∗ N) = max” for some positive integer N. The number of bytes for this
value is determined by the size of the parameter.

80 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2.1.7 CMD_GET_PARAM_VALUE

Definition:
#define CMD_GET_PARAM_VALUE

Description:
Gets the value of a parameter.

Command:

TAG_CMD 0x05 CMD_GET_PARAM_VALUE {param} {checksum}

{param} is the parameter whose value should be returned; must be one of the parameters
returned by CMD_GET_PARAMS.

Response:

TAG_STATUS {length} CMD_GET_PARAM_VALUE {value} [{value} ...]
{checksum}

{value} is the current value of the parameter. All bytes of the value will always be re-
turned.

12.2.1.8 CMD_GET_PARAMS

Definition:
#define CMD_GET_PARAMS

Description:
Gets a list of the parameters supported by this motor drive. This command returns a list of
parameter numbers, in no particular order; each will be one of the PARAM_xxx values.

Command:

TAG_CMD 0x04 CMD_GET_PARAMS {checksum}

Response:

TAG_STATUS {length} CMD_GET_PARAMS {param} [{param} ...] {checksum}

{param} is a list of one or more PARAM_xxx values.

12.2.1.9 CMD_ID_TARGET

Definition:
#define CMD_ID_TARGET

Description:
This command is used to determine the type of motor driven by the board. In this context,
the type of motor is a broad statement; for example, both single-phase and three-phase AC
induction motors can be driven by a single AC induction motor board (not simultaneously, of
course).

Command:

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 81

http://www.ti.com

Definitions www.ti.com

TAG_CMD 0x04 CMD_ID_TARGET {checksum}

Response:

TAG_STATUS 0x05 CMD_ID_TARGET {type} {checksum}

{type} identifies the motor drive type; will be one of RESP_ID_TARGET_BLDC, RESP_-
ID_TARGET_STEPPER, or RESP_ID_TARGET_ACIM.

12.2.1.10 CMD_LOAD_PARAMS

Definition:
#define CMD_LOAD_PARAMS

Description:
Loads the most recent parameter set from flash, causing the current parameter values to be
lost. This can be used to recover from parameter changes that do not work very well. For
example, if a set of parameter changes are made during experimentation and they turn out
to cause the motor to perform poorly, this will restore the last-saved parameter set (which is
presumably, but not necessarily, of better quality).

Command:

TAG_CMD 0x04 CMD_LOAD_PARAMS {checksum}

Response:

TAG_STATUS 0x04 CMD_LOAD_PARAMS {checksum}

12.2.1.11 CMD_RUN

Definition:
#define CMD_RUN

Description:
Starts the motor running based on the current parameter set, if it is not already running.

Command:

TAG_CMD 0x04 CMD_RUN {checksum}

Response:

TAG_STATUS 0x04 CMD_RUN {checksum}

12.2.1.12 CMD_SAVE_PARAMS

Definition:
#define CMD_SAVE_PARAMS

82 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

Description:
Saves the current parameter set to flash. Only the most recently saved parameter set is avail-
able for use, and it contains the default settings of all the parameters at power-up.

Command:

TAG_CMD 0x04 CMD_SAVE_PARAMS {checksum}

Response:

TAG_STATUS 0x04 CMD_SAVE_PARAMS {checksum}

12.2.1.13 CMD_SET_PARAM_VALUE

Definition:
#define CMD_SET_PARAM_VALUE

Description:
Sets the value of a parameter. For parameters that have values larger than a single byte, not
all bytes of the parameter value need to be supplied; value bytes that are not supplied (that is,
the more significant bytes) are treated as if a zero was transmitted. If more bytes than required
for the parameter value are supplied, the extra bytes are ignored.

Command:

TAG_CMD {length} CMD_SET_PARAM_VALUE {param} {value} [{value} ...]
{checksum}

{param} is the parameter whose value should be set; must be one of the parameters
returned by CMD_GET_PARAMS.
{value} is the new value for the parameter.

Response:

TAG_STATUS 0x04 CMD_SET_PARAM_VALUE {checksum}

12.2.1.14 CMD_START_DATA_STREAM

Definition:
#define CMD_START_DATA_STREAM

Description:
Starts the real-time data output stream. Only those values that have been added to the output
stream will be provided, and it will continue to run (regardless of any other motor drive state)
until stopped.

Command:

TAG_CMD 0x04 CMD_START_DATA_STREAM {checksum}

Response:

TAG_STATUS 0x04 CMD_START_DATA_STREAM {checksum}

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 83

http://www.ti.com

Definitions www.ti.com

12.2.1.15 CMD_STOP

Definition:
#define CMD_STOP

Description:
Stops the motor, if it is not already stopped.

Command:

TAG_CMD 0x04 CMD_STOP {checksum}

Response:

TAG_STATUS 0x04 CMD_STOP {checksum}

12.2.1.16 CMD_STOP_DATA_STREAM

Definition:
#define CMD_STOP_DATA_STREAM

Description:
Stops the real-time data output stream. The output stream should be stopped before real-
time data items are added to or removed from the stream to avoid unexpected changes in the
stream data (it will all be valid data, there is simply no easy way to know what real-time data
items are in a TAG_DATA packet if changes are made while the output stream is running).

Command:

TAG_CMD 0x04 CMD_STOP_DATA_STREAM {checksum}

Response:

TAG_STATUS 0x04 CMD_STOP_DATA_STREAM {checksum}

12.2.1.17 CMD_UPGRADE

Definition:
#define CMD_UPGRADE

Description:
Starts an upgrade of the firmware on the target. There is no response to this command; once
received, the target will return to the control of the Stellaris boot loader and its serial protocol.

Command:

TAG_CMD 0x04 CMD_UPGRADE {checksum}

Response:

<none>

84 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2.1.18 DATA_ANALOG_INPUT

Definition:
#define DATA_ANALOG_INPUT

Description:
This real-time data item provides the ambient temperature of the microcontroller.

12.2.1.19 DATA_BUS_VOLTAGE

Definition:
#define DATA_BUS_VOLTAGE

Description:
This real-time data item provides the bus voltage.

12.2.1.20 DATA_DEBUG_INFO

Definition:
#define DATA_DEBUG_INFO

Description:
This real-time data item provides application-specific debug information. The format of this
data will vary from one application to the next. It is the responsibility of the user to ensure that
the motor drive board and host application are in sync with the data format.

12.2.1.21 DATA_DIRECTION

Definition:
#define DATA_DIRECTION

Description:
This real-time data item provides the direction the motor drive is running.

12.2.1.22 DATA_FAULT_STATUS

Definition:
#define DATA_FAULT_STATUS

Description:
This real-time data item provides the current fault status of the motor drive.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 85

http://www.ti.com

Definitions www.ti.com

12.2.1.23 DATA_MOTOR_CURRENT

Definition:
#define DATA_MOTOR_CURRENT

Description:
This real-time data item provides the current through the motor (that is, the sum of the phases).

12.2.1.24 DATA_MOTOR_POSITION

Definition:
#define DATA_MOTOR_POSITION

Description:
This real-time data item provides the position of the motor.

12.2.1.25 DATA_MOTOR_POWER

Definition:
#define DATA_MOTOR_POWER

Description:
This real-time data item provides the power supplied to the motor.

12.2.1.26 DATA_MOTOR_STATUS

Definition:
#define DATA_MOTOR_STATUS

Description:
This real-time data item provides the current operating mode of the motor drive. This value
will be one of MOTOR_STATUS_STOP, MOTOR_STATUS_RUN, MOTOR_STATUS_ACCEL,
or MOTOR_STATUS_DECEL.

12.2.1.27 DATA_NUM_ITEMS

Definition:
#define DATA_NUM_ITEMS

Description:
The number of real-time data items.

86 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2.1.28 DATA_PHASE_A_CURRENT

Definition:
#define DATA_PHASE_A_CURRENT

Description:
This real-time data item provides the current through phase A of the motor.

12.2.1.29 DATA_PHASE_B_CURRENT

Definition:
#define DATA_PHASE_B_CURRENT

Description:
This real-time data item provides the current through phase B of the motor.

12.2.1.30 DATA_PHASE_C_CURRENT

Definition:
#define DATA_PHASE_C_CURRENT

Description:
This real-time data item provides the current through phase C of the motor.

12.2.1.31 DATA_PROCESSOR_USAGE

Definition:
#define DATA_PROCESSOR_USAGE

Description:
This real-time data item provides the percentage of the processor that is being utilized.

12.2.1.32 DATA_ROTOR_SPEED

Definition:
#define DATA_ROTOR_SPEED

Description:
This real-time data item provides the speed of the rotor (in other words, the motor shaft). For
asynchronous motors, this will differ from the stator speed.

12.2.1.33 DATA_STATOR_SPEED

Definition:
#define DATA_STATOR_SPEED

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 87

http://www.ti.com

Definitions www.ti.com

Description:
This real-time data item provides the speed of the motor drive. This will only be available for
asynchronous motors, where the rotor speed does not match the stator speed.

12.2.1.34 DATA_TEMPERATURE

Definition:
#define DATA_TEMPERATURE

Description:
This real-time data item provides the ambient temperature of the microcontroller.

12.2.1.35 MOTOR_STATUS_ACCEL

Definition:
#define MOTOR_STATUS_ACCEL

Description:
This is the motor status when the motor drive is accelerating.

12.2.1.36 MOTOR_STATUS_DECEL

Definition:
#define MOTOR_STATUS_DECEL

Description:
This is the motor status when the motor drive is decelerating.

12.2.1.37 MOTOR_STATUS_RUN

Definition:
#define MOTOR_STATUS_RUN

Description:
This is the motor status when the motor drive is running at a fixed speed.

12.2.1.38 MOTOR_STATUS_STOP

Definition:
#define MOTOR_STATUS_STOP

Description:
This is the motor status when the motor drive is stopped.

88 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2.1.39 PARAM_ACCEL

Definition:
#define PARAM_ACCEL

Description:
Specifies the rate at which the speed of the motor is changed when increasing its speed.

12.2.1.40 PARAM_ACCEL_CURRENT

Definition:
#define PARAM_ACCEL_CURRENT

Description:
Specifies the motor current at which the acceleration of the motor drive is reduced in order to
control increases in the motor current.

12.2.1.41 PARAM_ACCEL_POWER

Definition:
#define PARAM_ACCEL_POWER

Description:
Specifies the rate at which the power of the motor is changed when increasing its power.

12.2.1.42 PARAM_BEMF_SKIP_COUNT

Definition:
#define PARAM_BEMF_SKIP_COUNT

Description:
Contains the skip count for BEMF zero crossing detect hold-off.

12.2.1.43 PARAM_BLANK_OFF

Definition:
#define PARAM_BLANK_OFF

Description:
Specifies the blanking time after the current is removed.

12.2.1.44 PARAM_BRAKE_COOL_TIME

Definition:
#define PARAM_BRAKE_COOL_TIME

Description:
Specifies the time at which the dynamic braking leaves cooling mode if entered.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 89

http://www.ti.com

Definitions www.ti.com

12.2.1.45 PARAM_BRAKE_OFF_VOLTAGE

Definition:
#define PARAM_BRAKE_OFF_VOLTAGE

Description:
Specifies the bus voltage at which the brake circuit is disengaged. If the brake circuit is engaged
and the bus voltage drops below this value, then the brake circuit is disengaged.

12.2.1.46 PARAM_BRAKE_ON_VOLTAGE

Definition:
#define PARAM_BRAKE_ON_VOLTAGE

Description:
Specifies the bus voltage at which the brake circuit is first applied. If the bus voltage goes
above this value, then the brake circuit is engaged.

12.2.1.47 PARAM_CAN_RX_COUNT

Definition:
#define PARAM_CAN_RX_COUNT

Description:
Indicates the number of CAN messages that have been received on the CAN bus.

12.2.1.48 PARAM_CAN_TX_COUNT

Definition:
#define PARAM_CAN_TX_COUNT

Description:
Indicates the number of CAN messages that have been transmitted on the CAN bus.

12.2.1.49 PARAM_CLOSED_LOOP

Definition:
#define PARAM_CLOSED_LOOP

Description:
Selects between open-loop and closed-loop mode of the motor drive.

90 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2.1.50 PARAM_CONTROL_MODE

Definition:
#define PARAM_CONTROL_MODE

Description:
Specifies the motor control mode.

12.2.1.51 PARAM_CURRENT_POS

Definition:
#define PARAM_CURRENT_POS

Description:
Contains the current position of the motor. This is a read-only value and matches the corre-
sponding real-time data item.

12.2.1.52 PARAM_CURRENT_POWER

Definition:
#define PARAM_CURRENT_POWER

Description:
Contains the current power of the motor. This is a read-only value and matches the corre-
sponding real-time data item.

12.2.1.53 PARAM_CURRENT_SPEED

Definition:
#define PARAM_CURRENT_SPEED

Description:
Contains the current speed of the motor. This is a read-only value and matches the corre-
sponding real-time data item.

12.2.1.54 PARAM_DATA_RATE

Definition:
#define PARAM_DATA_RATE

Description:
Specifies the rate at which the real-time data is provided by the motor drive.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 91

http://www.ti.com

Definitions www.ti.com

12.2.1.55 PARAM_DC_BRAKE_TIME

Definition:
#define PARAM_DC_BRAKE_TIME

Description:
Specifies the amount of time to apply DC injection braking.

12.2.1.56 PARAM_DC_BRAKE_V

Definition:
#define PARAM_DC_BRAKE_V

Description:
Specifies the voltage to be applied during DC injection braking.

12.2.1.57 PARAM_DECAY_MODE

Definition:
#define PARAM_DECAY_MODE

Description:
Specifies the motor winding current decay mode.

12.2.1.58 PARAM_DECEL

Definition:
#define PARAM_DECEL

Description:
Specifies the rate at which the speed of the motor is changed when decreasing its speed.

12.2.1.59 PARAM_DECEL_POWER

Definition:
#define PARAM_DECEL_POWER

Description:
Specifies the rate at which the power of the motor is changed when decreasing its power.

12.2.1.60 PARAM_DECEL_VOLTAGE

Definition:
#define PARAM_DECEL_VOLTAGE

Description:
Specifies the bus voltage at which the deceleration of the motor drive is reduced in order to
control increases in the bus voltage.

92 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2.1.61 PARAM_DIRECTION

Definition:
#define PARAM_DIRECTION

Description:
Specifies the direction of rotation for the motor.

12.2.1.62 PARAM_ENCODER_PRESENT

Definition:
#define PARAM_ENCODER_PRESENT

Description:
Indicates whether or not an encoder feedback is present on the motor. Things that require the
encoder feedback in order to operate (for example, closed-loop speed control) will be automat-
ically disabled when there is no encoder feedback present.

12.2.1.63 PARAM_ETH_RX_COUNT

Definition:
#define PARAM_ETH_RX_COUNT

Description:
Indicates the number of Ethernet messages that have been received on the Ethernet interface.

12.2.1.64 PARAM_ETH_TCP_TIMEOUT

Definition:
#define PARAM_ETH_TCP_TIMEOUT

Description:
The timeout for an IDLE TCP connection.

12.2.1.65 PARAM_ETH_TX_COUNT

Definition:
#define PARAM_ETH_TX_COUNT

Description:
Indicates the number of Ethernet messages that have been transmitted on the Ethernet inter-
face.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 93

http://www.ti.com

Definitions www.ti.com

12.2.1.66 PARAM_FAULT_STATUS

Definition:
#define PARAM_FAULT_STATUS

Description:
Provides the fault status of the motor drive. This value matches the corresponding real-time
data item; writing it will clear all latched fault status.

12.2.1.67 PARAM_FIRMWARE_VERSION

Definition:
#define PARAM_FIRMWARE_VERSION

Description:
Specifies the version of the firmware on the motor drive.

12.2.1.68 PARAM_FIXED_ON_TIME

Definition:
#define PARAM_FIXED_ON_TIME

Description:
Specifies the fixed on duration for application of motor winding current.

12.2.1.69 PARAM_GPIO_DATA

Definition:
#define PARAM_GPIO_DATA

Description:
Indicates the value(s) of the various GPIO signals on the motor drive board.

12.2.1.70 PARAM_HOLDING_CURRENT

Definition:
#define PARAM_HOLDING_CURRENT

Description:
Specifies the motor winding holding current.

12.2.1.71 PARAM_MAX_BRAKE_TIME

Definition:
#define PARAM_MAX_BRAKE_TIME

94 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

Description:
Specifies the maximum time that dynamic braking can be performed (in order to prevent circuit
or motor damage).

12.2.1.72 PARAM_MAX_BUS_VOLTAGE

Definition:
#define PARAM_MAX_BUS_VOLTAGE

Description:
Specifies the maximum bus voltage when the motor is operating. If the bus voltage goes above
this value, then an overvoltage alarm is asserted.

12.2.1.73 PARAM_MAX_CURRENT

Definition:
#define PARAM_MAX_CURRENT

Description:
Specifies the maximum current supplied to the motor when operating. If the current goes above
this value, then an overcurrent alarm is asserted.

12.2.1.74 PARAM_MAX_POWER

Definition:
#define PARAM_MAX_POWER

Description:
Specifies the maximum power at which the motor can be run.

12.2.1.75 PARAM_MAX_SPEED

Definition:
#define PARAM_MAX_SPEED

Description:
Specifies the maximum speed at which the motor can be run.

12.2.1.76 PARAM_MAX_TEMPERATURE

Definition:
#define PARAM_MAX_TEMPERATURE

Description:
Specifies the maximum ambient temperature of the microcontroller. If the ambient temperature
goes above this value, then an overtemperature alarm is asserted.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 95

http://www.ti.com

Definitions www.ti.com

12.2.1.77 PARAM_MIN_BUS_VOLTAGE

Definition:
#define PARAM_MIN_BUS_VOLTAGE

Description:
Specifies the minimum bus voltage when the motor is operating. If the bus voltage drops below
this value, then an undervoltage alarm is asserted.

12.2.1.78 PARAM_MIN_CURRENT

Definition:
#define PARAM_MIN_CURRENT

Description:
Specifies the minimum current supplied to the motor when operating. If the current drops below
this value, then an undercurrent alarm is asserted.

12.2.1.79 PARAM_MIN_POWER

Definition:
#define PARAM_MIN_POWER

Description:
Specifies the minimum power at which the motor can be run.

12.2.1.80 PARAM_MIN_SPEED

Definition:
#define PARAM_MIN_SPEED

Description:
Specifies the minimum speed at which the motor can be run.

12.2.1.81 PARAM_MODULATION

Definition:
#define PARAM_MODULATION

Description:
Specifies the type of waveform modulation to be used to drive the motor.

96 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2.1.82 PARAM_MOTOR_STATUS

Definition:
#define PARAM_MOTOR_STATUS

Description:
Provides the status of the motor drive, indicating the operating mode of the drive. This value
will be one of MOTOR_STATUS_STOP, MOTOR_STATUS_RUN, MOTOR_STATUS_ACCEL,
or MOTOR_STATUS_DECEL.

12.2.1.83 PARAM_MOTOR_TYPE

Definition:
#define PARAM_MOTOR_TYPE

Description:
Specifies the wiring configuration of the motor. For example, for an AC induction motor, this
could be one phase or three phase; for a stepper motor, this could be unipolar or bipolar.

12.2.1.84 PARAM_NUM_LINES

Definition:
#define PARAM_NUM_LINES

Description:
Specifies the number of lines in the (optional) optical encoder attached to the motor.

12.2.1.85 PARAM_NUM_POLES

Definition:
#define PARAM_NUM_POLES

Description:
Specifies the number of pole pairs in the motor.

12.2.1.86 PARAM_POWER_I

Definition:
#define PARAM_POWER_I

Description:
Specifies the I coefficient for the PI controller used to adjust the motor power to track to the
requested power.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 97

http://www.ti.com

Definitions www.ti.com

12.2.1.87 PARAM_POWER_P

Definition:
#define PARAM_POWER_P

Description:
Specifies the P coefficient for the PI controller used to adjust the motor power to track to the
requested power.

12.2.1.88 PARAM_PRECHARGE_TIME

Definition:
#define PARAM_PRECHARGE_TIME

Description:
Specifies the amount of time to precharge the bridge before starting the motor drive.

12.2.1.89 PARAM_PWM_DEAD_TIME

Definition:
#define PARAM_PWM_DEAD_TIME

Description:
Specifies the dead time between the high- and low-side PWM signals for a motor phase when
using complimentary PWM outputs.

12.2.1.90 PARAM_PWM_FREQUENCY

Definition:
#define PARAM_PWM_FREQUENCY

Description:
Specifies the base PWM frequency used to generate the motor drive waveforms.

12.2.1.91 PARAM_PWM_MIN_PULSE

Definition:
#define PARAM_PWM_MIN_PULSE

Description:
Specifies the minimum width of a PWM pulse; pulses shorter than this value (either positive
or negative) are removed from the output. A high pulse shorter than this value will result in
the PWM signal remaining low, and a low pulse shorter than this value will result in the PWM
signal remaining high.

98 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2.1.92 PARAM_PWM_UPDATE

Definition:
#define PARAM_PWM_UPDATE

Description:
Specifies the rate at which the PWM duty cycle is updated.

12.2.1.93 PARAM_RESISTANCE

Definition:
#define PARAM_RESISTANCE

Description:
Specifies the winding resistance.

12.2.1.94 PARAM_SENSOR_POLARITY

Definition:
#define PARAM_SENSOR_POLARITY

Description:
Indicates the polarity of the GPIO/Digital Hall Sensor Inputs.

12.2.1.95 PARAM_SENSOR_PRESENT

Definition:
#define PARAM_SENSOR_PRESENT

Description:
Indicates whether or not Hall Effect sensor feedback is present on the motor. Things that
require the sensor feedback in order to operate (for example, closed-loop speed control) will
be automatically disabled when there is no sensor feedback present.

12.2.1.96 PARAM_SENSOR_TYPE

Definition:
#define PARAM_SENSOR_TYPE

Description:
Indicates the type of Hall Effect sensor feedback that is present on the motor. The Hall Effect
sensor can be the Digital/GPIO type that is typically used, or can be the Analog/Linear type.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 99

http://www.ti.com

Definitions www.ti.com

12.2.1.97 PARAM_SPEED_I

Definition:
#define PARAM_SPEED_I

Description:
Specifies the I coefficient for the PI controller used to adjust the motor speed to track to the
requested speed.

12.2.1.98 PARAM_SPEED_P

Definition:
#define PARAM_SPEED_P

Description:
Specifies the P coefficient for the PI controller used to adjust the motor speed to track to the
requested speed.

12.2.1.99 PARAM_STARTUP_COUNT

Definition:
#define PARAM_STARTUP_COUNT

Description:
Indicates the startup count for sensorless operation.

12.2.1.100PARAM_STARTUP_DUTY

Definition:
#define PARAM_STARTUP_DUTY

Description:
Indicates the duty cycle for startup phase.

12.2.1.101PARAM_STARTUP_ENDSP

Definition:
#define PARAM_STARTUP_ENDSP

Description:
Contains the ending speed for sensorless startup operation.

100 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2.1.102PARAM_STARTUP_ENDV

Definition:
#define PARAM_STARTUP_ENDV

Description:
Contains the ending voltage for sensorless startup operation.

12.2.1.103PARAM_STARTUP_RAMP

Definition:
#define PARAM_STARTUP_RAMP

Description:
Contains the length of time for the open-loop sensorless startup.

12.2.1.104PARAM_STARTUP_STARTSP

Definition:
#define PARAM_STARTUP_STARTSP

Description:
Contains the starting speed for sensorless startup operation.

12.2.1.105PARAM_STARTUP_STARTV

Definition:
#define PARAM_STARTUP_STARTV

Description:
Contains the starting voltage for sensorless startup operation.

12.2.1.106PARAM_STARTUP_THRESH

Definition:
#define PARAM_STARTUP_THRESH

Description:
Contains the back EMF threshhold voltage for sensorless startup.

12.2.1.107PARAM_STEP_MODE

Definition:
#define PARAM_STEP_MODE

Description:
Specifies the motor stepping mode.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 101

http://www.ti.com

Definitions www.ti.com

12.2.1.108PARAM_TARGET_CURRENT

Definition:
#define PARAM_TARGET_CURRENT

Description:
Specifies the target running current of the motor.

12.2.1.109PARAM_TARGET_POS

Definition:
#define PARAM_TARGET_POS

Description:
Specifies the target position of the motor.

12.2.1.110PARAM_TARGET_POWER

Definition:
#define PARAM_TARGET_POWER

Description:
Specifies the target power supplied to the motor when operating.

12.2.1.111PARAM_TARGET_SPEED

Definition:
#define PARAM_TARGET_SPEED

Description:
Specifies the desired speed of the the motor.

12.2.1.112PARAM_USE_BUS_COMP

Definition:
#define PARAM_USE_BUS_COMP

Description:
Specifies whether DC bus voltage compensation should be performed.

12.2.1.113PARAM_USE_DC_BRAKE

Definition:
#define PARAM_USE_DC_BRAKE

Description:
Specifies whether DC injection braking should be performed.

102 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2.1.114PARAM_USE_DYNAM_BRAKE

Definition:
#define PARAM_USE_DYNAM_BRAKE

Description:
Specifies whether dynamic braking should be performed.

12.2.1.115PARAM_USE_ONBOARD_UI

Definition:
#define PARAM_USE_ONBOARD_UI

Description:
Specifies whether the on-board user interface should be active or inactive.

12.2.1.116PARAM_VF_RANGE

Definition:
#define PARAM_VF_RANGE

Description:
Specifies the range of the V/f table.

12.2.1.117PARAM_VF_TABLE

Definition:
#define PARAM_VF_TABLE

Description:
Specifies the mapping of motor drive frequency to motor drive voltage (commonly referred to
as the V/f table).

12.2.1.118RESP_ID_TARGET_ACIM

Definition:
#define RESP_ID_TARGET_ACIM

Description:
The response returned by the CMD_ID_TARGET command for an AC induction motor drive.

12.2.1.119RESP_ID_TARGET_BLDC

Definition:
#define RESP_ID_TARGET_BLDC

Description:
The response returned by the CMD_ID_TARGET command for a BLDC motor drive.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 103

http://www.ti.com

Definitions www.ti.com

12.2.1.120RESP_ID_TARGET_STEPPER

Definition:
#define RESP_ID_TARGET_STEPPER

Description:
The response returned by the CMD_ID_TARGET command for a stepper motor drive.

12.2.1.121TAG_CMD

Definition:
#define TAG_CMD

Description:
The value of the {tag} byte for a command packet.

12.2.1.122TAG_DATA

Definition:
#define TAG_DATA

Description:
The value of the {tag} byte for a real-time data packet.

12.2.1.123TAG_STATUS

Definition:
#define TAG_STATUS

Description:
The value of the {tag} byte for a status packet.

12.2.1.124UISERIAL_MAX_RECV

Definition:
#define UISERIAL_MAX_RECV

Description:
The size of the UART receive buffer. This should be appropriately sized such that the maximum
size command packet can be contained in this buffer. This value should be a power of two in
order to make the modulo arithmetic be fast (that is, an AND instead of a divide).

104 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2.1.125UISERIAL_MAX_XMIT

Definition:
#define UISERIAL_MAX_XMIT

Description:
The size of the UART transmit buffer. This should be appropriately sized such that the maxi-
mum burst of output data can be contained in this buffer. This value should be a power of two
in order to make the modulo arithmetic be fast (that is, an AND instead of a divide).

12.2.2 Function Documentation

12.2.2.1 UART0IntHandler

Handles the UART interrupt.

Prototype:
void
UART0IntHandler(void)

Description:
This is the interrupt handler for the UART. It will write new data to the UART when there is data
to be written, and read new data from the UART when it is available. Reception of new data
results in the receive buffer being scanned for command packets.

Returns:
None.

12.2.2.2 UISerialFindParameter [static]

Finds a parameter by ID.

Prototype:
static unsigned long
UISerialFindParameter(unsigned char ucID)

Parameters:
ucID is the ID of the parameter to locate.

Description:
This function searches the list of parameters looking for one that matches the provided ID.

Returns:
Returns the index of the parameter found, or 0xffff.ffff if the parameter does not exist in the
parameter list.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 105

http://www.ti.com

Definitions www.ti.com

12.2.2.3 UISerialInit

Initializes the serial user interface.

Prototype:
void
UISerialInit(void)

Description:
This function prepares the serial user interface for operation. The UART is configured for
115,200, 8-N-1 operation. This function should be called before any other serial user interface
operations.

Returns:
None.

12.2.2.4 UISerialRangeCheck [static]

Performs range checking on the value of a parameter.

Prototype:
static void
UISerialRangeCheck(unsigned long ulIdx)

Parameters:
ulIdx is the index of the parameter to check.

Description:
This function will perform range checking on the value of a parameter, adjusting the parameter
value if necessary to make it reside within the predetermined range.

Returns:
None.

12.2.2.5 UISerialScanReceive [static]

Scans for packets in the receive buffer.

Prototype:
static void
UISerialScanReceive(void)

Description:
This function will scan through g_pucUISerialReceive looking for valid command packets.
When found, the command packets will be handled.

Returns:
None.

106 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2.2.6 UISerialSendRealTimeData

Sends a real-time data packet.

Prototype:
void
UISerialSendRealTimeData(void)

Description:
This function will construct a real-time data packet with the current values of the enabled real-
time data items. Once constructed, the packet will be sent out.

Returns:
None.

12.2.2.7 UISerialTransmit [static]

Transmits a packet to the UART.

Prototype:
static tBoolean
UISerialTransmit(unsigned char *pucBuffer)

Parameters:
pucBuffer is a pointer to the packet to be transmitted.

Description:
This function will send a packet via the UART. It will compute the checksum of the packet
(based on the length in the second byte) and place it at the end of the packet before sending
the packet. If g_pucUISerialTransmit is empty and there is space in the UART’s FIFO, as
much of the packet as will fit will be written directly to the UART’s FIFO. The remainder of the
packet will be buffered for later transmission when space becomes available in the UART’s
FIFO (which will then be written by the UART interrupt handler).

Returns:
Returns true if the entire packet fit into the combination of the UART’s FIFO and g_pucUISerial-
Transmit, and false otherwise.

12.2.3 Variable Documentation

12.2.3.1 g_bEnableRealTimeData [static]

Definition:
static tBoolean g_bEnableRealTimeData

Description:
A boolean that is true when the real-time data stream is enabled.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 107

http://www.ti.com

Definitions www.ti.com

12.2.3.2 g_pucUISerialData [static]

Definition:
static unsigned char g_pucUISerialData[UISERIAL_MAX_XMIT]

Description:
A buffer used to construct real-time data packets before they are written to the UART and/or
g_pucUISerialTransmit.

12.2.3.3 g_pucUISerialReceive [static]

Definition:
static unsigned char g_pucUISerialReceive[UISERIAL_MAX_RECV]

Description:
A buffer to contain data received from the UART. A packet is processed out of this buffer once
the entire packet is contained within the buffer.

12.2.3.4 g_pucUISerialResponse [static]

Definition:
static unsigned char g_pucUISerialResponse[UISERIAL_MAX_XMIT]

Description:
A buffer used to construct status packets before they are written to the UART and/or g_puc-
UISerialTransmit.

12.2.3.5 g_pucUISerialTransmit [static]

Definition:
static unsigned char g_pucUISerialTransmit[UISERIAL_MAX_XMIT]

Description:
A buffer to contain data to be written to the UART.

12.2.3.6 g_pulUIRealTimeData [static]

Definition:
static unsigned long g_pulUIRealTimeData[(DATA_NUM_ITEMS+31)/32]

Description:
A bit array that contains a flag for each real-time data item. When the corresponding flag is
set, that real-time data item is enabled in the real-time data stream; when the flag is clear, that
real-time data item is not part of the real-time data stream.

108 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

12.2.3.7 g_ulUISerialReceiveRead [static]

Definition:
static unsigned long g_ulUISerialReceiveRead

Description:
The offset of the next byte to be read from g_pucUISerialReceive.

12.2.3.8 g_ulUISerialReceiveWrite [static]

Definition:
static unsigned long g_ulUISerialReceiveWrite

Description:
The offset of the next byte to be written to g_pucUISerialReceive.

12.2.3.9 g_ulUISerialTransmitRead [static]

Definition:
static unsigned long g_ulUISerialTransmitRead

Description:
The offset of the next byte to be read from g_pucUISerialTransmit.

12.2.3.10 g_ulUISerialTransmitWrite [static]

Definition:
static unsigned long g_ulUISerialTransmitWrite

Description:
The offset of the next byte to be written to g_pucUISerialTransmit.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Serial Interface 109

http://www.ti.com

Definitions www.ti.com

110 Serial Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Sine Wave Modulation

13 Sine Wave Modulation
Introduction .111
Definitions . 111

13.1 Introduction

Sine wave modulation is used for driving single-phase AC induction motors and is a method of
driving three-phase AC induction motors. Two or three sine waves, with the appropriate phase shift
(180 degrees for single-phase motors and 120 degrees for three-phase motors) are produced.

For single-phase motors, this produces an alternating current in the single motor winding, exactly
as would be seen by simply connecting the motor to the mains power. The amplitude of the voltage
applied to the motor is the full DC bus voltage.

For three-phase motors, this produces an alternating current between each winding pair. The
difference between sine waves that are 120 degrees out of phase is a sine wave with an amplitude
of ∼86.6% the amplitude of the original sine waves. Therefore, the full DC bus is not utilized.

In order to obtain full DC bus utilization with three-phase motors, over-modulation is supported by
specifying an amplitude greater than one. With over-modulation, the portion of the sine wave that
is greater than one is clipped to one and the portion less than negative one is clipped to negative
one. During the portion of the sine wave that has been flat-topped, the phase-to-phase current will
exceed 86.6%; once the pair of flat-tops start to line up, full DC bus utilization will be achieved. This
downside to over-modulation is an increase in the harmonic distortion of the drive waveforms.

The code for producing sine wave modulated waveforms is contained in sinemod.c, with
sinemod.h containing the definition for the function exported to the remainder of the application.

13.2 Definitions

Functions
void SineModulate (unsigned long ulAngle, unsigned long ulAmplitude, unsigned long ∗pul-
DutyCycles)

13.2.1 Function Documentation

13.2.1.1 SineModulate

Computes sine wave modulated waveforms.

Prototype:
void
SineModulate(unsigned long ulAngle,

SW-RDK-ACIM-UG-5450 - December 02, 2009 Sine Wave Modulation 111

http://www.ti.com

Definitions www.ti.com

unsigned long ulAmplitude,
unsigned long *pulDutyCycles)

Parameters:
ulAngle is the current angle of the waveform expressed as a 0.32 fixed point value that is the

percentage of the way around a circle.
ulAmplitude is the amplitude of the waveform, as a 16.16 fixed point value.
pulDutyCycles is a pointer to an array of three unsigned longs to be filled in with the duty

cycles of the waveforms, in 16.16 fixed point values between zero and one.

Description:
This function finds the duty cycle percentage of the sine waveforms for the given angle. For
three-phase operation, there are three waveforms produced, each 120 degrees apart. For
single-phase operation, there are two waveforms produced, each 180 degrees apart. If the
amplitude of the waveform is larger than one, the waveform will be clipped after scaling (flat-
topping).

Returns:
None.

112 Sine Wave Modulation SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Space Vector Modulation

14 Space Vector Modulation
Introduction .113
Definitions . 114

14.1 Introduction

Space vector modulation is a method used for driving three-phase AC induction motors. For each
phase of the motor, the corresponding gates will be in one of two states; either the high-side will be
on or the low-side will be on. Therefore, for the three phases, there are eight possible states for the
gates (indicating which gate is on):

State U Gate V Gate W Gate
0 low low low
1 high low low
2 high high low
3 low high low
4 low high high
5 low low high
6 high low high
7 high high high

Two of those state vectors (state 0 and 7) result in no current flowing through the motor and are
referred to as the zero vectors. The remaining six state vectors result in current flow, and each is
spaced every 60 degrees around the circle. Between these state vectors is a sector of the circle.

Every angle will fall into one of these sectors, which is bound by two of the state vectors. Outputting
the two state vectors for the appropriate time, and using the zero vectors for the remaining time in
the PWM period, any angle and amplitude can be produced.

This process results in full utilization of the DC bus; for any angle, the two active state vectors are
scaled such that the combined vector reaches the desired amplitude, and is capable of reaching
the full DC bus amplitude.

The following waveforms show the appearance of the PWM signals in each sector of the circle,
along with the state vectors in use. In each drawing, Q0 is the low-side gate for the U phase, Q1 is
the high-side gate drive for the U phase, Q2 is the low-side gate for the V phase, Q3 is the high-side
gate for the V phase, Q4 is the low-side gate for the W phase, and Q5 is the high-side gate for the
W phase.

Sector 1 Sector 2

Q1: __----------__ Q1: ____------____
Q0: --__________-- Q0: ----______----

Q3: ____------____ Q3: __----------__
Q2: ----______---- Q2: --__________--

Q5: ______--______ Q5: ______--______
Q4: ------__------ Q4: ------__------

State: 0 1 2 7 2 1 0 State: 0 3 2 7 2 3 0

Sector 3 Sector 4

SW-RDK-ACIM-UG-5450 - December 02, 2009 Space Vector Modulation 113

http://www.ti.com

Definitions www.ti.com

Q1: ______--______ Q1: ______--______
Q0: ------__------ Q0: ------__------

Q3: __----------__ Q3: ____------____
Q2: --__________-- Q2: ----______----

Q5: ____------____ Q5: __----------__
Q4: ----______---- Q4: --__________--

State: 0 3 4 7 4 3 0 State: 0 5 4 7 4 5 0

Sector 5 Sector 6

Q1: ____------____ Q1: __----------__
Q0: ----______---- Q0: --__________--

Q3: ______--______ Q3: ______--______
Q2: ------__------ Q2: ------__------

Q5: __----------__ Q5: ____------____
Q4: --__________-- Q4: ----______----

State: 0 5 6 7 6 5 0 State: 0 1 6 7 6 1 0

Proper balancing of these states results in phase-to-phase sinusoidal waveforms being presented
to the motor, just as occurs with sine wave modulation. The real benefit is full utilization of the DC
bus, providing more torque from the motor.

The code for producing space vector modulated waveforms is contained in svm.c, with svm.h
containing the definition for the function exported to the remainder of the application.

14.2 Definitions

Functions
void SpaceVectorModulate (unsigned long ulAngle, unsigned long ulAmplitude, unsigned long
∗pulDutyCycles)

14.2.1 Function Documentation

14.2.1.1 SpaceVectorModulate

Computes space vector modulated waveforms.

Prototype:
void
SpaceVectorModulate(unsigned long ulAngle,

unsigned long ulAmplitude,
unsigned long *pulDutyCycles)

Parameters:
ulAngle is the current angle of the waveform expressed as a 0.32 fixed point value that is the

percentage of the way around a circle.

114 Space Vector Modulation SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

ulAmplitude is the amplitude of the waveform, as a 16.16 fixed point value.
pulDutyCycles is a pointer to an array of three unsigned longs to be filled in with the duty

cycles of the waveforms, in 16.16 fixed point values between zero and one.

Description:
This function finds the duty cycle percentages of the space vector modulated waveforms for the
given angle. If the input amplitude is greater than one, it will be clipped to one before computing
the waveforms.

Returns:
None.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Space Vector Modulation 115

http://www.ti.com

Definitions www.ti.com

116 Space Vector Modulation SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Speed Sensing

15 Speed Sensing
Introduction .117
Definitions . 117

15.1 Introduction

Since an AC induction motor is not a synchronous machine, the speed of the rotor does not match
the speed of the drive. Therefore, an input is provided for connecting to either an optical encoder
or a tachogenerator from which the rotor speed can be determined.

When running at slow speeds, the time between input edges is measured to determine the speed
of the rotor (referred to as edge timing mode). The edge triggering capability of the GPIO module
is used for this measurement.

When running at higher speeds, the number of edges in a fixed time period are counted to deter-
mine the speed of the rotor (referred to as edge count mode). The velocity capture feature of the
quadrature encoder module is used for this measurement.

The transition between the two speed capture modes is performed based on the measured speed.
If in edge timing mode, when the edge time gets too small (that is, there are too many edges per
second), it will change into edge count mode. If in edge count mode, when the number of edges in
the time period gets too small (that is, there are not enough edges per time period), it will change
into edge timing mode. There is a bit of hysteresis on the changeover point to avoid constantly
switching between modes if the rotor is running near the changeover point.

The code for sensing the rotor speed is contained in speed_sense.c, with speed_sense.h
containing the definitions for the variable and functions exported to the remainder of the application.

15.2 Definitions

Defines
EDGE_DELTA
FLAG_COUNT_BIT
FLAG_EDGE_BIT
FLAG_SKIP_BIT
MAX_EDGE_COUNT
QEI_INT_RATE

Functions
void GPIOCIntHandler (void)
void QEIIntHandler (void)
static void SpeedNewValue (unsigned short usFrequency)

SW-RDK-ACIM-UG-5450 - December 02, 2009 Speed Sensing 117

http://www.ti.com

Definitions www.ti.com

void SpeedSenseInit (void)

Variables
static unsigned long g_ulSpeedFlags
static unsigned long g_ulSpeedPrevious
static unsigned long g_ulSpeedTime
unsigned short g_usRotorFrequency

15.2.1 Define Documentation

15.2.1.1 EDGE_DELTA

Definition:
#define EDGE_DELTA

Description:
The hysteresis applied to MAX_EDGE_COUNT when changing between the two speed deter-
mination modes.

15.2.1.2 FLAG_COUNT_BIT

Definition:
#define FLAG_COUNT_BIT

Description:
The bit number of the flag in g_ulSpeedFlags that indicates that edge counting mode is being
used to determine the speed.

15.2.1.3 FLAG_EDGE_BIT

Definition:
#define FLAG_EDGE_BIT

Description:
The bit number of the flag in g_ulSpeedFlags that indicates that an edge has been seen by
the edge timing mode. If an edge hasn’t been seen during a QEI velocity interrupt period, the
speed is forced to zero.

15.2.1.4 FLAG_SKIP_BIT

Definition:
#define FLAG_SKIP_BIT

118 Speed Sensing SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

Description:
The bit number of the flag in g_ulSpeedFlags that indicates that the next edge should be
ignored by the edge timing mode. This is used when the edge timing mode is first enabled
since there is no previous edge time to be used to calculate the time between edges.

15.2.1.5 MAX_EDGE_COUNT

Definition:
#define MAX_EDGE_COUNT

Description:
The maximum number of edges per second allowed when using the edge timing mode of
speed determination (which is also the minimum number of edges per second allowed when
using the edge count mode).

15.2.1.6 QEI_INT_RATE

Definition:
#define QEI_INT_RATE

Description:
The rate at which the QEI velocity interrupt occurs.

15.2.2 Function Documentation

15.2.2.1 GPIOCIntHandler

Handles the GPIO port C interrupt.

Prototype:
void
GPIOCIntHandler(void)

Description:
This function is called when GPIO port C asserts its interrupt. GPIO port C is configured
to generate an interrupt on the rising edge of the encoder input signal. The time between the
current edge and the previous edge is computed and used as a measure of the rotor frequency.

Returns:
None.

15.2.2.2 QEIIntHandler

Handles the QEI velocity interrupt.

Prototype:
void
QEIIntHandler(void)

SW-RDK-ACIM-UG-5450 - December 02, 2009 Speed Sensing 119

http://www.ti.com

Definitions www.ti.com

Description:
This function is called when the QEI velocity timer expires. If using the edge counting mode for
rotor frequency determination, the number of edges counted during the last velocity period is
used as a measure of the rotor frequency.

Returns:
None.

15.2.2.3 SpeedNewValue [static]

Updates the current rotor frequency.

Prototype:
static void
SpeedNewValue(unsigned short usFrequency)

Parameters:
usFrequency is the newly measured frequency.

Description:
This function takes a newly measured rotor frequency and uses it to update the current rotor
frequency. If the new frequency is different from the current frequency by too large a margin,
the new frequency measurement is discarded (a noise filter). If the new frequency is accepted,
it is passed through a single-pole IIR low pass filter with a coefficient of 0.75.

Returns:
None.

15.2.2.4 SpeedSenseInit

Initializes the speed sensing routines.

Prototype:
void
SpeedSenseInit(void)

Description:
This function will initialize the peripherals used determine the speed of the motor’s rotor.

Returns:
None.

15.2.3 Variable Documentation

15.2.3.1 g_ulSpeedFlags [static]

Definition:
static unsigned long g_ulSpeedFlags

120 Speed Sensing SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

Description:
A set of flags that indicate the current state of the motor speed determination routines.

15.2.3.2 g_ulSpeedPrevious [static]

Definition:
static unsigned long g_ulSpeedPrevious

Description:
In edge timing mode, this is the time at which the previous edge was seen and is used to
determine the time between edges. In edge count mode, this is the count of edges during the
previous timing period and is used to average the edge count from two periods.

15.2.3.3 g_ulSpeedTime [static]

Definition:
static unsigned long g_ulSpeedTime

Description:
The time accumulated during the QEI velocity interrupts. This is used to extend the precision
of the QEI timer.

15.2.3.4 g_usRotorFrequency

Definition:
unsigned short g_usRotorFrequency

Description:
The current frequency of the motor’s rotor.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Speed Sensing 121

http://www.ti.com

Definitions www.ti.com

122 Speed Sensing SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com User Interface

16 User Interface
Introduction .123
Definitions . 123

16.1 Introduction

There are two user interfaces for the the AC induction motor application. One uses an on-board po-
tentiometer and push button for basic control of the motor and four LEDs for basic status feedback,
and the other uses the serial port to provide complete control of all aspects of the motor drive as
well as monitoring of real-time performance data.

The on-board user interface consists of a potentiometer, push button, and four LEDs. The poten-
tiometer is not directly sampled; it controls the frequency of an oscillator whose output is passed
through the isolation barrier. The potentiometer value is determined by measuring the time be-
tween edges from the oscillator. The potentiometer controls the frequency of the motor drive, and
the push button cycles between run forward, stop, run backward, stop. Holding the push button for
five seconds while the motor drive is stopped will toggle between sine wave modulation and space
vector modulation.

The “Run” LED flashes the entire time the application is running. The LED is off most of the time if
the motor drive is stopped and on most of the time if it is running. The “Fault” LED is normally off
but flashes at a fast rate when a fault occurs. Also, it flashes slowly when the in-rush current limiter
is operating on application startup. The “S1” LED is on when the dynamic brake is active and off
when it is not active. And the “S2” LED is on when space vector modulation is being used and off
when sine wave modulation is being used.

A periodic interrupt is used to poll the state of the push button and perform debouncing. A separate
edge-triggered GPIO interrupt is used to measure the time between edges from the potentiometer-
controlled oscillator.

The serial user interface is entirely handled by the serial user interface module. The only thing
provided here is the list of parameters and real-time data items, plus a set of helper functions that
are required in order to properly set the values of some of the parameters.

This user interface (and the accompanying serial and on-board user interface modules) is more
complicated and consumes more program space than would typically exist in a real motor drive
application. The added complexity allows a great deal of flexibility to configure and evaluate the
motor drive, its capabilities, and adjust it for the target motor.

The code for the user interface is contained in ui.c, with ui.h containing the definitions for the
structures, defines, variables, and functions exported to the remainder of the application.

16.2 Definitions

Data Structures
tDriveParameters

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 123

http://www.ti.com

Definitions www.ti.com

Defines
FLAG_BRAKE_BIT
FLAG_BRAKE_OFF
FLAG_BRAKE_ON
FLAG_BUS_COMP_BIT
FLAG_BUS_COMP_OFF
FLAG_BUS_COMP_ON
FLAG_DC_BRAKE_BIT
FLAG_DC_BRAKE_OFF
FLAG_DC_BRAKE_ON
FLAG_DIR_BACKWARD
FLAG_DIR_BIT
FLAG_DIR_FORWARD
FLAG_DRIVE_BIT
FLAG_DRIVE_SINE
FLAG_DRIVE_SPACE_VECTOR
FLAG_ENCODER_ABSENT
FLAG_ENCODER_BIT
FLAG_ENCODER_PRESENT
FLAG_LOOP_BIT
FLAG_LOOP_CLOSED
FLAG_LOOP_OPEN
FLAG_MOTOR_TYPE_1PHASE
FLAG_MOTOR_TYPE_3PHASE
FLAG_MOTOR_TYPE_BIT
FLAG_PWM_FREQUENCY_12K
FLAG_PWM_FREQUENCY_16K
FLAG_PWM_FREQUENCY_20K
FLAG_PWM_FREQUENCY_8K
FLAG_PWM_FREQUENCY_MASK
FLAG_VF_RANGE_100
FLAG_VF_RANGE_400
FLAG_VF_RANGE_BIT
NUM_SWITCHES
UI_INT_RATE
UI_POT_MAX
UI_POT_MIN

Functions
void GPIODIntHandler (void)
void SysTickIntHandler (void)
static void UIBusComp (void)
static void UIButtonHold (void)

124 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

static void UIButtonPress (void)
static void UIDCBrake (void)
static void UIDirectionSet (void)
static void UIDynamicBrake (void)
void UIEmergencyStop (void)
static void UIEncoderPresent (void)
static void UIFAdjI (void)
void UIFaultLEDBlink (unsigned short usRate, unsigned short usPeriod)
void UIInit (void)
static void UILEDBlink (unsigned long ulIdx, unsigned short usRate, unsigned short usPeriod)
static void UILoopMode (void)
static void UIModulationType (void)
static void UIMotorType (void)
void UIParamLoad (void)
void UIParamSave (void)
static void UIPWMFrequencySet (void)
void UIRun (void)
void UIRunLEDBlink (unsigned short usRate, unsigned short usPeriod)
void UIStatus1LEDBlink (unsigned short usRate, unsigned short usPeriod)
void UIStatus2LEDBlink (unsigned short usRate, unsigned short usPeriod)
void UIStop (void)
static void UIUpdateRate (void)
void UIUpgrade (void)
static void UIVfRange (void)

Variables
static long g_lFAdjI
static const unsigned char g_pucLEDPin[4]
static const unsigned long g_pulLEDBase[4]
unsigned long g_pulUIHoldCount[NUM_SWITCHES]
static unsigned short g_pusBlinkPeriod[4]
static unsigned short g_pusBlinkRate[4]
tDriveParameters g_sParameters
const tUIParameter g_sUIParameters[]
const tUIRealTimeData g_sUIRealTimeData[]
const tUIOnboardSwitch g_sUISwitches[]
static unsigned char g_ucBusComp
unsigned char g_ucCPUUsage
static unsigned char g_ucDCBrake
static unsigned char g_ucDirection
static unsigned char g_ucDynamicBrake
static unsigned char g_ucEncoder
static unsigned char g_ucFrequency
static unsigned char g_ucLoop

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 125

http://www.ti.com

Definitions www.ti.com

static unsigned char g_ucModulation
static unsigned char g_ucType
static unsigned char g_ucUpdateRate
static unsigned char g_ucVfRange
static unsigned long g_ulBlinkCount
const unsigned long g_ulUINumButtons
const unsigned long g_ulUINumParameters
const unsigned long g_ulUINumRealTimeData
static unsigned long g_ulUIPotEdgeTime
static unsigned long g_ulUIPotPreviousTime
const unsigned long g_ulUITargetType
static unsigned long g_ulUIUseOnboard
unsigned short g_usCurrentFrequency
const unsigned short g_usFirmwareVersion
unsigned short g_usTargetFrequency

16.2.1 Data Structure Documentation

16.2.1.1 tDriveParameters

Definition:
typedef struct
{

unsigned char ucSequenceNum;
unsigned char ucCRC;
unsigned char ucVersion;
unsigned char ucMinPulseWidth;
unsigned char ucDeadTime;
unsigned char ucUpdateRate;
unsigned char ucNumPoles;
unsigned char ucAccel;
unsigned char ucDecel;
unsigned char ucMinCurrent;
unsigned char ucMaxCurrent;
unsigned char ucPrechargeTime;
unsigned char ucMaxTemperature;
unsigned short usFlags;
unsigned short usNumEncoderLines;
unsigned short usMinFrequency;
unsigned short usMaxFrequency;
unsigned short usMinVBus;
unsigned short usMaxVBus;
unsigned short usBrakeOnV;
unsigned short usBrakeOffV;
unsigned short usDCBrakeV;
unsigned short usDCBrakeTime;
unsigned short usDecelV;
unsigned short usVFTable[21];
long lFAdjP;

126 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

long lFAdjI;
unsigned long ulBrakeMax;
unsigned long ulBrakeCool;
unsigned char ucAccelCurrent;
unsigned char ucReserved[31];

}
tDriveParameters

Members:
ucSequenceNum The sequence number of this parameter block. When in RAM, this value is

not used. When in flash, this value is used to determine the parameter block with the most
recent information.

ucCRC The CRC of the parameter block. When in RAM, this value is not used. When in flash,
this value is used to validate the contents of the parameter block (to avoid using a partially
written parameter block).

ucVersion The version of this parameter block. This can be used to distinguish saved param-
eters that correspond to an old version of the parameter block.

ucMinPulseWidth The minimum width of a PWM pulse, specified in 0.1 us periods.
ucDeadTime The dead time between inverting the high and low side of a motor phase, spec-

ified in 20 ns periods.
ucUpdateRate The rate at which the PWM pulse width is updated, specified in the number of

PWM periods.
ucNumPoles The number of pole pairs in the motor.
ucAccel The rate of acceleration, specified in Hertz per second.
ucDecel The rate of deceleration, specified in Hertz per second.
ucMinCurrent The minimum current through the motor drive during operation, specified in

1/10ths of an ampere.
ucMaxCurrent The maximum current through the motor drive during operation, specified in

1/10ths of an ampere.
ucPrechargeTime The amount of time to precharge the bootstrap capacitor on the high side

gate drivers, specified in milliseconds.
ucMaxTemperature The maximum ambient temperature of the microcontroller, specified in

degrees Celsius.
usFlags A set of flags, enumerated by FLAG_PWM_FREQUENCY_MASK,

FLAG_MOTOR_TYPE_BIT, FLAG_LOOP_BIT, FLAG_DRIVE_BIT, FLAG_DIR_BIT,
FLAG_ENCODER_BIT, FLAG_VF_RANGE_BIT, FLAG_BUS_COMP_BIT,
FLAG_BRAKE_BIT, and FLAG_DC_BRAKE_BIT.

usNumEncoderLines The number of lines in the (optional) optical encoder.
usMinFrequency The minimum frequency of the motor drive, specified in 1/10ths of a Hertz.
usMaxFrequency The maximum frequency of the motor drive, specified in 1/10ths of a Hertz.
usMinVBus The minimum bus voltage during operation, specified in volts.
usMaxVBus The maximum bus voltage during operation, specified in volts.
usBrakeOnV The bus voltage at which the braking circuit is engaged, specified in volts.
usBrakeOffV The bus voltage at which the braking circuit is disengaged, specified in volts.
usDCBrakeV The voltage to be applied to the motor when performing DC injection braking,

specified in volts.
usDCBrakeTime The amount of time to apply DC injection braking, specified in milliseconds.
usDecelV The DC bus voltage at which the deceleration rate is reduced, specified in volts.

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 127

http://www.ti.com

Definitions www.ti.com

usVFTable An array of coefficients that map from motor frequency to waveform amplitude,
known as V/f control. The first entry of this array corresponds to the minimum motor drive
frequency, the last entry corresponds to the nominal motor drive frequency, and the other
entries are equally spaced between the first and last. For frequencies that do not appear
in this table, linear interpolation is used to approximate the appropriate amplitude. Each
entry is in a 1.15 fixed point format.

lFAdjP The P coefficient of the frequency adjust PI controller.
lFAdjI The I coefficient of the frequency adjust PI controller.
ulBrakeMax The amount of time (assuming continuous application) that the dynamic braking

can be utilized, specified in milliseconds.
ulBrakeCool The amount of accumulated time that the dynamic brake can have before the

cooling period will end, specified in milliseconds.
ucAccelCurrent The motor current at which the acceleration rate is reduced, specified in

1/10ths of an ampere. Note: This parameter only exists in the version one parameter
block.

ucReserved The amount of unused space in the structure in order to pad it to 128 bytes for
storage into flash.

Description:
This structure contains the AC induction motor parameters that are saved to flash. A copy
exists in RAM for use during the execution of the application, which is loaded form flash at
startup. The modified parameter block can also be written back to flash for use on the next
power cycle.

Note: All parameters exist in the version zero parameter block unless it is explicitly stated
otherwise. If an older parameter block is loaded from flash, the new parameters will get filled in
with default values. When the parameter block is written to flash, it will always be written with
the latest parameter block version.

16.2.2 Define Documentation

16.2.2.1 FLAG_BRAKE_BIT

Definition:
#define FLAG_BRAKE_BIT

Description:
The bit number of the flag in the usFlags member of tDriveParameters that defines the appli-
cation of dynamic brake to handle regeneration onto DC bus. This field will be one of FLAG_-
BRAKE_ON or FLAG_BRAKE_OFF.

16.2.2.2 FLAG_BRAKE_OFF

Definition:
#define FLAG_BRAKE_OFF

Description:
The value of the FLAG_BRAKE_BIT flag that indicates that the dynamic brake is disabled.

128 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

16.2.2.3 FLAG_BRAKE_ON

Definition:
#define FLAG_BRAKE_ON

Description:
The value of the FLAG_BRAKE_BIT flag that indicates that the dynamic brake is enabled.

16.2.2.4 FLAG_BUS_COMP_BIT

Definition:
#define FLAG_BUS_COMP_BIT

Description:
The bit number of the flag in the usFlags member of tDriveParameters that defines the appli-
cation of amplitude compensation for fluctuations in the DC bus voltage. This field will be one
of FLAG_BUS_COMP_ON or FLAG_BUS_COMP_OFF.

16.2.2.5 FLAG_BUS_COMP_OFF

Definition:
#define FLAG_BUS_COMP_OFF

Description:
The value of the FLAG_BUS_COMP_BIT flag that indicates that the DC bus compensation is
disabled.

16.2.2.6 FLAG_BUS_COMP_ON

Definition:
#define FLAG_BUS_COMP_ON

Description:
The value of the FLAG_BUS_COMP_BIT flag that indicates that the DC bus compensation is
enabled.

16.2.2.7 FLAG_DC_BRAKE_BIT

Definition:
#define FLAG_DC_BRAKE_BIT

Description:
The bit number of the flag in the usFlags member of tDriveParameters that defines the applica-
tion of the DC injection brake to stop the motor. This field will be one of FLAG_DC_BRAKE_ON
or FLAG_DC_BRAKE_OFF.

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 129

http://www.ti.com

Definitions www.ti.com

16.2.2.8 FLAG_DC_BRAKE_OFF

Definition:
#define FLAG_DC_BRAKE_OFF

Description:
The value of the FLAG_DC_BRAKE_BIT flag that indicates that the DC injection brake is dis-
abled.

16.2.2.9 FLAG_DC_BRAKE_ON

Definition:
#define FLAG_DC_BRAKE_ON

Description:
The value of the FLAG_DC_BRAKE_BIT flag that indicates that the DC injection brake is en-
abled.

16.2.2.10 FLAG_DIR_BACKWARD

Definition:
#define FLAG_DIR_BACKWARD

Description:
The value of the FLAG_DIR_BIT flag that indicates that the motor is to be driven in the back-
ward direction.

16.2.2.11 FLAG_DIR_BIT

Definition:
#define FLAG_DIR_BIT

Description:
The bit number of the flag in the usFlags member of tDriveParameters that defines the direction
the motor is to be driven. The field will be one of FLAG_DIR_FORWARD or FLAG_DIR_-
BACKWARD.

16.2.2.12 FLAG_DIR_FORWARD

Definition:
#define FLAG_DIR_FORWARD

Description:
The value of the FLAG_DIR_BIT flag that indicates that the motor is to be driven in the forward
direction.

130 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

16.2.2.13 FLAG_DRIVE_BIT

Definition:
#define FLAG_DRIVE_BIT

Description:
The bit number of the flag in the usFlags member of tDriveParameters that defines the type
of drive waveform for the motor drive. This field will be one of FLAG_DRIVE_SINE or FLAG_-
DRIVE_SPACE_VECTOR.

16.2.2.14 FLAG_DRIVE_SINE

Definition:
#define FLAG_DRIVE_SINE

Description:
The value of the FLAG_DRIVE_BIT flag that indicates that the motor is to be driven with sine
wave modulation.

16.2.2.15 FLAG_DRIVE_SPACE_VECTOR

Definition:
#define FLAG_DRIVE_SPACE_VECTOR

Description:
The value of the FLAG_DRIVE_BIT flag that indicates that the motor is to be driven with space
vector modulation.

16.2.2.16 FLAG_ENCODER_ABSENT

Definition:
#define FLAG_ENCODER_ABSENT

Description:
The value of the FLAG_ENCODER_BIT flag that indicates that the encoder is absent.

16.2.2.17 FLAG_ENCODER_BIT

Definition:
#define FLAG_ENCODER_BIT

Description:
The bit number of the flag in the usFlags member of tDriveParameters that defines the pres-
ence of an encoder for speed feedback. This field will be one of FLAG_ENCODER_ABSENT
or FLAG_ENCODER_PRESENT.

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 131

http://www.ti.com

Definitions www.ti.com

16.2.2.18 FLAG_ENCODER_PRESENT

Definition:
#define FLAG_ENCODER_PRESENT

Description:
The value of the FLAG_ENCODER_BIT flag that indicates that the encoder is present.

16.2.2.19 FLAG_LOOP_BIT

Definition:
#define FLAG_LOOP_BIT

Description:
The bit number of the flag in the usFlags member of tDriveParameters that defines the mode of
operation for the motor drive. This field will be one of FLAG_LOOP_OPEN or FLAG_LOOP_-
CLOSED.

16.2.2.20 FLAG_LOOP_CLOSED

Definition:
#define FLAG_LOOP_CLOSED

Description:
The value of the FLAG_LOOP_BIT flag field that indicates that the motor is operated in closed-
loop mode.

16.2.2.21 FLAG_LOOP_OPEN

Definition:
#define FLAG_LOOP_OPEN

Description:
The value of the FLAG_LOOP_BIT flag that indicates that the motor is operated in open-loop
mode.

16.2.2.22 FLAG_MOTOR_TYPE_1PHASE

Definition:
#define FLAG_MOTOR_TYPE_1PHASE

Description:
The value of the FLAG_MOTOR_TYPE_BIT flag that indicates that the motor is a single phase
motor.

132 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

16.2.2.23 FLAG_MOTOR_TYPE_3PHASE

Definition:
#define FLAG_MOTOR_TYPE_3PHASE

Description:
The value of the FLAG_MOTOR_TYPE_BIT flag that indicates that the motor is a three phase
motor.

16.2.2.24 FLAG_MOTOR_TYPE_BIT

Definition:
#define FLAG_MOTOR_TYPE_BIT

Description:
The bit number of the flag in the usFlags member of tDriveParameters that defines the type
of the motor. This field will be one of FLAG_MOTOR_TYPE_3PHASE or FLAG_MOTOR_-
TYPE_1PHASE.

16.2.2.25 FLAG_PWM_FREQUENCY_12K

Definition:
#define FLAG_PWM_FREQUENCY_12K

Description:
The value of the FLAG_PWM_FREQUENCY_MASK bit field that indicates that the PWM fre-
quency is 12.5 KHz.

16.2.2.26 FLAG_PWM_FREQUENCY_16K

Definition:
#define FLAG_PWM_FREQUENCY_16K

Description:
The value of the FLAG_PWM_FREQUENCY_MASK bit field that indicates that the PWM fre-
quency is 16 KHz.

16.2.2.27 FLAG_PWM_FREQUENCY_20K

Definition:
#define FLAG_PWM_FREQUENCY_20K

Description:
The value of the FLAG_PWM_FREQUENCY_MASK bit field that indicates that the PWM fre-
quency is 20 KHz.

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 133

http://www.ti.com

Definitions www.ti.com

16.2.2.28 FLAG_PWM_FREQUENCY_8K

Definition:
#define FLAG_PWM_FREQUENCY_8K

Description:
The value of the FLAG_PWM_FREQUENCY_MASK bit field that indicates that the PWM fre-
quency is 8 KHz.

16.2.2.29 FLAG_PWM_FREQUENCY_MASK

Definition:
#define FLAG_PWM_FREQUENCY_MASK

Description:
The mask for the bits in the usFlags member of tDriveParameters that define the PWM
output frequency. This field will be one of FLAG_PWM_FREQUENCY_8K, FLAG_PWM_-
FREQUENCY_12K, FLAG_PWM_FREQUENCY_16K, or FLAG_PWM_FREQUENCY_20K.

16.2.2.30 FLAG_VF_RANGE_100

Definition:
#define FLAG_VF_RANGE_100

Description:
The value of the FLAG_VF_RANGE_BIT flag that indicates that the V/f table ranges from 0 Hz
to 100 Hz.

16.2.2.31 FLAG_VF_RANGE_400

Definition:
#define FLAG_VF_RANGE_400

Description:
The value of the FLAG_VF_RANGE_BIT flag that indicates that the V/f table ranges from 0 Hz
to 400 Hz.

16.2.2.32 FLAG_VF_RANGE_BIT

Definition:
#define FLAG_VF_RANGE_BIT

Description:
The bit number of the flag in the usFlags member of tDriveParameters that defines the range
of the V/f table. This field will be one of FLAG_VF_RANGE_100 or FLAG_VF_RANGE_400.

134 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

16.2.2.33 NUM_SWITCHES

Definition:
#define NUM_SWITCHES

Description:
The number of switches in the g_sUISwitches array. This value is automatically computed
based on the number of entries in the array.

16.2.2.34 UI_INT_RATE

Definition:
#define UI_INT_RATE

Description:
The rate at which the user interface interrupt occurs.

16.2.2.35 UI_POT_MAX

Definition:
#define UI_POT_MAX

Description:
The maximum value that can be read from the potentiometer. This corresponds to the value
read when the wiper is all the way to the right.

16.2.2.36 UI_POT_MIN

Definition:
#define UI_POT_MIN

Description:
The minimum value that can be read from the potentiometer. This corresponds to the value
read when the wiper is all the way to the left.

16.2.3 Function Documentation

16.2.3.1 GPIODIntHandler

Handles the GPIO port D interrupt.

Prototype:
void
GPIODIntHandler(void)

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 135

http://www.ti.com

Definitions www.ti.com

Description:
This function is called when GPIO port D asserts its interrupt. GPIO port D is configured to
generate an interrupt on either edge of the signal from the potentiometer oscillator. The time
between the current edge and the previous edge is computed.

Returns:
None.

16.2.3.2 SysTickIntHandler

Handles the SysTick interrupt.

Prototype:
void
SysTickIntHandler(void)

Description:
This function is called when SysTick asserts its interrupt. It is responsible for handling the on-
board user interface elements (push button and potentiometer) if enabled, and the processor
usage computation.

Returns:
None.

16.2.3.3 UIBusComp [static]

Updates the DC bus compensation bit of the motor drive.

Prototype:
static void
UIBusComp(void)

Description:
This function is called when the variable controlling the DC bus compensation is updated. The
value is then reflected into the usFlags member of g_sParameters.

Returns:
None.

16.2.3.4 UIButtonHold [static]

Handles button holds.

Prototype:
static void
UIButtonHold(void)

Description:
This function is called when a hold of the on-board push button has been detected. The
modulation type of the motor will be toggled between sine wave and space vector modulation,
but only if a three phase motor is in use.

136 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

Returns:
None.

16.2.3.5 UIButtonPress [static]

Handles button presses.

Prototype:
static void
UIButtonPress(void)

Description:
This function is called when a press of the on-board push button has been detected. If the
motor drive is running, it will be stopped. If it is stopped, the direction will be reversed and the
motor drive will be started.

Returns:
None.

16.2.3.6 UIDCBrake [static]

Update the DC brake bit of the motor drive.

Prototype:
static void
UIDCBrake(void)

Description:
This function is called when the variable controlling the DC braking is updated. The value is
then reflected into the usFlags member of g_sParameters.

Returns:
None.

16.2.3.7 UIDirectionSet [static]

Updates the motor drive direction bit.

Prototype:
static void
UIDirectionSet(void)

Description:
This function is called when the variable controlling the motor drive direction is updated. The
value is then reflected into the usFlags member of g_sParameters.

Returns:
None.

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 137

http://www.ti.com

Definitions www.ti.com

16.2.3.8 UIDynamicBrake [static]

Updates the dynamic brake bit of the motor drive.

Prototype:
static void
UIDynamicBrake(void)

Description:
This function is called when the variable controlling the dynamic braking is updated. The value
is then reflected into the usFlags member of g_sParameters.

Returns:
None.

16.2.3.9 UIEmergencyStop

Emergency stops the motor drive.

Prototype:
void
UIEmergencyStop(void)

Description:
This function is called by the serial user interface when the emergency stop command is re-
ceived. In the case of an AC induction motor, an emergency stop is treated as a "protect the
motor drive" command; mechanical braking must be utilized in an emergency stop situation.

Returns:
None.

16.2.3.10 UIEncoderPresent [static]

Updates the encoder presence bit of the motor drive.

Prototype:
static void
UIEncoderPresent(void)

Description:
This function is called when the variable controlling the presence of an encoder is updated.
The value is then reflected into the usFlags member of g_sParameters.

Returns:
None.

138 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

16.2.3.11 UIFAdjI [static]

Updates the I coefficient of the frequency PI controller.

Prototype:
static void
UIFAdjI(void)

Description:
This function is called when the variable containing the I coefficient of the frequency PI con-
troller is updated. The value is then reflected into the parameter block.

Returns:
None.

16.2.3.12 UIFaultLEDBlink

Sets the blink rate for the fault LED.

Prototype:
void
UIFaultLEDBlink(unsigned short usRate,

unsigned short usPeriod)

Parameters:
usRate is the rate to blink the fault LED.
usPeriod is the amount of time to turn on the fault LED.

Description:
This function sets the rate at which the fault LED should be blinked. A blink period of zero
means that the LED should be turned off, and a blink period equal to the blink rate means
that the LED should be turned on. Otherwise, the blink rate determines the number of user
interface interrupts during the blink cycle of the fault LED, and the blink period is the number of
those user interface interrupts during which the LED is turned on.

Returns:
None.

16.2.3.13 UIInit

Initializes the user interface.

Prototype:
void
UIInit(void)

Description:
This function initializes the user interface modules (on-board and serial), preparing them to
operate and control the motor drive.

Returns:
None.

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 139

http://www.ti.com

Definitions www.ti.com

16.2.3.14 UILEDBlink [static]

Sets the blink rate for an LED.

Prototype:
static void
UILEDBlink(unsigned long ulIdx,

unsigned short usRate,
unsigned short usPeriod)

Parameters:
ulIdx is the number of the LED to configure.
usRate is the rate to blink the LED.
usPeriod is the amount of time to turn on the LED.

Description:
This function sets the rate at which an LED should be blinked. A blink period of zero means
that the LED should be turned off, and a blink period equal to the blink rate means that the
LED should be turned on. Otherwise, the blink rate determines the number of user interface
interrupts during the blink cycle of the LED, and the blink period is the number of those user
interface interrupts during which the LED is turned on.

Returns:
None.

16.2.3.15 UILoopMode [static]

Updates the open-/closed-loop mode bit of the motor drive.

Prototype:
static void
UILoopMode(void)

Description:
This function is called when the variable controlling open-/closed-loop mode of the motor drive
is updated. The value is then reflected into the usFlags member of g_sParameters.

Returns:
None.

16.2.3.16 UIModulationType [static]

Updates the modulation waveform type bit in the motor drive.

Prototype:
static void
UIModulationType(void)

Description:
This function is called when the variable controlling the modulation waveform type is updated.
The value is then reflected into the usFlags member of g_sParameters.

140 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

Returns:
None.

16.2.3.17 UIMotorType [static]

Updates the type of motor connected to the motor drive.

Prototype:
static void
UIMotorType(void)

Description:
This function is called when the variable specifying the type of motor connected to the motor
drive is updated. This value is then reflected into the usFlags member of g_sParameters.

Returns:
None.

16.2.3.18 UIParamLoad

Loads the motor drive parameter block from flash.

Prototype:
void
UIParamLoad(void)

Description:
This function is called by the serial user interface when the load parameter block function is
called. If the motor drive is running, the parameter block is not loaded (since that may result
in detrimental changes, such as changing the motor type from three phase to single phase). If
the motor drive is not running and a valid parameter block exists in flash, the contents of the
parameter block are loaded from flash.

Returns:
None.

16.2.3.19 UIParamSave

Saves the motor drive parameter block to flash.

Prototype:
void
UIParamSave(void)

Description:
This function is called by the serial user interface when the save parameter block function is
called. The parameter block is written to flash for use the next time a load occurs (be it from an
explicit request or a power cycle of the drive).

Returns:
None.

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 141

http://www.ti.com

Definitions www.ti.com

16.2.3.20 UIPWMFrequencySet [static]

Updates the PWM frequency of the motor drive.

Prototype:
static void
UIPWMFrequencySet(void)

Description:
This function is called when the variable controlling the PWM frequency of the motor drive is
updated. The value is then reflected into the usFlags member of g_sParameters.

Returns:
None.

16.2.3.21 UIRun

Starts the motor drive.

Prototype:
void
UIRun(void)

Description:
This function is called by the serial user interface when the run command is received. The
motor drive will be started as a result; this is a no operation if the motor drive is already
running.

Returns:
None.

16.2.3.22 UIRunLEDBlink

Sets the blink rate for the run LED.

Prototype:
void
UIRunLEDBlink(unsigned short usRate,

unsigned short usPeriod)

Parameters:
usRate is the rate to blink the run LED.
usPeriod is the amount of time to turn on the run LED.

Description:
This function sets the rate at which the run LED should be blinked. A blink period of zero
means that the LED should be turned off, and a blink period equal to the blink rate means
that the LED should be turned on. Otherwise, the blink rate determines the number of user
interface interrupts during the blink cycle of the run LED, and the blink period is the number of
those user interface interrupts during which the LED is turned on.

Returns:
None.

142 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

16.2.3.23 UIStatus1LEDBlink

Sets the blink rate for the status1 LED.

Prototype:
void
UIStatus1LEDBlink(unsigned short usRate,

unsigned short usPeriod)

Parameters:
usRate is the rate to blink the status1 LED.
usPeriod is the amount of time to turn on the status1 LED.

Description:
This function sets the rate at which the status1 LED should be blinked. A blink period of zero
means that the LED should be turned off, and a blink period equal to the blink rate means
that the LED should be turned on. Otherwise, the blink rate determines the number of user
interface interrupts during the blink cycle of the status1 LED, and the blink period is the number
of those user interface interrupts during which the LED is turned on.

Returns:
None.

16.2.3.24 UIStatus2LEDBlink

Sets the blink rate for the status2 LED.

Prototype:
void
UIStatus2LEDBlink(unsigned short usRate,

unsigned short usPeriod)

Parameters:
usRate is the rate to blink the status2 LED.
usPeriod is the amount of time to turn on the status2 LED.

Description:
This function sets the rate at which the status2 LED should be blinked. A blink period of zero
means that the LED should be turned off, and a blink period equal to the blink rate means
that the LED should be turned on. Otherwise, the blink rate determines the number of user
interface interrupts during the blink cycle of the status2 LED, and the blink period is the number
of those user interface interrupts during which the LED is turned on.

Returns:
None.

16.2.3.25 UIStop

Stops the motor drive.

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 143

http://www.ti.com

Definitions www.ti.com

Prototype:
void
UIStop(void)

Description:
This function is called by the serial user interface when the stop command is received. The
motor drive will be stopped as a result; this is a no operation if the motor drive is already
stopped.

Returns:
None.

16.2.3.26 UIUpdateRate [static]

Sets the update rate of the motor drive.

Prototype:
static void
UIUpdateRate(void)

Description:
This function is called when the variable specifying the update rate of the motor drive is up-
dated. This allows the motor drive to perform a synchronous change of the update rate to avoid
discontinuities in the output waveform.

Returns:
None.

16.2.3.27 UIUpgrade

Starts a firmware upgrade.

Prototype:
void
UIUpgrade(void)

Description:
This function is called by the serial user interface when a firmware upgrade has been re-
quested. This will branch directly to the boot loader and relinquish all control, never returning.

Returns:
Never returns.

16.2.3.28 UIVfRange [static]

Updates the V/f table range of the motor drive.

Prototype:
static void
UIVfRange(void)

144 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

Description:
This function is called when the variable controlling the V/f table range is updated. The value
is then reflected into the usFlags member of g_sParameters.

Returns:
None.

16.2.4 Variable Documentation

16.2.4.1 g_lFAdjI [static]

Definition:
static long g_lFAdjI

Description:
The I coefficient of the frequency PI controller. This variable is used by the serial interface as
a staging area before the value gets placed into the parameter block by UIFAdjI().

16.2.4.2 g_pucLEDPin [static]

Definition:
static const unsigned char g_pucLEDPin[4]

Description:
This array contains the pin numbers of the four LEDs on the board.

16.2.4.3 g_pulLEDBase [static]

Definition:
static const unsigned long g_pulLEDBase[4]

Description:
This array contains the base address of the GPIO blocks for the four LEDs on the board.

16.2.4.4 g_pulUIHoldCount

Definition:
unsigned long g_pulUIHoldCount

Description:
This is the count of the number of samples during which the switches have been pressed; it is
used to distinguish a switch press from a switch hold. This array is used by the on-board user
interface module.

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 145

http://www.ti.com

Definitions www.ti.com

16.2.4.5 g_pusBlinkPeriod [static]

Definition:
static unsigned short g_pusBlinkPeriod[4]

Description:
The blink period of the four LEDs on the board; this is the number of user interface interrupts
for which the LED will be turned on. The run LED is the first entry of the array, the fault LED
is the second entry of the array, the status1 LED is the third entry of the array, and the status2
LED is the fourth entry of the array.

16.2.4.6 g_pusBlinkRate [static]

Definition:
static unsigned short g_pusBlinkRate[4]

Description:
The blink rate of the four LEDs on the board; this is the number of user interface interrupts for
an entire blink cycle. The run LED is the first entry of the array, the fault LED is the second
entry of the array, the status1 LED is the third entry of the array, and the status2 LED is the
fourth entry of the array.

16.2.4.7 g_sParameters

Definition:
tDriveParameters g_sParameters

Description:
This structure instance contains the configuration values for the AC induction motor drive.

16.2.4.8 g_sUIParameters

Definition:
const tUIParameter g_sUIParameters[]

Description:
An array of structures describing the AC induction motor drive parameters to the serial user
interface module.

16.2.4.9 g_sUIRealTimeData

Definition:
const tUIRealTimeData g_sUIRealTimeData[]

Description:
An array of structures describing the AC induction motor drive real-time data items to the serial
user interface module.

146 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

16.2.4.10 g_sUISwitches

Definition:
const tUIOnboardSwitch g_sUISwitches[]

Description:
An array of structures describing the on-board switches.

16.2.4.11 g_ucBusComp [static]

Definition:
static unsigned char g_ucBusComp

Description:
A boolean that is true when the DC bus voltage compensation should be active and false when
it should not be. This variable is used by the serial interface as a staging area before the value
gets placed into the flags in the parameter block by UIBusComp().

16.2.4.12 g_ucCPUUsage

Definition:
unsigned char g_ucCPUUsage

Description:
The processor usage for the most recent measurement period. This is a value between 0 and
100, inclusive.

16.2.4.13 g_ucDCBrake [static]

Definition:
static unsigned char g_ucDCBrake

Description:
A boolean that is true when DC injection braking should be utilized. This variable is used by the
serial interface as a staging area before the value gets placed into the flags in the parameter
block by UIDCBrake().

16.2.4.14 g_ucDirection [static]

Definition:
static unsigned char g_ucDirection

Description:
The specification of the motor drive direction. This variable is used by the serial interface as a
staging area before the value gets placed into the flags in the parameter block by UIDirection-
Set().

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 147

http://www.ti.com

Definitions www.ti.com

16.2.4.15 g_ucDynamicBrake [static]

Definition:
static unsigned char g_ucDynamicBrake

Description:
A boolean that is true when dynamic braking should be utilized. This variable is used by the
serial interface as a staging area before the value gets placed into the flags in the parameter
block by UIDynamicBrake().

16.2.4.16 g_ucEncoder [static]

Definition:
static unsigned char g_ucEncoder

Description:
The specification of the encoder presence on the motor. This variable is used by the serial
interface as a staging area before the value gets placed into the flags in the parameter block
by UIEncoderPresent().

16.2.4.17 g_ucFrequency [static]

Definition:
static unsigned char g_ucFrequency

Description:
The specification of the PWM frequency for the motor drive. This variable is used by the serial
interface as a staging area before the value gets placed into the flags in the parameter block
by UIPWMFrequencySet().

16.2.4.18 g_ucLoop [static]

Definition:
static unsigned char g_ucLoop

Description:
The specification of open-loop or closed-loop mode of the motor drive. This variable is used by
the serial interface as a staging area before the value gets placed into the flags in the parameter
block by UILoopMode().

16.2.4.19 g_ucModulation [static]

Definition:
static unsigned char g_ucModulation

148 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

Description:
The specification of the modulation waveform type for the motor drive. This variable is used by
the serial interface as a staging area before the value gets placed into the flags in the parameter
block by UIModulationType().

16.2.4.20 g_ucType [static]

Definition:
static unsigned char g_ucType

Description:
The specification of the type of motor connected to the motor drive. This variable is used by the
serial interface as a staging area before the value gets placed into the flags in the parameter
block by UIMotorType().

16.2.4.21 g_ucUpdateRate [static]

Definition:
static unsigned char g_ucUpdateRate

Description:
The specification of the update rate for the motor drive. This variable is used by the serial inter-
face as a staging area before the value gets updated in a synchronous manner by UIUpdate-
Rate().

16.2.4.22 g_ucVfRange [static]

Definition:
static unsigned char g_ucVfRange

Description:
A boolean that is true when the V/f table ranges from 0 Hz to 400 Hz and false when it ranges
from 0 Hz to 100 Hz. This variable is used by the serial interface as a staging area before the
value gets placed into the flags in the parameter block by UIVfRange().

16.2.4.23 g_ulBlinkCount [static]

Definition:
static unsigned long g_ulBlinkCount

Description:
The count of count of user interface interrupts that have occurred. This is used to determine
when to toggle the LEDs that are blinking.

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 149

http://www.ti.com

Definitions www.ti.com

16.2.4.24 g_ulUINumButtons

Definition:
const unsigned long g_ulUINumButtons

Description:
The number of switches on this target. This value is used by the on-board user interface
module.

16.2.4.25 g_ulUINumParameters

Definition:
const unsigned long g_ulUINumParameters

Description:
The number of motor drive parameters. This is used by the serial user interface module.

16.2.4.26 g_ulUINumRealTimeData

Definition:
const unsigned long g_ulUINumRealTimeData

Description:
The number of motor drive real-time data items. This is used by the serial user interface
module.

16.2.4.27 g_ulUIPotEdgeTime [static]

Definition:
static unsigned long g_ulUIPotEdgeTime

Description:
The time between the last two edges on the potentiometer input. The potentiometer controls
a variable frequency oscillator whose output is passed through the electrical isolation barrier;
measuring the time between edges provides an approximation of the value of the potentiome-
ter.

16.2.4.28 g_ulUIPotPreviousTime [static]

Definition:
static unsigned long g_ulUIPotPreviousTime

Description:
The value of the SysTick timer when the most recent edge was received on the potentiometer.
When a new edge is detected, this is used to determine the time between the edges.

150 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Definitions

16.2.4.29 g_ulUITargetType

Definition:
const unsigned long g_ulUITargetType

Description:
The target type for this drive. This is used by the serial user interface module.

16.2.4.30 g_ulUIUseOnboard [static]

Definition:
static unsigned long g_ulUIUseOnboard

Description:
A boolean that is true when the on-board user interface should be active and false when it
should not be.

16.2.4.31 g_usCurrentFrequency

Definition:
unsigned short g_usCurrentFrequency

Description:
The current drive frequency. This is updated by the speed control routine as it ramps the speed
of the motor drive.

16.2.4.32 g_usFirmwareVersion

Definition:
const unsigned short g_usFirmwareVersion

Description:
The version of the firmware. Changing this value will make it much more difficult for Texas
Instruments support personnel to determine the firmware in use when trying to provide assis-
tance; it should only be changed after careful consideration.

16.2.4.33 g_usTargetFrequency

Definition:
unsigned short g_usTargetFrequency

Description:
The target drive frequency.

SW-RDK-ACIM-UG-5450 - December 02, 2009 User Interface 151

http://www.ti.com

Definitions www.ti.com

152 User Interface SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com V/f Control

17 V/f Control
Introduction .153
Definitions . 153

17.1 Introduction

In order to maintain a fixed torque over the operating frequency of the motor, the voltage applied to
the motor must be varied in proportion to the drive frequency. This module provides an adjustable
V/f curve so that the torque can be held approximately constant across the operating frequency of
any given motor.

The V/f curve consists of 21 points that provide the amplitude (effectively voltage) based on the
drive frequency. The points are evenly spaced between 0 Hz and either 100 Hz or 400 Hz (based
on a configuration value); this provides a point every 5 Hz or 20 Hz. For frequencies between those
in the curve, linear interpolation is used to compute the amplitude.

The code for handling the V/f curve is contained in vf.c, with vf.h containing the definition for the
function exported to the remainder of the application.

17.2 Definitions

Functions
unsigned long VFGetAmplitude (unsigned long ulFrequency)

17.2.1 Function Documentation

17.2.1.1 VFGetAmplitude

Gets the amplitude based on the frequency.

Prototype:
unsigned long
VFGetAmplitude(unsigned long ulFrequency)

Parameters:
ulFrequency is the current motor frequency as a 16.16 fixed point value.

Description:
This function performs the V/f computation to convert a motor frequency into the amplitude
of the waveform. A V/f table is used to define the mapping of frequency to amplitude; linear
interpolation is utilized for frequencies that are not directly defined in the V/f table.

Returns:
The amplitude as a 16.16 fixed point value.

SW-RDK-ACIM-UG-5450 - December 02, 2009 V/f Control 153

http://www.ti.com

Definitions www.ti.com

154 V/f Control SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com CPU Usage Module

18 CPU Usage Module
Introduction .155
API Functions . 155
Programming Example .156

18.1 Introduction

The CPU utilization module uses one of the system timers and peripheral clock gating to determine
the percentage of the time that the processor is being clocked. For the most part, the processor
is executing code whenever it is being clocked (exceptions occur when the clocking is being con-
figured, which only happens at startup, and when entering/exiting an interrupt handler, when the
processor is performing stacking operations on behalf of the application).

The specified timer is configured to run when the processor is in run mode and to not run when
the processor is in sleep mode. Therefore, the timer will only count when the processor is being
clocked. Comparing the number of clocks the timer counted during a fixed period to the number of
clocks in the fixed period provides the percentage utilization.

In order for this to be effective, the application must put the processor to sleep when it has no work
to do (instead of busy waiting). If the processor never goes to sleep (either because of a continual
stream of work to do or a busy loop), the processor utilization will be reported as 100%.

Since deep-sleep mode changes the clocking of the system, the computed processor usage may
be incorrect if deep-sleep mode is utilized. The number of clocks the processor spends in run mode
will be properly counted, but the timing period may not be accurate (unless extraordinary measures
are taken to ensure timing period accuracy).

The accuracy of the computed CPU utilization depends upon the regularity with which CPUUsage-
Tick() is called by the application. If the CPU usage is constant, but CPUUsageTick() is called
sporadically, the reported CPU usage will fluctuate as well despite the fact that the CPU usage is
actually constant.

This module is contained in utils/cpu_usage.c, with utils/cpu_usage.h containing the API
definitions for use by applications.

18.2 API Functions

Functions
void CPUUsageInit (unsigned long ulClockRate, unsigned long ulRate, unsigned long ulTimer)
unsigned long CPUUsageTick (void)

SW-RDK-ACIM-UG-5450 - December 02, 2009 CPU Usage Module 155

http://www.ti.com

Programming Example www.ti.com

18.2.1 Function Documentation

18.2.1.1 CPUUsageInit

Initializes the CPU usage measurement module.

Prototype:
void
CPUUsageInit(unsigned long ulClockRate,

unsigned long ulRate,
unsigned long ulTimer)

Parameters:
ulClockRate is the rate of the clock supplied to the timer module.
ulRate is the number of times per second that CPUUsageTick() is called.
ulTimer is the index of the timer module to use.

Description:
This function prepares the CPU usage measurement module for measuring the CPU usage of
the application.

Returns:
None.

18.2.1.2 CPUUsageTick

Updates the CPU usage for the new timing period.

Prototype:
unsigned long
CPUUsageTick(void)

Description:
This function, when called at the end of a timing period, will update the CPU usage.

Returns:
Returns the CPU usage percentage as a 16.16 fixed-point value.

18.3 Programming Example

The following example shows how to use the CPU usage module to measure the CPU usage where
the foreground simply burns some cycles.

//
// The CPU usage for the most recent time period.
//
unsigned long g_ulCPUUsage;

//
// Handles the SysTick interrupt.

156 CPU Usage Module SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Programming Example

//
void
SysTickIntHandler(void)
{

//
// Compute the CPU usage for the last time period.
//
g_ulCPUUsage = CPUUsageTick();

}

//
// The main application.
//
int
main(void)
{

//
// Initialize the CPU usage module, using timer 0.
//
CPUUsageInit(8000000, 100, 0);

//
// Initialize SysTick to interrupt at 100 Hz.
//
SysTickPeriodSet(8000000 / 100);
SysTickIntEnable();
SysTickEnable();

//
// Loop forever.
//
while(1)
{

//
// Delay for a little bit so that CPU usage is not zero.
//
SysCtlDelay(100);

//
// Put the processor to sleep.
//
SysCtlSleep();

}
}

SW-RDK-ACIM-UG-5450 - December 02, 2009 CPU Usage Module 157

http://www.ti.com

Programming Example www.ti.com

158 CPU Usage Module SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Flash Parameter Block Module

19 Flash Parameter Block Module
Introduction .159
API Functions . 159
Programming Example .162

19.1 Introduction

The flash parameter block module provides a simple, fault-tolerant, persistent storage mechanism
for storing parameter information for an application.

The FlashPBInit() function is used to initialize a parameter block. The primary conditions for the
parameter block are that flash region used to store the parameter blocks must contain at least two
erase blocks of flash to ensure fault tolerance, and the size of the parameter block must be an
integral divisor of the the size of an erase block. FlashPBGet() and FlashPBSave() are used to
read and write parameter block data into the parameter region. The only constraints on the content
of the parameter block are that the first two bytes of the block are reserved for use by the read/write
functions as a sequence number and checksum, respectively.

This module is contained in utils/flash_pb.c, with utils/flash_pb.h containing the API
definitions for use by applications.

19.2 API Functions

Functions
unsigned char ∗ FlashPBGet (void)
void FlashPBInit (unsigned long ulStart, unsigned long ulEnd, unsigned long ulSize)
static unsigned long FlashPBIsValid (unsigned char ∗pucOffset)
void FlashPBSave (unsigned char ∗pucBuffer)

19.2.1 Function Documentation

19.2.1.1 FlashPBGet

Gets the address of the most recent parameter block.

Prototype:
unsigned char *
FlashPBGet(void)

Description:
This function returns the address of the most recent parameter block that is stored in flash.

Returns:
Returns the address of the most recent parameter block, or NULL if there are no valid param-
eter blocks in flash.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Flash Parameter Block Module 159

http://www.ti.com

API Functions www.ti.com

19.2.1.2 FlashPBInit

Initializes the flash parameter block.

Prototype:
void
FlashPBInit(unsigned long ulStart,

unsigned long ulEnd,
unsigned long ulSize)

Parameters:
ulStart is the address of the flash memory to be used for storing flash parameter blocks; this

must be the start of an erase block in the flash.
ulEnd is the address of the end of flash memory to be used for storing flash parameter blocks;

this must be the start of an erase block in the flash (the first block that is NOT part of the
flash memory to be used), or the address of the first word after the flash array if the last
block of flash is to be used.

ulSize is the size of the parameter block when stored in flash; this must be a power of two less
than or equal to the flash erase block size (typically 1024).

Description:
This function initializes a fault-tolerant, persistent storage mechanism for a parameter block for
an application. The last several erase blocks of flash (as specified by ulStart and ulEnd are
used for the storage; more than one erase block is required in order to be fault-tolerant.

A parameter block is an array of bytes that contain the persistent parameters for the applica-
tion. The only special requirement for the parameter block is that the first byte is a sequence
number (explained in FlashPBSave()) and the second byte is a checksum used to validate the
correctness of the data (the checksum byte is the byte such that the sum of all bytes in the
parameter block is zero).

The portion of flash for parameter block storage is split into N equal-sized regions, where each
region is the size of a parameter block (ulSize). Each region is scanned to find the most recent
valid parameter block. The region that has a valid checksum and has the highest sequence
number (with special consideration given to wrapping back to zero) is considered to be the
current parameter block.

In order to make this efficient and effective, two conditions must be met. The first is ulStart and
ulEnd must be specified such that at least two erase blocks of flash are dedicated to parameter
block storage. If not, fault tolerance can not be guaranteed since an erase of a single block will
leave a window where there are no valid parameter blocks in flash. The second condition is
that the size (ulSize) of the parameter block must be an integral divisor of the size of an erase
block of flash. If not, a parameter block will end up spanning between two erase blocks of flash,
making it more difficult to manage.

When the microcontroller is initially programmed, the flash blocks used for parameter block
storage are left in an erased state.

This function must be called before any other flash parameter block functions are called.

Returns:
None.

160 Flash Parameter Block Module SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com API Functions

19.2.1.3 FlashPBIsValid [static]

Determines if the parameter block at the given address is valid.

Prototype:
static unsigned long
FlashPBIsValid(unsigned char *pucOffset)

Parameters:
pucOffset is the address of the parameter block to check.

Description:
This function will compute the checksum of a parameter block in flash to determine if it is valid.

Returns:
Returns one if the parameter block is valid and zero if it is not.

19.2.1.4 FlashPBSave

Writes a new parameter block to flash.

Prototype:
void
FlashPBSave(unsigned char *pucBuffer)

Parameters:
pucBuffer is the address of the parameter block to be written to flash.

Description:
This function will write a parameter block to flash. Saving the new parameter blocks involves
three steps:

Setting the sequence number such that it is one greater than the sequence number of the
latest parameter block in flash.
Computing the checksum of the parameter block.
Writing the parameter block into the storage immediately following the latest parameter
block in flash; if that storage is at the start of an erase block, that block is erased first.

By this process, there is always a valid parameter block in flash. If power is lost while writing
a new parameter block, the checksum will not match and the partially written parameter block
will be ignored. This is what makes this fault-tolerant.

Another benefit of this scheme is that it provides wear leveling on the flash. Since multiple
parameter blocks fit into each erase block of flash, and multiple erase blocks are used for
parameter block storage, it takes quite a few parameter block saves before flash is re-written.

Returns:
None.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Flash Parameter Block Module 161

http://www.ti.com

Programming Example www.ti.com

19.3 Programming Example

The following example shows how to use the flash parameter block module to read the contents of
a flash parameter block.

unsigned char pucBuffer[16], *pucPB;

//
// Initialize the flash parameter block module, using the last two pages of
// a 64 KB device as the parameter block.
//
FlashPBInit(0xf800, 0x10000, 16);

//
// Read the current parameter block.
//
pucPB = FlashPBGet();
if(pucPB)
{

memcpy(pucBuffer, pucPB);
}

162 Flash Parameter Block Module SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com Sine Calculation Module

20 Sine Calculation Module
Introduction .163
API Functions . 163
Programming Example .164

20.1 Introduction

This module provides a fixed-point sine function. The input angle is a 0.32 fixed-point value that is
the percentage of 360 degrees. This has two benefits; the sine function does not have to handle
angles that are outside the range of 0 degrees through 360 degrees (in fact, 360 degrees can not be
represented since it would wrap to 0 degrees), and the computation of the angle can be simplified
since it does not have to deal with wrapping at values that are not natural for binary arithmetic (such
as 360 degrees or 2π radians).

A sine table is used to find the approximate value for a given input angle. The table contains 128
entries that range from 0 degrees through 90 degrees and the symmetry of the sine function is used
to determine the value between 90 degrees and 360 degrees. The maximum error caused by this
table-based approach is 0.00618, which occurs near 0 and 180 degrees.

This module is contained in utils/sine.c, with utils/sine.h containing the API definitions
for use by applications.

20.2 API Functions

Functions
long sine (unsigned long ulAngle)

20.2.1 Function Documentation

20.2.1.1 sine

Computes an approximation of the sine of the input angle.

Prototype:
long
sine(unsigned long ulAngle)

Parameters:
ulAngle is an angle expressed as a 0.32 fixed-point value that is the percentage of the way

around a circle.

Description:
This function computes the sine for the given input angle. The angle is specified in 0.32 fixed
point format, and is therefore always between 0 and 360 degrees, inclusive of 0 and exclusive
of 360.

SW-RDK-ACIM-UG-5450 - December 02, 2009 Sine Calculation Module 163

http://www.ti.com

Programming Example www.ti.com

Returns:
Returns the sine of the angle, in 16.16 fixed point format.

20.3 Programming Example

The following example shows how to produce a sine wave with 7 degrees between successive
values.

unsigned long ulValue;

//
// Produce a sine wave with each step being 7 degrees advanced from the
// previous.
//
for(ulValue = 0; ; ulValue += 0x04FA4FA4)
{

//
// Compute the sine at this angle and do something with the result.
//
sine(ulValue);

}

164 Sine Calculation Module SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com

www.ti.com

SW-RDK-ACIM-UG-5450 - December 02, 2009 165

http://www.ti.com

www.ti.com

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TIŠs terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIŠs standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services
or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids
all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifi-
cally designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications.
Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk,
and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf

Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless

www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007-2008, Texas Instruments Incorporated

166 SW-RDK-ACIM-UG-5450 - December 02, 2009

http://www.ti.com
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

	Copyright
	Revision Information
	1 Introduction
	1.1 Overview
	1.2 Code Size
	1.3 Processor Usage
	1.4 Memory Layout
	1.5 Debugging

	2 Applications
	2.1 Boot Loader (boot_serial)
	2.2 A/C Induction Motor Controller (qs-acim)

	3 Development System Utilities
	4 ADC Control
	4.1 Introduction
	4.2 Definitions

	5 Dynamic Brake Control
	5.1 Definitions

	6 Faults
	6.1 Introduction
	6.2 Definitions

	7 In-rush Current Control
	7.1 Introduction
	7.2 Definitions

	8 Main Application
	8.1 Introduction
	8.2 Definitions

	9 On-board User Interface
	9.1 Introduction
	9.2 Definitions

	10 Pin Definitions
	10.1 Introduction
	10.2 Definitions

	11 PWM Control
	11.1 Introduction
	11.2 Definitions

	12 Serial Interface
	12.1 Introduction
	12.2 Definitions

	13 Sine Wave Modulation
	13.1 Introduction
	13.2 Definitions

	14 Space Vector Modulation
	14.1 Introduction
	14.2 Definitions

	15 Speed Sensing
	15.1 Introduction
	15.2 Definitions

	16 User Interface
	16.1 Introduction
	16.2 Definitions

	17 V/f Control
	17.1 Introduction
	17.2 Definitions

	18 CPU Usage Module
	18.1 Introduction
	18.2 API Functions
	18.3 Programming Example

	19 Flash Parameter Block Module
	19.1 Introduction
	19.2 API Functions
	19.3 Programming Example

	20 Sine Calculation Module
	20.1 Introduction
	20.2 API Functions
	20.3 Programming Example

	IMPORTANT NOTICE

