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ABSTRACT
Cooperation of CPU and hardware accelerator to accomplish
computational intensive tasks, provides significant advan-
tages in run-time speed and energy. Efficient management
of data sharing among multiple computational kernels can
rapidly turn into a complicated problem. The Accelerator
coherency port (ACP) emerges as a possible solution by en-
abling hardware accelerators to issue coherent accesses to
the memory space. In this paper, we quantify the advan-
tages of using ACP over the traditional method of sharing
data on the DRAM. We select the Xilinx ZYNQ as tar-
get and develop an infrastructure to stress the ACP and
high-performance (HP) AXI interfaces of the ZYNQ device.
Hardware accelerators on both of HP and ACP AXI inter-
faces reach full duplex data processing bandwidth of over
1.6 GBytes/s running at 125 MHz on a XC7Z020-1C de-
vice. The effect of background DRAM and cache traffic on
the performance of accelerators is analyzed. For a sample
image filtering task, the cooperative operation of CPU and
ACP accelerator (CPU-ACP) gains a speed-up of 1.2X over
CPU and HP acceleration (CPU-HP). In terms of energy ef-
ficiency, an improvement of 2.5 nJ (> 20%) is shown for each
byte of processed data. This is the first work which repre-
sents detailed practical comparisons on the speed and energy
efficiency of various processor-accelerator memory sharing
techniques in a configurable heterogeneous platform.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Sty-
les—Heterogeneous (hybrid) systems; B.7.1 [Integrated Cir-
cuits]: Types and Design Styles—Gate arrays
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1. INTRODUCTION
As the energy efficiency requirements (e.g. GOPS/W)

of silicon chips are growing exponentially, computer archi-
tects are seeking solutions to continue application perfor-
mance scaling. One emerging solution is to use specialized
functional units (accelerators) at different levels of a het-
erogeneous architecture. These specialized units cannot be
used as general-purpose compute engines. However, they
provide enhanced execution speed and power efficiency for
their specific computational workloads [3]. There exist nu-
merous applications for accelarators in both of the embed-
ded and high performance computing markets. Examples
include video processing [24], software-defined radio [5], net-
work traffic management [19], DNA computing [17] and fully
programmable hardware acceleration platforms [23]. Effi-
cient sharing of data in a heterogeneous MpSoC which con-
tains different types of integrated computational elements is
a challenging task. Especially when private caches of CPU
cores and dedicated memory of accelerators are used to store
local copies of data, it is crucial to ensure that every pro-
cessing element has a consistent view of the shared memory
space [28], [18].

The Accelerated coherency port (ACP) [27] was devel-
oped by ARM R© as a hardware solution to facilitate dealing
with cache coherency issues when introducing new accel-
erator blocks to a multi-core system. In fact, ACP enables
hardware accelerators to issue coherent requests to the CPU
sub-system memory space [10].

Xilinx ZYNQ all-programmable SoC [16] provides the de-
signers with an ARM Cortex-A9 MPCore sub-system along
with a high performance DRAM memory controller [12] and
various peripherals. It also implements a complete FPGA
fabric. The CPU sub-system and FPGA are connected thro-
ugh AXI [11] interfaces which allow the logic on the fabric
to perform cache coherent accesses to the memory through
ACP or directly perform accesses to the DRAM. Section 1.2
further describes the ZYNQ architecture.

In this paper, we use the ZYNQ device and build a com-
plete infrastructure to evaluate the performance and energy
efficiency of different processor-accelerator memory sharing
schemes. We pass through the following steps:

• Setup of an infrastructure containing hardware (sec-
tion 2.1) and required kernel and user level software
(section 2.2).

• Define a computational task and also the set of processor-
accelerator memory sharing methods used to perform
this task (section 3).



• Evaluation of speed and energy efficiency of each method
by running practical experiments on the hardware (sec-
tion 4).

• Description of the lessons learnt from the results.

The authors provide the infrastructure, containing hard-
ware projects, firmwares and developed software as open
source code and free of charge to the research community.

1.1 Related Work
Heterogeneous System Architecture (HSA) foundation pro-

vides architectural and application level solutions to help
system designers integrate different kinds of heterogeneous
computing units in a way that eliminates the inefficiencies
of sharing data and sending work items between them [20].
The developed acceleration hardware blocks become HSA
compliant by declaration of the necessary low-level interface
layers. This frees the programmers from the burden of tai-
loring a program to a specific hardware platform. As a part
of HSA, [25] describes AMD Fusion System Architecture;
targeted to unify CPUs and GPUs in a flexible comput-
ing fabric. The proposed idea however, is mainly developed
for sharing memory between CPU and fully programmable
GPU cores and is not targeting reconfigurable heterogeneous
architectures like ZYNQ.

A methodology for analyzing the impact of hardware ac-
celerator data transfer granularity on the performance of a
typical embedded system is presented in [21]. This is partic-
ularly important because, as we will show, the granularity
of data transfer between memory and accelerator, and thus,
the interrupt rate to the CPU has direct impact on the per-
formance.

The idea of using a portion of CPU sub-system caches as
buffers for the accelerators is studied in [6]. This results in
smaller silicon area since each accelerator doesn’t instantiate
its own buffer. The basic idea of dedicating a shared memory
space to accelerators is interesting because the ZYNQ device
provides a dedicated On-Chip Memory (OCM ) which can
be used for the same purpose. We also consider processor-
accelerator memory sharing using OCM in our tests.

The problem of maintaining coherency between CPU cac-
hes and accelerator data in a multi-core embedded system is
addressed in [2]. The paper discusses possible hardware ar-
chitectures and related software solutions to tackle the prob-
lem. It concludes that the optimal solution heavily depends
on the characteristics of the application. The paper discusses
the solutions at architecture level and does not provide de-
tailed practical comparisons on the performance and energy
efficiency of each solution.

An area- and power-efficient many-core computing fabric
which features clusters of up to 16 processor cores is pro-
posed in [1]. The developed platform delivers an extraor-
dinary level of computational speed (> 80 GOPS) while
consuming relatively small amount of power (< 2 W). The
paper is of particular importance since it provides ideas on
the development of energy efficient accelerator logic. Indeed,
the developed architecture in our paper is partially inspired
from the method used by [1] to connect to its host CPU.

A high-performance, energy improved mobile processing
platform named big.LITTLE is introduced by [7]. The plat-
form consists of high performance Cortex-A15 processor and
energy efficient Cortex-A7. The connection between the
CPU sub-systems is provided through the CCI-400 inter-

connect which facilitates full coherency between Cortex-A15
and Cortex-A7 as well as GPUs, accelerators and I/O. This
platform, if connected to a programmable gate array, can
provide a suitable testbed for evaluation of various processor-
accelerator memory sharing schemes.

The impact of cache architecture on the performance and
area of FPGA based processor and parallel accelerator sys-
tems is discussed in [4]. The paper proposes a simple hard-
ware containing one MIPS core, multiple accelerator units, a
multi-port shared L1 cache and a DRAM controller. It con-
siders different structural parameters for the L1 cache (such
as number of ports, associativity, etc.) and defines a set of
computational tasks to be done only by accelerators. It then
quantifies the impact of cache structure on the overall speed
of accelerators connected to the L1 cache. The paper does
not discuss the cooperative operation of CPU and accelera-
tors. Moreover, the developed hardware in the paper is very
simple. It is not capable of booting an operating system and
communicating with the outside world.

The idea of adding hardware accelerators to reduce power
in FPGAs is investigated in [8]. The paper shows practical
comparisons for the power consumption of sample compu-
tational tasks, when they are executed by the CPU or the
accelerator logic. The paper does not address issues related
to coherency and processor-accelerator memory sharing.

To the authors’ knowledge, this is the first work which
practically quantifies the potential processing bandwidth and
energy efficiency of different processor-accelerator memory
sharing methods using the ZYNQ device.

Moreover, it is the first work which provides an explicit
practical comparison in terms of energy and speed, on proce-
ssor-accelerator memory sharing using ACP and other tra-
ditional methods. In addition, we also provide a flexible re-
search vehicle which facilitates evaluation of innovative ideas
regarding the design of hardware accelerators in heteroge-
neous architectures on programmable gate arrays.

1.2 Key ZYNQ Architecture Description
Xilinx ZYNQ device [16] contains two parts: 1-Program-

mable Logic (PL) which is roughly a full FPGA. 2-Program-
mable System (PS) which is a complete sub-system with
ARM CPU cores and different peripherals [26]. A set of AXI
interfaces (as shown in Figure 1) are implemented to make
the communication between PS and the PL logic possible.
Basically these AXI interfaces divide into two groups:

• AXI Master interfaces (GP), connect to AXI slaves re-
siding on the PL. The CPU is able to initiate read/write
transactions over these AXI masters to transfer data
to PL modules. There are two 32 Bits AXI master
ports available in the ZYNQ device: GP0 and GP1.

• AXI Slave interfaces (HP, ACP and SGP), connect to
the implemented AXI masters on the PL. There exist
four High Performance (HP) ports and one Acceler-
ator Coherency Port (ACP). Each of these interfaces
implements a full-duplex 64 Bits connection, meaning
that at every clock cycle, total 16 Bytes of data can
be transferred on AXI read and AXI write channels
concurrently. The two SGP0 and SGP1 interfaces im-
plement 32 Bits connections.

There exists a defined memory map for the ZYNQ device [16]
which indicates the address range of each logic block. Every
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Figure 1: A block diagram representing important elements of the Xilinx ZYNQ device.

AXI slave unit, implemented on the PL will also occupy a
part of this address range. It should be noted that except
the CPU cores and their L1 instruction caches, the rest of
the system is using physical address values.

The ACP port is connected to the ARM Snoop Control
Unit (SCU ).Thus it provides the possibility of initiating
cache coherent accesses to the ARM sub-system. Careful
use of ACP can improve overall system performance and
energy efficiency. Inappropriate usage of this port however,
can adversely affect execution speed of other running appli-
cations because the accelerator can pollute precious cache
area.

2. INFRASTRUCTURE SETUP
We develop a complete infrastructure containing hard-

ware, software and firmware setup which enables us to per-
form evaluations on different processor-accelerator memory
sharing methods. For the firmware, we basically use the
generated firmware by Xilinx toolset for our target board
(ZC-702 ). We ensure that AXI level shifters are enabled
from the begining of device operation. This is vital for the
correct operation of HP and ACP interfaces.

2.1 Hardware
Figure 2 shows a block diagram of the developed hardware

on the ZYNQ device. As we see, three AXI slave interfaces
(ACP, HP0 and HP1 ) and one AXI master interface (GP0 )
are enabled and used. The AXI masters used in this design
implement AXI 4.0 protocol specifications [11]. They are
based on the AXI master template provided as a LogiCORE
by Xilinx [13]. Each AXI master logic is further customized
to issue an interrupt when it finishes a transfer task. The
interrupt signals are connected to the interrupt controller
unit on the PS. Each AXI master, also contains an AXI
slave port, through which the CPU can program and start
the master. All of the AXI masters are configured to handle
burst lengths of up to 256 which is equal to 4096 Bytes of
data (read+write). Each AXI master, when programmed,
is capable of handling transactions of up to 1 MBytes total

length. The AXI slave side of all of the AXI master units
residing on ACP, HP0 and HP1 ports are connected to GP0.

In order to push the processing speed to its maximum, we
use two AXI master blocks (called AXI read and AXI write)
running in parallel to perform concurrent read and write
transactions on each PS interface. The masters are con-
nected to the interface using an AXI interconnect. In Fig-
ure 2 each AXI interconnect is depicted with a big i letter.
AXI interconnects are configured to their high performance
cross-bar mode to achieve maximum possible bandwidth.

As shown in Figure 2, between AXI read and AXI write
there is a separate module (called acceleration logic) which
contains a FIFO and also the logic related to the acceleration
task. For our performance measurements, we have selected
a 16 tap FIR filter as the acceleration logic. Each pair of
AXI masters can operate in parallel, meaning that, while
one of them is reading a packet of data from the memory,
the other one is writing the previous processed packet back
to its destination. The developed driver at software side is
resposible for synchronization of these two units.

The proposed hardware provides the designers with an
architecture which is very easy to customize. For any defined
computational task, the acceleration logic, which is based
on an easy to understand FIFO interface, is the only block
which needs to be modified.

The hardware also includes an AXI monitor unit [14]. Its
purpose is to be able to monitor the AXI interface signals, so
that we can debug possible problems and further investigate
latency values by directly looking at the actual waveforms.

If the AXI interfaces are running at 125 MHz the maxi-
mum theoretical full-duplex bandwidth for them is 2 GBytes/s.
For DRAM memory, the data bus width is 32 Bits and if
DDR3 DRAM is running at 533 MHz, we reach a theoreti-
cal bandwidth of 4.2 GBytes/s.

Finally, we have also placed a set of AXI masters on the
HP1 port. The purpose of these blocks is to be able to
generate dummy traffic to the DRAM whenever required.
Using this block we will evaluate the performance of the
accelerator running on HP0 while the DRAM is also busy
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Figure 2: Block diagram of the developed hardware.

handling other incoming requests.
We have implemented this hardware on the ZYNQ XC7Z020-

1C device available on Xilinx ZC-702 board. The total num-
ber of used logic slices is equal to 7324 which corresponds
to 55% of the total available slices. The design consumes 92
block memories of 36 Kbits size (65%) and 9 block memories
of 18 KBits size (3%). The maximum clock frequency for
this design is 128.2 MHz.

2.2 Software Environment
Our developed software is divided into two major parts:

Linux kernel level drivers and user level applications.
At Linux kernel level, our infrastructure consists of two

drivers which are called axiD and axiD dummy generator.
axiD manages the AXI masters located on HP0 and ACP

ports. The driver is responsible for:

• Memory allocation and obtaining the physical address
of allocated memory buffers which will be used by AXI
masters. Memory can be allocated in either cachable
or non-cachable regions depending on the memory shar-
ing method. (Further descriptions in section 3.)

• Initializing, programming and triggering the AXI mas-
ters and handling the interrupts generated by them.

• Calculating the source and destination addresses for
the set of accelerators based on the status of the on-
going processing tasks, number of passed loops and
number of processed data chunks.

• Interaction with user-level applications: receiving raw
input data from user side, copying to source memory
buffers and then writing back the processed results to
user-level.

• Providing an accurate tool to measure time intervals.
The driver enables access to the free running 64Bits

counters of the ZYNQ device [16] which are clocked at
333MHz (half CPU clock frequency).

• Configuring the PL310 [10] cache controller statistics
unit so that it reflects total number of read requests
received at the cache and the total number of read hits.
The driver reflects these values at the beginning and
ending time of each task.

The developed axiD dummy generator, does not perform any
acceleration related task. When needed, it enables us to
activate the dummy traffic generator AXI masters residing
on HP1 port.

At user level, we have prepared the following items:

• A simple application which communicates with the
axiD driver.

• A simple memory intensive application (called back-
ground application), which allocates a memory buffer
and performs arbitrary read and writes to this buffer
in an endless loop. This application will be used to
demonstrate the effect of cache pollution on the per-
formance of ACP accelerator.

• The Oprofile statistical performance monitoring tool [22]
which we have ported to the ZYNQ environment. This
enables us to measure important performance metrics
of the CPU sub-system.

2.3 Power Measurement
The ZC-702 board is utilizing a set of power supply units

which provide online sensors for voltage, current and tem-
perature measurement [15]. Basically we sample the follow-
ing consumed power values: 1-Core logic for the PL part
of ZYNQ. 2-Internal logic of the PS. 3-Interfaces and I/O
buffers of the PS and 4-DRAM chips. Based on our practi-
cal observations, these four items are the most power hungry



parts of the system. The sampling frequency for measure-
ment of voltage and current values is equal to 2 Hz.

3. MEMORY SHARING METHODS
In order to evaluate different processor-accelerator mem-

ory sharing methods in terms of speed and energy efficiency,
we first define a processing task. Then we define a set of
processing methods to accomplish this task. Each process-
ing method utilizes a different memory sharing scheme. We
then execute each processing method on the real hardware
and measure performance and power.

Processing Task: For a sample image of i bytes, perform
the following: read the image from the source buffer, pass
the image through the FIR filter, and finally write the out-
put back to the destination buffer. Source and destination
buffers are different. In practice, we continuously perform
this operation a large number of times. This enables us to
have an accurate speed and power measurement.

Processing Methods: Here, we describe the methods that
we use to perform the processing task. We assign a name
to each method, which will be used during the rest of this
paper.

• HP0 Only : The accelerator located on HP0 is re-
sponsible to perform the processing task alone. Im-
age source and destination buffers are allocated on the
DRAM memory and in the non-cachable area. (Linux
kernel call dma alloc coherent is used for this purpose.)

• ACP Only : The accelerator located on ACP is resposi-
ble to accomplish the processing task alone. Image
source and destination buffers are allocated using nor-
mal kmalloc Linux kernel call, thus, they are allowed
to also be cached by CPU sub-system.

• OCM Only : The accelerator located on ACP is repon-
sible to accomplish the processing task alone. How-
ever, image source and destination buffers are located
in the On-Chip Memory (OCM ) block of the ZYNQ
device. Here the allocation will be done like other
hardware peripherals using request mem region and then
ioremap Linux kernel calls.

• CPU Cache: The CPU core is reponsible for doing
the processing task alone. No accelerator is active.
The source and destination image buffers are allocated
using kmalloc thus, they are allowed to get cached.

• CPU no Cache: Is similar to CPU Cache however,
memory allocation for the source and destination buffers
is done using dma alloc coherent thus they are located
on non-cachable region of memory.

• CPU HP0 : The CPU and the accelerator on HP0 port
cooperate to perform the processing task. At each it-
eration first the CPU reads the source image, performs
the processing and writes the result back to the mem-
ory. Then it is the turn of the accelerator on HP port
to perform the processing task. Image source and des-
tination buffers are allocated on non-cachable region
of memory.

• CPU ACP : Is similar to CPU HP0 however, the ac-
celerator on ACP cooperates with CPU to accomplish
the task and image buffers are allowed to be cached.
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Figure 3: Processing bandwidth comparison of ac-
celeration methods. Image size sweeps from 4 KB
to 2048 KB.

• CPU OCM : Is similar to CPU ACP however, source
and destination image buffers are located on the OCM.

4. EXPERIMENTAL RESULTS
We consider the processing task described in section 3 and

we use each of the described methods to accomplish this task
and to measure processing speed and energy.

We sweep over different image size i values to evaluate
the effect of used memory size on the speed of operation.
(i = {4, 16, 64, 128, 256, 1024, 2048} KBytes). By increasing
i, we also increase the size of packets (p) transferred by
the AXI masters (p = {4, 16, 64, 128, 128, 128, 128} KBytes).
Although our AXI masters are capable of handling packets
of up to 1 MBytes, we limit the packet size to 128 KB which
is the size of FIFOs inside acceleration logic. During these
tests, we use a fixed running frequency of 125 MHz for the
entire logic residing on the PL. We measure total execution
time and thus total processing bandwidth (read+write) for
each case. During each test we also measure total number
of L2 cache requests and hits to have a better insight on
L2 cache utilization. Figure 3 shows the total processing
bandwidth for each method. The Y axis represents total
transferred data (read+write) in MB/s. X axis represents
the size of image (i) being processed in a logarithmic scale.

The following processing methods show highest perfor-
mance: HP0 Only, ACP Only and OCM Only. For OCM
Only we can perform the processing task only for limited
values of i since, the total On-chip Memory available on
the ZYNQ device is limited to 256 KB. For i = {4, 16, 64}
KB we see almost equal performance for each of these three
methods. At i = 128 KB and i = 256 KB, we notice a
slight decrease in the performance of ACP Only compared
to HP0 Only (1708.5 MB/s for HP0 Only vs. 1665.9 MB/s
and 1640.8 MB/s for ACP Only). When image size grows
over 256 KB, a significant drop appears in the performance
of ACP Only (653.3 MB/s for ACP Only vs. 1708.5 MB/s
for HP0 Only).

This phenomena can be described as follows; For each
processing task, the total utilized memory (by source and
destination image arrays) is 2 × i. If the total available
cache size is L, then while 2 × i < L the system is able to
efficiently store local copies of recently used ACP accelerator
data on its caches, thus providing fast access to data when
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needed. However when 2 × i > L, it is no more possible to
cache the entire data objects used by the accelerator. As a
result, some accelerator requests to the cache will fail and
will eventually end-up the DRAM memory. The extra delay
introduced by passing through the caches to DRAM, causes
a serious decrease in performance. Either an increase in i
(e.g. increasing the size of processed image) or a decrease in
L (e.g. a background application is also consuming available
caches) can cause the above phenomena. In Figure 3, no
background application is running on the system. The size
of available shared L2 cache is 512 KB in the ZYNQ device.
As we see, performance drop happens when 2× i > 512 KB.

We now consider processing methods which fully or par-
tially use the CPU cores to perform the processing task.
CPU no cache method is showing the lowest performance
(average 140 MB/s) and CPU cache is slightly higher (aver-
age 170 MB/s). Here, the entire processing is done only with
the ALU of the CPU. Enhancements in speed is possible if
we use the NEON SIMD engine of ARM CPU cores. But
even in that case the possible speed-up is around 8X [9].

Finally, we have CPU ACP, CPU OCM and CPU HP0
with speeds between CPU only and hardware only methods.
Here, cooperation of accelerator with the CPU causes an
speed-up in data processing. CPU ACP is always faster
than CPU HP0. This is because of the possibility of sharing
the data between CPU and accelerator on the cache (Thus
the CPU can access data faster). The speed of CPU OCM
is always between the other two methods. For i ≤ 256 KB
CPU ACP is approximately 1.22X faster than CPU HP0.
By growing the image size however, the speed of CPU ACP
begins converging to CPU HP.

Looking at the number of L2 cache hits, we notice a sig-
nificant difference between the methods which use ACP and
methods which use HP0. For example, in ACP Only we see
more than 2 hits per each 32 bytes (one cache-line) of pro-
cessed data while for HP0 Only this value is practically zero
(in the order of 10−5).

For each test point in Figure 3, we also measure power.
Figure 4 shows the results. Considering the fact that, power
values do not change significantly by changing the image
size for each processing method, we only show the averaged
power value for all of the image sizes. In Figure 4 we show
the four major power sinks (as described in section 2.3) of
the ZC-702 board at the time of the tests. As shown, HP0
Only method has the highest DRAM power. CPU cache
causes highest power consumption by PS internal logic, and

4 16 64 128 256 1024 2048
0

5

10

15

20

25

Image size (KBytes) − logarithmic scale

T
o

ta
l 

E
n

e
rg

y
 (

n
J

)

 

 

HP0 Only

ACP Only

OCM Only

CPU Cache

CPU no Cache

CPU ACP

CPU HP0

CPU OCM

Figure 5: Energy consumed for processing of one
byte of data for each processing method.

HP0 Only, ACP Only and OCM Only show highest values
of power consumption by the PL. Power consumption of PS
I/O buffers are at the same level for all methods. Having the
processing bandwidth and power, we calculate the energy
consumed for processing one byte of data. Figure 5 shows
energy values for each of the test points.

Looking at Figure 5 we see, for i ≤ 256 KB, ACP Only
and OCM Only consume the least energy. For i > 256 KB
however, HP0 Only shows better results. At the next level,
among methods which utilize the CPU, cooperation of CPU
and accelerator over ACP (CPU ACP) shows the lowest
energy. After that, we have CPU OCM and then CPU HP0
showing more energy consumption.

4.1 Effect of Background Workloads
Now, we study the effect of background workloads on the

performance of ACP Only and HP0 Only methods. First, we
turn on the dummy traffic generator on HP1 AXI interface.
This block continuously performs arbitrary read and write
operations to an allocated 2 MB DRAM area. At the same
time we measure the performance of ACP Only and HP0
Only for different values of i.

In another test, we execute a memory intensive background
application on ARM CPU cores. The dummy AXI traffic
generator is off. The background application performs arbi-
trary read and write operations to an allocated 2 MB array.
The array is allowed to be cached. Thus, it occupies CPU
caches during execution. In fact, this test shows the effect of
decreasing L on the performance of the acceleration method.

Figure 6 shows the results of both tests. In this figure, X
axis is i and Y axis is total transferred data in MBytes/s.
We first look at the effect of AXI dummy activity on per-
formance. As we see, performance drop of (ACP Only) is
negligible. However, a major drop can be seen in the perfor-
mance of HP0 Only. For example, at i = 128 KB, HP0 Only
speed is 1708.5 MB/s when there is no other activity going
on DRAM. However, its speed drops to 1382.2 MB/s when
the AXI dummy interface is active and occupying DRAM
bandwidth. For ACP Only the corresponding numbers are
1665.9 MB/s and 1664.3 MB/s respectively.

Looking at the results of the second test where the cache
is heavily occupied by the background application, we see a
clear drop in the performance of ACP Only while HP0 Only
shows a slight performance shift. In ACP + background
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Figure 6: Processing bandwidth comparison of ACP
and HP0 accelerators at the presence of background
traffic.

application, the speed of the ACP accelerator does not grow
for i > 16 KB. For example at i = 128 KB, the speed of ACP
Only is 1665.9 MB/s and 531.6 MB/s with and without the
background application running, respectively.

Another noticeable point during the second test is that:
the operation speed of both ACP and HP0 accelerators, at
i = 4 KB, is higher when the background application is run-
ning on the CPUs compared to when the CPUs are not doing
any specific task 1. We describe this phenomena as follows:
when the background application is running on CPU cores,
it keeps the CPU sub-system active preventing it to go to
idle state. Thus when an AXI master finishes its current
task and issues an interrupt request to the CPU, the service
routine will get executed in a shorter time, and the master
begins the next task faster. This description can be further
confirmed by noting the fact that when the packet size in-
creases (and thus the rate of AXI master interrupts to the
CPU decreases) this speed-up disappears. For further eval-
uation results please refer to [26].

5. LESSONS LEARNED
Based on the obtained results we derive the following de-

sign rules:

• If a specific task should be done by cooperation of CPU
and accelerator: The speed and energy consumption of
CPU ACP and CPU OCM methods are always better
than (or in the worst case equal to) CPU HP.
The main drawback of using CPU ACP is that parts
of the available cache space will be occupied by the
acceleration task. Thus if there exists any other crit-
ical application whose performance is heavily depen-
dent on CPU caches, it may face problems handling
its duty on-time. In this case, using CPU OCM (for
small array sizes) and CPU HP (for big arrays) is rec-
ommended.

• If the task should be done by the hardware accelerator
only (and then the CPU will just use the final result),
then ACP Only or ACP OCM might be used only

1700.0 MB/s for HP0 and 707.3 MB/s for ACP when back-
ground application is running compared to 608.5 MB/s for
HP0 and 631.8 MB/s for ACP while the CPUs are idle.

when the processed array blocks are small (smaller
than the size of available cache, or on-chip memory)
and there is no other background application consum-
ing these resources. Otherwise, HP Only always pro-
vides better results.

The above rules can also be expanded to other platforms
with similar architectures as the ZYNQ.

The size of packets transferred by each AXI interface, and
maximum burst length, heavily affect the overall data trans-
fer bandwidth. As a result, based on the traffic pattern of
the processing task (e.g. the size of data chunks processed in
each iteration), and provided implementation for AXI mas-
ters, interconnects and interfaces, these parameters should
be set to the largest possible values.

6. CONCLUSION
In this paper, we demonstrated an assessment on the per-

formance of acceleration by hardware blocks which commu-
nicate to CPU sub-system and DRAM over AXI interfaces.
We selected Xilinx ZYNQ APSoC as the target and devel-
oped an infrastructure to measure the processing speed and
energy. We compared the results when each of the CPU
and accelerator perform the task alone and when the CPU
and accelerator cooperate to accomplish the task. Based on
the results, we derived a set of rules which can be used for
efficient processor-acceleration memory sharing.
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