

# **LDM-SYSTEMS**

E-mail: info@ldm-systems.ru URL: www.ldm-systems.ru тел.: +7 (495) 500-89-20 факс: +7 (495) 536-46-67

# Отладочная плата

LDM-K1986BE92QI



СДЕЛАНО В РОССИИ

**LDM-SYSTEMS** 

Июнь 2014

# СОДЕРЖАНИЕ

| ВВЕДЕНИЕ                                                     | 3  |
|--------------------------------------------------------------|----|
| 1 Основные характеристики микроконтроллеров серии 1986ВЕ9х . | 4  |
| 2 Описание и работа                                          | 7  |
| 2.1 Принципиальная электрическая схема                       | 7  |
| 2.2 Комплектация и опции                                     | 8  |
| 2.3 Инструкция по быстрому старту в среде Phyton             | 10 |
| 2.3.1 Установка программного обеспечения и драйверов         | 10 |
| 2.3.2 Подключение платы к компьютеру                         | 13 |
| 2.3.3 Открытие демонстрационного проекта в среде Phyton      | 16 |
| 2.3.4 Создание простого проекта в среде Phyton               | 18 |
| 2.3.5 Загрузка прошивки в FLASH микроконтроллера             | 27 |
| 2.4 Создание простого проекта в среде Keil uVision           | 29 |
| 2.5 Полезные программы                                       | 46 |
| 2.6 Монтажные чертежи                                        | 48 |
| 2.7 Трассировка по слоям                                     | 49 |
| 3 Эксплуатация, хранение и транспортирование                 | 50 |
| Питепатура                                                   | 51 |

## **ВВЕДЕНИЕ**

Отладочная плата LDM-K1986BE92QI представляет собой печатную плату размером 127х102х22 мм. На плате установлен 32-битный микроконтроллер фирмы 3AO «ПКК Миландр» с ядром ARM Cortex-M3. Отладочная плата LDM-K1986BE92QI предназначена для быстрого обучения азам проектирования электронных устройств на основе контроллера K1986BE92QI (MDR32F9Q2I), легкого старта новых проектов, сокращения времени выхода нового продукта на рынок.

В составе отладочного комплекта, как опции, могут устанавливаться интерфейсные микросхемы протоколов: CAN SN65HVD232D фирмы Texas Instruments Incorporated и RS485 MDRI4852SI (К5559ИН10Б) фирмы 3AO «ПКК Миландр».

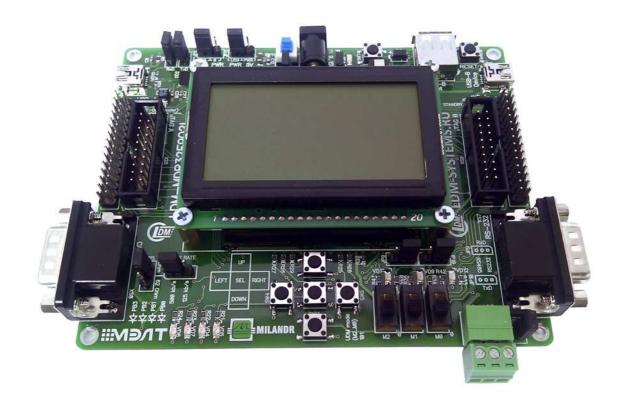



Рисунок 1. Общий вид отладочной платы LDM-K1986BE92QI-H в полной комплектации

#### 1 Основные характеристики микроконтроллеров серии 1986ВЕ9х

#### Ядро:

- ARM 32-битное RISC-ядро Cortex<sup>™</sup>-M3 ревизии 2.0, тактовая частота до 80 МГц, производительность 1.25 DMIPS/МГц (Dhrystone 2.1) при нулевой задержке памяти;
- блок аппаратной защиты памяти MPU;
- умножение за один цикл, аппаратная реализация деления.

#### Память:

- встроенная энергонезависимая Flash-память программ размером
   128 Кбайт;
- встроенное ОЗУ размером 32 Кбайт;
- контроллер внешней шины с поддержкой микросхем памяти CO3У, ПЗУ, NAND Flash.

#### Питание и тактовая частота:

- внешнее питания 2,2÷3,6 B;
- встроенный регулируемый стабилизатор напряжения на 1,8 В для питания ядра;
- встроенные схемы контроля питания;
- встроенный домен с батарейным питанием;
- встроенные подстраиваемые RC генераторы 8 МГц и 40 кГц;
- внешние кварцевые резонаторы на 2÷16 МГц и 32 кГц;
- встроенный умножитель тактовой частоты PLL для ядра;
- встроенный умножитель тактовой частоты PLL для USB.

# Режим пониженного энергопотребления:

- режимы Sleep, Deep Sleep и Standby;
- батарейный домен с часами реального времени и регистрами аварийного сохранения.

#### Аналоговые модули:

- два 12-ти разрядных АЦП (до 16 каналов);
- температурный датчик;
- двухканальный 12-ти разрядный ЦАП;
- встроенный компаратор.

#### Периферия:

- контроллер DMA с функциями передачи Периферия-Память, Память-Память;
- два контроллера CAN интерфейса;
- контроллер USB интерфейса с функциями работы Device и Host;
- контроллеры интерфейсов UART, SPI, I2C;
- три 16-ти разрядных таймер-счетчика с функциями ШИМ и регистрации событий;
- до 96 пользовательских линий ввода-вывода.

# Отладочные интерфейсы:

- последовательные интерфейсы SWD и JTAG.

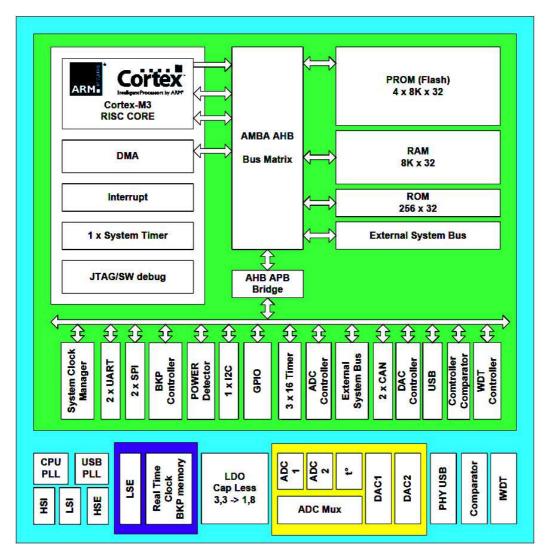



Рисунок 2. Структурная блок-схема микроконтроллера 1986ВЕ9х

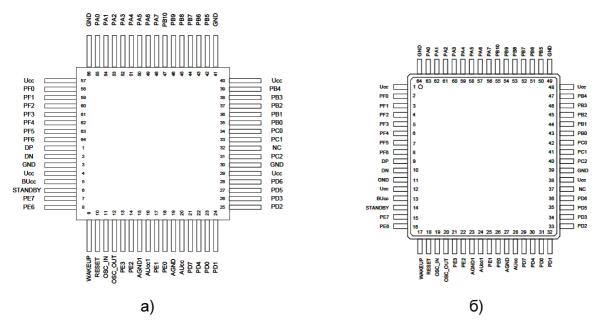
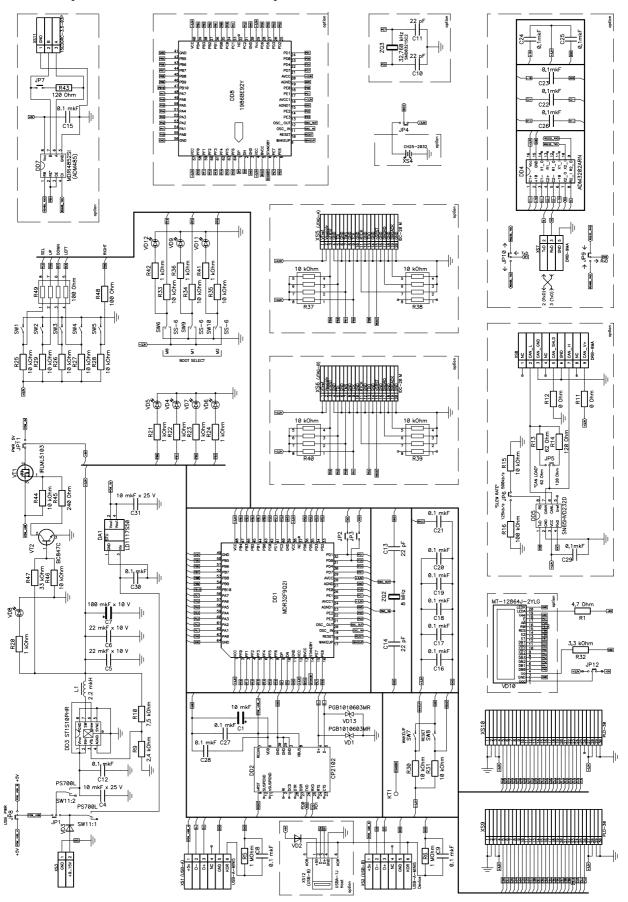




Рисунок 3. Расположение выводов: a) 64-х выводной металлокерамический корпус H18.64-1B, б) 64-х выводной пластиковый корпус LQFP64

# 2 Описание и работа

# 2.1 Принципиальная электрическая схема



#### 2.2 Комплектация и опции

Отладочная плата LDM-K1986BE92QI поставляется в нескольких комплектациях. В базовой комплектации отсутствуют драйверы внешней периферии: RS232, CAN, RS485, разъем USB Host, площадка для литиевой батареи, генератор часов реального времени, ЖКИ индикатор, разъемы JTAG A и JTAG B. Общий вид базовой комплектации отладочной платы LDM-K1986BE92QI приведен на рисунке 4.

На плате в базовой комплектации имеются: 5 кнопок управления, 4 пользовательских светодиода, 3 движковых переключателя режима программирования FLASH, кнопки RESET и WAKEUP, разъем miniUSB USB-UART преобразователя (UART-загрузчик), разъем miniUSB интерфейса USB Device, преобразователи напряжения +5 B, 1 A; +3.3 B, 2.5 A, все выводы микроконтроллера выведены на 2 разъема XS9, XS10.

Питание платы осуществляется от постоянного стабилизированного источника с напряжением +9÷15 B, 0.5÷2 A (XS3) или от miniUSB порта (XS1, XS2), подключенного кабелем к порту USB персонального компьютера.

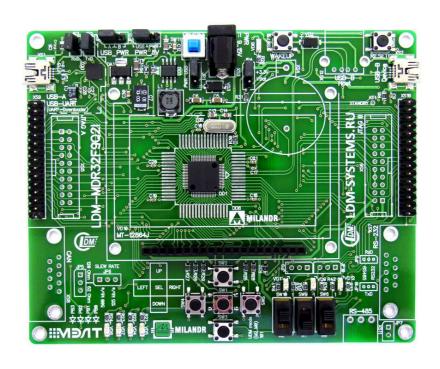



Рисунок 4. Общий вид базовой комплектации отладочной платы LDM-K1986BE92QI

Маркировка платы зависит от варианта комплектации изделия дополнительными опциями. При базовой комплектации маркировка соответствует LDM-K1986BE92QI. Дополнительные опции отражаются в маркировке в виде букв, идущих после основной надписи LDM-K1986BE92QI.

#### Например:

База + RS-485 + ЖКИ - *LDM-K1986BE92QI-CD*;

База + RS-232 + CAN + RS-485 + ЖКИ - *LDM-K1986BE92QI-ABCD*;

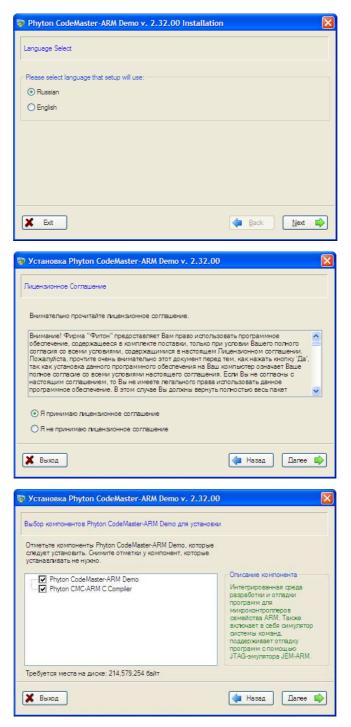
База + все опции - LDM-K1986BE92QI-H;

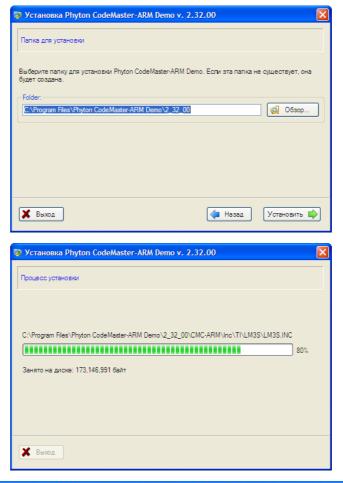
База + все опции + К1986ВЕ92УК ОТК ("1") - *LDM-К1986ВЕ92QI-НМ*.

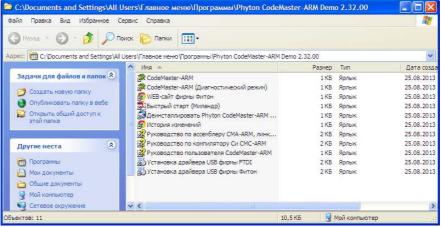
Варианты комплектации отладочной платы приведены в таблице 1.

Таблица 1 Варианты комплектации

| Nº | Опция                                     | Маркировка |  |
|----|-------------------------------------------|------------|--|
| 1  | RS-232 ADM3232 (Analog Devices)           | А          |  |
| 2  | CAN SN65HVD232D                           | В          |  |
|    | (Texas Instruments Incorporated)          |            |  |
| 3  | RS-485 ADM485 или MDRI4852SI (К5559ИН10Б) | C          |  |
|    | (ЗАО «ПКК Миландр»)                       | O          |  |
| 4  | ЖКИ МТ-12864J (ООО «МЭЛТ»)                | D          |  |
| 5  | Батарея + 32,768 кГц                      | E          |  |
| 6  | JTAG A, JTAG B                            | F          |  |
| 7  | USBA-1J Host                              | G          |  |
| 8  | Все опции (ABCDEFG)                       | Н          |  |
| 9  | К1986ВЕ92УК ОТК ("1") (диапазон работы    |            |  |
|    | 0 +70 °C) Н18.64-1В металлокерамический   | M          |  |
|    | (ЗАО «ПКК Миландр»)                       |            |  |


Отладочная плата упаковывается в фирменную коробку. В комплекте с платой идут:

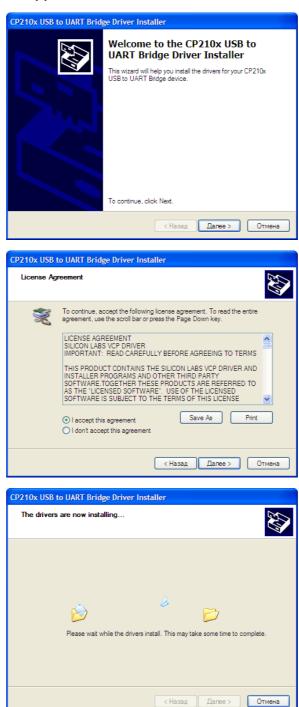

- CD-R диск со всей необходимой документацией и программным обеспечением;
- кабель USB-A miniUSB (5 выводов).


# 2.3 Инструкция по быстрому старту в среде Phyton

# 2.3.1 Установка программного обеспечения и драйверов

**ШАГ 1:** Устанавливаем компилятор Phyton CodeMaster-ARM Demo 2. На CD-R диске запускаем файл по следующему адресу: CD-R\Компилятор\Phyton\_codemaster-arm\_demo.exe. Следуем графическим подсказкам ниже:








Процесс установки компилятора завершен. В разделе меню «Пуск» создана папка «Phyton CodeMaster-ARM Demo 2.32.00» с ярлыками для запуска компилятора. Запуск компилятора осуществляется утилитой «CodeMaster-ARM».

## **ШАГ 2:** Устанавливаем драйвера для USB-загрузчика.

На CD-R диске запускаем файл по следующему адресу: CD-R\DRV\CP210x\_VCP\_Windows\CP210xVCPInstaller\_x86.exe (для 32 битной операционной системы) или CD-R\DRV\CP210x\_VCP\_Windows\CP210xVCPInstaller\_x64.exe (для 64 битной операционной системы). Следуем графическим подсказкам ниже:





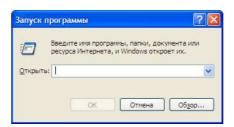
Драйвера установлены.

#### 2.3.2 Подключение платы к компьютеру

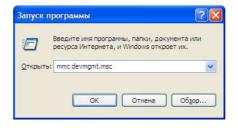
Питание отладочной плата LDM-K1986BE92QI осуществляется от постоянного стабилизированного источника с напряжением +9÷15 B, 0.5-2 A (XS3) или от miniUSB порта (XS1, XS2), подключенного кабелем к порту USB персонального компьютера. В таблице 2 приведены режимы включения джамперов, переключателей и их функции.

Таблица 2 Режимы включения джамперов и их функции

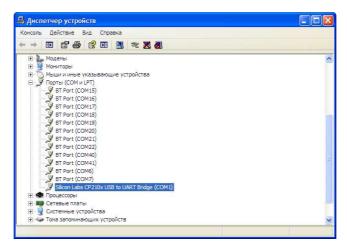
| Джампер | Положение | Функционал                                 |  |
|---------|-----------|--------------------------------------------|--|
| JP1     | PWR       | Питание от разъема XS3                     |  |
|         | USB       | Питание от USB XS1 или XS2                 |  |
| JP2     | TxD       | Перемычка линии TxD от Мк к USB-загрузчику |  |
| JP3     | RxD       | Перемычка линии RxD от Mк к USB-загрузчику |  |
| JP4     | +3,3V     | Если нет литиевой батареи                  |  |
| JF 4    | VBat      | Если литиевая батарея установлена          |  |
| JP5     | 120 Ohm   | Шунт 120 Ом на линии CAN                   |  |
| JFJ     | 62 Ohm    | Шунт 62 Ом на линии CAN                    |  |
| JP6     | 500 kb/s  | Выбор скорости CAN 500 кбит/с              |  |
|         | 125 kb/s  | Выбор скорости CAN 125 кбит/с              |  |
| JP7     | XS11      | Шунт 120 Ом на линии RS485                 |  |
| JP8     | Α         | Питание от USB разъема XS1                 |  |
| JPO     | В         | Питание от USB разъема XS2                 |  |
| JP9     | RxD RS232 | Переключаем UART RxD на RS232 интерфейс    |  |
| JFB     | RxD RS485 | Переключаем UART RxD на RS485 интерфейс    |  |
| JP10    | TxD RS232 | Переключаем UART TxD на RS232 интерфейс    |  |
| JETO    | TxD RS485 | Переключаем UART TxD на RS485 интерфейс    |  |


| JP11 | USB | Питание +5 В поступает от USB XS1 или XS2 |  |
|------|-----|-------------------------------------------|--|
|      | PWR | Питание +5 В стабилизируется от XS3       |  |
| JP12 | +5V | Питание ЖКИ дисплея от +5 В               |  |
|      | +3V | Питание ЖКИ дисплея от +3,3 В             |  |
| SW6  | MO  | Выбор режима программирования             |  |
| SW9  | M1  | Выбор режима программирования             |  |
| SW10 | M2  | Выбор режима программирования             |  |

Шаг 1: Настройка джамперов и включение питания.

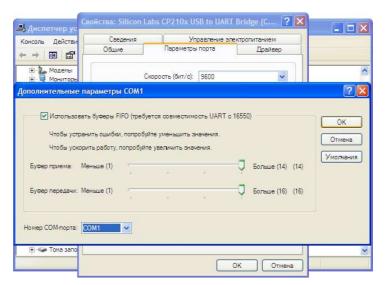

Воспользуемся схемой питания от USB XS1. Выставляем все джамперы в положение 1-2 (вывод 1 отмечен скошенным углом в слое маркировки). Устанавливаем переключатели XS6, XS9, XS10 в положение «0». Подключаем кабель USB к компьютеру и к разъему XS1 (подсветка ЖКИ засветится, если он установлен). Нажимаем кнопку SW11 (ON/OFF). Светодиод VD8 ярко засветится (на ЖКИ включится демонстративная анимация, если он установлен).

**Шаг 2:** Настройка номера виртуального СОМ-порта USB-загрузчика.


Открываем диспетчер устройств. Нажимаем на клавиатуре кнопку «Windows» Да, удерживаем ее и нажимаем кнопку «R». Откроется окно командной строки.



Вводим в поле командной строки текст «mmc devmgmt.msc» и нажимаем «ENTER».




В открывшемся диспетчере устройств заходим в раздел «Порты СОМ и LPT».



Находим устройство «Silicon Labs CP210x USB to UART Bridge (COM x)». Если номер COM-порта устройства «х» равен 1, то закрываем диспетчер устройств. В противном случае либо запоминаем номер COM-порта, либо меняем его на 1.

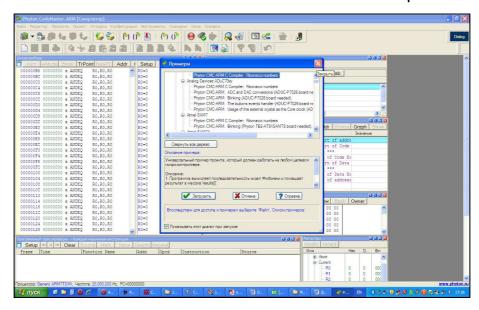
Для смены номера СОМ-порта заходим в свойства устройства → Параметры порта → Дополнительно и выбираем «Номер СОМ-порта:» равным СОМ1. Нажимаем ОК.



- **P.S.** Если у вас установлен ЖКИ дисплей, то вы можете ознакомиться с демонстрационным проектом. На первой ступени проекта производится вывод 4-х логотипов:
  - LDM-SYSTEMS разработчик отладочных средств;
  - ЗАО «ПКК Миландр» разработчик микроконтроллеров;

- ООО «Фирма Фитон» разработчик программного обеспечения;
- ООО «МЭЛТ» производитель ЖКИ дисплеев

Для перехода в основное меню демонстрационного проекта, нажмите на среднюю кнопку «SEL». На дисплее высветится меню с несколькими разделами и подразделами, которые демонстрируют работу контроллера LDM-K1986BE92QI и графические возможности ЖКИ дисплея МТ-12864J.


Если у вас не установлен ЖКИ дисплей, то работоспособность платы можно проверить следующим образом. После включения питания произведите последовательное нажатие на кнопки с периодичностью в 2 сек.: «SEL»  $\rightarrow$  «DOWN»  $\rightarrow$  «SEL»  $\rightarrow$  «SEL».

Если все было сделано верно, то на светодиоды VD5, VD4, VD7, VD6 будет производиться вывод запрограммированной комбинации световых импульсов. Если повторно нажать на «SEL», то светодиоды погаснут.

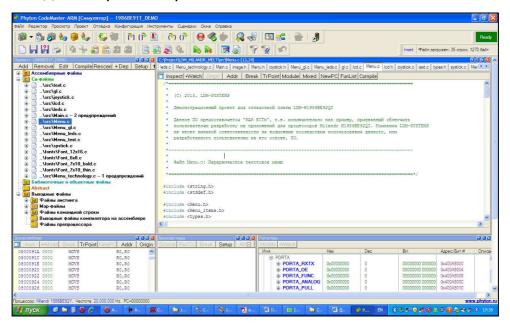
# 2.3.3 Открытие демонстрационного проекта в среде Phyton

Шаг 1: Запуск компилятора CodeMaster-ARM.

Заходим в меню «Пуск»  $\rightarrow$  «Все программы»  $\rightarrow$  «Phyton CodeMaster-ARM Demo 2.32.00»  $\rightarrow$  CodeMaster-ARM. Откроется окно.

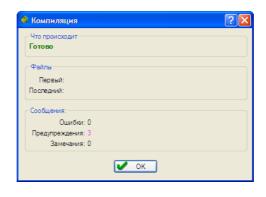


Закрываем окно «Примеры».


**Шаг 2:** Копирование папки с демонстрационным проектом с CD-R.

Произведем копирование папки с демонстрационным проектом с CD-R диска (CD-R диск\Примеры проектов\LDM\_MILANDR\_MELT) на жесткий диск.

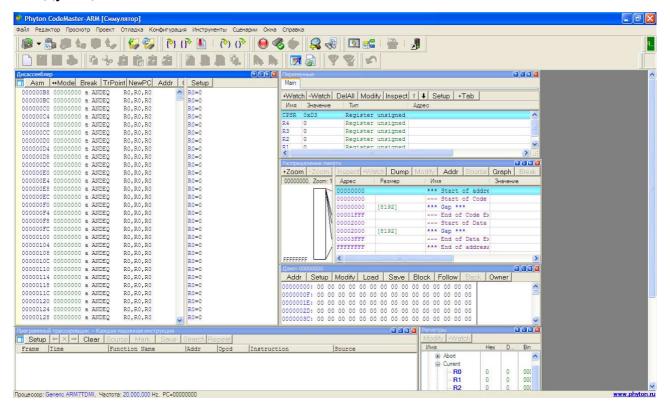
Шаг 3: Открытие демонстрационного проекта, сборка проекта.


Нажимаем на кнопку «Открыть проект» №. В открывшемся окне указываем путь к файлу \*.IDE скопированного демонстрационного проекта: \LDM\_MILANDR\_MELT\CMCARM\1986BE91T\_Demo.IDE.

Произойдет открытие проекта.

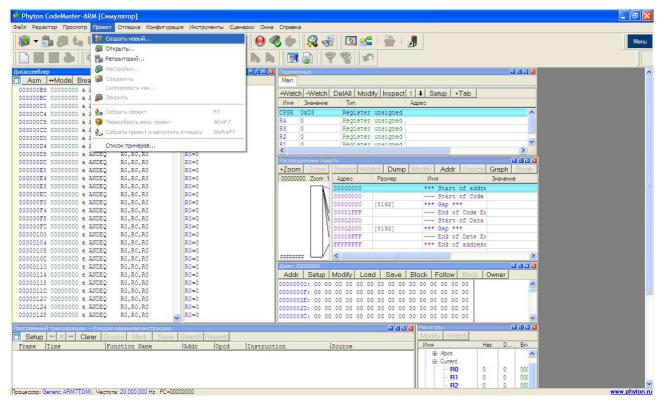


Шаг 4: Сборка (компиляция) проекта.

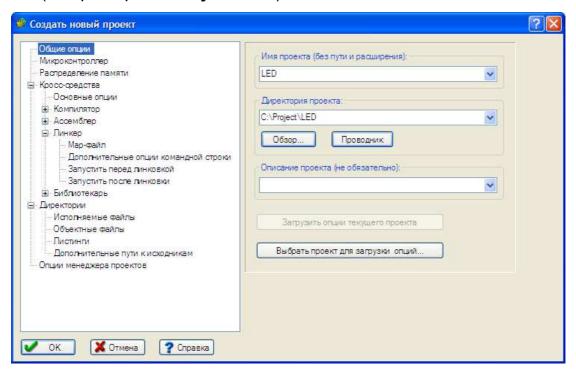

Нажимаем на кнопку «Пересобрать весь проект» 🤛. Ожидаем завершения сборки и нажимаем «ОК».



#### 2.3.4 Создание простого проекта в среде Phyton

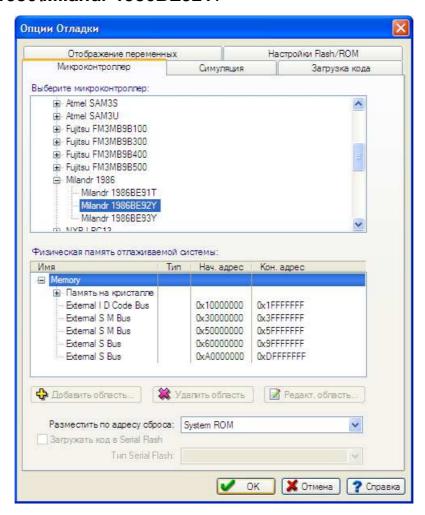

**Цель проекта:** Создадим проект в среде проектирования **Phyton**. Проект будет выполнять следующие задачи: при нажатии на кнопку «SEL» на плате LDM-K1986BE92QI, подключённой к порту **PC2**, должен зажигаться светодиод **VD5**, подключённый к порту **PB0**. При отпускании кнопки «SEL» светодиод **VD5** будет гаснуть.

**Шаг 1:** Запускаем компилятор из меню «Пуск». Откроется следующее окно:

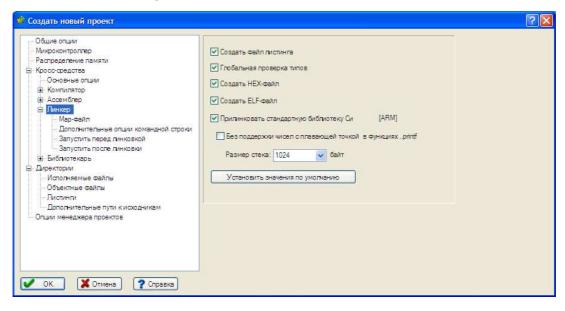



Шаг 2: Создаём новый проект.

Для этого на вкладке «Проект» программы выбираем «Создать новый проект...»



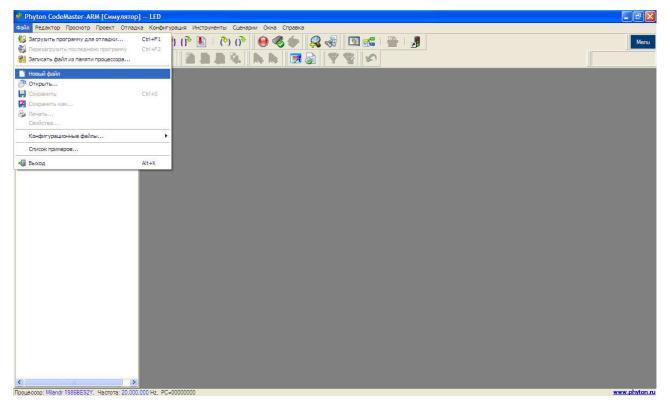

В открывшемся окне указываем: имя проекта **LED** и директорию проекта (Например: **C:\Project\LED**):



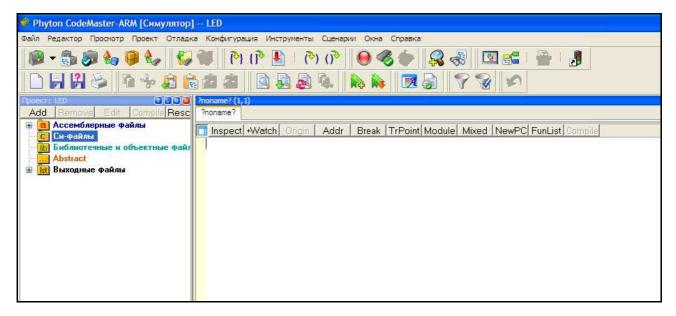

Далее выбираем в дереве настроек проекта позицию «Микроконтроллер» и нажимаем кнопку справа «Опции

микроконтроллера...». В открывшемся окне выбираем раздел Cortex-M3\Milandr 1986\Milandr 1986BE92Y:

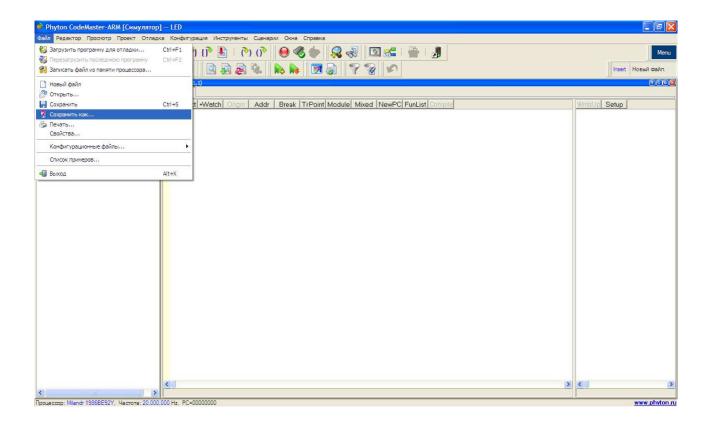



Нажимаем кнопку **«ОК»** и переходим к пункту **«Линкер»**. Ставим флаг **«Создать НЕХ-файл»**:



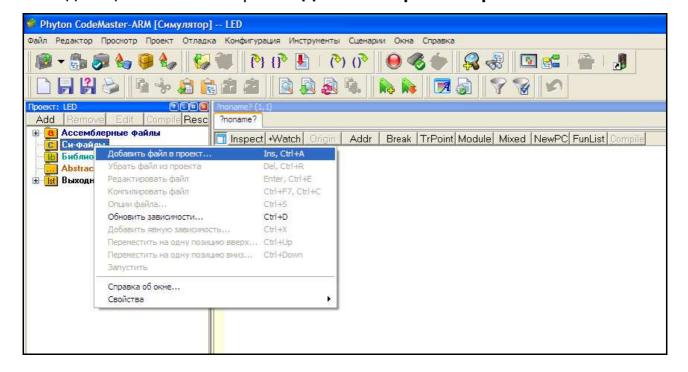

Нажимаем «**ОК**».

## **Шаг 3:** Создание главного файла проекта **main.c**

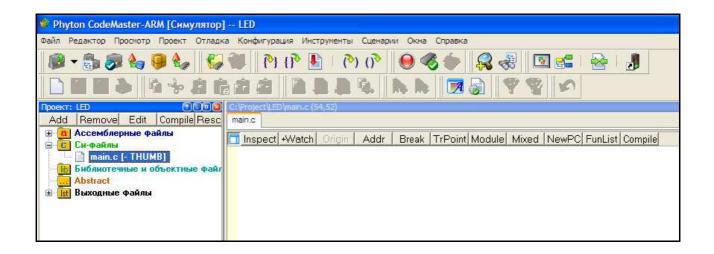

Создадим файл, в котором будет основной код программы. Для этого в меню «Файл» выбираем «Новый файл...»:



В окне слева появится белое поле с именем «?noname?»:

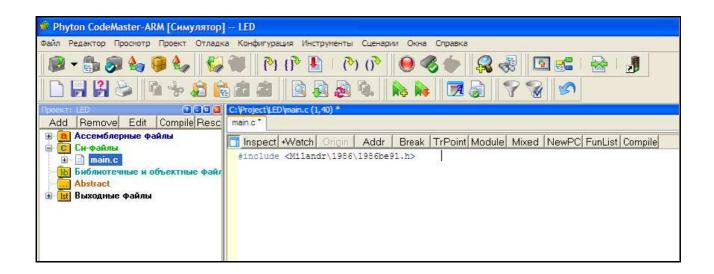



В меню «Файл» выбираем «Сохранить как...»:




После чего появится окошко, в котором пишем **«main.c»** и нажимаем кнопку **«Сохранить»**.

Теперь необходимо файл, сохраненный как «main.c», добавить в проект. Для этого жмем правой кнопкой мыши на папку «Си-фалы» и в выпадающем меню выбираем «Добавить файл в проект...»:

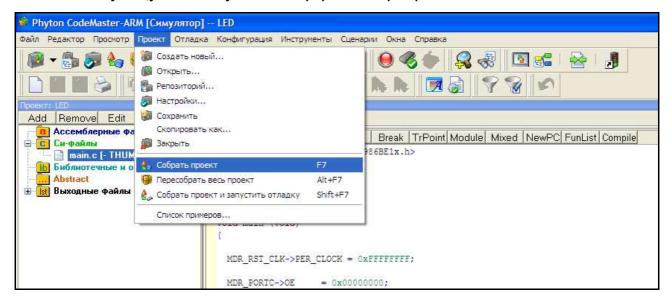



В открывшемся окне выбираем «main.c» и нажимаем кнопку «Открыть». В результате, в папке «Си-файлы» появится файл «main.c»:

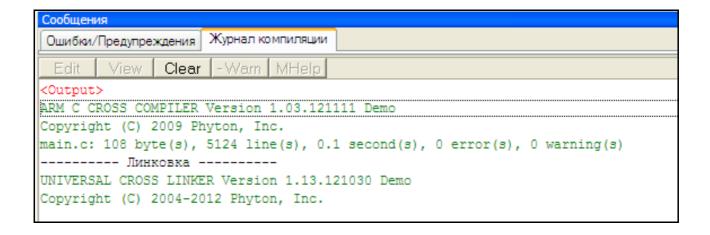


**Шаг 4:** Создаем программный код проекта в файле **main.c**.

Добавляем в файл «main.c» заголовочный h-файл семейства микроконтроллера «1986be91.h». Введем текстовую строку в файл «main.c» #include <Milandr\1986\1986be91.h>:

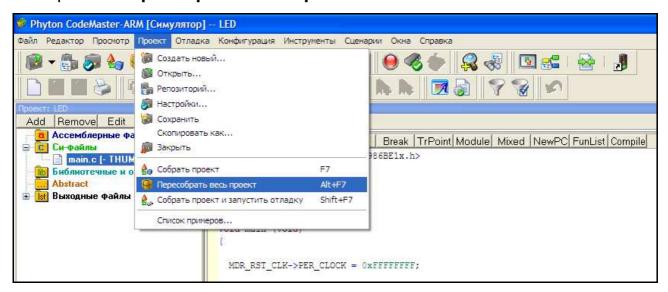



# Далее добавляем в наш файл main следующий код:


```
// Данный код предоставлен пользователем «редактор» на forum.milandr.ru
// и переделан для
// платы LDM-1986BE92QI компании LDM-SYSTEMS
#include <Milandr\1986\1986BE91.h>
#define BUTTON_SELECT (1<<2)</pre>
                                     // Кнопка Select заведена на порт PC2
#define LAMP_VD5 (1<<0)</pre>
                                     // Светодиод VD5 заведен на порт PB0
#define MDR_PORTC ((_port*) BASE_PORTC)
#define MDR_PORTB ((_port*) BASE_PORTB)
#define MDR_RST_CLK ((_rst_clk*) BASE_RST_CLK)
void main (void)
{
// Разрешили работу всей периферии
// Если этого не сделать, порты не будут инициализированы
 MDR_RST_CLK->PER_CLOCK = 0xFFFFFFF;
 // Настройка портов ввода-вывода
  // Настраиваем порт РС
 MDR_PORTC->OE = 0 \times 000000000; // Все линии порта С настраиваем на ввод
 MDR\_PORTC -> FUNC = 0 \times 000000000;
                                     // Все линии порта используются как порт ввода-вывода
 MDR_PORTC->ANALOG = 0 \times 00000 FFFF;
                                     // Все линии - цифровые
 MDR_PORTC->PULL = BUTTON_SELECT << 16; // Линию РС2 притянули к положительному уровню питания
 MDR_PORTC->PD = BUTTON_SELECT << 16; // Включили триггер Шмидта по входу линии РС2
 MDR\_PORTC->PWR = 0x55555555;
                                    // Медленный фронт по входу всем линиям
 MDR_PORTC->GFEN = 0;
                                      // Фильтр по входу выключен по всем линиям
 // Настраиваем порт РВ
 MDR_PORTB->OE = LAMP_VD5;
                                      // Линию порта РВО настраиваем на вывод
 MDR\_PORTB->FUNC = 0x00000000;
                                     // Все линии порта используются как порт ввода-вывода
 MDR_PORTB \rightarrow ANALOG = 0 \times 0000 OFFFF;
                                    // Все линии - цифровые
 MDR_PORTB->PULL = LAMP_VD5 << 16; // Линию PBO притянули к положительному уровню питания
 MDR_PORTB->PD = ~LAMP_VD5;
                                    // Линия РВО настраивается как управляемый драйвер
 MDR\_PORTB->PWR = 0x55555555;
                                     // Медленный фронт по выходу линии РВО
 MDR\_PORTB->GFEN = 0;
                                     // Фильтр по выходу выключен по всем линиям
 MDR\_PORTB->RXTX = 0xFFFF;
                                      // Выставили все линии порта в высокое состояние
 while(1)
                                      // Основной цикл работы программы
   if (MDR_PORTC->RXTX & BUTTON_SELECT) // Если бит установлен (кнопка отпущена)
     MDR_PORTB->RXTX &= ~LAMP_VD5; // Установили порт РВО в 0 (низкий уровень выкл. светодиод)
   }
   else
       MDR_PORTB->RXTX |= LAMP_VD5; // Установили порт РВО в 1 (высокий уровень вкл. светодиод)
  }
}
```

## Шаг 5: Проверка проекта.

В меню «Проект» выбираем «Собрать проект» или жмём на соответствующую иконку на интерфейсе программы:



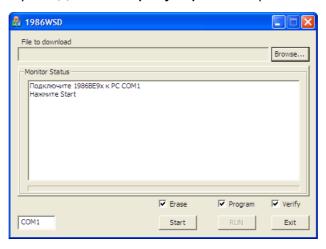

Наличие в проекте ошибки или предупреждения, будет выведено в нижнем окне программы «Сообщения»:



# Шаг 6: Сборка проекта.

Для полной компиляции проекта необходимо в меню «Проект» выбираем «Пересобрать весь проект»:



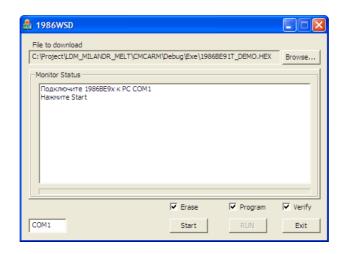

Для прошивки FLESH памяти микроконтроллера воспользуйтесь инструкцией раздела «2.3.5 Загрузка прошивки в FLASH микроконтроллера».

#### 2.3.5 Загрузка прошивки в FLASH микроконтроллера

**Шаг 1:** Подготовительные работы.

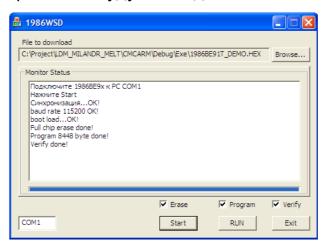
Скопируем папку с CD-R диска «CD-R диск\USB-UART загрузчик» на жесткий диск. В скопированной папке запускаем файл «\1986UARTWSD\ 1986WSD.exe».

Если номер COM-порта не изменялся и не равен 1, то нужно указать номер порта, присвоенный устройству «Silicon Labs CP210x USB to UART Bridge (COM x)» в диспетчере устройств (см. п. 2.3.2, Шаг 2).




Шаг 2: Выбор файла и прошивка микроконтроллера.

Нажимаем кнопку «Browse...» и указываем путь к файлу \*.HEX, созданного при компиляции:


«\LDM\_MILANDR\_MELT\CMCARM\Debug\Exe\1986BE91T\_DEMO.HEX» или

«\LED\LED.HEX».



Производим переключение контроллера в режим «UDM mode». Выставляем переключатели SW6 = 1, SW9 = 0, SW10 = 1. Выключаем и включаем питание при помощи кнопки SW11 (ON/OFF).

Нажимаем в программе «1986WSD» на кнопку «Start». Все сообщения о ходе прошивки будут выведены в поле «Monitor status».



После прошивки необходимо выключить питание при помощи кнопки SW11 (ON/OFF), выставить SW6 = 0, SW9 = 0, SW10 = 0 и включить питание при помощи кнопки SW11 (ON/OFF).

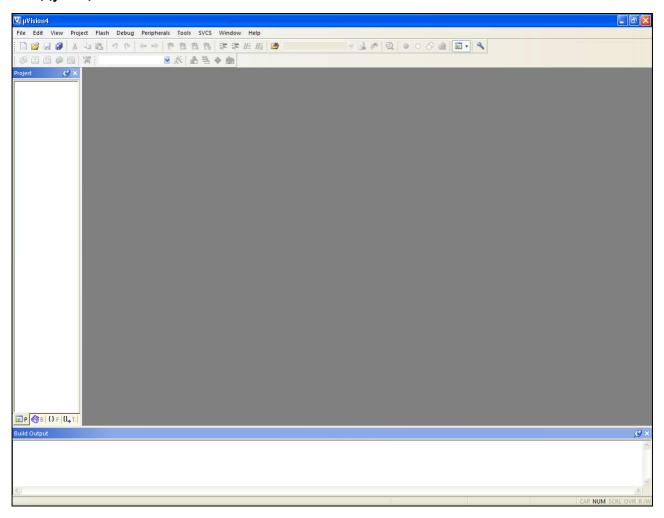
**P.S.** Если вы используете демонстрационную версию компилятора, то созданный вами проект будет неполным, т.к. у демонстрационной версии компилятора имеется ограничение по размеру кода программ менее 8 кбайт.

Если вы хотите загрузить полную версию демонстрационного проекта, то укажите при прошивке путь к файлу «\LDM\_MILANDR\_MELT\ CMCARM\Debug\Exe\LDM-K1986BE92QI\_FULL.HEX».

# Поздравляем!

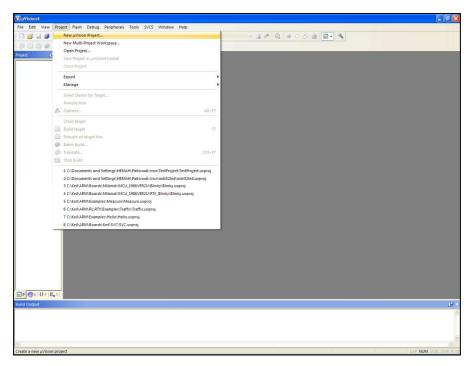
Вы освоили навыки работы с отладочной платой **LDM-K1986BE92QI** в среде проектирования **Phyton** и можете самостоятельно попробовать создать свой проект!

# Enjoy!

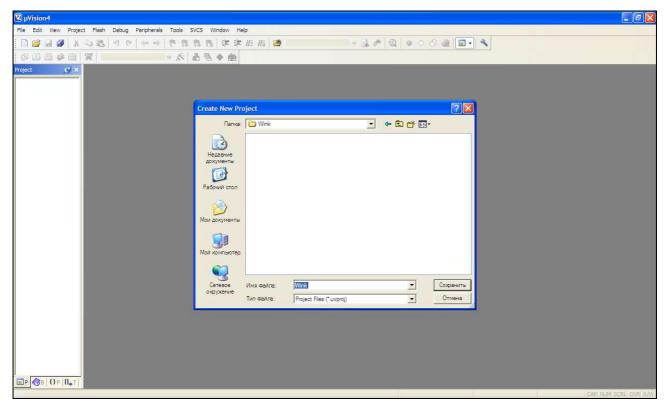

## 2.4 Создание простого проекта в среде Keil uVision

**Цель проекта:** Создадим проект в среде проектирования Keil uVision версии 4.72. Проект будет выполнять следующие задачи: при нажатии на кнопку «SEL» на плате LDM-K1986BE92QI, подключённой к порту PC2, должен зажигаться светодиод VD5, подключённый к порту PB0. При отпускании кнопки «SEL» светодиод VD5 будет гаснуть.

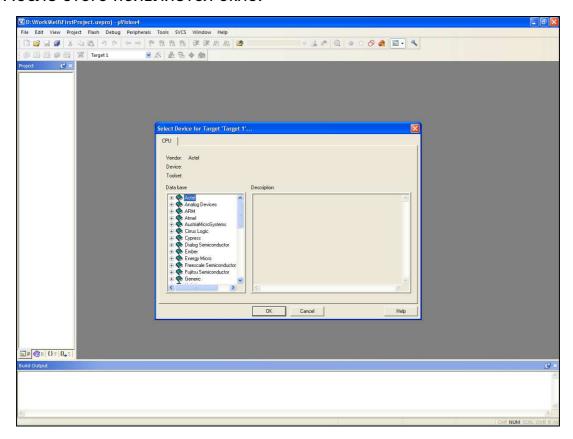
## **Шаг 1:** Устанавливаем компилятор **Keil uVision версии 4.72**.


Дистрибутив компилятора можно найти на CD-R диске отладочной платы в разделе \Koмпилятор\Keil\mdk472\_a.exe. Запустите файл и произведите установку компилятора.

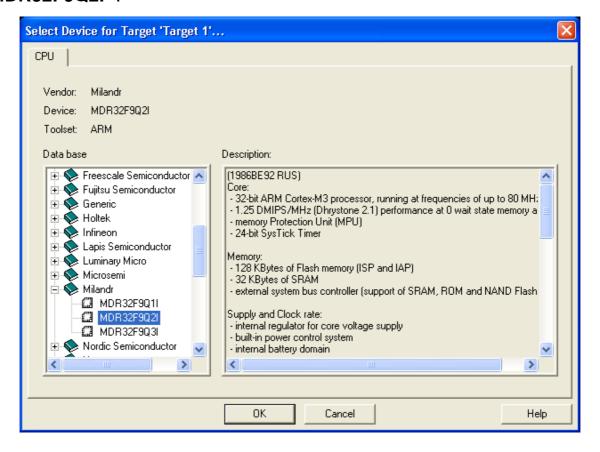
**Шаг 2:** Запускаем компилятор из меню «**Пуск**». Откроется следующее окно:



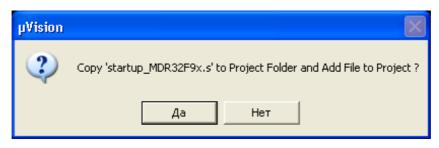

## Шаг 3: Создаём новый проект.


Для этого на вкладке «Project» программы выбираем «New uVision Project...»



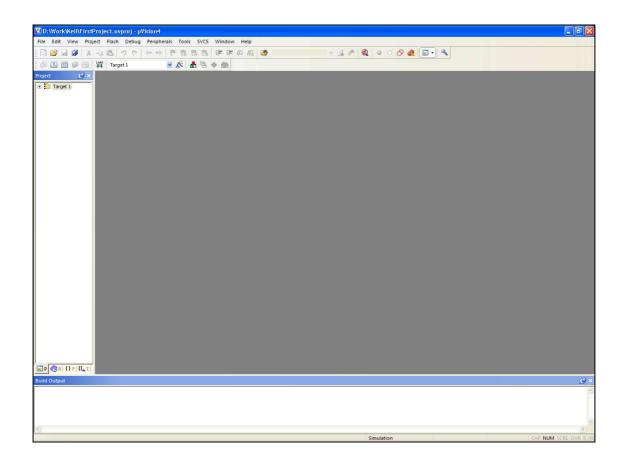

В открывшемся окне указываем: путь, где будет находиться проект (Например: **C:\Project\Wink**), название файла проекта **Wink.uvproj**. и нажимаем кнопку «**Coxpaнить**»:



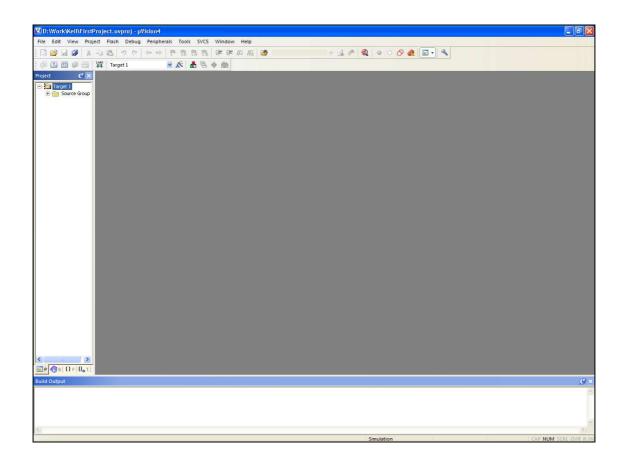

#### После этого появляется окно:



Выбираем производителя «Milandr» и микроконтроллер «MDR32F9Q2I».

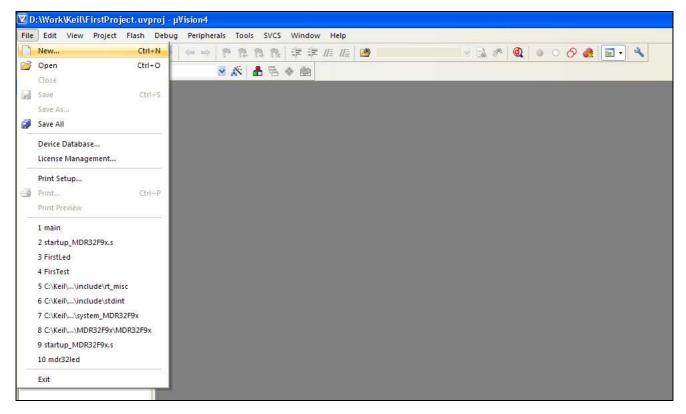



Нажимаем «ОК», после чего появляется окно с вопросом:

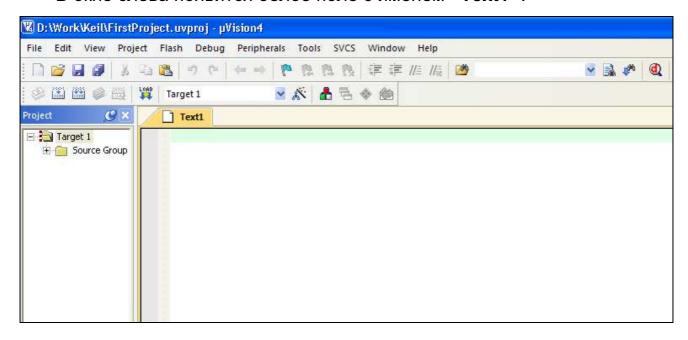



Компилятор предлагает создать файл инициализации контроллера, нажимаем кнопку «Да».

Слева, в окне программы «**Project**», появится папка «**Target 1**» с символом «+»:



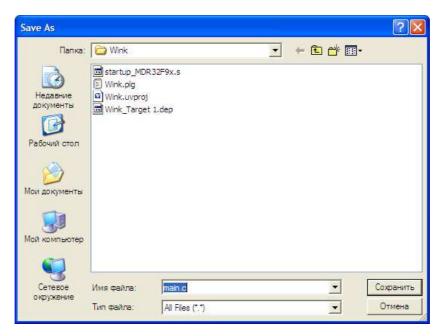

Нажимаем на символ «+», после чего, внутри папки «**Target 1**» появится папка «**Source Group 1**»:



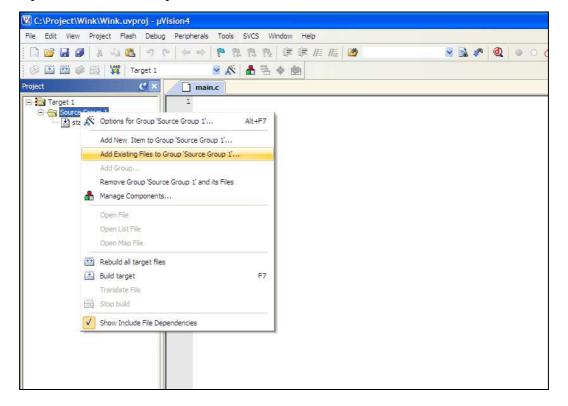

Шаг 4: Создание главного файла проекта main.c

Создадим файл, в котором будет основной код программы. Для этого в меню «**File**» выбираем «**New...**»:

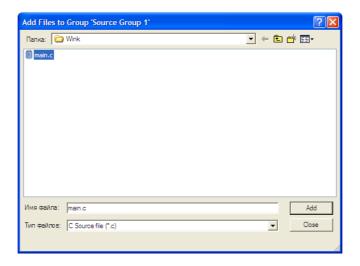



В окне слева появится белое поле с именем «Text1»:

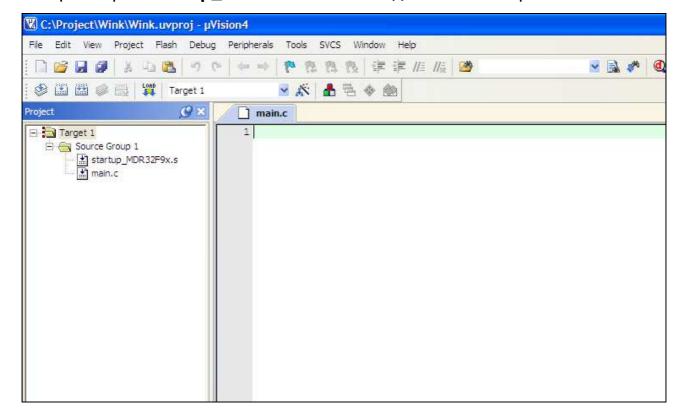



В меню файл выбираем «Save As...»:




После чего появится окошко, в котором пишем «main.c»

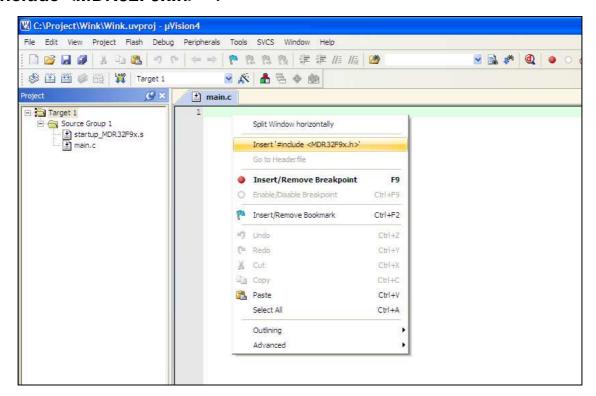



Теперь необходимо файл, сохранённый как «main.c», добавить в проект. Для этого жмём правой кнопкой мыши на папку «Source Group 1» и в выпадающем меню выбираем «Add Existing Files to Group 'Source Group 1'»:

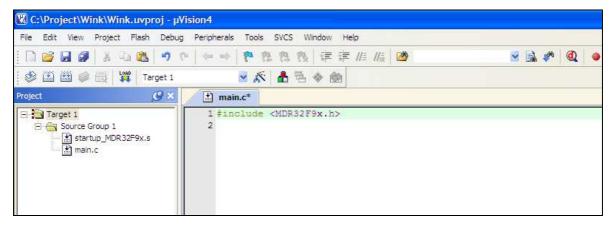


#### Откроется окно:




Выбираем «main.c» и нажимаем кнопку «Add». В результате, в папке «Source Group 1» видим уже два файла. Файл инициализации контроллера «startup\_MDR32F9x.s» и созданный нами файл «main.c»:




**Шаг 5:** Создаем программный код проекта в файле **main.c**.

Добавляем в файл «main.c» заголовочный h-файл семейства микроконтроллера «MDR32F9x.h». Нажимаем правой кнопкой мыши на

белое поле файла «main.c», где в выпадающем меню выбираем «Insert '#include <MDR32F9x.h>'»:



## Появится строка в файле «main.c»:



Добавляем в проект файл «system\_MDR32F9x.c» по аналогии с добавлением файла «main.c».

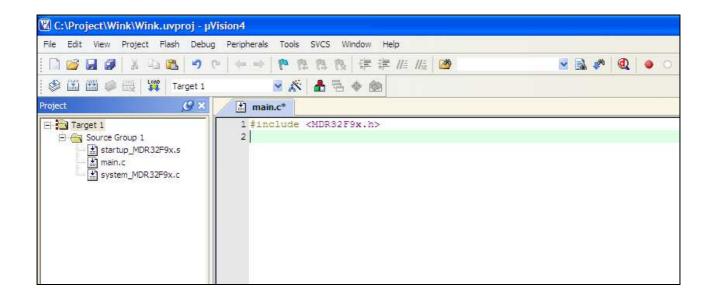
Файл «system\_MDR32F9x.c» необходимо взять из библиотеки «MDR32F9x Standart Peripheral Library» (MDR\_Library.rar).

Сама библиотека поставляется на CD-R диске, идущем в комплекте с платой LDM-K1986BE92QI «CD-R\Примеры проектов\ MDR\_Library.rar».

Её можно также взять на форуме компании ЗАО «ПКК Миландр»: http://forum.milandr.ru в разделе:

Интегральные микросхемы ЗАО "ПКК Миландр" $\to$ 32-разрядные микроконтроллеры (1986ВЕ9х, 1986ВЕ1х, 1986ВЕ2х)  $\to$ 32-разрядные микроконтроллеры серии 1986ВЕ9х (ядро ARM Cortex-M3) $\to$ MDR32F9х Standart Peripheral Library.

Или на сайте компании ЗАО «ПКК Миландр»: http://milandr.ru в разделе «Программное обеспечение».

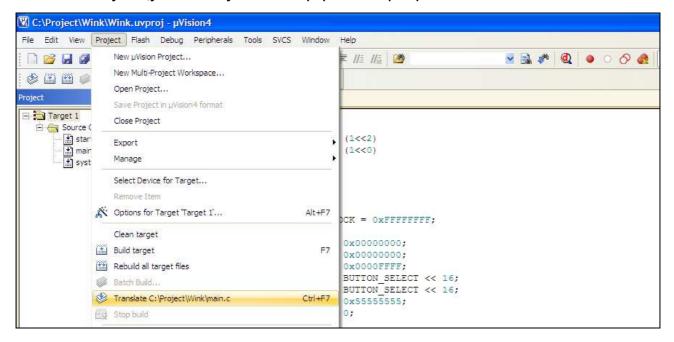

Или из установленной папки среды Keil: **\Keil\ARM\Startup\Milandr \MDR32F9x**.

В результате в папке «**Source Group 1**» будут находиться уже три файла:

Файл инициализации контроллера - startup\_MDR32F9x.s;

Системный - system\_MDR32F9x.c;

Главный файл проекта – **main.c**.




#### Далее добавляем в наш файл main следующий код:

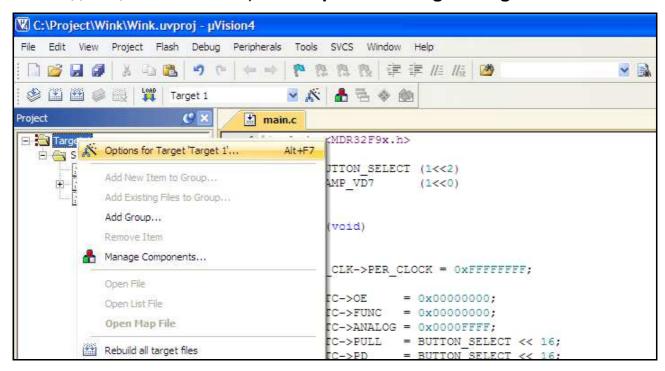
```
// Данный код предоставлен пользователем «редактор» на forum.milandr.ru
// и переделан для
// платы LDM-1986BE92QI компании LDM-SYSTEMS
//-----
#include <MDR32F9x.h>
#define BUTTON_SELECT (1<<2)</pre>
                                      // Кнопка Select заведена на порт PC2
#define LAMP_VD5 (1<<0)</pre>
                                    // Светодиод VD5 заведен на порт PB0
void main (void)
// Разрешили работу всей периферии
// Если этого не сделать, порты не будут инициализированы
 MDR_RST_CLK->PER_CLOCK = 0xFFFFFFF;
 // Настройка портов ввода-вывода
  // Настраиваем порт РС
 MDR\_PORTC->OE = 0x00000000;
                                  // Все линии порта С настраиваем на ввод
 MDR\_PORTC -> FUNC = 0 \times 000000000;
                                     // Все линии порта используются как порт ввода-вывода
 MDR_PORTC->ANALOG = 0 \times 00000 FFFF;
                                      // Все линии - цифровые
 MDR_PORTC->PULL = BUTTON_SELECT << 16; // Линию РС2 притянули к положительному уровню питания
 MDR_PORTC->PD = BUTTON_SELECT << 16; // Включили триггер Шмидта по входу линии РС2
 MDR PORTC->PWR = 0 \times 555555555;
                                      // Медленный фронт по входу всем линиям
 MDR PORTC->GFEN = 0;
                                      // Фильтр по входу выключен по всем линиям
  // Настраиваем порт РВ
 MDR_PORTB->OE = LAMP_VD5;
                                      // Линию порта РВО настраиваем на вывод
 MDR\_PORTB->FUNC = 0x00000000;
                                      // Все линии порта используются как порт ввода-вывода
 MDR_PORTB->ANALOG = 0 \times 0000 of FFF;
                                      // Все линии - цифровые
 MDR_PORTB->PULL = LAMP_VD5 << 16; // Линию РВО притянули к положительному уровню питания
 MDR PORTB->PD = ~LAMP VD5;
                                      // Линия РВО настраивается как управляемый драйвер
 MDR\_PORTB->PWR = 0x55555555;
                                      // Медленный фронт по выходу линии РВО
 MDR\_PORTB->GFEN = 0;
                                      // Фильтр по выходу выключен по всем линиям
 MDR\_PORTB->RXTX = 0xFFFF;
                                      // Выставили все линии порта в высокое состояние
 while(1)
                                      // Основной цикл работы программы
   if (MDR_PORTC->RXTX & BUTTON_SELECT) // ЕСЛИ бИТ УСТАНОВЛЕН (КНОПКА ОТПУЩЕНА)
     MDR_PORTB->RXTX &= ~LAMP_VD5;
                                      // Установили порт РВО в О (низкий уровень выкл. светодиод)
   }
   else
       MDR_PORTB->RXTX |= LAMP_VD5; // Установили порт РВО в 1 (высокий уровень вкл. светодиод)
 }
```

## Шаг 6: Проверка проекта.

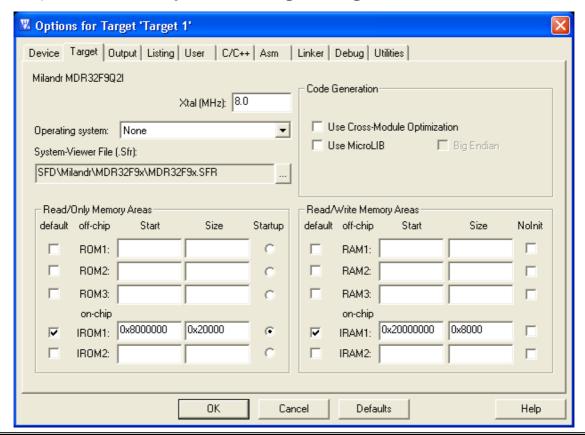
В меню «**Project**» выбираем «**Translate**» или жмём на соответствующую иконку на интерфейсе программы.



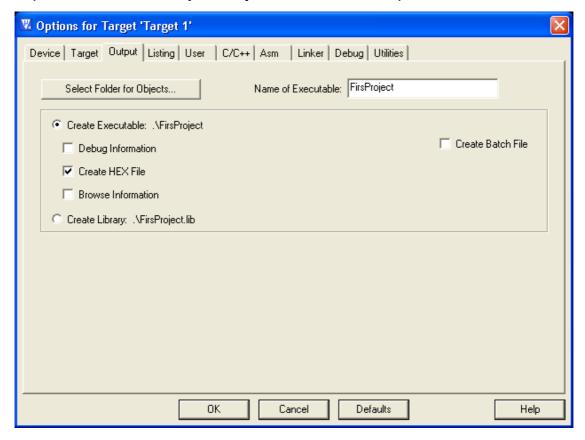
Наличие в проекте ошибки или предупреждения, будет выведено в нижнем окне программы «**Build Output**»:


```
27 MDR_PORTB->RXTX = 0xFFFF;
28
29 while(1)
30 {
31 if (MDD_DODTC->DVTV : BUTTON)

Build Output

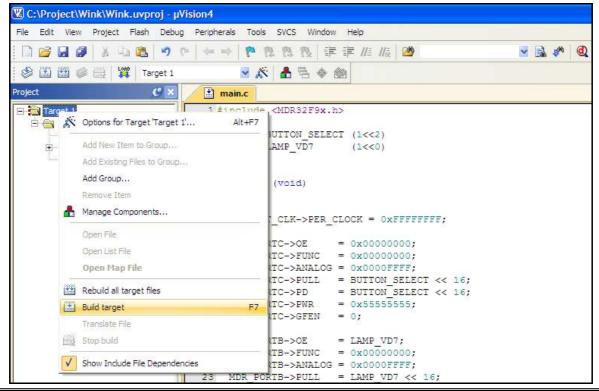

compiling main.c...
"main.c" - 0 Errors, 0 Warning(s).
```

## Шаг 7: Сборка проекта.


Настроим среду разработки на формирование hex-файла. Нажмем правой кнопкой мыши на папку «Target 1» в окне программы «Project» и в выпадающем меню выбираем «Option for Target 'Target 1'»:



# Откроется окно «Option for Target 'Target 1'»:




### Перейдем на вкладку «Output» и поставим флаг «Create HEX File»:



Нажимаем «ОК».

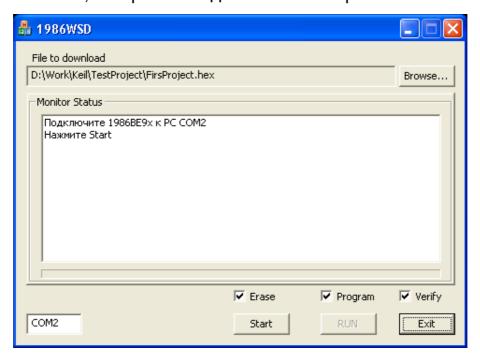
Для полной компиляции проекта необходимо в меню «Project» выбираем «Build Target»:



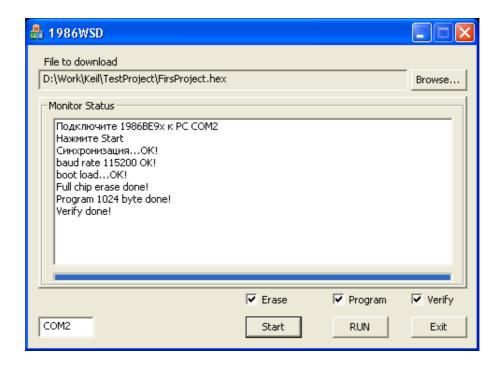
#### **Шаг 8:** Программирование FLASH памяти контроллера.

Программирование FLASH памяти контроллера можно осуществить при помощи встроенного в плату **LDM-K1986BE92QI** UART-загрузчик.

Программное обеспечение предоставлено пользователем **«vasili»** на **forum.milandr.ru**. в разделе: *Интегральные микросхемы ЗАО "ПКК Миландр"*  $\rightarrow$  32-разрядные микроконтроллеры (1986BE9x, 1986BE1x, 1986BE2x)  $\rightarrow$  32-разрядные микроконтроллеры серии 1986BE9x (ядро ARM Cortex-M3)  $\rightarrow$  AppNotes или примеры кода.

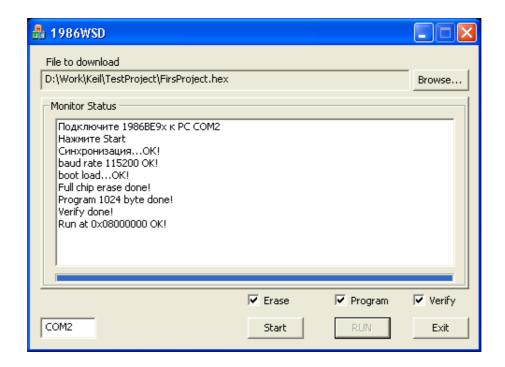

Программное обеспечение для UART-загрузчика можно скопировать на компьютер с диска для отладочного комплекта «**LDM-1986BE92QI**».

Перед тем, как запустить программу, необходимо установить на компьютер драйвер для микросхемы CP2102. Скачать драйвера можно непосредственно с сайта производителя, компании «Silicon Labs» http://www.silabs.com. Или непосредственно с диска к отладочному комплекту «LDM-K1986BE92QI».


После установки драйвера в системе, при подключении платы кабелем к разъёму USB-A, появится СОМ-порт. Необходимо учитывать, что программа UART-загрузчик корректно работает с портами 1-9.

Далее, перед тем как включить питание платы, необходимо выставить режим загрузки микроконтроллера. Для этого переводим переключатели SW10 и SW6 в положение «1», а SW9 в «0». Подробнее о режимах загрузки микроконтроллера написано в спецификации на микроконтроллер К1986ВЕ92QI.

Включаем питание и запускаем программу UART-загрузчик **«1986WSD.exe»**. Нажимаем кнопку **«Browse...»** и указываем путь к файлу **«Wink.hex»**, который находится в папке проекта **«Wink»**:




Нажимаем кнопку **«Start»**, после чего в окне **«Monitor Status»** увидим соответствующую надпись об успешном выполнении загрузки программы во внутреннюю FLASH-память микроконтроллера.



Запуск программы на исполнение в контроллере можно осуществить нажатием кнопки «**RUN**» после окончания операции загрузки.

При использовании программы **1986WSD** не обязательно каждый раз после прошивки МК выключать/включать питание. Достаточно в окне программы нажать кнопку «**RUN**», после чего программа на МК начнёт выполняться. Для повторной перепрошивки можно нажать «**Reset**» на плате отладочного комплекта и МК вновь будет готов к перепрограммированию.



Об успешном выполнении программа также сообщит.

# Поздравляем!

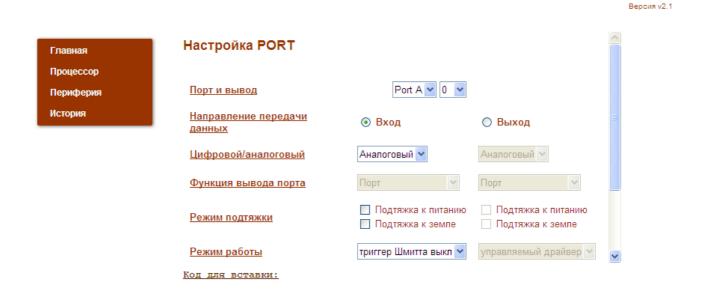
Вы освоили навыки работы с отладочной платой **LDM-K1986BE92QI** в среде проектирования **Keil uVision** и можете самостоятельно попробовать создать свой проект!

# Enjoy!

#### 2.5 Полезные программы

Ha CD-R ПО» диске папке «Полезное находится файл В «Milandr PLLv2.2.rar» (автор **AntonAS** форума Миландр: http://forum.milandr.ru/viewtopic.php?f=33&t=977&p=9578#p8908) котором находятся утилиты, позволяющие быстро создать код настроек периферийных узлов: can, adc, cpu, port, tim, uart.

Для работы с утилитами произведите запуск файла «index.html» в интернет браузере.


Появится основное окно ресурса:

 Главная
 Добро пожаловать!

 Процессор
 Данная страничка позволит Вам сгенерировать С-код для программирования.

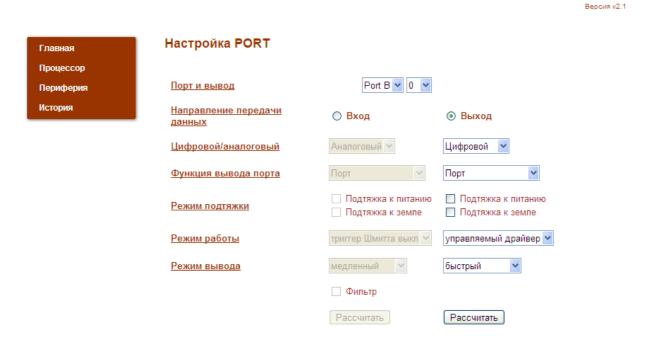
 История
 Тип контроллера — 32-разрядный микроконтроллер фирмы Миландр (MDR32F9Q1).

В качестве примера настроим порт В0 на вывод цифровых данных. Выбираем закладку «Периферия/Port»:



Версия v2.1

Выбираем в поле «Настройка PORT»


Порт и вывод: Port B, 0; Направление передачи данных: Выход;

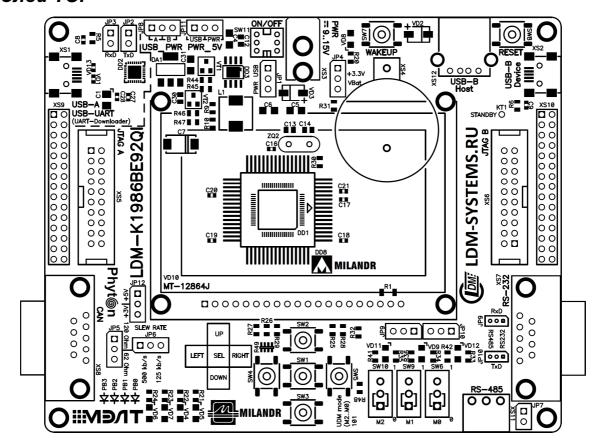
Цифровой/аналоговый Цифровой;

Функция вывода порта Порт; Режим подтяжки Нет;

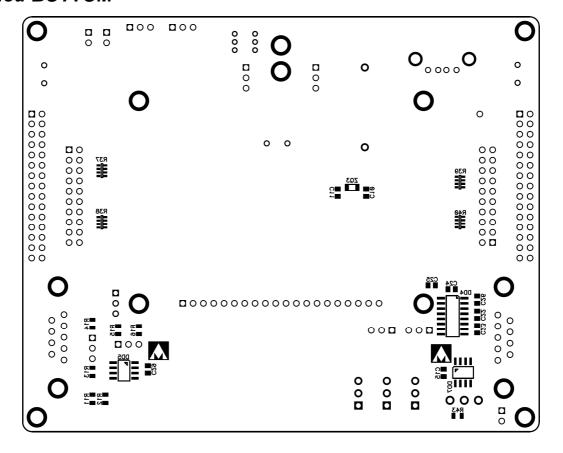
Режим работы Управляемый драйвер;

Режим работы Быстрый.



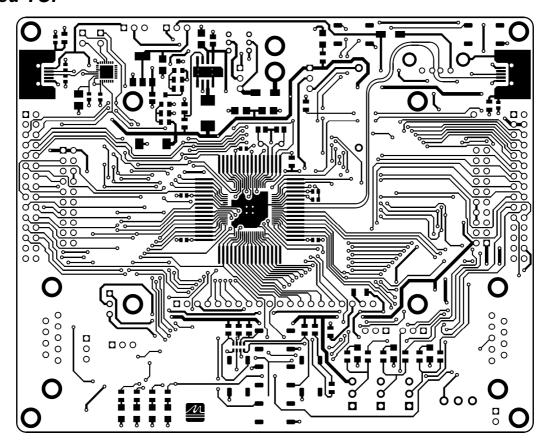

В результате в поле «Код для вставки» появится код программы для настройки периферийного модуля:

```
void Port_init(void)
 MDR_RST_CLK->PER_CLOCK |= (1UL << 22); // разрешение тактирования порта В
 MDR_PORTB->OE =
                   ((1 << 0));
                                        // направление передачи данных = Выход
 MDR\_PORTB->ANALOG = ((1 << 0));
                                        // режим работы контроллера = Цифровой
 MDR\_PORTB -> FUNC = ((0 << 0*2));
                                       // режим работы вывода порта = Порт
 MDR\_PORTB->PULL = ((0 << 0));
                                        // запрещение подтяжки к GND
  MDR_PORTB->PULL = ((0 << (0 << 16))); // запрещение подтяжки к VCC
 MDR_PORTB->PD =
                    ((0 << 0));
                                       // режим работы выхода = управляемый драйвер
                    ((2 << 0*2));
 MDR_PORTB->PWR =
                                       // скорость фронта вывода = быстрый
}
```

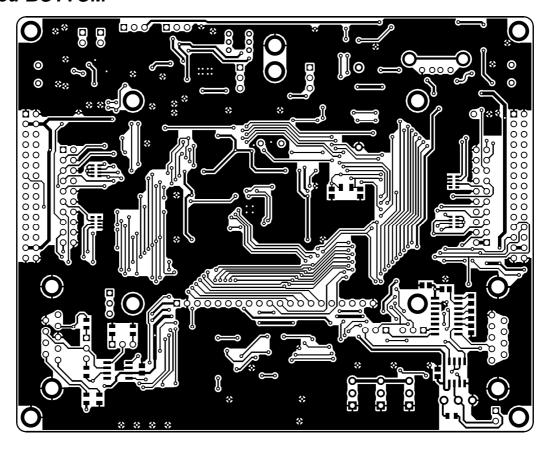

Представленное приложение позволит начинающему программисту быстро освоить принципы настройки контроллера K1986BE92QI (MDR32F9Q2I).

#### 2.6 Монтажные чертежи

#### Слой ТОР




#### Слой ВОТТОМ




# 2.7 Трассировка по слоям

# Слой ТОР



## Слой ВОТТОМ



#### 3 Эксплуатация, хранение и транспортирование

#### Требования к условиям эксплуатации:

Изделие при испытаниях, перевозке, хранении и эксплуатации не наносит вреда окружающей среде и здоровью человека. Сохраняет свои параметры во всем диапазоне рабочих температур от 0 °C до +70 °C в закрытом помещении с относительной влажностью воздуха не более 80 %, без конденсата, при изменении напряжения первичного источника По электропитания В допустимых пределах. электромагнитной совместимости изделие соответствует всем требованиям ДЛЯ аппаратуры данного класса.

#### Требования к условиям хранения:

Изделие должно храниться в складских помещениях, защищенных от воздействий атмосферных осадков, на стеллажах в упаковке производителя при отсутствии в воздухе паров кислот, щелочей и других веществ, вызывающих коррозию. Условия хранения изделия по ГОСТ 15150-69: температура воздуха от 5 до 40 °C, относительная влажность до 80 % при температуре 25 °C. Предельный срок хранения в указанных условиях - три года.

# Требования к условиям транспортирования:

Транспортирование изделия разрешается в упаковке производителя
 всеми видами транспорта, за исключением негерметизированных отсеков самолета, без ограничения расстояния.

Транспортирование упакованных изделий может производиться в крытых вагонах и автомашинах, трюмах судов и герметичных кабинах самолетов при температуре воздуха от минус 20 до плюс 70 °С. При любом способе транспортирования необходимо предусмотреть крепление ящика к кузову (платформе) транспортного средства с помощью крепежной арматуры.

## Литература

- 1) Спецификация микроконтроллеров серии 1986BE9x, K1986BE9x и MDR32F9Qx 3AO «ПКК Миландр» ТСКЯ.431296.001СП Версия 3.2.0 от 20.09.2012.
- 2) Микросхема приемо-передатчика по стандарту RS-485/RS-422 5559ИН10АУ, К5559ИН10АУ, К5559ИН10АУ, К5559ИН10БУ К5559ИН10БУ, К5559ИН10БН4 ЗАО «ПКК Миландр» ТСКЯ.431323.002СП Версия 2.5.0 от 29.05.2012.
- 3) Жидкокристаллический модуль MT-12864J ООО «МЭЛТ», версия документа 1.2, 18/06/2007.