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A Difficult Design Problem?

2

(For today’s lecture, we’ll assume clock 
distribution is not an issue)

A humble shift register
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First Complication: Output Stall

3

Shift register should only move data to right if output 
ready to accept next item

What complication does this introduce?
Need to fan out to enable signal on each flop

Ready?
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Stall Fan-Out Example

4

§200 bits per shift register stage, 16 stages

§3200 flip-flops

§How many fanout-of-four gate delays to buffer up ready signal?

‣Log4(3200) = 5.82 ,   ~ 6 FO4 delays!

Ready?

Enable

This doesn’t include any penalty for driving enable signal wires!
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Loops Prevent Arbitrary Resizing

5

We could increase size of gates in ready logic block to reduce 
fan out required to drive ready signal to flop enables…

But this increases load on flops, so they have to get bigger

--- a vicious cycle!

Ready?

Ready 
Logic

Shift Register 
Module

Receiving 
Module
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Second Complication: Input Bubbles

6

Sender doesn’t have valid data every clock cycle, so 
empty “bubbles” inserted into pipeline

Stage 1

Stage 2

Stage 3

Stage 4
Time!Ready

!Valid

Valid? Ready?Stage 1 Stage 2 Stage 3 Stage 4

Pipeline Diagram
Want to “squeeze” 

bubble out of pipeline

!Valid

!Ready
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Logic to Squeeze Bubbles

7

Can move one stage to right if Ready asserted, or if there are 
any bubbles in stages to right of current stage

Ready?
Enable?

Valid?

§Fan-in of number of valid signals grows with number of stages
§Fan-out of each stage’s valid signal grows with number of stages
§Longer combinational paths as number of pipeline stages grows

(Assume same enable 
logic on every stage) 

Valid?
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A Common Design Problem

8

The shift register is an abstraction of any synchronous 
pipelined block of logic that accepts input data and 
produces output data, where input and output might not 
be ready every clock cycle

How to manage growth in control logic complexity?

Valid? Ready?Stage 1 Stage 2 Stage 3 Stage 4
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Solution: Decouple Units with FIFOs

9

Consumer
Processing 

Pipeline

Pipeline only cares whether space in FIFO,  not about whether 
consumer can take next value

Breaks combinational path between pipeline control logic and 
consumer control logic

For full throughput with decoupling, need at least two 
elements in FIFO

With only one element, have to ping-pong between pipeline 
enqueue and consumer dequeue
Allowing both enqueue and dequeue in same cycle to single-element 
FIFO destroys decoupling (back to a synchronous connection)
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Decoupled Design Discipline

Many large digital designs are divided into local synchronous 
pipelines, or units, connected via decoupling FIFOs

Approx. 10K-100K gates per unit

Decoupled units may have different clocks
In which case, need asynchronous FIFOs

10
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Hardware Design Patterns
Decoupled units are an example of a design pattern

Pattern: Solution to a commonly recurring design problem

Idea of patterns and a “pattern language” first proposed 
for building architecture (Christopher Alexander)

“Pattern language” is an interlocking set of design patterns
Probably better named a “pattern hierarchy”

Alexander proposed single pattern language covering 
architecture from design of cities to design of roof caps

Patterns popular in software engineering (“Gang of 
Four”) and now being used in Par Lab (“Our Pattern 
Language (OPL)”) to architect parallel software

This semester continues an experiment to see if we can 
teach hardware design using patterns

11
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Digital Design Through Patterns

Application(s)

MP3 bit string Audio

Hardware (RTL)

MP3 bit string
Audio

Berkeley Hardware Pattern Language

12



Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

BHPL Goals
BHPL captures problem-solution pairs for creating 
hardware designs (machines) to execute applications

BHPL Non-Goals
Doesn’t describe applications themselves, only machines that 
execute applications and strategies for mapping applications 
onto machines

13
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BHPL describes Machines not Applications

Dense Linear Algebra

Sparse Linear 
Algebra

Spectral 
Methods FSMsGraph 

Algorithms

Circuits

N-Body 
Methods

Dynamic 
Programming

Computational Patterns

Graph 
Traversal

Structured 
Grids

Unstructured 
Grids Graphical 

Models

Pipelines

Model-View-
Controller

Event Based Process 
Control

Agent&Repository

Structural Patterns

Map-
Reduce

Iteration Layered 
Systems

Task Graphs

Applications (including OPL patterns)

Machines

BHPL
Mapping 
Patterns

14
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Vocabulary for 
Machines

15
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Why a Vocabulary?
Need a standard graphical and textual language to 
describe the problems and solutions in our pattern 
language

Really just a consistent way of drawing and talking about block 
diagrams

16



Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Machine Vocabulary
Machines described using a hierarchical structural 
decomposition

Units (generalized processing engines)
Memories
Networks (connect multiple entities)
Channels (point-to-point connections)
(Memories, Networks, Channels are specialized Units)

17
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Unit types
Memories, Networks, and Channels are also units, just with 
specialized symbol to convey their main intended purpose.

Memories store data.
Networks connect multiple entities
Channels are point-point communication paths

High-level channels show primary direction of information flow
Might have wires in other direction to handle flow-control etc.

18
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Hierarchy within Unit

Input Port

Output Port

Input/Output PortPorts   shown on 
edge of unit

19
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Hierarchy within Memory

20
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Hierarchy within Network

21
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Hierarchy within Network (2)

22
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Hierarchy within Channel

23
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Unit-Transaction Level (UTL)

24

Our term for a high-level machine design, where system 
broken up into decoupled communicating units, and 
where we can understand system functionality as 
sequences of transactions performed by each unit

i.e., can single-step entire system, one transaction at a time

This higher level description admits various mappings 
into RTL with different cycle timings
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Refine UTL design to RTL
All units are eventually mapped into digital hardware, i.e., 
ultimately describable as a finite-state machine (FSM)

Different ways of factoring out the FSM description of a 
unit

Structural decomposition into hierarchical sub-units
Decompose functionality into control + datapath

All factorings are equivalent, so pick factoring that best 
explains what unit does

25
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Unit with Synchronous Control

26

When there is only a single state machine 
controlling operation of a unit

Diamond represents unit-level controller, implied 
control connections to all other components 
(datapaths + memories) in unit
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Leaf-Level Hardware

Register

Memory

Combinational 
Logic Wires

Tristate driver
Multiplexer/ALU

FIFO

• Conventional schematic notation

27
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Example: Ethernet MAC for Xilinx
[Chris Fletcher]

28
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Top-Level

29
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Multiple MACs

30
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One Level Down

31
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Low-Level Building Blocks

32
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Berkeley Hardware 
Pattern Language

33
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BHPL 0.5 Overview
Applications (including OPL patterns)

BHPL
FFT to 

SIMD arrayApp-to-UTL 
Mappings Layer 

Problem: Application Computation
Solution: UTL Machine

UTL-to-UTL 
Transformation Layer 

Time-
Multiplexing

Problem: UTL violates constraint 
(too big, too slow)
Solution: Transformed UTLUnrolling

UTL-to-RTL 
Transformation Layer 

Microcoded 
Engine

In-Order Pipeline 
Engine

Problem: UTL design
Solution: RTL behavior

RTL-to-Technology
FIFO CAM

Interleaved 
Memory Problem: RTL behavior

Solution: Structural design
34
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Pattern Template (Name here)
Problem: Describe the particular problem the pattern is meant to solve.  
Should include some context (small, high throughput), and also the layer of 
the pattern hierarchy where it fits.

Solution: Describe the solution, which should be some hardware 
structure with a figure.  Solution is usually the pattern name.  Should not 
provide a family of widely varying solutions - these should be separate 
patterns, possibly grouped under a single more abstract parent pattern.

Applicability: Longer discussion of where this particular solution would 
normally be used, or where it would not be used.

Consequences: Issues that arise when using this pattern, but only for 
cases where it is appropriate to use (use Applicability to delineate cases 
where it is not appropriate to use). These might point at sub-problems for 
which there are sub-patterns. There might also be limitations on resulting 
functionality, or implications in design complexity, or CAD tool use etc.

35
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Decoupled Units
Problem: Difficult to design a large unit with a single controller, 
especially when components have variable processing rates.  Large 
controllers have long combinational paths.

Solution: Break large unit into smaller sub-units where each sub-unit 
has a separate controller and all channels between sub-units have some 
form of decoupling (i.e., no assumption about timing of sub-units).

Applicability: Large unit where area and performance overhead of 
decoupling is small compared to benefits of simpler design and shorter 
controller critical paths.

Consequences: Decoupled channels generally have greater 
communication latency and area/power cost.  Sub-unit controllers must 
cope with unknown arrival time of inputs and unknown time of 
availability of space on outputs. Sub-units must be synchronized explicitly.

36
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Decoupled Units

Shared
Memory

Network

Unless shared memory 
is truly multiported, 
channels to memory 
must be decoupled

Channels to 
network are 

usually decoupled 
in any case

37
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Related Patterns

38

Often multiple solutions to same problem, but which to 
pick depends on situation

Problem statement and Applicability text should 
help select the correct pattern to use

Example: Pipelined versus multi-cycle operators when 
delay through operator exceeds desired cycle time
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Pipelined Operator
Problem: Combinational function of operator has long critical 
path that would reduce system clock frequency.  High throughput 
of this function is required.

Solution: Divide combinational function using pipeline registers 
such that logic in each stage has critical path below desired cycle 
time. Improve throughput by initiating new operation every clock 
cycle overlapped with propagation of earlier operations down 
pipeline.

Applicability: Operators that require high throughput but 
where latency is not critical.

Consequences: Latency of function increases due to 
propagation through pipeline registers, adds energy/op.  Any 
associated controller might have to track execution of operation 
across multiple cycles.

39
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Pipelined Operator

Clock Clock Clock

Clock Clock

f(g(in))

g(in) f(in)

40
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Multicycle Operator
Problem: Combinational function of operator has long critical 
path that would reduce system clock frequency.  High throughput 
of this function is not required.

Solution: Hold input registers stable for multiple clock cycles of 
main system, and capture output after combinational function has 
settled.

Applicability: Operators where high throughput is not 
required, or if latency is critical (in which case, replicate to 
increase throughput).

Consequences:  Associated controller has to track execution 
of operation across multiple cycles.  CAD tools might detect false 
critical path in block.

41
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Multicycle Operator

Clock/2 Clock/2

Clock Clock

f(g(in))

f(g(in))

42
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Some Families of Patterns

43
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Multiport Memory Patterns
Provides multiple access ports to a common memory

True Multiport Memory

Banked Multiport Memory
Interleave lesser-ported banks to provide higher bandwidth

Cached Multiport Memory
Use large single-port main memory, but add cache to service 
requests for each access port

44
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Controller Patterns
Synchronous control of local datapath
State Machine Controller

control lines generated by state machine
Microcoded Controller

single-cycle datapath, control lines in ROM/RAM
In-Order Pipeline Controller

pipelined control, dynamic interaction between stages
Out-of-Order Pipeline Controller

operations within a control stream might be reordered 
internally

Threaded Pipeline Controller
multiple control streams one execution pipeline
can be either in-order (PPU) or out-of-order 

45
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Network Patterns
Connects multiple units using shared resources

Bus
Low-cost, ordered

Crossbar
High-performance

Multi-stage network
Trade cost/performance

46


