
Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

CS250 VLSI Systems Design
Lecture 8: Introduction to
Hardware Design Patterns

John Wawrzynek, Jonathan Bachrach,
with

Krste Asanovic, John Lazzaro
and

Rimas Avizienis (TA)

UC Berkeley
Fall 2012

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

A Difficult Design Problem?

2

(For today’s lecture, we’ll assume clock
distribution is not an issue)

A humble shift register

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

First Complication: Output Stall

3

Shift register should only move data to right if output
ready to accept next item

What complication does this introduce?
Need to fan out to enable signal on each flop

Ready?

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Stall Fan-Out Example

4

§200 bits per shift register stage, 16 stages

§3200 flip-flops

§How many fanout-of-four gate delays to buffer up ready signal?

‣Log4(3200) = 5.82 , ~ 6 FO4 delays!

Ready?

Enable

This doesn’t include any penalty for driving enable signal wires!

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Loops Prevent Arbitrary Resizing

5

We could increase size of gates in ready logic block to reduce
fan out required to drive ready signal to flop enables…

But this increases load on flops, so they have to get bigger

--- a vicious cycle!

Ready?

Ready
Logic

Shift Register
Module

Receiving
Module

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Second Complication: Input Bubbles

6

Sender doesn’t have valid data every clock cycle, so
empty “bubbles” inserted into pipeline

Stage 1

Stage 2

Stage 3

Stage 4
Time!Ready

!Valid

Valid? Ready?Stage 1 Stage 2 Stage 3 Stage 4

Pipeline Diagram
Want to “squeeze”

bubble out of pipeline

!Valid

!Ready

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Logic to Squeeze Bubbles

7

Can move one stage to right if Ready asserted, or if there are
any bubbles in stages to right of current stage

Ready?
Enable?

Valid?

§Fan-in of number of valid signals grows with number of stages
§Fan-out of each stage’s valid signal grows with number of stages
§Longer combinational paths as number of pipeline stages grows

(Assume same enable
logic on every stage)

Valid?

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

A Common Design Problem

8

The shift register is an abstraction of any synchronous
pipelined block of logic that accepts input data and
produces output data, where input and output might not
be ready every clock cycle

How to manage growth in control logic complexity?

Valid? Ready?Stage 1 Stage 2 Stage 3 Stage 4

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Solution: Decouple Units with FIFOs

9

Consumer
Processing

Pipeline

Pipeline only cares whether space in FIFO, not about whether
consumer can take next value

Breaks combinational path between pipeline control logic and
consumer control logic

For full throughput with decoupling, need at least two
elements in FIFO

With only one element, have to ping-pong between pipeline
enqueue and consumer dequeue
Allowing both enqueue and dequeue in same cycle to single-element
FIFO destroys decoupling (back to a synchronous connection)

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Decoupled Design Discipline

Many large digital designs are divided into local synchronous
pipelines, or units, connected via decoupling FIFOs

Approx. 10K-100K gates per unit

Decoupled units may have different clocks
In which case, need asynchronous FIFOs

10

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Hardware Design Patterns
Decoupled units are an example of a design pattern

Pattern: Solution to a commonly recurring design problem

Idea of patterns and a “pattern language” first proposed
for building architecture (Christopher Alexander)

“Pattern language” is an interlocking set of design patterns
Probably better named a “pattern hierarchy”

Alexander proposed single pattern language covering
architecture from design of cities to design of roof caps

Patterns popular in software engineering (“Gang of
Four”) and now being used in Par Lab (“Our Pattern
Language (OPL)”) to architect parallel software

This semester continues an experiment to see if we can
teach hardware design using patterns

11

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Digital Design Through Patterns

Application(s)

MP3 bit string Audio

Hardware (RTL)

MP3 bit string
Audio

Berkeley Hardware Pattern Language

12

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

BHPL Goals
BHPL captures problem-solution pairs for creating
hardware designs (machines) to execute applications

BHPL Non-Goals
Doesn’t describe applications themselves, only machines that
execute applications and strategies for mapping applications
onto machines

13

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

BHPL describes Machines not Applications

Dense Linear Algebra

Sparse Linear
Algebra

Spectral
Methods FSMsGraph

Algorithms

Circuits

N-Body
Methods

Dynamic
Programming

Computational Patterns

Graph
Traversal

Structured
Grids

Unstructured
Grids Graphical

Models

Pipelines

Model-View-
Controller

Event Based Process
Control

Agent&Repository

Structural Patterns

Map-
Reduce

Iteration Layered
Systems

Task Graphs

Applications (including OPL patterns)

Machines

BHPL
Mapping
Patterns

14

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Vocabulary for
Machines

15

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Why a Vocabulary?
Need a standard graphical and textual language to
describe the problems and solutions in our pattern
language

Really just a consistent way of drawing and talking about block
diagrams

16

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Machine Vocabulary
Machines described using a hierarchical structural
decomposition

Units (generalized processing engines)
Memories
Networks (connect multiple entities)
Channels (point-to-point connections)
(Memories, Networks, Channels are specialized Units)

17

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Unit types
Memories, Networks, and Channels are also units, just with
specialized symbol to convey their main intended purpose.

Memories store data.
Networks connect multiple entities
Channels are point-point communication paths

High-level channels show primary direction of information flow
Might have wires in other direction to handle flow-control etc.

18

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Hierarchy within Unit

Input Port

Output Port

Input/Output PortPorts shown on
edge of unit

19

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Hierarchy within Memory

20

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Hierarchy within Network

21

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Hierarchy within Network (2)

22

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Hierarchy within Channel

23

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Unit-Transaction Level (UTL)

24

Our term for a high-level machine design, where system
broken up into decoupled communicating units, and
where we can understand system functionality as
sequences of transactions performed by each unit

i.e., can single-step entire system, one transaction at a time

This higher level description admits various mappings
into RTL with different cycle timings

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Refine UTL design to RTL
All units are eventually mapped into digital hardware, i.e.,
ultimately describable as a finite-state machine (FSM)

Different ways of factoring out the FSM description of a
unit

Structural decomposition into hierarchical sub-units
Decompose functionality into control + datapath

All factorings are equivalent, so pick factoring that best
explains what unit does

25

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Unit with Synchronous Control

26

When there is only a single state machine
controlling operation of a unit

Diamond represents unit-level controller, implied
control connections to all other components
(datapaths + memories) in unit

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Leaf-Level Hardware

Register

Memory

Combinational
Logic Wires

Tristate driver
Multiplexer/ALU

FIFO

• Conventional schematic notation

27

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Example: Ethernet MAC for Xilinx
[Chris Fletcher]

28

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Top-Level

29

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Multiple MACs

30

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

One Level Down

31

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Low-Level Building Blocks

32

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Berkeley Hardware
Pattern Language

33

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

BHPL 0.5 Overview
Applications (including OPL patterns)

BHPL
FFT to

SIMD arrayApp-to-UTL
Mappings Layer

Problem: Application Computation
Solution: UTL Machine

UTL-to-UTL
Transformation Layer

Time-
Multiplexing

Problem: UTL violates constraint
(too big, too slow)
Solution: Transformed UTLUnrolling

UTL-to-RTL
Transformation Layer

Microcoded
Engine

In-Order Pipeline
Engine

Problem: UTL design
Solution: RTL behavior

RTL-to-Technology
FIFO CAM

Interleaved
Memory Problem: RTL behavior

Solution: Structural design
34

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Pattern Template (Name here)
Problem: Describe the particular problem the pattern is meant to solve.
Should include some context (small, high throughput), and also the layer of
the pattern hierarchy where it fits.

Solution: Describe the solution, which should be some hardware
structure with a figure. Solution is usually the pattern name. Should not
provide a family of widely varying solutions - these should be separate
patterns, possibly grouped under a single more abstract parent pattern.

Applicability: Longer discussion of where this particular solution would
normally be used, or where it would not be used.

Consequences: Issues that arise when using this pattern, but only for
cases where it is appropriate to use (use Applicability to delineate cases
where it is not appropriate to use). These might point at sub-problems for
which there are sub-patterns. There might also be limitations on resulting
functionality, or implications in design complexity, or CAD tool use etc.

35

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Decoupled Units
Problem: Difficult to design a large unit with a single controller,
especially when components have variable processing rates. Large
controllers have long combinational paths.

Solution: Break large unit into smaller sub-units where each sub-unit
has a separate controller and all channels between sub-units have some
form of decoupling (i.e., no assumption about timing of sub-units).

Applicability: Large unit where area and performance overhead of
decoupling is small compared to benefits of simpler design and shorter
controller critical paths.

Consequences: Decoupled channels generally have greater
communication latency and area/power cost. Sub-unit controllers must
cope with unknown arrival time of inputs and unknown time of
availability of space on outputs. Sub-units must be synchronized explicitly.

36

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Decoupled Units

Shared
Memory

Network

Unless shared memory
is truly multiported,
channels to memory
must be decoupled

Channels to
network are

usually decoupled
in any case

37

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Related Patterns

38

Often multiple solutions to same problem, but which to
pick depends on situation

Problem statement and Applicability text should
help select the correct pattern to use

Example: Pipelined versus multi-cycle operators when
delay through operator exceeds desired cycle time

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Pipelined Operator
Problem: Combinational function of operator has long critical
path that would reduce system clock frequency. High throughput
of this function is required.

Solution: Divide combinational function using pipeline registers
such that logic in each stage has critical path below desired cycle
time. Improve throughput by initiating new operation every clock
cycle overlapped with propagation of earlier operations down
pipeline.

Applicability: Operators that require high throughput but
where latency is not critical.

Consequences: Latency of function increases due to
propagation through pipeline registers, adds energy/op. Any
associated controller might have to track execution of operation
across multiple cycles.

39

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Pipelined Operator

Clock Clock Clock

Clock Clock

f(g(in))

g(in) f(in)

40

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Multicycle Operator
Problem: Combinational function of operator has long critical
path that would reduce system clock frequency. High throughput
of this function is not required.

Solution: Hold input registers stable for multiple clock cycles of
main system, and capture output after combinational function has
settled.

Applicability: Operators where high throughput is not
required, or if latency is critical (in which case, replicate to
increase throughput).

Consequences: Associated controller has to track execution
of operation across multiple cycles. CAD tools might detect false
critical path in block.

41

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Multicycle Operator

Clock/2 Clock/2

Clock Clock

f(g(in))

f(g(in))

42

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Some Families of Patterns

43

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Multiport Memory Patterns
Provides multiple access ports to a common memory

True Multiport Memory

Banked Multiport Memory
Interleave lesser-ported banks to provide higher bandwidth

Cached Multiport Memory
Use large single-port main memory, but add cache to service
requests for each access port

44

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Controller Patterns
Synchronous control of local datapath
State Machine Controller

control lines generated by state machine
Microcoded Controller

single-cycle datapath, control lines in ROM/RAM
In-Order Pipeline Controller

pipelined control, dynamic interaction between stages
Out-of-Order Pipeline Controller

operations within a control stream might be reordered
internally

Threaded Pipeline Controller
multiple control streams one execution pipeline
can be either in-order (PPU) or out-of-order

45

Lecture 8, Hardware Design Patterns CS250, UC Berkeley, Fall 2012

Network Patterns
Connects multiple units using shared resources

Bus
Low-cost, ordered

Crossbar
High-performance

Multi-stage network
Trade cost/performance

46

