
SOVA Based LTE Turbo Decoders

Performance and Architectures

ANG, LAY HONG

LIM, WEE GUAN

Master’s Thesis at Ericsson AB

Supervisor: Matthias Kamuf, Ph.D

Lund, September 2009

c© 2009 Ang, Lay Hong & Lim, Wee Guan

Department of Electrical and Information Technology
Lund University
P.O. Box 118
SE-221 00 Lund, Sweden

This thesis is set in Computer Modern 10pt
with the LATEX Documentation System

Printed in Sweden by Tryckeriet E-huset, Lund
September 2009

Abstract

The Max-Log-MAP algorithm is commonly used in a
constituent decoder for turbo coding applications. In
this thesis, the use of Soft-Output Viterbi Algorithms
(SOVAs) as an alternative to Max-Log-MAP for use in
the 3rd Generation Partnership Project (3GPP) Long
Term Evolution (LTE) standard is investigated. The de-
coding performance of the Battail Rule SOVA (BR-SOVA)
was found to be comparable to that of the Max-Log-
MAP although there is a high price to be paid in terms of
hardware complexity. A Simplified Battail Rule SOVA
(SB-SOVA) algorithm that is suitable for hardware im-
plementation is proposed, and the decoding performance
of SB-SOVA is similar to BR-SOVA. A proposed hybrid-
SOVA architecture that combines both Hagenauer Rule
SOVA (HR-SOVA) and BR-SOVA to reduce the com-
putational complexity of SB-SOVA is described, and the
decoding performance was found to be within 0.1 dB of
SB-SOVA.

To improve throughput and reduce the latency, the
input data block is divided into windows to allow for
parallel processing. The α-stage warm-up method to
determine the initial state of a window was found to
give better performance as compared to the next itera-
tion initialize (NII) method, with the performance of a
windowed decoder performing within 0.1 dB of the ideal
Max-Log-MAP.

Hardware architectures for the SB-SOVA and hybrid-
SOVA decoders are presented and the memory require-
ments for SOVA were assessed to be around 10 % of
that required for Max-Log-MAP on a per-window ba-
sis. The SB-SOVA and hybrid-SOVA decoders consume
87 % and 30 % more hardware resources per window re-
spectively as compared to the Max-Log-MAP decoder.
For the same degree of parallelization, the SOVA-based
decoders provide 34 % higher throughput than a Max-
Log-MAP decoder. The increased throughput of the
SOVA architecture may enable the SB-SOVA based de-
coder to have lower hardware requirements as compared
to the Max-Log-MAP as the the degree of parallelization
required for a given data rate will be lower.

Contents

Acknowledgments

Abbreviations

Nomenclature

1 Introduction 1

1.1 Turbo Decoding in LTE . 2
1.2 Algorithms for Decoding Turbo Codes 4

1.2.1 Log Likelihood Ratio . 4
1.2.2 MAP Type Algorithms . 6
1.2.3 SOVA Algorithm . 9

2 Improved SOVA Algorithm 13

2.1 Modifications to SOVA . 13
2.1.1 Merging and Updating Depths 13
2.1.2 Reliability Thresholding . 14
2.1.3 Scaling of SOVA Outputs . 14
2.1.4 Simplification of BR-SOVA Update Rule 15
2.1.5 Reliability Update Methods for SOVA 17

2.2 Simulation Results . 20
2.2.1 Simulation Environment . 20
2.2.2 Optimum Reliability Thresholding and Scaling Factors for

SOVA . 20
2.2.3 Effects of Simplified BR-SOVA Update Rule 26
2.2.4 Comparison of Reliability Update Methods for SOVA 27
2.2.5 Results for Hardware Reliability Update Method 28

3 SISO Decoder Hardware Architectures 33

3.1 Hardware Architecture of Max-Log-MAP 33
3.1.1 Resource Utilization . 35
3.1.2 Memory Requirements . 36
3.1.3 Latency . 36

3.2 Hardware Architecture for HR-SOVA 38
3.2.1 Trellis Stage . 38
3.2.2 Merge Stage . 41
3.2.3 Decode Stage . 41
3.2.4 Example of Hardware Architecture 42
3.2.5 Latency and Throughput . 44

3.3 Simplified BR-SOVA Architecture 46
3.3.1 Resource Utilization . 51
3.3.2 Memory and Register Utilization 52
3.3.3 Latency and Throughput . 53

3.4 Hybrid-SOVA Architecture . 54
3.4.1 Resource Utilization . 56
3.4.2 Memory and Register Utilization 56
3.4.3 Latency and Throughput . 57

3.5 Improved BPCU for SB-SOVA . 58
3.5.1 Resource Utilization . 60
3.5.2 Memory requirements . 62

3.6 Considerations for Parallel Windows 62
3.6.1 Memory Organization for Multiple Windows 64
3.6.2 Estimation of Window Initial State 64
3.6.3 Inter-Bank Memory Access 68

3.7 Comparison of SOVA and Max-Log-MAP 68
3.7.1 Resource Utilization . 68
3.7.2 Memory Requirement . 69
3.7.3 Data Throughput . 69
3.7.4 Optimal SOVA Decoder . 70

4 Conclusions 77

Bibliography 79

Acknowledgments

We would first like to thank our supervisor Matthias Kamuf for providing all his
help, assistance and guidance throughout the entire thesis work. We really appre-
ciate the freedom you have given us to do carry out our own research and at the
same time being there giving us advice and pointers all along the way.

Thanks go to all our friends and colleagues at Ericsson Research who have helped
to make our stay fruitful and interesting. Special thanks go to Fredrik Nordström
for all the delightful chats and tips, and of course to Jim Svensson for his synthesis
tools, scripts and VNC/SVN server that have helped the work proceed much more
smoothly and efficiently.

We are also very grateful to Joachim Rodrigues at LTH for giving us the oppor-
tunity to take on this challenging project at Ericsson Research. Our appreciation
goes to all our teachers and friends at LTH who have made our stay a very enjoyable
and fruitful one. Lastly, we would like to thank our classmates Ruiyi Zhang and
Jiangfeng Cai for all the fun times that we had working together at Ericsson, and
for the great dinner.

Abbreviations

3GPP 3rd Generation Partnership Project

ACS Add-Compare-Select

AWGN Additive White Gaussian Noise

BCJR Bahl-Cocke-Jelinek-Raviv

BER Bit Error Rate

BLER Block Error Rate

BR-SOVA Battail Rule SOVA

CRC Cyclic Redundancy Check

FIFO First In First Out

HR-SOVA Hagenauer Rule SOVA

LIFO Last In First Out

LTE Long Term Evolution

LLR Log-Likelihood Ratio

MAP Maximum-a-Posteriori

ML Maximum Likelihood

MSOVA Modified Soft-Output Viterbi Algorithm

PCU Path Comparison Unit

RE Register Exchange

RSC Recursive Systematic Convolutional

SB-SOVA Simplified Battail Rule SOVA

SISO Soft-Input/Soft-Output

SMU Survivor Memory Unit

SNR Signal-to-Noise Ratio

SOVA Soft-Output Viterbi Algorithm

VA Viterbi Algorithm

Nomenclature

ûk Estimated hard decision for bit uk

ν Memory depth of convolutional encoder

L Merging depth for Viterbi Algorithm

L(ûk) A-posteriori value for bit uk

L(uk) A-priori value for bit uk

Lc · yk Received channel values

Le(ûk) Extrinsic value for bit uk

M Number of windows in a windowed decoder

N Number of trellis states

n Number of coded bits per information bit

S Sequence of state transitions through a trellis

Tcrit Combinatorial delay of the critical path

U Update depth for Soft-Output Viterbi Algorithm

uk Data bit to be transmitted at time t = k

W Window size

Y Received sequence of Ki symbols, with Y = {yk,1, yk,2, . . . , yk,n}
Ki

k=1

yk,j jth received bit for symbol at time t = k

∆k,s Metric difference at time t = k for state s

Chapter 1

Introduction

In this current age where high speed portable wireless devices such as mobile tele-
phones and wireless networks are commonplace, the market demands for smaller
devices with longer battery life are ever increasing. This leads to stringent require-
ments for wireless terminals that can provide higher throughput, having smaller
chip size, and yet consume as little power as possible. To meet this goal, an entire
receiver chain will need to be designed with the above requirements in mind. This
thesis looks in detail at the turbo decoder, which forms a part of the outer receiver
chain.

The channel encoding used in the 3rd Generation Partnership Project (3GPP)
E-UTRA Release 8 “Long Term Evolution (LTE)” standard [1] is a turbo code,
which is computationally intensive to decode, and typically implemented as a hard-
ware accelerator module within the receiver. The Maximum-a-Posteriori (MAP)-
type algorithms are commonly used as Soft-Input/Soft-Output (SISO) decoders for
turbo decoding. The Log-MAP and Max-Log-MAP based decoders do have some
drawbacks, namely in that they require relatively large amounts of on-chip mem-
ory for the storage of intermediate values, and high latency due to the backward
recursions that need the last symbols in the block to be received before decoding
can begin [2].

An alternative decoder to the MAP-type decoders is one that is based on
the Soft-Output Viterbi Algorithm (SOVA). There are existing hardware imple-
mentations of Hagenauer Rule SOVA (HR-SOVA) [3][4][5], but the performance
of HR-SOVA based decoders in simulations is typically about 0.7 dB worse [6]
than Max-Log-MAP based ones. Another updating rule proposed by Battail [7],
known as Battail Rule SOVA (BR-SOVA) gives better decoding performance than
HR-SOVA, but there is no known hardware implementation of BR-SOVA in the
literature.

This thesis aims to investigate the performance of a SOVA based turbo decoder,
whilst using a Max-Log-MAP decoder as a baseline for comparison. A hardware
architecture for a parallel windowed SOVA based turbo decoder is developed. Fi-

1

CHAPTER 1. INTRODUCTION

+ D D D

+ + zk

xk

+
(termination bits)

Figure 1.1: Block diagram of RSC encoder

nally, the proposed decoder is compared with a Max-Log-MAP based turbo decoder
with respect to the decoding performance, hardware resource utilization, memory
requirements and latency/throughput.

This chapter gives a brief introduction into the various topics covered within
the thesis, so as to give context to the discussions in the chapters that follow. The
channel coding algorithms used in the LTE standard are described briefly, followed
by descriptions of the MAP and SOVA algorithms that can be applied to turbo
decoding.

1.1 Turbo Decoding in LTE

The iterative turbo encoder used in LTE for data transport is made up of two
8-state, rate 1/2 Recursive Systematic Convolutional (RSC) constituent encoders
that are connected in a parallel concatenated convolutional coding scheme [8].

The transfer function for a constituent convolutional encoder is given as

G(D) =

[

1,
g1(D)

g0(D)

]

where the feed-forward and feedback generator polynomials are given as

g0(D) = 1 + D2 + D3

g1(D) = 1 + D + D3

A block diagram of the resulting constituent encoder is shown in Figure 1.1.
Each constituent encoder generates a rate 1/2 code, and it follows that the output
of the turbo encoder (before puncturing) gives a code with a rate R = 1/3.

The turbo decoder in principle comprises of two SISO decoders that are sepa-
rated by interleavers and deinterleavers. Block diagrams of the encoder and decoder
are shown in Figure 1.2.

The format of the turbo code follows the 3GPP standard as described in [1]. It
can be briefly described as follows. Consider an L-bit data block {c0, c1, . . . , cL−1}

2

1.1. TURBO DECODING IN LTE

Interleaver

RSC

RSC

xk
zk

z′k

xk

(a) Turbo encoder

SISO
decoder 1

Le(ûk)
Interleaver

L(uk)

SISO
decoder 2

Le(ûk)

Deinterleaver

L(uk)

yk ,2

yk ,1

y′
k ,1

yk ,3

(b) Turbo decoder

Figure 1.2: Turbo encoder and decoder

that is checksummed by a 24-bit Cyclic Redundancy Check (CRC) with parity bits
{d0, d1, . . . , d23}. The information bits to the turbo encoder will have a block length
of Ki = L + 24 with the following sequence.

x = {c0, c1, . . . , cL−1, d0, d1, . . . , d23}

The encoded output bits of the turbo encoder will then be

{x0, z0, z
′
0, x1, z1, z

′
1, . . . , xk−1, zk−1, z

′
k−1}

where zi is the output of the first constituent encoder and z′i is the output of the
second constituent encoder, with the interleaved xi as the input. zi and z′i are the
parity bits of the first and second RSC encoders respectively.

The trellis of the turbo encoder will be terminated by feeding back the remaining
bits in the shift register after all the data bits (including CRC) have been encoded
using the dotted lines shown in Figure 1.1. The remaining 12 tail bits that are
transmitted to terminate the trellis are given as

{xk, zk, xk+1, zk+1, xk+2, zk+2, x′
k, z′k, x′

k+1, z′k+1, x′
k+2, z′k+2}

which gives a total encoded output length of 3(Ki + 4)bit.
A block diagram of the turbo decoder is shown in Figure 1.2b, where it can be

seen that two SISO decoders are connected together through an interleaver and a

3

CHAPTER 1. INTRODUCTION

deinterleaver. In the first iteration, there is no a-priori information, so the a-priori
input L(uk) into SISO decoder 1 is zero. The extrinsic output Le(ûk) of SISO
decoder 1 is used (after interleaving) by SISO decoder 2 as a-priori input. The
extrinsic output of SISO decoder 2 will once again (after deinterleaving) be used
as the a-priori input of SISO decoder 1. This feedback of extrinsic output to SISO
decoder 1 starts the next iteration of the turbo decoding process. To obtain the
final output, the deinterleaved extrinsic output of the SISO decoders will need to
be combined with the a-priori input as described in Section 1.2.1.

The LTE turbo code internal interleaver, as described in [1], is designed to
shuffle the data between the two encoders/decoders. The interleaver helps spread
out the burst errors and thus improves the performance of the decoder.

The algorithms that can be used to perform turbo decoding are described in
greater detail in Section 1.2.

1.2 Algorithms for Decoding Turbo Codes

This section presents two classes of decoders that can be used for turbo decoding,
namely the MAP-type algorithms and the SOVA. Section 1.2.1 describes the Log-
Likelihood Ratio (LLR) that are used to exchange information between the two
constituent decoders. The details of MAP algorithm and SOVA algorithm are
covered in Sections 1.2.2 and 1.2.3 respectively.

1.2.1 Log Likelihood Ratio

To ease the complexity of performing multiplications, operations are typically per-
formed in the log-domain, and the Log-Likelihood Ratio (LLR) of a binary random
variable uk, L(uk) is defined as

L(uk) = log
P(uk = +1)

P(uk = −1)
(1.1)

The LLR of each bit is passed between the two constituent decoders.
Since uk is in GF(2) with the elements {+1,−1},

P(uk = +1) = 1− P(uk = −1)

and

L(uk) = log
P(uk = +1)

1− P(uk = +1)

4

1.2. ALGORITHMS FOR DECODING TURBO CODES

Conditioning the random variable uk on a different random variable yk, the
conditioned log-likelihood ratio L(uk|yk) is given by

L(uk|yk) = log
P(uk = +1|yk)

P(uk = −1|yk)

= log
p(yk|uk = +1) · P(uk = +1)

p(yk|uk = −1) · P(uk = −1)

= L(yk|uk) + L(uk) (1.2)

After transmitting over a channel with a fading factor a and Additive White
Gaussian Noise (AWGN),

L(uk|yk) = log
p(yk|uk = +1) · P(uk = +1)

p(yk|uk = −1) · P(uk = −1)

= log
exp(−Es/N0(yk − a)2)

exp(−Es/N0(yk + a)2)
+ log

P(uk = +1)

P(uk = −1)

= 4 · a ·
Es

N0
· yk + L(uk)

= Lc · yk + L(uk) (1.3)

where Lc = 4 · a · (Es/N0) is known as the reliability value of the channel. For
fading channels, a denotes the fading amplitude, but for Gaussian channels, a = 1.

The detailed derivation of the LLR values output by the constituent decoders
is covered in [9]. In a similar fashion, the conditional probability can be derived,
and for brevity it is stated here as follows

p(yk|uk = ±1) =

(
P(yk) · (1 + exp(−L(uk)) · exp(−Lc · yk/2)

1 + exp(−(L(uk) + Lc · yk))

)

· exp(uk ·Lc · yk/2)

= Bk · exp(uk ·Lc · yk/2) (1.4)

where

Bk =
P(yk) · (1 + exp(−L(uk)) · exp(−Lc · yk/2)

1 + exp(−(L(uk) + Lc · yk))

The output of the decoder is the logarithm of the ratio of the bit probability
being “+1” or “−1” for a given observation of y, or

L(ûk) = L(uk|y) = log
P(u = +1|y)

P(u = −1|y)
(1.5)

A block diagram of a SISO decoder is shown in Figure 1.3. The decoder uses
the a-priori values L(uk) for all information bits uk and the received channel values

5

CHAPTER 1. INTRODUCTION

Soft-input/Soft-Output
Decoder

L(uk)

Lc · yk

Le(ûk)

L(ûk)

Figure 1.3: Block diagram of SISO decoder

Lc · yk for the coded bits as inputs and returns the soft output bits of the decoder,
L(ûk) and extrinsic information Le(ûk). For systematic codes, the resulting soft
output information bit is given by

L(ûk) = Lc · yk + L(uk) + Le(ûk) (1.6)

As shown in Figure 1.2b, the extrinsic output from the first constituent decoder,
Le(ûk), is passed via an interleaver/deinterleaver to the next constituent decoder
as the a-priori input. The a-priori input to the first decoder in the first iteration
is typically set to zero, as there is usually no a-priori information at this stage. By
increasing the number of iterations, better decoding performance can be obtained
at the expense of latency and computational cost.

1.2.2 MAP Type Algorithms

The traditional approach to decoding RSC codes is to use the “symbol-by-symbol”
Maximum-a-Posteriori (MAP) decoding that minimizes the Bit Error Rate (BER)
of the decoded bits. MAP decoding is done using the Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm [10] which is optimal for estimating the outputs of a Markov
process.

The MAP algorithm is not practical for implementation because of the numer-
ical representation of probabilities, non-linear functions and the large numbers of
multiplication and division operations. Log-MAP is equivalent to true MAP, but
because it operates in the logarithmic domain, it avoids the implementation pitfalls
associated with MAP. The Max-Log-MAP uses an approximation to simplify the
Log-MAP further at the expense of some performance degradation. The MAP,
Log-MAP and Max-Log-MAP algorithms will be described in the sections that
follow.

MAP

Let yj<k denote the sequence of received symbols yj from the start of the trellis up
to and including t = k − 1, and yj>k be the corresponding received sequence from
t = k + 1 to the end of the trellis. Using the LLR defined in (1.5),

6

1.2. ALGORITHMS FOR DECODING TURBO CODES

L(ûk) = log
P(uk = +1|y)

P(uk = −1|y)
= log

∑(s′,s)
uk=+1 P(s′, s, y)

∑(s′,s)
uk=−1 P(s′, s, y)

(1.7)

where

P(s′, s, y) = P(s′, yj<k) · P(s, yk|s
′) · P(yj>k|s)

= P (s′, yj<k)
︸ ︷︷ ︸

αk−1(s′)

· P(s|s′)
︸ ︷︷ ︸

γk(s′,s)

· P(yj>k|s)
︸ ︷︷ ︸

βk(s)

(1.8)

therefore

L(ûk) = log

∑(s′,s)
uk=+1 αk−1(s

′) · γk(s′, s) ·βk(s)
∑(s′,s)

uk=−1 αk−1(s′) · γk(s′, s) ·βk(s)
(1.9)

The BCJR algorithm uses both forward and backward recursions through the
trellis. The branch transition probability from sequence s′ to sequence s is given
by the γk(s′, s) term. The forward recursion is given by the αk(s) term and de-
pends on the previous bits in the trellis. The backward recursion is given by the
βk−1(s

′) term, which as expected depends on the next/future bits in the trellis.
Mathematically, these three terms can be written as follows

γk(s′, s) = P(s|s′) · p(yk|s
′, s)

= P(yk|uk) · P(uk) (1.10)

αk(s) =
∑

(s′,s)

γk(s′, s) ·αk−1(s
′) (1.11)

βk−1(s
′) =

∑

(s′,s)

γk(s′, s) ·βk(s) (1.12)

As the index pair of previous and current state (s′, s) determines the information
bit uk and the parity bits xk,v for v = 2, . . . , n in a systematic code, the probability
of the received symbol given a specific data bit can be written as follows

P(yk|uk) = P(yk,1|uk) ·

n∏

v=2

P(yk,v|xk,v)

7

CHAPTER 1. INTRODUCTION

and using (1.4),

P(yk|uk) = Bk · exp

(
1

2
Lc · yk,1 ·uk

)

·

(
n∏

v=2

P(yk,v|xk,v)

)

= Bk · exp

(

1

2
Lc · yk,1 ·uk +

1

2

n∑

v=2

P(yk,v|xk,v)

)

(1.13)

Log-MAP

The Log-MAP algorithm is a transformation of the MAP algorithm to the logarith-
mic domain, and in doing so, multiplications are converted into additions. Since it
is just a change in domain, the Log-MAP algorithm gives equivalent performance
to the MAP algorithm.

For brevity, the LLR expression for Log-MAP is stated as follows,

L(ûk) = log

∑(s′,s)
uk=+1 exp

(
αLM

k−1(s
′)
)
· exp

(
γLM

k (s′, s)
)
· exp

(
βLM

k (s)
)

∑(s′,s)
uk=−1 exp

(
αLM

k−1(s
′)
)
· exp

(
γLM

k (s′, s)
)
· exp

(
βLM

k (s)
)

= log





(s′,s)
∑

uk=+1

exp
(
αLM

k−1(s
′) + γLM

k (s′, s) + βLM

k (s)
)





− log





(s′,s)
∑

uk=−1

exp
(
αLM

k−1(s
′) + γLM

k (s′, s) + βLM

k (s)
)





(1.14)

where αLM

k−1(s
′), βLM

k (s) and γLM

k (s′, s) are the forward recursion, backward recur-
sion, and transitional probability terms respectively in the logarithmic domain.

Max-Log-MAP

Despite having reduced the complexity of the MAP algorithm by moving to the
logarithmic domain, the log

(∑k
i=1(exp(xi))

)
function in the Log-MAP remains

computationally intensive to implement. The Max-Log-MAP algorithm provides
reduces the complexity of the Log-MAP algorithm drastically by performing the
following approximation

log

(
k∑

i=1

(exp
(
xi)
)

)

= max
(
exp(xi)

)
+ log

(
k∑

i=1

(
exp(xi −max(xi))

)

)

≈ max
(
exp(xi)

)
(1.15)

By applying this approximation on the Log-MAP branch transition probabili-
ties, Log-MAP forward and backward recursion equations, the following equations

8

1.2. ALGORITHMS FOR DECODING TURBO CODES

are obtained

αMLM

k (s) = max
(
[γLM

uk=+1(s
′, s) + αLM

k−1(s
′)], [γLM

uk=−1(s
′, s) + αLM

k−1(s
′)]
)

(1.16)

βMLM

k (s′) = max
(
[γLM

uk=+1(s
′, s) + βLM

k (s)], [γLM

uk=−1(s
′, s) + βLM

k (s)]
)

(1.17)

and the resulting LLR for the Max-Log-MAP algorithm can be stated as

L(ûk) = max
s′,s (uk=+1)

(
[γLM

k (s′, s) + αMLM

k−1 (s) + βMLM

k (s′)],

[γLM

k (s′, s) + αMLM

k (s) + βMLM

k (s′)]
)

− max
s′,s (uk=−1)

(
[γLM

k (s′, s) + αMLM

k−1 (s) + βMLM

k (s′)],

[γLM

k (s′, s) + αMLM

k (s) + βMLM

k (s′)]
)

(1.18)

The approximation in (1.15) degrades the performance of the Max-Log-MAP algo-
rithm as compared with the Log-MAP. A correction factor is typically added into
the Max-Log-MAP algorithm to compensate for the degradation, and is used in
practice to implement Log-MAP decoders in hardware [2].

1.2.3 SOVA Algorithm

The traditional approach to decoding convolutional codes is by using the Viterbi
Algorithm (VA) that provides a Maximum Likelihood (ML) sequence [11]. The VA
in the most general form is a maximum a-posteriori probability sequence estimator
that finds the maximum likelihood path through the trellis diagram given a specific
received sequence. Mathematically, the VA finds the trellis path that maximizes
the a-posteriori probability P(S|Y).

The Soft-Output Viterbi Algorithm (SOVA) decoder outputs soft values that
makes it suitable for use in turbo decoders. The modifications to enable the tra-
ditional hard-decision VA to give soft-output values was proposed in [12]. The
description of SOVA that follows adopts the notation used in [13].

Assuming that the state sequence S is a Markov sequence and since the received
sequence Y is independent of the trellis path selection S, the VA maximizes

p(Sk,Yk) = p(Sk−1,Yk−1) P(uk) p(yk|s
′, s) (1.19)

where Sk = {s1, s2, . . . , sk}, Yk = {y1, y2, . . . , yk}, s′ = sk−1, s = sk and uk is the
source bit that corresponds to a state transition s′ → s in path Sk.

Since the path metric Mk(Sk) that is associated with the path Sk in the trellis
is defined as

Mk(Sk) = log (p(Sk,Yk))

we obtain the following equation after substituting into (1.19)

Mk(Sk) = Mk−1 (Sk) + log P(uk) + log(p(yk|s
′, s)) (1.20)

9

CHAPTER 1. INTRODUCTION

t
k + Uk

uk
survivor path: iU

iU ′

i(U−1)′

i(U−2)′

concurrent paths: iδ′

Figure 1.4: Trellis diagram showing survivor and discarded concurrent paths

A forward recursion similar to that in the Log-MAP algorithm (1.11) is used to
compute the path metrics. The metric of the ith path at t = k can be expressed
recursively [9][13] as

Mk(Sk) = Mk−1(Sk−1) +
1

2
L(uk) ·uk +

1

2

n∑

v=1

Lc · yk,v ·xk,v (1.21)

Mk(Sk) = Mk−1(Sk−1) +
1

2
L(uk) ·uk +

1

2
Lc · yk,1 ·uk

+
1

2

n∑

v=2

Lc · yk,v ·xk,v

(1.22)

where (1.22) is the special case of (1.21) for systematic codes with yk,1 denoting the
received systematic bit. It is useful to note that both (1.21) and (1.22) only hold for
convolutional codes generated by feedback encoders, and not for codes generated
by feed-forward encoders.

The desired soft output bit is decided by the VA after a merging delay of U bit.
At t = k + U , the VA has selected the survivor path iU that terminates at the ML
state as shown in Figure 1.4. The other (concurrent) path terminating at the ML
state iU ′ is discarded. Since the path iU decides the soft output of ûk at t = k,
there are a total of U +1 discarded non-surviving paths denoted by i0′ , i1′ , . . . , iU ′ ,
one for each state in path iU between t = k and t = k + U . The metric difference
for a state on the path along iU is defined as

∆k+l = Mk+l(sk+l)−Mk+l(s
′
k+l) (1.23)

The probability, P(correct) of a correct path decision of the survivor at t = k+ l
given that yj≤k+l can be simplified as [13]

P(correct) =
exp(∆k+l)

1 + exp(∆k+l)
(1.24)

10

1.2. ALGORITHMS FOR DECODING TURBO CODES

t
kk − U

us
k−U

Ls
k−U Ls

k−2 Ls
k−1 Ls

k
survivor path: iU

i0′

uc
k−U

i1′

uc
k−U

i2′

uc
k−U

concurrent paths: iδ′

Figure 1.5: Trellis diagram for HR-SOVA

This leads to the LLR of the binary path decision to be

log
P(correct)

1− P(correct)
= ∆k+l (1.25)

The resulting soft output of the SOVA is the decision bit ûk multiplied by the
reliability values of all the errors, which can be approximated using

L(ûk) ≈ ûk · min
l=0,...,U

∆k+l (1.26)

where the minimum in (1.26) is taken over all the non-surviving paths that would
have led to a different decision bit ûk. Equation 1.26 shows that the same hard
decisions ûk that are obtained in classical VA, together with the updates considering
the non-surviving paths are used to obtain the LLR of each bit.

To make (1.26) easier to implement in practice, update rules are used to modify
the metric differences during decoding. The update rule given in (1.26) is often
referred to as the Hagenauer rule [12], or HR-SOVA, and can be written mathe-
matically as follows:

Ls
k−U ← min

[
Ls

k, Ls
k−U

]
when us

k−U 6= uc
k−U (1.27)

The updating in (1.27) is applied for U time steps between t = k and t = k−U+1
and thus it can be seen that each reliability value, Ls

k−U can be updated up to U
times. As shown in Figure 1.5, the Hagenauer rule considers the survivor path, as
well as up to U concurrent paths to the survivor path, using the cases when the
concurrent path will give a different decision bit (ûk−U) to update the reliability
values, thus re-stating (1.26).

Another update rule in the literature that was described by Battail [7], often
referred to as the Battail updating rule or BR-SOVA is given as:

Ls
k−U ← min

[
Ls

k, Ls
k−U

]
when us

k−U 6= uc
k−U (1.28a)

Ls
k−U ← min

[
Ls

k + Lc
k−U , Ls

k−U

]
when us

k−U = uc
k−U (1.28b)

11

CHAPTER 1. INTRODUCTION

t
kk − U

us
k−U

Ls
k−U Ls

k−3 Ls
k−2 Ls

k−1 Ls
ksurvivor path

Lc
k−1Lc

k−2

Lc
k−3Lc

k−U

uc
k−U

primary concurrent path

uc′

k−U

uc′

k−U

uc′

k−U

secondary concurrent paths

Figure 1.6: Trellis diagram for BR-SOVA showing one primary concurrent path

The Battail rule is not documented in sufficient detail in the open literature other
than the two updating rules in (1.28), and so an interpretation of BR-SOVA is used
in the analysis that follows. In addition to the U concurrent paths to the survivor
path considered by the Hagenauer rule, the Battail rule considers the U secondary
concurrent paths to the main (primary) concurrent path. Figure 1.6 shows one
primary concurrent concurrent path and the resulting secondary concurrent paths.
The secondary concurrent paths to the main concurrent path are traced back to
t = k − U , and the decision bit of the main concurrent path (uc

k−U) is compared

with the decision bit of the secondary concurrent path (uc′

k−U) and the HR-SOVA
update rules in (1.27) are used to update Lc

k−U . Finally, the reliability bits of the
survivor path (us

k−U) and main concurrent path (uc
k−U) are compared, and the

BR-SOVA updating rules in (1.28) are applied to update Ls
k−U .

The updates in the previous paragraph will be repeated for all U primary concur-
rent paths and thus up to U updates can be applied to every Ls

k−U . BR-SOVA thus
provides for possibly the same number of reliability value updates as HR-SOVA.

12

Chapter 2

Improved SOVA Algorithm

This chapter describes the modifications that are made to the traditional Hage-
nauer Rule SOVA (HR-SOVA) and Battail Rule SOVA (BR-SOVA) algorithms to
improve the performance of the SOVA algorithms. The modifications to the SOVA
algorithms are described in Section 2.1. The results and analysis from computer
simulations are presented in Section 2.2.

2.1 Modifications to SOVA

Based on the HR-SOVA as presented in [12] and [13], there have been various
modification techniques presented to improve its performance. The algorithmic
improvements to SOVA that were investigated can be divided into three main cate-
gories, namely by varying the merging and update depths, scaling and thresholding
intermediate values, and modifying the reliability update values. These three cate-
gories are described in Sections 2.1.1, 2.1.2 and 2.1.3. With hardware architecture in
mind, Sections 2.1.4 and 2.1.5 describe the various considerations and modifications
made to the SOVA algorithm in order to improve hardware performance.

2.1.1 Merging and Updating Depths

In a practical decoder, it is not possible to perform VA over the entire block of
channel data due to the excessive latency and storage requirements. Instead, sliding
windows of merging depth L and update depth U are used to limit the traceback and
decoding depths. One possible modification is to vary L and U parameters for the
SOVA algorithm. Increasing L will increase the likelihood for a merged path while
using a larger U increases the number of updates for the reliability value. However,
it is clear that increasing these two values will increase the memory requirements
and latency.

The simulation results for determining the optimal values for L and U are
presented in Section 2.2.2. Hardware considerations such as performance, latency

13

CHAPTER 2. IMPROVED SOVA ALGORITHM

and hardware requirements are also discussed in Section 2.2.2.

2.1.2 Reliability Thresholding

As described in [6], the output of the SOVA decoder tends to be over-estimated
due to a correlation between the extrinsic output and the intrinsic input into the
decoder. Moreover, since SOVA only considers two paths, it is possible that the
output will be overly optimistic when the closest “true” competitor to the ML path
is eliminated and thus the resulting metric difference between the surviving ML
path and its concurrent path is larger than it should be. This occurrence will
result in an over-estimation of the final reliability value L(ûk), which may result
in errors in the output of the decoder. In order to overcome this issue, several
remedies have been proposed in various papers. In [7], the authors proposed to
apply a thresholding limit ∆TH on the metric difference value ∆k,s by applying the
following rule

∆k,s ← ∆TH if ∆k,s > ∆TH (2.1)

The value of ∆TH needs to be selected with caution. When using ∆TH that is
too low, the resulting output may be over-compensated, resulting in an overly
pessimistic reliability output which may be significant enough to adversely affect
the decoding result in the next iteration. When ∆TH is too large, the thresholding
does not take effect, and does not provide the necessary compensation.

According to [7], the appropriate value for ∆TH is dependent on the channel
quality and the optimum value is usually determined by simulation. For the case
when the SOVA decoder is implemented in hardware, quantization effects will also
need to be taken into consideration. To simplify hardware implementation, the
value of ∆TH can be selected to be a power of 2. The simulation results for the
reliability thresholding are presented and discussed in section 2.2.

2.1.3 Scaling of SOVA Outputs

An alternative approach to control the extrinsic reliability values is to apply at-
tenuation factors on two parameters, namely the immediate output of the SOVA
decoder, L(ûk), and the input to the next decoder, Le(ûk) as described in [14]
and [15]. To re-cap from section 1.2.3, the output of the SOVA decoder and the
input to the next SOVA decoder are related by

Le(ûk) = L(ûk)−
(
L(uk) + Lc · yk

)

= L(ûk)− Li(uk) (2.2)

where Li(uk) represents the intrinsic input information provided to the SOVA de-
coder.

The attenuation of the output reliability values is applied by scaling them with
a pair of parameters (c, d) as shown in Figure 2.1. Mathematically, the scaling can

14

2.1. MODIFICATIONS TO SOVA

SOVA
L(ûk)

× + ×
Le(ûk)

+

L(uk)

yk ,2

yk ,1

−

d c

Figure 2.1: Modified SOVA with scaling factors c and d

Table 2.1: Efficient hardware scaling values

Scale Value Binary Representation Number of Bits
0.25 0.01b 3 bit
0.5 0.1b 2 bit

0.625 0.101b 4 bit
0.75 0.11b 3 bit
0.875 0.111b 4 bit

be expressed as follows

Le(ûk) = c
(
d ·L(ûk)− Li(uk)

)
(2.3)

As the factors c and d are attenuation factors, they obey the following condition.

0 < c, d ≤ 1 (2.4)

The detailed analysis of this Modified Soft-Output Viterbi Algorithm (MSOVA)
approach is covered in [14] where MSOVA simulations with varying (c, d) param-
eters are performed. However, the simulation results documented so far are only
based on HR-SOVA update rule but not BR-SOVA. Since the performance of
BR-SOVA in turbo decoding is to be investigated, the performance of MSOVA
with the BR-SOVA update rule is also considered in this report.

With hardware considerations in mind, it is desirable to consider the compu-
tation of extrinsic reliability values in the domain of fixed point operations. This
indicates that (c, d) parameters are to be quantized. Examples of scaling values of
(c, d) and the number of bits that will be needed to represent these values in fixed
point are tabulated in Table 2.1.

The simulation results for MSOVA with BR-SOVA and HR-SOVA update rules
are presented and discussed in section 2.2.2.

2.1.4 Simplification of BR-SOVA Update Rule

According to the BR-SOVA update rules given in (1.28), when us
k−U = uc

k−U ,
Lc

j is to be updated with reliability values of its own secondary concurrent paths,

15

CHAPTER 2. IMPROVED SOVA ALGORITHM

according to the HR-SOVA update rule. The process is equivalent to that being
performed for Ls

j , which is Ls
j ← min

{
Ls

j ,∆
s
k

}
. This implies that for BR-SOVA,

the HR-SOVA reliability update rule needs to be applied twice for every pair of
survivor-concurrent paths, with the survivor path update dependent on the results
of the concurrent path update.

The additional updates will result in a more complicated implementation of
BR-SOVA as compared to HR-SOVA. In addition to the hardware complexity to
perform the updates, there is a need to store Lc

j , which will require extra memory
to store concurrent path information. As the two updates to the reliability values
have to be performed serially, the overall latency for BR-SOVA is expected to be
increased.

With increased complexity, BR-SOVA is expected to take a longer time in sim-
ulation as compared to HR-SOVA. For hardware implementation, BR-SOVA is
expected to consume more hardware resources and to have a longer processing
latency.

Considering practical issues such as latency and hardware cost, it is desirable
to investigate methodologies to reduce the simulation time, and more importantly
to reduce the chip area used in hardware implementations of BR-SOVA. To this
end, the following simplification for BR-SOVA is considered.

Ls
j ≈

{

min
{
∆s

k, Ls
j

}
when us

j 6= uc
j

min
{
∆s

k + ∆c
j , L

s
j

}
when us

j = uc
j

(2.5)

Equation (2.5) shows that Ls
j is updated with ∆c

j instead of Lc
j when us

k = uc
k.

The analogy for the above simplification is as follows. Since Lc
j is supposed to be

updated with the minimum among all its concurrent ∆j , it can be deduced that

∆c
j ≥ Lc

j

which implies that

∆s
k + ∆c

j ≥ ∆s
k + Lc

j

This equation implies that Ls
j is updated with a value larger than ∆s

k + Lc
j , which

means that it is less likely for ∆s
k + ∆c

j to be smaller than Ls
j . The effect of this

simplification will only be that Ls
j will be updated less often than in the orig-

inal BR-SOVA. The effect of reduced update occurrences for us
j = uc

j may be
investigated with simulations. Simulation results for the Simplified Battail Rule
SOVA (SB-SOVA) update rule are presented and discussed in section 2.2.3.

The advantage in the SB-SOVA update rule can be observed as follows. With
the simplification, Ls

j update can be performed immediately when the condition
is met, without having to update Lc

j first. This eliminates the extra complexity
involved in updating Ls

j with ∆j of other concurrent paths. This also eliminates
the need to wait for Lc

j to be updated before Ls
j update is performed, thus reducing

the latency when SB-SOVA is applied.

16

2.1. MODIFICATIONS TO SOVA

increasing t
SOVA Update

∆s
k−U

us
k−U

uc
k−U

t = k

U

Algorithm View

SOVA Update

(us
j , ∆s

j)

survivor path

(uc
j , ∆c

j)

concurrent path

Hardware Implementation

Figure 2.2: Two methods to perform SOVA updates

2.1.5 Reliability Update Methods for SOVA

Consider a U -stage survivor path sequence that is obtained at stage k, via Viterbi
decoding traceback. The hardware decision bits and corresponding reliability values
of the survivor path are denoted by

{us
k−j , L

s
k−j} for j = 1, 2, . . . , U

Given these information, there are two methods to perform updates on the reliabil-
ity values Ls

k−j , namely the algorithmic and hardware methods. Figure 2.2 presents
a graphical representation of these two methods of reliability updates for SOVA,
which are described in the following sections.

Algorithmic

The algorithmic method presented in most technical papers involves performing
updates on just the reliability value Ls

k−U of the last decision bit us
k−U . In this

case, all the concurrent paths emerging from the survivor path are considered.
During reliability updates, Ls

k−U is updated with ∆s
k−j (HR-SOVA), Lc

k−U and
Ls

k−j (BR-SOVA), or ∆c
k−U and Ls

k−j (SB-SOVA).

17

CHAPTER 2. IMPROVED SOVA ALGORITHM

SOVA Update

∆s
k−U

us
k−U = uc

k−U

t = k

U

Path Merge

Figure 2.3: Merged survivor and concurrent paths

A U -stage survivor path is expected to have at most U − 1 concurrent paths.
For these concurrent paths, there may be cases where the concurrent path merges
with the survivor path before stage k−U (as shown in Figure 2.3). When the paths
merge,

us
k−U = uc

k−U and Ls
k−j = Lc

k−j .

which implies that no update is expected for HR-SOVA since the survivor and
concurrent decision bits are the same.

As for BR-SOVA, the condition when the decision bits are the same is such that

Ls
k−j = min

{
∆s

k + Lc
k−j , L

s
k−j

}

= min
{
∆s

k + Ls
k−j , L

s
k−j

}

= Ls
k−j always

Thus, there will once again be no reliability update in this case.
The detailed description of the algorithmic SOVA decoding is as follows. At

every stage/time index k, the state metric Mi of every state i is obtained. The ML
state sk is selected among the N states based on maximum metric value.

Starting from state sk, a U -stage traceback is performed to obtain the ML state
sequence {sk−1, . . . , sk−U}. The corresponding hard decision bits {us

k−1, . . . , u
s
k−U}

and metric difference values {∆s
k−1, . . . ,∆

s
k−U} are also obtained.

For sk−1 to sk−U , the corresponding survivor and concurrent paths are extracted
to determine the decision bits us

k−U and uc
k−U . The reliability value for decision

bit us
k−U is then updated as follows.

For HR-SOVA,

Ls
k−U = min

uc

k−U
6=us

k−U

{
∆s

k−j

}
for j = 1, . . . , U

18

2.1. MODIFICATIONS TO SOVA

For BR-SOVA,

Ls
k−U =







min
{

∆s
k−j

}

, uc
k−U 6= us

k−U

min
{

∆s
k−j + Lc

k−U

}

, uc
k−U = us

k−U

for j = 1, . . . , U

which can be further simplified using the simplified BR-SOVA updating rules to
obtain

Ls
k−U ≈







min
{

∆s
k−j

}

, uc
k−U 6= us

k−U

min
{

∆s
k−j + ∆c

k−U

}

, uc
k−U = us

k−U

for j = 1, . . . , U

For the algorithmic SOVA method, the survivor path does not need to begin
from a merged point. The survivor path depth U however needs to be sufficient for
the path to merge at sk−U .

Hardware

In the previous section, SOVA reliability updates are performed on a single Ls
k−U

value with multiple concurrent paths. This section presents an alternative update
method that is suitable for use in hardware implementations.

Given the same U -stage survivor path and its first concurrent path emerging
from stage k − 1, all U reliability values Ls

k−j within the same survivor path can
be updated with Ls

k, as shown in the lower sub-figure of Figure 2.2.
The motivation for performing such an update method is to take advantage of

the concurrent nature of hardware. With U sets of identical hardware that each
performs reliability update for a single bit, the U instances of Ls

k−j can be updated
concurrently within the same clock cycle.

Since reliability values of the survivor path from stage k − 1 onwards are being
updated, it is crucial to ensure that the survivor path has indeed merged. Hence,
an important assumption to be made for this reliability update method is that the
survivor path is starting at an ML state sk where all the paths have merged, which
means that a sufficiently large merge window, L is needed prior to performing SOVA
reliability updates.

Given that the current trellis stage is computing the state metric at stage k,
an L-stage Viterbi traceback is required to obtain the merged state at k − L. For
all paths to merge at stage k − L, simulation results show that L has to be at
least 5 to 10 times the constraint length, with the former suitable for rate R = 1/2
codes and the latter for higher coding rates. From stage k − L onwards, a reliable
U -stage survivor path is then determined via traceback. With that, the survivor
path will have its ML state sequence starting from sk−L be represented by sk−L−1

to sk−L−U . The corresponding decision bits and metric differences will be

{
us

k−L−1, . . . , u
s
k−L−U

}
, and

{
∆s

k−L−1, . . . ,∆
s
k−L−U

}

19

CHAPTER 2. IMPROVED SOVA ALGORITHM

The first concurrent path emerging from stage k−L will have its decision bits and
metric differences represented by

{
uc

k−L−1, . . . , u
c
k−L−U

}
, and

{
∆c

k−L−1, . . . ,∆
c
k−L−U

}

For each Ls
k−L−j to be updated with sufficient number of reliability values, U has

to be 3 to 5 times the constraint length. The effect of varying the merging and
updating windows are presented with simulation results in Section 2.2.4.

2.2 Simulation Results

2.2.1 Simulation Environment

Based on the algorithmic studies made in Section 2.1, this section presents the
simulation results obtained for these studies. Simulation is performed under an
in-house simulation environment based on the open-source IT++ [16] package.

As the objective of the thesis is to evaluate the performance of a SOVA based
turbo decoder under the LTE environment, the LTE internal interleaver is used for
all simulations. In order to have meaningful performance comparisons of the turbo
decoder with academic literature, an AWGN channel is used.

The performance of SOVA for simulation is determined by its BER and Block
Error Rate (BLER) performance. The receiver in LTE accepts or discards data
blocks based on the CRC checksum. If the CRC checksum of a block fails, the
entire data block will be discarded. Under such circumstances, the BLER is a more
accurate indication for performance than BER, as the BLER is a direct indication
of the data throughput performance of the turbo decoder.

In turbo decoding, the MAP and Log-MAP algorithms give the optimal baseline
performance for an a-posteriori probability decoder. The Max-Log-MAP algorithm
is an approximation of the Log-MAP algorithm and its performance is sufficiently
comparable to that of Log-MAP. In hardware implementations for turbo decoders,
the Max-Log-MAP algorithm is commonly used due to the fact that Max-Log-
MAP is reasonably simpler in hardware implementations, and yet able to achieve
performance that is close to Log-MAP. The Max-Log-MAP algorithm therefore
serves as a basis of comparison when evaluating the performance of the SOVA
algorithms.

2.2.2 Optimum Reliability Thresholding and Scaling Factors for SOVA

This section presents the simulation results for SOVA with reliability thresholding
∆TH and MSOVA applied. The values of ∆TH and sets of MSOVA parameters
(c, d) used for the simulation are listed as follows.

∆TH = {8, 16, 32, 64}

(c, d) = {0.25, 0.5, 0.68, 0.75, 0.8, 1.0}

20

http://itpp.sourceforge.net/

2.2. SIMULATION RESULTS

Table 2.2: Simulation conditions to determine optimum ∆TH

Environment: AWGN channel

Block length: 4 416

Number of blocks: 250

Total data size: ≈ 106 bit

Simulation Parameters

Length of Survivor/Concurrent paths: U = 4416

Fixed: (c, d) = (0.75, 1.00)

Variant: ∆TH = {8, 16, 32, 64}

Number of half iterations: 12, 16

The parameters listed above are applied to both HR-SOVA and BR-SOVA. For
Max-Log-MAP, a log-scale factor of 0.75 is applied to the extrinsic reliability out-
put Le(ûk), as the addition of a log-scale factor will improve the Max-Log-MAP
decoder’s performance [14].

In order to determine the effect of ∆TH , simulations are performed with con-
ditions listed in Table 2.2. The BER and BLER performance curves are shown in
Figure 2.4. Note that the results of ∆TH = 32, 64 for HR-SOVA and ∆TH = 32
for BR-SOVA are not included in the plots because for both SOVAs, the results
for ∆TH = 16 and ∆TH = 32 are similar and thus only results for ∆TH = 16
are shown. In the case of ∆TH = 64, the results obtained by using HR-SOVA
indicate that ∆TH is too large for the thresholding to be effective and thus the
non-meaningful result has been omitted from the plots.

Another important observation from the simulation results is that the HR-SOVA
and BR-SOVA turbo decoders both require at least 16 half iterations to obtain
BER/BLER performance that is comparable to Max-Log-MAP with 12 half itera-
tions. This is illustrated in a separate graph as shown in Figure 2.5. The number
of iterations has an impact on the overall data throughput and is discussed in
Section 3.7.

As observed from Figure 2.4, the performance for HR-SOVA with ∆TH = 16 is
better than ∆TH = 8. With reliability thresholding, the performance of HR-SOVA
is approximately 0.1 to 0.2 dB worse than Max-Log-MAP. The performance of
HR-SOVA is found to be similar to that of Max-Log-MAP at lower Signal-to-Noise
Ratio (SNR), but at higher SNR, the BLER performance is worse than Max-Log-
MAP and increasing the thresholding value does not improve the performance.

The performance for BR-SOVA with reliability thresholding is found to be
comparable to Max-Log-MAP for BER performance. Its BLER performance is
found to be approximately 0.1 dB better than Max-Log-MAP. At SNR of between

21

CHAPTER 2. IMPROVED SOVA ALGORITHM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

BER performance for SOVA with varying ∆
TH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

SNR (dB)

B
LE

R
 (

B
lo

ck
 E

rr
or

 R
at

e)

BLER performance for SOVA with varying ∆
TH

Max−Log−MAP
HR−SOVA: ∆

TH
=16

HR−SOVA: ∆
TH

=8

BR−SOVA: ∆
TH

=64

BR−SOVA: ∆
TH

=16

BR−SOVA: ∆
TH

=8

Max−Log−MAP
HR−SOVA: ∆

TH
=16

HR−SOVA: ∆
TH

=8

BR−SOVA: ∆
TH

=64

BR−SOVA: ∆
TH

=16

BR−SOVA: ∆
TH

=8

Figure 2.4: BER and BLER performance for SOVA with varying ∆TH

0 dB and 0.5 dB, the BLER performance of BR-SOVA is best at ∆TH = 8. For
SNR higher than 0.5 dB, BR-SOVA with ∆TH ≥ 16 and ∆TH = 64 have BLER
that is better than Max-Log-MAP.

The simulation results in Figure 2.4 are based on SOVA reliability updating per-
formed over the entire block length Ki, using the algorithmic method as described

22

2.2. SIMULATION RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

BER performance for different number of half iterations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

SNR (dB)

B
LE

R
 (

B
lo

ck
 E

rr
or

 R
at

e)

BLER performance for different number of half iterations

Max−Log−MAP: 12 half iterations
HR−SOVA: 16 half iterations
HR−SOVA: 12 half iterations
BR−SOVA: 16 half iterations
BR−SOVA: 12 half iterations

Max−Log−MAP: 12 half iterations
HR−SOVA: 16 half iterations
HR−SOVA: 12 half iterations
BR−SOVA: 16 half iterations
BR−SOVA: 12 half iterations

Figure 2.5: BER and BLER performance for SOVA with varying number of itera-
tions

in section 2.1.5, that is U = Ki. Although the performance for BR-SOVA is better
than Max-Log-MAP, it is however not feasible from the hardware architecture point
of view. The algorithmic method translates to a higher hardware resource utiliza-
tion, especially when the block length is large. To take a more practical approach,
the reliability update path is instead limited by a window size U , where U < Ki.

23

CHAPTER 2. IMPROVED SOVA ALGORITHM

Table 2.3: Simulation conditions to determine optimum MSOVA parameters

Environment: AWGN channel

Block length: 4 416

Number of blocks: 250

Total data size: ≈ 106 bit

Simulation Parameters for HR-SOVA

Update Depth U : 40

∆TH : 16

(c, d): (0.75, 1.0) (0.75, 0.75) (0.75, 0.8) (0.68, 0.8)

Simulation Parameters for BR-SOVA

Update Depth L: 40

∆TH : 8

(c, d): (0.75, 1.0) (0.75, 0.75) (0.75, 0.8) (0.68, 0.8)

The value of U then becomes an additional parameter to vary for the simulation.
As a rule thumb, an update window U of 10 times the constraint length is sufficient
for all paths to merge, and thus U = 40 is selected for the following simulations.

The simulation results presented so far are for conditions where the MSOVA
parameters are kept constant, while determining the optimum ∆TH for each SOVA
method. To determine the optimum MSOVA parameters, simulations under con-
ditions listed in Table 2.3 are performed and the results are shown in Figure 2.6.

As observed from the results, the optimum (c, d) parameters for HR-SOVA
is found to be (0.75, 0.8). However, it should be noted that it is not possible to
precisely represent the value 0.8 using fixed point representation which will translate
into a performance degradation when implemented in hardware. To mitigate this,
more bits may be used to represent the scale factor. As an example, 0.8 can be
approximated by 0.796875 = 0.110011b which will require 7 bit to represent. A
larger multiplier will be needed, and the result will have a longer wordlength. This
will translate to either higher storage requirements for the extrinsic values, or will
require truncation of the result of the multiplication. The truncation of the result
will however reduce the advantage of choosing to have higher precision for the
multiplication.

For BR-SOVA, the parameter set (0.75, 1.00) is observed to give the best per-
formance, with performance comparable to that of Max-Log-MAP.

As observed from the simulation results, the improvements on HR-SOVA is
possible with ∆TH and (c, d) parameters, but the price to pay is the increased
wordlength required to implement the scale factor of 0.8. For BR-SOVA, per-

24

2.2. SIMULATION RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

BER performance for SOVA with varying (c,d) parameters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

SNR (dB)

B
LE

R
 (

B
lo

ck
 E

rr
or

 R
at

e)

BLER performance for SOVA with varying (c,d) parameters

Max−Log−MAP
HR−SOVA: c=0.75, d=1.00
HR−SOVA: c=0.75, d=0.75
HR−SOVA: c=0.75, d=0.80
HR−SOVA: c=0.68, d=0.80
BR−SOVA: c=0.75, d=1.00
BR−SOVA: c=0.75, d=0.75
BR−SOVA: c−0.75, d=0.80
BR−SOVA: c=0.68, d=0.80

Max−Log−MAP
HR−SOVA: c=0.75, d=1.00
HR−SOVA: c=0.75, d=0.75
HR−SOVA: c=0.75, d=0.80
HR−SOVA: c=0.68, d=0.80
BR−SOVA: c=0.75, d=1.00
BR−SOVA: c=0.75, d=0.75
BR−SOVA: c−0.75, d=0.80
BR−SOVA: c=0.68, d=0.80

Figure 2.6: Simulation results for SOVA with varying (c, d) parameters

formance that is comparable or even better than Max-Log-MAP is achieved with
attenuation of only the extrinsic reliability output (parameter c) and ∆TH . There
is no need for further attenuation of the intrinsic reliability output (parameter d) to
obtain desirable BER/BLER performance for BR-SOVA. This is equivalent to the
same log scale factor being applied to Max-Log-MAP. Thus, it can be concluded
that for BR-SOVA, a properly selected reliability threshold value and an attenua-
tion of the extrinsic reliability output are sufficient to obtain acceptable BER and
BLER performance.

With the above presented results, the optimum MSOVA parameters and reli-
ability threshold values for HR-SOVA and BR-SOVA are summarized as follows:

25

CHAPTER 2. IMPROVED SOVA ALGORITHM

Table 2.4: Simulation conditions with SB-SOVA

Environment: AWGN channel

Block length: 4 416

Number of blocks: 250

Total data size: ≈ 106 bit

Simulation Parameters

Update method: Algorithmic with U = 40

(c, d) = (0.75, 1.00)

∆TH =

{

8 SNR ≤ 0.75 dB

16 SNR > 0.75 dB

HR-SOVA:

(c, d) = (0.75, 0.8)

∆TH = 16 for all SNR

BR-SOVA:

(c, d) = (0.75, 1.0)

∆TH =

{

8 SNR ≤ 0.5 dB

16 SNR > 0.5 dB

2.2.3 Effects of Simplified BR-SOVA Update Rule

As described in section 2.1.4, the main challenge of implementing BR-SOVA in
hardware is due to the high complexity involved in updating the concurrent relia-
bility values Lc

j . The SB-SOVA update rule described in Section 2.1.4 will eliminate
the process of updating the concurrent reliability value Lc

j . This simplification will
reduce the hardware complexity of SB-SOVA as compared to BR-SOVA.

To determine the extent of the degradation in the performance of SB-SOVA,
BER and BLER performance simulations under the conditions in Table 2.4 were
performed and the BER and BLER plots are shown in Figure 2.7.

The simulation results show that SB-SOVA has less than 0.1 dB degradation as
compared to BR-SOVA. Even with this degradation, the performance of SB-SOVA
is still comparable to that of Max-Log-MAP with 12 iterations, and with less
than 0.15 dB in degradation as compared to Max-Log-MAP with 16 iterations.

26

2.2. SIMULATION RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

Comparison of BER performance between SB−SOVA and BR−SOVA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

SNR (dB)

B
LE

R
 (

B
lo

ck
 E

rr
or

 R
at

e)

Comparison of BLER performance between SB−SOVA and BR−SOVA

Max−Log−MAP, 16 half iterations
Max−Log−MAP, 12 half iterations
BR−SOVA, with Lc

j
 update

SB−SOVA, without Lc
j
 update

Max−Log−MAP, 16 half iterations
Max−Log−MAP, 12 half iterations
BR−SOVA, with Lc

j
 update

SB−SOVA, without Lc
j
 update

Figure 2.7: Simulation results for SB-SOVA versus BR-SOVA

This shows that SB-SOVA update rule is a reasonable simplification to make for
BR-SOVA from the BER/BLER performance point of view.

2.2.4 Comparison of Reliability Update Methods for SOVA

As described in section 2.1.5, there are mainly two ways to perform SOVA reliability
updates on the traceback trellis, namely the algorithmic and hardware methods.

27

CHAPTER 2. IMPROVED SOVA ALGORITHM

Table 2.5: Simulation conditions with different reliability update methods

Environment: AWGN channel

Block length: 4 416

Number of blocks: 250

Total data size: ≈ 106 bit

Simulation Parameters

∆TH = 8

(c, d) = (0.75, 1.0)

Reliability update method:

Algorithmic U : 40

Hardware (L,U): (24, 40), (20, 20)

The simulation results presented so far are only based on the algorithmic method.
In this section, simulations are performed to show the equivalence of the algorithmic
and hardware methods.

The performance of the two methods for SB-SOVA are presented in Figure 2.8
with the simulation conditions in Table 2.5. The results show that the BER and
BLER performance of the two methods deviate from each other by at most 0.05 dB.
This implies that the two reliability update methods are equivalent. Since the
results for the algorithmic and hardware methods are similar, all future simulation
results presented will utilize one of the two proposed methods.

2.2.5 Results for Hardware Reliability Update Method

As described in Section 2.1.5, the hardware update method is made up of an L-step
merge stage and a U -step update/decode stage. At the merge stage, the traceback
has to be sufficiently long for all states to merge. Based on academic studies,
selecting L that is at least 5 times the constraint length is sufficient for all paths to
merge into a common starting state. For LTE turbo codes, the constraint length is
4 and hence a minimum L = 20 is sufficient.

Simulations can be performed on SOVA to determine the minimum (L,U) pa-
rameter set that will give desirable performance. The conditions tabulated in Ta-
ble 2.6 are used to run the simulation. The BER and BLER performance curves
are shown in Figure 2.9. As observed from Figure 2.9, the depth of SOVA up-
date window has a significant impact on the performance of both HR-SOVA and
SB-SOVA. For similar performance, HR-SOVA will need a longer reliability up-
date path U than SB-SOVA. With (L,U) = (24, 40), SB-SOVA is able to achieve
similar performance as Max-Log-MAP(12 iterations) and less than 0.2 dB degra-

28

2.2. SIMULATION RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

BER performance for Algorithmic and Hardware Reliability Update Methods

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

SNR (dB)

B
LE

R
 (

B
lo

ck
 E

rr
or

 R
at

e)

BLER performance for Algorithmic and Hardware Reliability Update Methods

Max−Log−MAP, 16 half iterations
Max−Log−MAP, 12 half iterations
SB−SOVA: Hardware update with L=24, U=40
SB−SOVA: Hardware update with L=24, U=24
SB−SOVA: Algorithmic update with U=40

Max−Log−MAP, 16 half iterations
Max−Log−MAP, 12 half iterations
SB−SOVA: Hardware update with L=24, U=40
SB−SOVA: Hardware update with L=24, U=24
SB−SOVA: Algorithmic update with U=40

Figure 2.8: Simulation results for different reliability update methods

dation in performance as compared to Max-Log-MAP with 16 iterations. For the
depths of (L,U) = (24, 24), the performance of SB-SOVA is only 0.1 dB worse than
Max-Log-MAP with the same number of iterations. For a shorter update depths of
(L,U) = (24, 20), the performance of SB-SOVA is still reasonably good, with less
than 0.2 dB degradation from Max-Log-MAP. It is noted that the required ∆TH

increases with the SNR for SB-SOVA. At higher SNR, a larger ∆TH is required to
achieve satisfactory performance.

As for HR-SOVA, larger depths are required to improve its performance. For
(L,U) = (40, 40), HR-SOVA is still 0.2 dB worse off than SB-SOVA with smaller
depths.

29

CHAPTER 2. IMPROVED SOVA ALGORITHM

Table 2.6: Simulation conditions to obtain merge and update depths

Environment: AWGN channel

Block length: 4 416

Number of blocks: 250

Total data size: ≈ 106 bit

Simulation Parameters for HR-SOVA

Update method: Hardware

(L,U): (40, 40) (24, 24)

(c, d) = (0.75, 0.80), ∆TH = 16

Simulation Parameters for SB-SOVA

Update method: Hardware

(L,U): (24, 40) (24, 24) (24, 20) (20, 20)

(c, d) = (0.75, 1.00)

∆TH =

{

8 SNR ≤ 0.75 dB

16 SNR > 0.75 dB

The above simulation results serve as a reference for selecting the appropriate
merge and update depths to be used in hardware architecture for an SB-SOVA
turbo decoder.

30

2.2. SIMULATION RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

B
E

R

BER performance for SOVA with varying Merge/Update depth

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

SNR (dB)

B
LE

R
 (

B
lo

ck
 E

rr
or

 R
at

e)

BLER performance for SOVA with varying Merge/Update depth

Max−Log−MAP, 16 iterations
Max−Log−MAP, 12 iterations
HR−SOVA: L=40, U=40
HR−SOVA: L=24, U=24
SB−SOVA: L=24, U=40
SB−SOVA: L=24, U=24
SB−SOVA: L=24, U=20
SB−SOVA: L=20, U=20

Max−Log−MAP, 16 iterations
Max−Log−MAP, 12 iterations
HR−SOVA: L=40, U=40
HR−SOVA: L=24, U=24
SB−SOVA: L=24, U=40
SB−SOVA: L=24, U=24
SB−SOVA: L=24, U=20
SB−SOVA: L=20, U=20

Figure 2.9: BER and BLER performance of SOVA for varying merge and update
depths

31

Chapter 3

SISO Decoder Hardware Architectures

The simulation results presented in Section 2.2 determined the SOVA parameters
that are needed for hardware implementation such as the merging and update
depths. The simulation results also showed that the performance of the proposed
SB-SOVA decoder was similar to that of a Max-Log-MAP decoder.

This chapter presents a discussion on the various hardware architectures that
can be applied to implementations of SISO decoders. It begins with a literature re-
view of the existing decoders based on Max-Log-MAP and HR-SOVA in Sections 3.1
and 3.2 respectively. Next, the proposed hardware architecture for SB-SOVA is pre-
sented in Section 3.3 together with optimizations that can be made to reduce the
hardware complexity of the SB-SOVA decoder in Sections 3.4 and 3.5. In Sec-
tion 3.6, considerations for a parallelized decoder is discussed.

Throughout the chapter, the key implementation considerations for the hard-
ware design, namely the hardware complexity, memory utilization and latency, will
be presented and discussed. Section 3.7 concludes the chapter by comparing the
proposed SOVA based decoders with a baseline of the more traditional Max-Log-
MAP based implementations so that the trade-offs between the hardware costs and
performance can be evaluated.

3.1 Hardware Architecture of Max-Log-MAP

A typical hardware architecture for a Max-Log-MAP turbo decoder consists of
recursion units to process both the forward recursion state metric αk(s) and the
backward recursion state metric βk−1(s

′), as described in section 1.2.2. Due to the
backward recursive nature of βk−1(s

′), computation of the first βk−1(s
′) can only

begin when the last bit of the block has been received. The timing behavior for a
classical Max-Log-MAP architecture is as shown in Figure 3.1.

As shown in Figure 3.1, the latency for the first decoded output to be ready
is 3Ki, where Ki is the data block length. The latency marked in the diagram
excludes the acquisition time for the channel data yk and L(uk) since it is assumed

33

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

time

sy
m

b
ol

s

latency

0 Ki 2Ki 3Ki

Ki

acquisition β α, LLR

Figure 3.1: Timing behavior of a classical MAP-based turbo decoder

that all data are available before the start of the turbo decoding. The latency also
excludes the time taken before the first branch metric γ is available, since this value
is expected to be much smaller than Ki. When the block length Ki is large, such
as 6 144 bit in LTE, the resulting latency is significant. To reduce the latency, the
input data block is usually divided into multiple windows, each of size W . Various
architectures with different configurations of forward and backward recursion units
have been proposed in [2] and [17]. The trade-off lies between required latency and
chip area.

A hardware architecture of a Max-Log-MAP SISO decoder is presented in Fig-
ure 3.2. The architecture consists of three branch metric computation (BMC) units,
one forward/alpha recursion processing (ARP) unit, two backward/beta recursion
processing BRP units and a LLR unit. These hardware units are all executing con-
currently. The BMC units are responsible for computing the branch metrics γ, as
illustrated in (1.10). The ARP unit is responsible for processing the forward state
metric α according to (1.11) while the BRP units determine the backward state met-
ric β according to (1.12). The purpose of having two BRP units is that while one
unit is in acquisition mode, the other unit is performing the actual computation
of the backward state metric as shown in Figure 3.3. The first BRP is used for
acquisition to determine initial backward state metric βk and the second BRP will
process βk−1 down to βk−W . Lastly, the LLR unit computes the final reliability
value Le(ûk) using both α and β. The block diagrams of the ARP and LLR units are
as shown in Figure 3.4 and Figure 3.5 respectively.

The ARP determines forward state metrics αk−1 to αk−W for each of the N states
in a window of W . These N×W forward state metrics will be stored in the memory
and will be used later to compute the final state metric together with the backward
state metrics βk−W to βk−1. As α and β are calculated in opposite directions, the
output of ARP has to be stored in a Last In First Out (LIFO) memory.

The hardware considerations for the Max-Log-MAP SISO decoder described

34

3.1. HARDWARE ARCHITECTURE OF MAX-LOG-MAP

BMC 1 ARP 1
LIFO

Memory

Sel

0

1

BMC 2 BRP 1

BMC 3 BRP 2

LLR

γ αk

γ βk

γ βk

Ctrl

Figure 3.2: System architecture of a Max-Log-MAP decoder

time

sy
m

b
ol

s

latency

0 W 2W 3W 4W 5W

W

2W

3W

4W

5W

yk acq

βacq

βacq

α

α β

β

LLR

LLR

Figure 3.3: Write behavior diagram for Max-Log-MAP decoder

above are covered in the following sections.

3.1.1 Resource Utilization

An estimated hardware resource utilization for the Max-Log-MAP turbo decoder is
computed as follows. The block diagram of a recursion unit is shown in Figure 3.4.

35

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

LIFO Memory

αk−1

+

γk

αk−1

+

γk

Sel
0 1

αk

+
−

sign

s′0 s′1

s = 0
LIFO Memory

αk−1

+

γk

αk−1

+

γk

Sel
0 1

αk

+
−

sign

s′0 s′1

s = 1
LIFO Memory

αk−1

+

γk

αk−1

+

γk

Sel
0 1

αk

+
−

sign

s′0 s′1

s = 7

Figure 3.4: ARP unit for Max-Log-MAP

Each recursion unit is made up of 3N units of ηα-bit adders and N units of ηα-bit
MUXes to compute the state metric. The block diagram of the LLR unit is as shown
in Figure 3.5. As the objective of the LLR unit is to select the maximum reliability
value, the unit is made up of multiplexers and adders to perform comparison and
selection.

As observed from Figure 3.2, that there are N units of ηβ-bit MUXes being
used to select the β metric between BRP 1 and BRP 2 to be used by the LLR block.

The overall hardware resource utilization for Max-Log-MAP is summarized in
Table 3.1.

3.1.2 Memory Requirements

The memory requirement for storing forward state metric α for each window is
computed as follows. For turbo decoder with M = 8 and W = 768, the storage
requirement for α will be

N ·W = 6144 ηα bit

where ηα is the data width of α. If ηα = 8, the storage requirement becomes
49 152 = 48 kbit for each window. The total storage for the entire data block will
be 48× 8 = 384 kbit. As the storage requirement is proportional to the total block
length Ki, the total storage requirements for Max-Log-MAP is relatively high.

3.1.3 Latency

As shown in the Figure 3.3, the decoder takes 3W cycles to decode a block of
W symbols. The latency can be reduced to 2W if values β and LLR can be obtained
concurrently. Since α has already been computed between t = W and t = 2W , the

36

3.1. HARDWARE ARCHITECTURE OF MAX-LOG-MAP

max

max

max

max

max

max

max

max

max

max

max

max

max

max

+

−

Λk

Z0(0)

Z0(1)

Z0(2)

Z0(3)

Z0(4)

Z0(5)

Z0(6)

Z0(7)

Z1(0)

Z1(1)

Z1(2)

Z1(3)

Z1(4)

Z1(5)

Z1(6)

Z1(7)

max ≡

Sel

0

1

sign

+

−

Figure 3.5: LLR unit for Max-Log-MAP

LLR can be computed immediately once β is available between t = 2W and t = 3W ,
and written into memory. Since β is made available in the reverse order, the LLR
will be computed in reverse order and thus can be stored in a LIFO memory. With
this, the LLR values read out from the LIFO in the next iteration will be in the
correct ascending order.

With parallel processing of a windowed channel input, the total latency is re-
duced from 2Ki to 2W . 2W can still be a large number, if the block length of
the channel input is large. For example, in LTE, the maximum block length Ki is
6 144. If the channel data block is divided into 8 windows, the size of each window
will be W = 768, which gives a latency of 1 536 clock cycles.

37

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

Table 3.1: Resource utilization for Max-Log-MAP

Resources in ηα,β bit

Adders MUXes (2-to-1)

BMC (3 units) 15 -

Recursion Units (ARP, BRP 1, BRP 2) 9N 3N

β selection between BRP 1 & BRP 2 - N

LLR unit 6N − 1 2(N − 1)

Total Resource Usage 15N + 14 6N − 2

Trellis Merge Decode

L
stages

U
stages

survivor path

concurrent paths

Figure 3.6: Hardware stages in SOVA

3.2 Hardware Architecture for HR-SOVA

Various hardware architectures for SOVA have been proposed [3][4][5], and these
architectures are typically made up of 3 stages, namely the trellis, merge and decode
stages, as illustrated in Figure 3.6.

3.2.1 Trellis Stage

The first stage is the trellis stage that computes the state metrics of each of the
2ν states, according to (1.22), that can be separated into the recursion and the
branch metric terms as as shown in (3.1).

Mk(Sk) = Mk−1(Sk−1) +
1

2
L(uk) ·uk +

1

2
Lc · yk,1 ·uk +

1

2

n∑

v=2

Lc · yk,v ·xk,v

︸ ︷︷ ︸

branch metric

(3.1)

38

3.2. HARDWARE ARCHITECTURE FOR HR-SOVA

+ +

+

≫ 1

≫ 1
−

Lk

Lc · yk,1

Lc · yk,2

λ0,0

λ0,1

Figure 3.7: BMC module in the trellis unit

Assuming that the expected parity bit xk,2 = +1, or equivalently that the parity
bit has a value of ‘0’, and let the branch metrics for the cases when the expected
systematic bits of uk = 0 and uk = 1 be denoted by λ0,0 and λ1,0 respectively.
These branch metrics are then calculated as follows

λ0,0 =
1

2
Lk(+1) +

1

2
Lc · yk,1(+1) +

1

2
Lc · yk,2(+1)

=

(
1

2
Lk +

1

2
Lc · yk,1

)

+
1

2
Lc · yk,2 (3.2)

λ1,0 =
1

2
Lk(−1) +

1

2
Lc · yk,1(−1) +

1

2
Lc · yk,2(+1)

= −

(
1

2
Lk +

1

2
Lc · yk,1

)

+
1

2
Lc · yk,2 (3.3)

where yk,1 and yk,2 are the received channel systematic and parity values respec-
tively, and Lk is input extrinsic information. Likewise, by assuming once again that
the expected parity bit xk,2 = −1, the branch metrics for the expected systematic
bits of uk = 0 and uk = 1 denoted by λ0,1 and λ1,1 respectively can be calculated.

λ0,1 =
1

2
Lk(+1) +

1

2
Lc · yk,1(+1) +

1

2
Lc · yk,2(−1)

=

(
1

2
Lk +

1

2
Lc · yk,1

)

−
1

2
Lc · yk,2 = −λ1,0 (3.4)

λ1,1 =
1

2
Lk(−1) +

1

2
Lc · yk,1(−1) +

1

2
Lc · yk,2(−1)

= −

(
1

2
Lk +

1

2
Lc · yk,1

)

−
1

2
Lc · yk,2 = −λ0,0 (3.5)

It can be observed that λ0,1 and λ1,1 are simply the negative values of λ1,0 and
λ0,0 respectively. This implies that there is only a need to generate two of the four
branch metrics, since the other two can be easily obtained in the ACS when needed.
A branch metric calculation unit BMC as shown in Figure 3.7 is used to generate
λ0,0 and λ0,1.

Other than the BMC unit, there are 2ν ACS in the trellis unit that will perform
recursion by adding the branch metric to the previous survivor path metric, compare

39

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

ACS0

Γk−1,0

Γk−1,4

λ0,0

Γk,0

∆k,0

uk,0

In0

In1

BM

SM

Del

bit

ACS1

Γk−1,4

Γk−1,0

λ0,0

Γk,1

∆k,1

uk,1

In0

In1

BM

SM

Del

bit

ACS2

Γk−1,1

Γk−1,5

λ0,1

Γk,2

∆k,2

uk,2

In0

In1

BM

SM

Del

bit

ACS3

Γk−1,5

Γk−1,1

λ0,1

Γk,3

∆k,3

uk,3

In0

In1

BM

SM

Del

bit

ACS4

Γk−1,6

Γk−1,2

λ0,1

Γk,4

∆k,4

uk,4

In0

In1

BM

SM

Del

bit

ACS5

Γk−1,2

Γk−1,6

λ0,1

Γk,5

∆k,5

uk,5

In0

In1

BM

SM

Del

bit

ACS6

Γk−1,7

Γk−1,3

λ0,0

Γk,6

∆k,6

uk,6

In0

In1

BM

SM

Del

bit

ACS7

Γk−1,3

Γk−1,7

λ0,0

Γk,7

∆k,7

uk,7

In0

In1

BM

SM

Del

bit

Sel

0

1

+

+

+
−

bit
sign bit

−

In0

In1

BM

BM

SM

Del

ACS

Figure 3.8: Trellis unit for LTE consisting of 8 ACS units

the two resultant metrics and finally select a survivor path metric to be saved for
use at the next stage. Each ACS will perform calculations for one state, and the
connections between the ACS are dependent on the generator’s polynomials. In the
case of the LTE turbo code, there are a total of 8 ACS modules connected together
as shown in Figure 3.8.

A close up view of the ACS can be seen in Figure 3.8. By taking advantage of
the fact that the branch metric and its inverse are negative values of one another,
the ACS uses a subtractor at one of its input branches to obtain the required inverse
branch metric. Thus by using one addition and one subtraction, the path metrics
for both cases when the input decision bit is ‘1’ and ‘0’ can be obtained. The two
path metrics are then compared to select the survivor (larger) metric which will
be output from ACS and stored for the next stage of the trellis. The hard decision
bit corresponding to the selection of the survivor path, together with the difference
between the two metric values are also output to be used in later stages for merging
and SOVA updates.

40

3.2. HARDWARE ARCHITECTURE FOR HR-SOVA

3.2.2 Merge Stage

The merge stage of depth L performs Viterbi decoding on the hard decision bits
determined at the trellis stage. The depth L has to be sufficiently large for all
2ν paths to merge after L stages, and is usually expressed in terms the constraint
length of the encoder K. The depth L is dependent on the code rate of the channel
and simulations show that a rather large merge depth of L = 10K is required for
all paths to merge, since the high coding rates that are defined in the LTE standard
need to be supported. In hardware, the merge stage can either be implemented via
the Register Exchange (RE) or traceback method. The block diagram of a RE unit
suitable for use in LTE is shown in Figure 3.9.

The RE method utilizes registers to store all the N ·L decision bits within the
trellis. Each row in the RE unit contains the decision bits of the entire path of
length L corresponding to the state of the first register of the row. The hard
decision bits from the trellis unit are used as the select signals for the MUXes to
control the state exchanges. The connections between the columns of registers are
identical for all columns and dependent on the generator polynomial. Assuming
that the depth of the RE is sufficient for merging, the output of all N rows of the
RE unit would give the same decision bit (i.e. decision bit of the survivor path),
which would be selected as the estimated received bit ûk.

For the case of traceback, the decision bits are stored in a memory instead of
registers, and a decision bit d stages away from a given state is to be determined
by traversing d steps backwards in a trellis. The main advantage of traceback is
that it can be implemented efficiently in dense memory, but the drawback is that
there is increased latency as compared to RE. Both methods are commonly used in
hardware designs of Viterbi decoders, and the chosen method is usually dependent
on the trade-off between latency and hardware utilization. In this thesis, only the
RE method is considered, due to the short latency required for the LTE decoder.

3.2.3 Decode Stage

The decode stage of depth U performs Viterbi decoding and reliability updates
on the metric difference values obtained at the output of the trellis stage. Re-
liability updates are performed on the U reliability values on the survivor path
Ls

k−L−1, L
s
k−L−2, . . . , L

s
k−L−U with each reliability value being updated for up to

U times. The output of the decode stage, multiplied by the hard decision bit, i.e.
ûk−L−U ·L

s
k−L−U is the intrinsic output of the SOVA SISO decoder.

Simulations show that the required update depth U for the decode stage is
smaller than the merge depth L and for code rate of 1/3, a depth of approximately
5K is sufficient for the decode stage to provide satisfactory results.

41

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

uk,0

uk,1

uk,2

uk,3

uk,4

uk,5

uk,6

uk,7

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

Sel

0

1

L-stages

Figure 3.9: Block diagram of register exchange unit

3.2.4 Example of Hardware Architecture

Based on the architectures proposed in the literature [3][4][5], the block diagram
of the hardware architecture for a HR-SOVA decoder is as shown in Figure 3.10.
The trellis unit (TRU) performs the branch metric computation followed by the
Add-Compare-Select (ACS) operations as described in Section 3.2.1. The Survivor
Memory Unit (SMU) performs as the merge stage to determine the ML path at
L stages away. The Path Comparison Unit (PCU) has a RE unit with similar
structure as that in the SMU and it performs the decode stage with depth U . Viterbi
decoding is performed using hardware decision bits that are stored in the First In
First Out (FIFO) memory (FIFO U) as shown in the figure. There are two FIFOs
required in the architecture; the first of which (FIFO U) is used to store the hard
decision bits uk decoded by the trellis unit and the second (FIFO ∆) is used to store
the metric difference ∆k computed by the trellis unit. For each stage, uk and ∆k

for all 2ν states will be stored. The SMU and PCU are made up of columns of RE
units. Each row of RE registers stores the hard decision sequence of the respective
state.

42

3.2. HARDWARE ARCHITECTURE FOR HR-SOVA

TRU
uk

SMU

PCU

UPD

FIFO U

FIFO ∆
Sel∆k

ûk−L

sk−L

ûk−L−U

uk−L

∆s
k−L L̂k−L−U

rel_bit

L U

yk

Lk

Figure 3.10: System architecture for HR-SOVA decoder

Register
Exchange

Unit

Sel
0

1

2

3

4

5

6

7

Modified
RSC Encoder

ûk

ML Path Index

sk

ûk

Figure 3.11: Block diagram of SMU module

The reliability updates are performed by the UPD module. The UPD module
consists of U units of UPE elements that update and store the reliability values
Ls

k−L−j at each stage of the decoding, based on the survivor and concurrent hard
decision bit sequences. As reliability updates require survivor and concurrent path
decision bits (uc

k−L−j and us
k−L−j) for comparison before deciding if an update is

needed, the PCU has additional logic to provide these relevance bits.
In order to obtain the survivor and concurrent paths, the SMU will first determine

the ML state sk by selecting the largest state metric Γi from the trellis unit as shown
in Figure 3.11. Very often in practical designs, finding the largest state metric is not
practical, and since it can be assumed that after L stages, the trellis has merged,
any one of the N outputs of the register exchange unit can be used instead of the
state chosen by the ML path index. The corresponding decision bit ûk−L is output
from the RE unit, and the associated state at L stages away (end of SMU) sk−L

can be determined by using an encoder. The encoder used to determine sk−L is
illustrated in Figure 3.12.

With sk−L and ûk−L determined, these two inputs are then used to select the
desired rows from the RE in the PCU that correspond to the survivor and concur-

43

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

+ D D D

+

ûk

sk[2 : 0]
sk[0] sk[1] sk[2]

Figure 3.12: Encoder to determine state sk−L

rent path sequences of decision bits. The selection is performed by letting v̂k−L

represent the complementary decision bit of ûk−L. That is,

ûk−L = 0 ⇒ v̂k−L = 1

ûk−L = 1 ⇒ v̂k−L = 0

The previous transition state of sk−L will be

ss
k−L−1(ûk−L)

û
k−D

←−−− sk−L

sc
k−L−1(v̂k−L)

v̂k−L

←−−− sk−L

and thus survivor and concurrent states ss
k−L−1 and a row select signal SC = sc

k−L−1

can be obtained.
A block diagram of the PCU is shown in Figure 3.13. By means of 8-to-1 MUXes,

the SC signal selects the row in the RE network that corresponds to the set of
concurrent path bits (uc

k−L−1, u
c
k−L−2, . . . , u

c
k−L−U). The relevance bits are then

determined by computing the XOR result of the decision bits of the survivor and the
concurrent sequences. Thus, a relevance bit of ‘0’ means that the survivor and
concurrent bit at the stage are the same, i.e. us

k−L−j = uc
k−L−j , and conversely a

relevance bit of ‘1’ implies that the bits are different (us
k−L−j 6= uc

k−L−j).
In HR-SOVA, the update rule is only applied when the survivor and concurrent

bits are different. Therefore the relevance bits generated in the PCU are used in the
UPD to indicate if reliability updates are required for each of the U stages. The UPD

module consists of U units of UPE, with each UPE element responsible for checking
a relevance bit from the PCU and to decide if an update is required. If an update
is required, the reliability value stored in the previous UPE stage is then compared
against ∆s

k−L that is selected from the FIFO ∆ using sk−L. The block diagram of
the UPD is as shown in Figure 3.14.

3.2.5 Latency and Throughput

The data throughput of the presented HR-SOVA architecture depends directly on
the data latency needed by the decoder to process a block of data. Given the merge

44

3.2. HARDWARE ARCHITECTURE FOR HR-SOVA

Sel0

1

Sel0

1

Sel0

1

Sel0

1

Sel0

1

Sel0

1

Sel0

1

Sel0

1

Sel0

1

Sel
0
1
2
3
4
5
6
7

SC

rel_bit

Sel
0
1
2
3
4
5
6
7

SC

rel_bit

Sel
0
1
2
3
4
5
6
7

SC

rel_bit

uk−L−1,0 uk−L−2,0 uk−L−U,0

uk−L−1,1 uk−L−2,1 uk−L−U,1

uk−L−1,7 uk−L−2,7 uk−L−U,7

ûk−L

FIFO U

uk−L,0

uk−L,1

uk−L,7

uk−L−1,0

uk−L−1,7

uk−L−2,0

uk−L−2,7

uk−L−U,0

uk−L−U,7

0

1

0

1

0

1

U stages

Figure 3.13: PCU for HR-SOVA

and decode depths L and U respectively, the latency due to the SMU and PCU for
each block in a single iteration is expected to be approximately L + U .

For maximum throughput, the chip needs to be operated at the highest pos-
sible clock frequency. To achieve maximum the clock speeds, the critical path of
the circuit needs to be minimized. For HR-SOVA, the critical path of decoder is
expected to be at the trellis stage, due to ACS units. The block diagram of the
ACS unit in Figure 3.8 shows that the critical path for the unit is approximately
Tcrit = 2Tadd + Tmux , which is the minimal achievable critical path. To keep the
critical path to the minimum, pipelines are inserted in the trellis stage, between
the branch metric computation unit and the ACS unit, and at the output of ACS.
Assuming a latency of total of 3 clock cycles for the additional pipelining in the
decoder, the latency for the first output data is thus 3 + L + U clock cycles.

After the first data is output, the HR-SOVA based decoder is capable of pro-
ducing one decoded data at every clock cycle. Therefore, the total time taken to
process a Ki bit input block is 3 + L + U + Ki clock cycles.

45

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

UPE
|∆s

k−L| UPE
|∆s

k−L| UPE
|∆s

k−L|

|∆s
k−L|

rel_bit[k − L− 1] rel_bit[k − L− 2] rel_bit[k − L− U]

+
−

Sel

0

1

Ls
j Ls

j−1

|∆s
k−L|

rel_bit[j]

sign

UPE

Figure 3.14: Block diagram of UPD module

3.3 Simplified BR-SOVA Architecture

The HR-SOVA hardware architecture may be modified to realize a hardware archi-
tecture for SB-SOVA that utilizes the same hardware stages, namely trellis, merge
and decode.

Since the difference between HR-SOVA and SB-SOVA is in the reliability up-
dates, the TRU and SMU from HR-SOVA can be used without modifications for
SB-SOVA. In SB-SOVA, the ∆c

k−L−j of the concurrent path needs to be taken
into consideration when updating Ls

k−L−j and thus the RE units in the Battail
rule PCU (BPCU) will have to perform register exchange for both the hard decision
bit uk−L−j and the metric difference ∆k−L−j . As ∆k−L−j has a longer wordlength
than the hard decision bit uk−L−j , the amount of silicon required to implement the
BPCU module is expected to be much larger than an equivalent PCU module due to
the larger MUXes and registers required to perform Register Exchange.

For SB-SOVA, the SOVA update rule is to be applied differently for

(us
k−L−j 6= uc

k−L−j) and (us
k−L−j = uc

k−L−j)

and the additional SOVA update rule translates into additional hardware within
the delta selection unit (DSU) module that calculates one of the two possible up-
date values based on the relevance bits similar to those used in HR-SOVA. The
DSU then passes the appropriate reliability update values to the Battail rule up-
date (BUPD) module to perform the reliability value update. The top-level block
diagram of the proposed SB-SOVA SISO decoder hardware architecture is shown

46

3.3. SIMPLIFIED BR-SOVA ARCHITECTURE

TRU SMU

FIFO

BPCU

DSU

BUPD
Sel

ABS

uk

∆k
∆k−L

ûk−L

sk−L

∆s
k−L

|∆s
k−L|

∆c
j rel_bit

∆sel

ûk−L−U

L̂k−L−U

yk

Lk

L U

Figure 3.15: System architecture of SB-SOVA decoder

in Figure 3.15, and the various building blocks of SB-SOVA are described in detail
in the paragraphs that follow.

The architecture of the trellis unit (TRU) used in the SB-SOVA architecture is
similar to that for HR-SOVA. The TRU module determines the decision bit uk,s

for each of the 8 states at every stage, and computes their corresponding metric
differences ∆k,s. The literature for SOVA defines ∆k,s as a positive number since
it is the difference between the survivor and non-survivor path metric at a state.
In this architecture, the value of ∆k,s is instead calculated as follows.

∆k,s = Γ(uk,s = 0)− Γ(uk,s = 1) (3.6)

where Γ represents the metric computed at state s, for the selected decision bit
uk,s. Equation 3.6 may be re-stated as follows.

When Γ(uk,s = 0) > Γ(uk,s = 1),

Select uk,s = 0

⇒ ∆k,s > 0

When Γ(uk,s = 1) > Γ(uk,s = 0),

Select uk,s = 1

⇒ ∆k,s < 0

By representing ∆k,s as a two’s-complement signed number, the sign bit of ∆k,s

will represent the hard decision bit uk,s. The main advantage of representing ∆k,s

in this form is that the set of hard decision bits, uk,s does not need to be stored
separately since the information is already carried within ∆k,s. Performing RE on
the metric differences will also perform RE on the hard decision bits at the same

47

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

time. A secondary advantage of this numeric representation is that it simplifies the
ACS module, since there is no longer any need to perform the absolute operation to
obtain a positive numbered ∆k,s.

In the original BR-SOVA algorithm, a concurrent reliability value Lc
j is to be

updated before proceeding to update the survivor reliability value Ls
j . From the

hardware point of view, this will mean that additional PCU and UPD hardware units
will be needed to track the decision bits of the secondary concurrent paths in or-
der to perform updates to Lc

j . The additional hardware will result in a significant
increase in the hardware requirements for BR-SOVA as compared to HR-SOVA,
which limits the practicality of the design. Therefore, only SB-SOVA will be con-
sidered in this thesis.

The SB-SOVA update rule from (2.5) is reproduced here for convenience

Ls
j ≈

{

min
{
∆s

k, Ls
j

}
when us

k 6= uc
k

min
{
∆s

k + ∆c
j , L

s
j

}
when us

k = uc
k

It can be seen that the SB-SOVA update rule requires the parameter ∆c
j to

be stored and this is handled by the BPCU module as shown in Figure 3.16. The
BPCU performs RE on ∆k instead of uk as in the case of HR-SOVA, and the row
containing the concurrent path will hold the values ∆c

j . Since ∆k is stored as a
signed number with the sign bit representing the hard decision bit, there is no need
for additional RE logic to handle the decision bits.

The metric differences of the concurrent path ∆c
k−L−j needs to be selected and

passed as an output to the DSU unit. As stated previously, the row containing the
concurrent path will hold the required ∆c

k−L−j values, and thus some row-select
logic to calculate the correct row that contains the ∆c

k−L−j values is needed. The
concurrent row in the RE can be determined based on ûk−L and sk−L inputs from
the SMU. The concurrent state SC = sc

k−L−1 can be determined as follows.

for sk−L = {0, 2, 5, 6},

SC = (NOT(ûk−L)≪ 2) ‖ (sk−L ≫ 1)

for sk−L = {1, 3, 4, 7},

SC = (ûk−L ≪ 2) ‖ (sk−L ≫ 1)

For the concurrent path, a η∆-bit 8-to-1 MUX is used to select the desired
∆c

k−L−j from the 8 elements in their respective column of the BPCU RE network.
The concurrent hard decision bits, uc

k−L−j are obtained by using sign(∆c
k−L−j),

and in a manner similar to HR-SOVA, the selected survivor and concurrent hard
decision bit sequences are used to compute the relevance bit sequence rel_bit by
XOR operations. These relevance bits rel_bit, and the set of U metric differences
along the concurrent path (∆c

k−L−1,∆
c
k−L−2 . . . ,∆c

k−L−U) are passed to the DSU

unit to compute the values that are to be used to compare against the set of U
reliability values (Ls

k−L−1, L
s
k−L−2 . . . , Ls

k−L−U).

48

3.3. SIMPLIFIED BR-SOVA ARCHITECTURE

Sel0

1

Sel0

1

Sel0

1

Sel0

1

Sel0

1

Sel0

1

Sel0

1

Sel0

1

Sel0

1

Sel
0
1
2
3
4
5
6
7

SC

sign

rel_bit

Sel
0
1
2
3
4
5
6
7

SC

sign

rel_bit

Sel
0
1
2
3
4
5
6
7

SC

sign

rel_bit

∆k−L−1,0 ∆k−L−2,0 ∆k−L−U,0

∆k−L−1,1 ∆k−L−2,1 ∆k−L−U,1

∆k−L−1,7 ∆k−L−2,7 ∆k−L−U,7

ûk−L

FIFO

sign(∆k−L,0)

sign(∆k−L,1)

sign(∆k−L,7)

∆k−L−1,0

∆k−L−1,7

∆c
k−L−1

∆k−L−2,0

∆k−L−2,7

∆c
k−L−2

∆k−L−U,0

∆k−L−U,7

∆c
k−L−U

U stages

Figure 3.16: Block diagram of BPCU module

+

sign(∆k−L)

∆k−L

|∆k−L|

Figure 3.17: Block diagram of ABS module

A block (ABS) that calculates the absolute value a number in two’s-complement
representation [18] is shown in Figure 3.17. The ABS unit converts the ∆s

k−L into
|∆s

k−L| for use by the DSU and BUPD modules that require inputs of positive metric
differences.

The DSU is responsible for selecting one of the two metric difference values that
will be used to update the Ls

j corresponding to the two cases in (2.5). A block
diagram of the DSU is shown in Figure 3.18. The selected metric difference value is
passed on to BUPD as ∆sel

j . The relevance bit is used here to obtain one of the two

cases. Since ∆sel
j = |∆s

k−L| when the relevance bit is ‘1’, and ∆sel
j = |∆s

k−L|+ |∆
c
j |

49

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

DSE
|∆s

k−L|
DSE DSE

∆c
k−L−1 ∆c

k−L−2 ∆c
k−L−Urel_bit[k − L− 1] rel_bit[k − L− 2] rel_bit[k − L− U]

∆sel
k−L−1 ∆sel

k−L−2 ∆sel
k−L−U

Full Adder

Carry∆c
j

rel_bit[j]

NOT(rel_bit[j]) ·∆c
j

NOT(rel_bit[j]) · |∆c
j |

sign(NOT(rel_bit[j]) ·∆c
j)

|∆s
k−L|

∆sel
j

DSE

Figure 3.18: Block diagram of DSU module

when the relevance bit is ‘0’, ∆sel
j can be determined as follows.

∆sel

j = |∆s
k−L|+ NOT(rel_bit[j]) · |∆c

j |

A conditional add/subtract unit [18] is used to perform the following operation
when the reliability bit is ‘0’,

∆sel

j =

{

|∆s
k−L|+ ∆c

j , ∆c
j ≥ 0

|∆s
k−L| −∆c

j , ∆c
j < 0

which eliminates the need for an absolute function on ∆c
j before performing the

addition. The circuit to calculate |∆s
k−L|+ |∆

c
j | can be realized using a full adder

and XOR gates as shown in Figure 3.18.
The set of U values of ∆sel

j from the DSU unit is then passed to BUPD to perform
the reliability updates. The BUPD module is made up of U units of BUPE elements
and has a block diagram as shown in Figure 3.19. Each BUPE module performs a
SOVA reliability update by doing a compare and select to obtain the minimum of
the ∆sel

j and Ls
j . The main difference between the UPD used in HR-SOVA and the

BUPD used in SB-SOVA is that the SB-SOVA reliability updates are independent of
the relevance bits.

50

3.3. SIMPLIFIED BR-SOVA ARCHITECTURE

BUPE BUPE BUPE

|∆s
k−L|

∆sel

k−L−1 ∆sel

k−L−2 ∆sel

k−L−U

+
−

Sel

0

1

Ls
j Ls

j−1

∆sel

k−L−j

sign

BUPE

Figure 3.19: Block diagram of BUPD module

3.3.1 Resource Utilization

The hardware resource utilization for the SB-SOVA architecture mainly involves
the various adders and multiplexers used for the SMU and BPCU units. For these
units, each of the RE unit can easily be translated into a 2-to-1 multiplexer. For
HR-SOVA, both SMU and PCU involve only 1-bit MUXes for uk. For the BPCU

module, the RE unit is performing register exchange for ∆ which means that each
RE will consist of a η∆-bit MUX that can for estimation purposes be considered to
be η∆ times larger than a 1-bit MUX.

The additional DSU unit for SB-SOVA will increase the number of adders and
XOR/AND logic gates used. The resource utilization for SB-SOVA and HR-SOVA
is presented in Table 3.2. As observed from the table, SB-SOVA is expected to
have significantly higher hardware utilization than HR-SOVA. To make a simple
estimation, consider the following case

N = 8, L = 24, U = 24, η∆ = 10

Assume that an 8-to-1 MUX is equivalent to five 2-to-1 MUXes, and a stage of
n-bit adder is equivalent to a stage of n-bit MUX, the hardware resource utilization
can be estimated by expressing it in terms of number of units of 1-bit adder/MUX.
The resource utilization for SB-SOVA and HR-SOVA are shown in Table 3.3. Since
the XOR and AND gates utilize less resources than MUXes and adders, they are
omitted to simplify the comparison.

51

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

Table 3.2: Comparison of resource utilization for SB-SOVA

HR-SOVA SB-SOVA

TRU

Adders 3N (η∆ bit) 3N (η∆ bit)

MUXes (2-to-1) N (η∆ bit) N (η∆ bit)

SMU

Adders - -

MUXes (2-to-1) NL (1 bit) NL (1 bit)

PCU/BPCU

Adders - -

MUXes (2-to-1) NU (1 bit) NU (η∆ bit)

MUXes (8-to-1) U (1 bit) U (η∆ bit)

UPD/BUPD

Adders U (η∆ bit) 1 + U (η∆ bit)

MUXes (2-to-1) U (η∆ bit) U (η∆ bit)

XOR gates - η∆

DSU

Adders - U (η∆ bit)

XOR/AND gates - 2U · η∆

Total Resource Usage

Adders 3N + U (η∆ bit) 3N + 2U + 1 (η∆ bit)

MUXes (2-to-1) N + U (η∆ bit) N + U + NU (η∆ bit)

NL + NU (1 bit) NL (1 bit)

MUXes (8-to-1) U (1 bit) U (η∆ bit)

XOR/AND gates - (2U + 1) · η∆

3.3.2 Memory and Register Utilization

One FIFO is required in parallel to the merge unit (SMU) to store the N sets of ∆k

for each stage, for the entire depth of the SMU, i.e. L stages. Therefore, the total
FIFO requirement in the merge stage will be L ·N · η∆ bit, where η∆ denotes the
wordlength of ∆.

The total memory requirements (including registers in merge/updating units
and FIFO) for SB-SOVA and HR-SOVA are presented in Table 3.4. Simulation

52

3.3. SIMPLIFIED BR-SOVA ARCHITECTURE

Table 3.3: Numerical example for resource utilization for HR-SOVA and SB-SOVA

HR-SOVA SB-SOVA

Adders 48 (10 bit) 73 (10 bit)

MUXes (2-to-1) 32 (10 bit) 224 (10 bit)

384 (1 bit) 192 (1 bit)

MUXes (8-to-1) 24 (1 bit) 24 (10 bit)

(×5)

Total count 1 304 4 362

(Adders/MUX)

Table 3.4: Comparison of memory requirements for SB-SOVA

HR-SOVA SB-SOVA

FIFO ∆ LN · η∆ LN · η∆

SMU LN LN

PCU/BPCU U + UN U + UN · η∆

UPD/BUPD & DSU U · η∆ 2U · η∆

Total U + (L + U)N+ U + LN+

(LN + U)η∆ (LN + UN + 2U)η∆

Example 2 568 bit 4 536 bit

N = 8, L = 24, U = 24, η∆ = 10 ≈ 2.5 kbit ≈ 4.5 kbit

results in Section 2.2.5 show that L = 24 and U = 24 are sufficient to give com-
parable results to Max-Log-MAP. Assuming that N = 8 and η∆ = 10 bit, the
total memory requirement in this case will be 3.8 kbit and 5.8 kbit for HR-SOVA
and SB-SOVA respectively. It is useful to note that the memory requirement for
SB-SOVA is approximately twice that of HR-SOVA. However, the storage require-
ment for SB-SOVA is still much lower than that of Max-Log-MAP, which was
calculated previously to be 48 kbit.

3.3.3 Latency and Throughput

The critical path for the SB-SOVA architecture has moved from the ACS module in
HR-SOVA to the signal flow from BPCU to the BUPD. The critical path is estimated
to be 4Tmux +2Tadd , which is a significant increase from 2Tadd +Tmux in HR-SOVA.
Left unchecked, this will have an impact on the overall data throughput. To reduce
the critical path, additional pipelining is required. By adding two sets of pipeline

53

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

of registers, one between BPCU and DSU, and the other between DSU and BUPD, the
combinatorial delay in the reliability update modules is reduced to Tmux +Tadd . In
this case, the Tcrit is restored to the same value value as that in HR-SOVA, with
the critical path once again in the ACS unit.

The latency for HR-SOVA and SB-SOVA is expected to be the largely un-
changed. Both decoders will takes L cycles to determine the merged ML state and
a further U cycles to obtain the first reliability output value Le(ûk). Considering
a 3-stage pipeline at the trellis unit and 2-stage pipeline between BPCU and BUPD

to reduce the critical path, the total latency for SB-SOVA will be L + U + 5 as
compared with L+U +3 for HR-SOVA. With L = 24 and U = 24, the total latency
for the SB-SOVA decoder will be

latency = L + U + 5 = 53 clock cycles

Assuming that the block length is 6 144 bit and is divided into 8 parallel win-
dows, this gives a window size of W = 768. As described in section 3.6, each window
will require a warm-up time of α = 32 cycles. The total number of clock cycles for
each simplified BR-SOVA decoder to process a data block will be

W + L + U + 5 + α = 853 clock cycles

As a comparison, a set of Max-Log-MAP SISO decoders working with 8 parallel
windows will take 2W = 1536 cycles to process a data with block length of Ki =
6144 and W = 768. This shows that the latency of SB-SOVA is lower than that
of Max-Log-MAP. It can also be concluded that a SB-SOVA based turbo decoder
is expected to achieve a higher throughput than one using Max-Log-MAP based
decoders.

3.4 Hybrid-SOVA Architecture

The hardware resource utilization for SB-SOVA as presented in Table 3.2 showed
that the resource utilization of SB-SOVA is a few times higher than that for
HR-SOVA. This is highly undesirable as the die area for a SB-SOVA based ac-
celerator will be much larger than one that incorporates HR-SOVA. In order to
reduce the amount of hardware resources required by the SB-SOVA architecture,
the following alternative is proposed.

Consider an architecture with identical TRU and SMU units as in SB-SOVA. In-
stead of performing SB-SOVA for all U stages, the SOVA reliability updates are
divided into two stages, with U1 stages of updates using SB-SOVA rules followed
by U2 stages of updates using HR-SOVA rules. The modifications to the reliability
update modules are described as follows.

For the BPCU, instead of containing U columns of RE units for ∆k, the number
of columns is reduced to U1, where U1 < U . The remaining (U2 = U −U1) columns
of RE in the PCU will only be register exchange for the decision bits uk. Hence, the

54

3.4. HYBRID-SOVA ARCHITECTURE

TRU SMU

FIFO

BPCU

DSU

BUPD
Sel

ABS

uk

∆k
∆k−L

ûk−L

sk−L

∆s
k−L

|∆s
k−L|

∆c
j rel_bit

∆sel

PCU

UPD

uk−L−U1

uk−L

rel_bit

L̂k−L−U1

ûk−L−U

L̂k−L−U

yk

Lk

L U1 U2

hybrid SOVA updates

Figure 3.20: System architecture of hybrid-SOVA

PCU for hybrid-SOVA may be viewed as operating in SB-SOVA mode in the first U1

stages, followed by HR-SOVA mode in the last U2 stages.
The DSU is also modified to provide only U1 values of ∆c

j to the BUPD. The
update unit is also modified to consist of U1 deep BUPD and U2 deep UPE.

The architecture of the proposed hybrid-SOVA SISO decoder is presented in
Figure 3.20. The hybrid-SOVA updates with modifications described in the para-
graphs above are indicated in the dotted box. Between the BPCU and PCU are the
hard decision bits at the exit of the BPCU RE units that will continue the RE pro-
cess in the PCU, and decision bits from FIFO (i.e. sign(∆k−L)) that will be used to
perform row exchange.

The reliability values that are updated U1 times using SB-SOVA updating rules
in BUPD will be passed to the UPD module for further U2 updates using the HR-SOVA
updating rules. Other than the differences highlighted above, all other signals and
modules within the hybrid-SOVA block serves the same functionality as they did
in the SB-SOVA or HR-SOVA architectures.

To determine the performance of hybrid-SOVA, simulations are performed with
U = 24 for different U1 values. The environment for the simulation is given in
Table 3.5 and the BER/BLER performance for hybrid-SOVA are plotted in Fig-
ure 3.21.

As observed from the plots, most U1 values are able to obtain comparable BLER
performance with degradation of less than 0.1 dB as compared to SB-SOVA. The
performance of hybrid-SOVA with U1 = 12 is sufficiently close to that of SB-SOVA.
For the same number of iterations, the performance of hybrid-SOVA is approxi-
mately 0.15 dB worse off than Max-Log-MAP.

55

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

Table 3.5: Simulation conditions for hybrid-SOVA

Environment: AWGN channel

Block length: 4 416

Number of blocks: 250

Total data size: ≈ 106 bit

Simulation Parameters

Algorithm: hybrid-SOVA

Update method: Hardware

(L,U) = (24, 24)

(c, d) = (0.75, 1.00)

∆TH =

{

8 SNR ≤ 0.7 dB

16 SNR > 0.7 dB

3.4.1 Resource Utilization

Since the motivation of hybrid-SOVA is to reduce the hardware complexity of
SB-SOVA, the hardware resource utilization for hybrid-SOVA is tabulated. Taking
the case of U1 = U2 = 12, the main savings is expected to be at the BPCU unit
where the number of η∆-bit MUXes is reduced by half. The resource utilization for
hybrid-SOVA and SB-SOVA is presented in Table 3.6.

As observed from Table 3.6, hybrid-SOVA requires fewer MUXes than SB-SOVA.
In order to make a better estimate, consider the following numerical example based
on similar assumptions to those in Section 3.3.

N = 8, L = 24, U = 24, U1 = 12, η∆ = 10

The estimated resource utilization is as shown in Table 3.7 and the savings
made by hybrid-SOVA is estimated to be approximately 35 %. This illustrates the
advantage of using hybrid-SOVA in place of SB-SOVA to achieve performance that
is comparable to using a Max-Log-MAP decoder.

3.4.2 Memory and Register Utilization

The memory and register utilization of the hybrid-SOVA architecture is computed
and compared against SB-SOVA. The result of this comparison is tabulated in
Table 3.8.

The numerical example illustrated in Table 3.8 shows that the memory usage for
hybrid-SOVA is 4.8 kbit, which is 984 bit less than that of SB-SOVA. The savings
in memory usage for hybrid-SOVA as compared to SB-SOVA is approximately 16%.

56

3.4. HYBRID-SOVA ARCHITECTURE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER performance of Hybrid SOVA

B
E

R

SNR (dB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

BLER performance of Hybrid SOVA

B
LE

R
 (

B
lo

ck
 E

rr
or

 R
at

e)

SNR (dB)

Max−Log−MAP, 16 iterations
Max−Log−MAP, 12 iterations
SB−SOVA with U=24
Hybrid SOVA with U

1
=16, U

2
=8

Hybrid SOVA with U
1
=12, U

2
=12

Hybrid SOVA with U
1
=10, U

2
=14

Hybrid SOVA with U
1
=8, U

2
=16

Max−Log−MAP, 16 iterations
Max−Log−MAP, 12 iterations
SB−SOVA with U=24
Hybrid SOVA with U

1
=16, U

2
=8

Hybrid SOVA with U
1
=12, U

2
=12

Hybrid SOVA with U
1
=10, U

2
=14

Hybrid SOVA with U
1
=8, U

2
=16

Figure 3.21: BER performance of hybrid-SOVA

3.4.3 Latency and Throughput

Since hybrid-SOVA can be seen as a combination of SB-SOVA and HR-SOVA, the
analysis of the critical path in Section 3.3.3 can be used to analyze the hybrid-
SOVA architecture. The critical path of the hybrid-SOVA architecture is Tcrit =
2Tadd + Tmux and lies within the ACS module.

As the number of stages in the architecture of hybrid-SOVA remains the same
as that of SB-SOVA, its latency and data throughput are expected to be the same
as that of SB-SOVA. By considering a practical implementation of hybrid-SOVA
in 8 parallel windows, the overall latency will be

W + L + U + 5 + α = 853 clock cycles

where W = 768, L = 24, U = 24 and α = 32.

57

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

Table 3.6: Comparison of resource utilization for SB-SOVA and hybrid-SOVA

SB-SOVA hybrid-SOVA

TRU

Adders 3N (η∆ bit) 3N (η∆ bit)

MUXes (2-to-1) N (η∆ bit) N (η∆ bit)

SMU

Adders - -

MUXes (2-to-1) N ·L (1 bit) N ·L (1 bit)

BPCU/BPCU & PCU

Adders - -

MUXes (2-to-1) N ·U (η∆ bit) N ·U1 (η∆ bit)

N · (U − U1) (1 bit)

MUXes (8-to-1) U (η∆ bit) U1 (η∆ bit)

(U − U1) (1 bit)

BUPD/BUPD & UPD

Adders 1 + U (η∆ bit) 1 + U (η∆ bit)

MUXes (2-to-1) U (η∆ bit) U (η∆ bit)

XOR/AND gates η∆ η∆

DSU

Adders U (η∆ bit) U1 (η∆ bit)

XOR/AND gates 2U · η∆ 2U1 · η∆

Total Resource Usage

Adders 3N + 2U + 1 (η∆ bit) 3N + U + U1 + 1 (η∆ bit)

MUXes (2-to-1) N + U + NU (η∆ bit) N + U + NU1 (η∆ bit)

NL (1 bit) NL + N(U − U1) (1 bit)

MUXes (8-to-1) U (η∆ bit) U1 (η∆ bit)

U − U1 (1 bit)

XOR/AND gates (2U + 1) · η∆ (2U1 + 1) · η∆

3.5 Improved BPCU for SB-SOVA

As observed in the hardware architectures for SB-SOVA and hybrid-SOVA, the use
of register exchange on ∆k in SB-SOVA and hybrid-SOVA BPCU results in large
number of η∆-bit 2-to-1 MUXes being used. Given that the BPCU is U -stages deep

58

3.5. IMPROVED BPCU FOR SB-SOVA

Table 3.7: Numerical example for resource utilization of hybrid-SOVA

SB-SOVA hybrid-SOVA

Adders 73 (10 bit) 61 (10bit)

MUXes (2-to-1) 224 (10 bit) 128 (10 bit)

192 (1 bit) 288 (1 bit)

MUXes (8-to-1) 24 (10 bit) 12 (10 bit)

(×5) 12 (1 bit)

Total count 4 362 2 838

(Adders/MUXes) (≈ 35% savings)

Table 3.8: Memory requirements for hybrid-SOVA and SB-SOVA

SB-SOVA hybrid-SOVA

FIFO ∆ LN · η∆ LN · η∆

SMU LN LN

BPCU/BPCU & PCU U + UN · η∆ U + U1N · η∆ + (U − U1)N

BUPD/BUPD & UPD 2U · η∆ U · η∆ + U1 · η∆

Total U + LN+ U + (L + U − U1)N+

(LN + UN + 2U)η∆ (LN + U1N + U + U1)η∆

Example: N = 8, L = 24 4 536 bit 3 552 bit

U = 24, U1 = 12, η∆ = 10 ≈ 4.5 kbit ≈ 3.5 kbit

(or U1 for hybrid-SOVA) with 8 states per stage and η∆ = 10, the number of
2-to-1 MUXes used will be

8× U × 10 = 80U

which implies that for SB-SOVA with U = 24, there will be 1 920 MUXes in the
PCU. Such a large number of MUXes will translate into higher hardware re-
source utilization for SB-SOVA/hybrid-SOVA implementations and indicates that
the BPCU is a good target for optimization. By reducing the number of MUXes
in the BPCU, the hardware resource requirements for implementing SB-SOVA and
hybrid-SOVA can be made more manageable.

Instead of performing register exchange on the ∆k, the SOVA update unit can
be modified to perform register exchange on the state sk. Upon row selection,
the state sequence for the concurrent path sc

k is selected from the sk registers. The
concurrent state sc

k selected for each stage is then used to select ∆c
k from the column

of registers in each stage.

59

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

Sel
0

1

Sel
0

1

Sel
0

1

Sel
0

1

Sel
0

1

Sel
0

1

Sel
0

1

Sel
0

1

Sel
0

1

0

4

4

0

3

7

sk−L−1,0 sk−L−2,0 sk−L−U,0

sk−L−1,1 sk−L−2,1 sk−L−U,1

sk−L−1,7 sk−L−2,7 sk−L−U,7

FIFO

sign(∆k−L,0)

sign(∆k−L,1)

sign(∆k−L,7)

U stages

Figure 3.22: Register exchange for sk

Figure 3.22 shows the register exchange of sk in the BPCU module. Since there
are 8 states and each sk has a wordlength of 3 bit, each register and MUX in the
figure has a wordlength of 3 bit. The concurrent state sequence sc

k is selected using
U units of 8-to-1 3-bit MUXes. The selected concurrent state sequence is then used
to select the concurrent metric differences ∆c

k from the column of 8 registers that
are stored as shown in Figure 3.23a.

The survivor decision output bits from the stored sequence of survivor decision
bits and the concurrent state sequence in Figure 3.22 are then used to obtain the
relevance bits as shown in Figure 3.23b, similar to the way it is done in the normal
BPCU.

3.5.1 Resource Utilization

The objective of the improved BPCU for SB-SOVA and hybrid-SOVA is to reduce
the wordlengths of MUXes used in Register Exchange (RE). A clear advantage of
using this configuration for register exchange is that with reduced wordlengths in
the MUXes, there is clearly less wiring between the components within the BPCU.

The savings in the area consumed by the MUXes can be estimated as follows.
Since the register exchange is performed on sk, the width of each MUX will be
ν = 3 bit. Assuming η∆ = 10 bit, the savings in the number of 1-bit MUXes will
be

(η∆ − ν) ·N ·U = 56U

Comparing Figure 3.23b with Figure 3.16 shows that the improved PCU requires

60

3.5. IMPROVED BPCU FOR SB-SOVA

∆k−L−1,0 ∆k−L−2,0 ∆k−L−U,0

∆k−L−1,1 ∆k−L−2,1 ∆k−L−U,1

∆k−L−1,7 ∆k−L−2,7 ∆k−L−U,7

FIFO

∆k−L,0

∆k−L,1

∆k−L,7

U stages

(a) Register storage for ∆
k

Sel
0
1
2
3
4
5
6
7

Sel
0
1
2
3
4
5
6
7

SC

sign

rel_bit

Sel
0
1
2
3
4
5
6
7

Sel
0
1
2
3
4
5
6
7

SC

sign

rel_bit

Sel
0
1
2
3
4
5
6
7

Sel
0
1
2
3
4
5
6
7

SC

sign

rel_bit

ûk−L

sk−L−1,0

sk−L−1,7

ûk−L−1

∆k−L−1,0

∆k−L−1,7

∆c
k−L−1

sk−L−2,0

sk−L−2,7

ûk−L−2

∆k−L−2,0

∆k−L−2,7

∆c
k−L−2

sk−L−U,0

sk−L−U,7

ûk−L−U

∆k−L−U,0

∆k−L−U,7

∆c
k−L−U

(b) Obtaining the relevance bits and ∆c in PCU

Figure 3.23: Hardware implementation of improved BPCU

an additional 8-to-1 3-bit MUX at each stage to select the concurrent path state.
This is equivalent to having additional 3U units of 8-to-1 single bit MUX. If an
8-to-1 MUX is assumed to have 5 times the complexity of a 2-to-1 MUX, the total
reduction in MUXes becomes

56U − 5(3U) = 41U

= 984 when U = 24.

The comparison of resource utilization for the improved BPCU in SB-SOVA and
hybrid-SOVA is as shown in Table 3.9.

As observed from Table 3.9, the modified BPCU has resulted in hardware savings
of approximately 22% and 17% for SB-SOVA and hybrid-SOVA respectively.

61

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

Table 3.9: Resource utilization with improved BPCU in SB-SOVA and hybrid-SOVA

SB-SOVA

PCU (∆k exchange) (sk exchange)

MUXes (2-to-1) N ·U (η∆ bit) N ·U (ν bit)

MUXes (8-to-1) U (η∆ bit) U (η∆ bit)

(×5) U (ν bit)

Total count: N = 8, 4 362 3 378

U = 24, η∆ = 10 (22% savings)

hybrid-SOVA

BPCU (∆k exchange) (sk exchange)

MUXes (2-to-1) N ·U1 (η∆ bit) N ·U1 (ν bit)

N · (U − U1) (1 bit) N · (U − U1) (1 bit)

MUXes (8-to-1) U1 (η∆ bit) U1 (η∆ bit)

(×5) (U − U1) (1 bit) U1 (ν bit)

(U − U1) (1 bit)

Total count: U1 = 12 2 838 2 346

(as above) (17% savings)

3.5.2 Memory requirements

As observed in Figure 3.23a, the content of ∆k from the FIFO are still being stored
in η∆-bit registers. The requirement for these registers will thus remain unchanged.
Besides these registers for ∆, extra N ·U (ν + 1)-bit registers are required for the
exchange of s

k
and u

k
respectively. For U = 24, the number of extra registers will

be 768, which is approximately the same amount of reduction as in the case of the
MUXes. Thus it can be seen that the savings in MUXes has been translated into
extra registers. It is thus a trade-off between the usage of MUXes and registers.
The new memory requirement for the improved BPCU is as shown in Table 3.10.

3.6 Considerations for Parallel Windows

When the channel input to a SOVA SISO decoder is processed serially, the amount
of time needed to process the entire block is dependent on the block length of the
data. Denoting the block length by Ki, the total time taken for each iteration of
SOVA decoder is at least 3 + L + U + Ki. The block length Ki for LTE ranges
from 40 to 6 144. When Ki is large, the computation time increases and the overall
throughput is reduced.

62

3.6. CONSIDERATIONS FOR PARALLEL WINDOWS

Table 3.10: Memory requirements with improved BPCU for SB-SOVA and hybrid-
SOVA

SB-SOVA

(∆k exchange) (sk exchange)

FIFO ∆ LN · η∆

SMU LN

BPCU U + UN · η∆ U + UN · (η∆ + ν)

BUPD & DSU 2U · η∆

Total U + LN+ U + LN + UN · ν

(LN + UN + 2U)η∆ +(LN + UN + 2U)η∆

Example: N = 8, L = 24 4 536 bit ≈ 4.5 kbit 5 112 bit ≈ 5 kbit

U = 24, η∆ = 10 (13 % more memory)

hybrid-SOVA

(∆k exchange) (sk exchange)

FIFO ∆ LN · η∆

SMU LN

BPCU & PCU U + U1N · η∆+ U + U1N · η∆+

(U − U1)N (U − U1)N + U1N · ν

BUPD, DSU & UPD (U + U1) · η∆

Total U + (L + U − U1)N+ U + (L + U − U1)N+

(LN + U1 ·N + U + U1)η∆ (LN + U1N + U + U1)η∆

+(U1N)ν

Example: N = 8, L = 24 3 552 bit ≈ 3.5 kbit 3 840 bit ≈ 3.75 kbit

U = 24, U1 = 12, η∆ = 10 (8 % more memory)

To ensure that the total processing time is manageable, the channel input data
can be split into M windows and to use M instances of SISO decoders operating
concurrently on the data. The trade-off to obtain higher throughout is the increase
in hardware resources, as the same SISO decoder hardware will need to be dupli-
cated M times. An example of a windowed SOVA implementation is described
in [19].

The following sections discuss the considerations that need to be taken into
account when implementing parallel windows for a SOVA based turbo decoder.
Section 3.6.1 describes a possible banked memory organization for M decoders and
Section 3.6.2 discusses methods in which the initial state of a each window can be
estimated. Finally, Section 3.6.3 describes the overall memory access requirements
for a SOVA decoder and shows that the banked memory organization is suitable

63

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

0

W − 1

W

2W − 1

2W

3W − 1

3W

4W − 1

4W

5W − 1

5W

6W − 1

6W

7W − 1

7W

K − 1

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

0

W − 1

W

2W − 1

2W

3W − 1

3W

4W − 1

4W

5W − 1

5W

6W − 1

6W

7W − 1

7W

K − 1

Π

SOVA 0

SOVA 1

SOVA 2

SOVA 3

SOVA 4

SOVA 5

SOVA 6

SOVA 7

Block Length,
K

L(uk)
yk

Figure 3.24: Dividing an input block into 8 windows

for use in a multiple windowed SOVA based turbo decoder.

3.6.1 Memory Organization for Multiple Windows

One important consideration when designing a high speed parallelized turbo de-
coder is to ensure that the memory access of the input by all parallel decoders
remains contention free, i.e. the decoder can always the access the data that it
needs without delay. To meet this requirement, the inputs to each of the decoders,
that is the channel input yk and intrinsic data L(uk), have to be divided into
memory banks where at any one time, each memory bank is only accessed by one
decoder. Consider a channel data block that is divided into 8 banks, each of size W .
The input to each SOVA RSC decoder is then of size W . By dividing the input
data block into 8 banks, contention free memory access can be achieved, as shown
in Figure 3.24.

3.6.2 Estimation of Window Initial State

One of the properties of the turbo code used in LTE is that the starting and
terminating states are known a-priori to start and end with state 0. When turbo
decoding is performed in parallel windows, the starting state for second window
onwards is unknown. For instance, the starting state of window i is expected
to be the end state of window i − 1. However, since both windows are running
concurrently, the end state of window i−1 is not known until decoding of the entire

64

3.6. CONSIDERATIONS FOR PARALLEL WINDOWS

Window 1

Window 0

Window 2

Window 3

Window 4

Window 5

Window 6

Window 7

α W L + U

max soft input
tail bits

Memory Usage/Access

Figure 3.25: Data access requirements for each SOVA window

window is completed. Therefore, for successful parallelization using windows, the
starting state of each window needs to be estimated before decoding of the data in
each window can begin.

There are two methods that can be used to estimate the initial start state,
namely using the VA to perform state metric accumulation and by using state
information from the previous iteration. For the metric accumulation method, the
VA is used to accumulate the path metric for α received symbols prior to the start
of the window. After accumulating α state metrics, the state with the best path
metric at the start of the window is an estimate of the starting state for the window.
By using the entire set of 2ν path metrics as the initial metrics to begin decoding, it
is equivalent to skewing the metrics within the window to start from the estimated
start state. Therefore one can look at the initial α stages as a warm up phase for
every window before the start of actual decoding. All windows with the exception
of the first one will perform a warm-up path metric accumulation for α received
symbols prior to the first symbol in the window. Figure 3.25 shows the received
symbols processed by each of the windows to perform warm-up.

To determine the effect of α-stage warm-up method described earlier, simula-
tions were performed to determine the optimum α required for comparable results
as Max-Log-MAP, with the conditions tabulated in Table 3.11.

The BER and BLER performance for SB-SOVA with different α values is pre-
sented in Figure 3.26. As observed from the plots, parallel SB-SOVA with α = 40
and α = 32 have comparable BLER performance as that of Max-Log-MAP with

65

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

Table 3.11: Simulation conditions for α-stage warm-up

Environment: AWGN channel

Block length: 4 416

Number of blocks: 250

Total data size: ≈ 106 bit

Simulation Parameters

Algorithm: SB-SOVA

Update method: Hardware

Parallel Windows: 8

(L,U) = (24, 24)

(c, d) = (0.75, 1.00)

∆TH = 8

α = {20, 24, 32, 40}

12 iterations. For the same number of iterations, parallel SB-SOVA with α = 40
and α = 32 are at most 0.2 dB worse than Max-Log-MAP. Considering the fact
that the comparison is made with an ideal non-windowed implementation of Max-
Log-MAP, the performance of the windowed SB-SOVA is desirable. As a higher α
implies a longer latency, α = 32 can be viewed as the optimum value to be used for
parallel windowed SOVA decoder. Based on these results, it can be concluded that
the proposed α-stage metric accumulation method is a feasible method for initial
state estimation in parallel windowed SOVA architectures.

The second method to estimate the start state of the window is to use data from
the previous iteration, and is similar to the next iteration initialize (NII) method
used in parallel window MAP decoders [20]. When applied to SOVA SISO decoders,
the state metric vector for the last stage of the previous window in the previous
iteration will be used as the initial state metric vector for the current window.
The main advantage of this is method is that warm up is needed only for the first
iteration which leads to reduced latency for the turbo decoder.

The effect of NII method for SOVA is observed with simulations. The first
n1 half iterations are run using α-stage metric accumulation method, while the
remaining n2 decoding iterations are run using the state metric vector of the pre-
vious window. The value of n1 is varied between 2 to 14 and results are as shown
in Figure 3.27. As observed from the result plots, the proposed NII method has
slightly degraded performance as compared to the metric accumulation method.
The optimum settings for the NII method is with n1 = 4 half iterations of α-stage
warm-up, but it suffers 0.1 dB degradation performance as compared to the α-stage

66

3.6. CONSIDERATIONS FOR PARALLEL WINDOWS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER performance of SB−SOVA with α−stage warm−up

B
E

R

SNR (dB)

Max−Log−MAP, 16 half iterations
Max−Log−MAP, 12 half iterations

SB−SOVA with α=20

SB−SOVA with α=24

SB−SOVA with α=32

SB−SOVA with α=40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

BLER performance of SB−SOVA with α−stage warm−up

B
LE

R
 (

B
lo

ck
 E

rr
or

 R
at

e)

SNR (dB)

Max−Log−MAP, 16 half iterations
Max−Log−MAP, 12 half iterations

SB−SOVA with α=20

SB−SOVA with α=24

SB−SOVA with α=32

SB−SOVA with α=40

Figure 3.26: BER and BLER performance for SB-SOVA with varying α-warm-up

metric accumulation method.
The two methods described above are suitable for parallel SISO decoding. The

preferred method to use will depend on the trade-off between data throughput
and performance in the system requirements. For the SOVA based LTE decoder,
the latency for each window is already short compared to decoders using Max-
Log-MAP, so using α = 32 does not affect the throughput by much. Moreover,
choosing to use the NII method will require additional logic to control and perform

67

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

the exchange of state vectors across iterations, which makes it a less desirable
solution. Therefore only the α-stage warmup method will be considered in the
thesis.

3.6.3 Inter-Bank Memory Access

In Section 3.6.1, it was assumed that each SISO decoder will only utilize its own
dedicated memory bank. This is however not the case for SOVA, as each decoder
will require data from other window’s memory banks. Consider the case for win-
dow i, where channel input data from bank i (where indices iW to (i+1)W −1 are
stored) is decoded and extrinsic output Le(iW) to Le((i + 1)W − 1) needs to be
output. As described in Section 3.6.2, a SOVA decoder needs α symbols of warm-up
to estimate the window’s starting state, which means that the last α data stored
in memory bank i− 1 is required for the warm up stage.

To obtain the last output Le((i+1)W−1), an additional L+U received symbols
that are stored in memory bank i+1 are needed for SOVA reliability updates. This
means that the first L + U data that are stored in memory bank i + 1 will be
needed by the decoder in window i for performing reliability updates. The data
access requirements for window i is given in Figure 3.25 where it can be seen that
window i will require access to data stored in memory banks i− 1, i and i + 1.

However, it can be noted that since all the M decoders are operating concur-
rently and in step, all the windows will perform bank switching at the same time
and the scheduling of the memory bank access by the various decoders is shown in
Figure 3.28. At any time, only one decoder will be accessing a given bank of mem-
ory, and thus it can be concluded that contention-free memory access is achievable
through the memory organization described in Section 3.6.1.

3.7 Comparison of SOVA and Max-Log-MAP

In order to have a good feel for how the SOVA based turbo decoders stack up to the
traditional Max-Log-MAP counterparts, this section will compare the two classes
of turbo decoders based on the following criteria

• Hardware resource utilization (Section 3.7.1)

• Memory requirements (Section 3.7.2)

• Throughput (Section 3.7.3)

Finally, a recommended hardware architecture that provides the best trade-off
is suggested.

3.7.1 Resource Utilization

The hardware resource utilization in terms of estimated MUX and adder counts
is as shown in Table 3.12. The number of MUXes and adders required for the

68

3.7. COMPARISON OF SOVA AND MAX-LOG-MAP

proposed SOVA based decoders is larger than that of the Max-Log-MAP decoders.
There is once again a trade-off between memory requirements and hardware re-
source utilization when choosing between Max-Log-MAP based decoders and SOVA
based decoders. Of the proposed SOVA architectures, the hybrid-SOVA with the
improved BPCU has the lowest resource utilization, requiring approximately 30 %
more hardware resources than Max-Log-MAP.

3.7.2 Memory Requirement

The estimated memory/register utilization for each of the hardware architectures
is tabulated in Table 3.13. As expected, the SOVA based turbo decoder has lower
memory requirements than one that uses the Max-Log-MAP. Max-Log-MAP based
decoders need memory to store the outputs of the ARP and BRP units before finally
performing LLR calculations, and the amount of memory needed in multiples of
the window size W of the decoder. For SOVA, the merge and update depths are in
multiples of 5 to 10 times the constraint length, which is much smaller than W , and
thus SOVA based decoders will require much less memory than the Max-Log-MAP
ones.

3.7.3 Data Throughput

The data throughput for a turbo decoder is related to the latency of each of the
processes in the turbo decoder, as well as the number of iterations to be run for
obtaining the final decoded data.

In order to compare the throughput performance of the various SOVA-based
turbo decoders to that of a Max-Log-MAP based turbo decoder, the following
assumptions are made.

Assume that the window size W = 768 and the latency for the LTE internal
interleaver is 10 cycles. Based on simulation results, for 16 half iterations, the ideal
Max-Log-MAP turbo decoding has around 0.1 to 0.2 dB better BLER performance
than SOVA. The BLER performance for SOVA with 16 half iterations is equivalent
to that for Max-Log-MAP with 12 half iterations. The estimated data throughput
for the turbo decoder architectures are presented in Table 3.14. For comparison
purposes, the throughput of Max-Log-MAP for both 12 and 16 half iterations are
included in the table.

As observed from Table 3.14, the proposed SOVA based turbo decoders have
better throughput than the Max-Log-MAP based decoder. The SOVA based turbo
decoder is able to achieve a 79 % improvement in the data throughput as compared
to a Max-Log-MAP turbo decoder, at the expense of 0.2 dB degradation in per-
formance. For comparable performance with Max-Log-MAP, a SOVA based turbo
decoder that uses 16 half iterations is still 34 % better in data throughput.

69

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

3.7.4 Optimal SOVA Decoder

Of the various SOVA based decoder architectures proposed, the recommended ar-
chitecture for a LTE decoder is one based on the hybrid-SOVA with the improved
BPCU module. With a memory requirement of only 10% that of a comparable Max-
Log-MAP based decoder, it is able to provide at least 30% improvement in the
overall data throughput.

The only drawback to the SOVA based decoder is that it requires 30% more
hardware resources compared with Max-Log-MAP. Despite this, it is worth keeping
in mind that the complexity of the controllers within the two classes of decoders
is not considered in this thesis. The SOVA algorithm is a data-driven algorithm
that requires minimal control, whereas the Max-Log-MAP algorithm requires more
complicated control, and the additional hardware resources utilized by the controller
logic may reduce the hardware resource advantage of Max-Log-MAP decoders.

70

3.7. COMPARISON OF SOVA AND MAX-LOG-MAP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER performance of NII method versus α−stage warm−up

B
E

R

SNR (dB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

BLER performance of NII method versus α−stage warm−up

B
LE

R
 (

B
lo

ck
 E

rr
or

 R
at

e)

SNR (dB)

Max−Log−MAP

Full α=32 warm−up
n

1
=12, n

2
=4

n
1
=10, n

2
=6

n
1
=8, n

2
=8

n
1
=6, n

2
=10

n
1
=4, n

2
=12

n
1
=2, n

2
=14

Max−Log−MAP

Full α=32 warm−up
n

1
=12, n

2
=4

n
1
=10, n

2
=6

n
1
=8, n

2
=8

n
1
=6, n

2
=10

n
1
=4, n

2
=12

n
1
=2, n

2
=14

Figure 3.27: BER and BLER performance for SB-SOVA with varying n1 iterations
of α-warmup

71

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

Bank 0 Bank 1

Bank 0 Bank 1 Bank 2

Bank 1 Bank 2 Bank 3

Bank 2 Bank 3 Bank 4

Bank 3 Bank 4 Bank 5

Bank 4 Bank 5 Bank 6

Bank 5 Bank 6 Bank 7

Bank 6 Bank 7

SOVA 1

SOVA 0

SOVA 2

SOVA 3

SOVA 4

SOVA 5

SOVA 6

SOVA 7

t
0 α α + W α + W + L + U

tail bits

Figure 3.28: Access schedule for memory banks

72

3.7. COMPARISON OF SOVA AND MAX-LOG-MAP

Table 3.12: Comparison of resource utilization of various SISO decoders

SISO Decoder Resource utilization

N = 8, W = 768

General equation L = 24, U = 24, U1 = 12

for each window ηα,β = η∆ = 10

Per Window Total

Required Number of MUXes

Max-Log-MAP 6N − 2 (ηα,β bit) 460 3 680

HR-SOVA N + U (η∆ bit) 824 6 592

NL + NU + 5U (1 bit)

SB-SOVA N + NU + 6U (η∆ bit) 3 632 29 056

(∆k exchange) NL (1 bit)

SB-SOVA N + 6U (η∆ bit) 2 648 21 184

(sk exchange) NU + 5U (ν bit)

NL (1 bit)

hybrid-SOVA N + NU1 + 5U1 + U (η∆ bit) 2 228 17 824

(∆k exchange) NL + (N + 5)(U − U1) (1 bit)

hybrid-SOVA N + 5U1 + U (η∆ bit) 1 736 13 888

(sk exchange) NL + (N + 5)(U − U1) (1 bit)

NU1 + 5U1 (ν bit)

Required Number of Adders

Max-Log-MAP 15N + 14 (ηα,β bit) 1 340 10 720

HR-SOVA 3N + U (η∆ bit) 480 3 840

SB-SOVA 3N + 2U + 1 (η∆ bit) 730 5 840

hybrid-SOVA 3N + U + U1 + 1 (η∆ bit) 610 4 880

Total count (Adders/MUX)

Max-Log-MAP 1 800 14 400

HR-SOVA 1 304 10 432

SB-SOVA (∆k exchange) 4 362 34 896

SB-SOVA (sk exchange) 3 378 27 024

hybrid-SOVA (∆k exchange) 2 838 22 704

hybrid-SOVA (sk exchange) 2 346 18 768

73

CHAPTER 3. SISO DECODER HARDWARE ARCHITECTURES

Table 3.13: Comparison of memory requirement for various SISO decoders

SISO Decoder Memory Requirement

N = 8, W = 768

General equation L = 24, U = 24, U1 = 12

for each window ηL = η∆ = 10

Per Window Total

Max-Log-MAP N(W + 3) (ηL bit) 60.234 kbit 482 kbit

HR-SOVA NL + U (η∆ bit) 2.508 kbit 20 kbit

U + N(2L + U) (1 bit)

SB-SOVA N(L + U) + 2U (η∆ bit) 4.43 kbit 36 kbit

(∆k exchange) U + NL (1 bit)

SB-SOVA N(L + U) + 2U (η∆ bit) 4.992 kbit 40 kbit

(sk exchange) NU (ν bit)

U + NL (1 bit)

hybrid-SOVA N(L + U1) + U + U1 (η∆ bit) 3.469 kbit 28 kbit

(∆k exchange) U + N(L + U − U1) (1 bit)

hybrid-SOVA N(L + U1) + U + U1 (η∆ kbit) 3.75 kbit 30 kbit

(sk exchange) U + N(L + U − U1) (1 bit)

NU1 (ν bit)

74

3.7. COMPARISON OF SOVA AND MAX-LOG-MAP

Table 3.14: Comparison of throughput between SOVA and Max-Log-MAP decoders

Max-Log-MAP SB-SOVA,

hybrid-SOVA

Block length 6 144

Number of windows 8

Window size 768

Time taken for each process per half iteration (cycles)

SISO decode 1 536 853

Interleave/deinterleave 10

Total per half iteration 1 546 863

Number of half iterations 12 16 16

Total time (cycles) 18 552 24 736 13 808

Min clock rate for 302 MHz 403 MHz 225 MHz

data rate of 100 Mbit/s

Max data rate at 200 MHz 66.3 Mbit/s 50 Mbit/s 89 Mbit/s

Improvement (%)

with respect to 16 half iterations 79%

with respect to 12 half iterations 34%

75

Chapter 4

Conclusions

The performance of various SOVA algorithms in the context of LTE turbo decoding
was investigated, and it was found that although BR-SOVA gives the best perfor-
mance, it is not feasible for hardware implementations due to the need for secondary
concurrent path tracking and the latency involved in updating the concurrent path
reliability values. The proposed SB-SOVA algorithm works around the limitations
of BR-SOVA with minimal performance degradation, although the hardware re-
source utilization is still high as compared with Max-Log-MAP. By utilizing both
SB-SOVA and HR-SOVA rules for reliability updates, the new hybrid-SOVA closes
the resource utilization gap between the SOVA algorithms and Max-Log-MAP.

Although both resource utilization in adders and MUXes, and memory uti-
lization of SOVA and Max-Log-MAP decoders have been investigated, the actual
hardware complexity in terms of silicon area is much harder to quantify. The Max-
Log-MAP decoders utilize dense memory, which occupy less silicon area per bit
as compared with registers. The control logic, which is expected to be more com-
plicated in Max-Log-MAP as compared with the data-driven SOVA algorithm is
also not investigated here. These factors will affect not only the hardware com-
plexity and die area of the resulting hardware accelerator, but also the latency and
throughput.

One other performance measure that is not investigated in this thesis is a com-
parison of the power consumption of the two decoders. This is increasingly im-
portant as the increased throughput of the decoder will lead to a corresponding
increase in power consumption, which is often the critical factor in mobile devices.

For a better comparison between SOVA and Max-Log-MAP decoders, hardware
implementations will be needed. The synthesized netlists will give the actual gate
counts, which will enable the designer and computer aided tools to estimate the die
area and power consumption of the design.

77

Bibliography

[1] 3rd Generation Partnership Project. Technical Specification Group Radio Ac-
cess Network, Evolved Universal Terrestrial Radio Access (E-UTRA), Multi-
plexing and Channel Coding, 8.5.0 edition, December 2008.

[2] E. Boutillon, W. J. Gross, and P. G. Gulak. VLSI architectures for the MAP
algorithm. IEEE Transactions on Communications 51(2):175–185, 2003.

[3] O. Joeressen and H. Meyr. A 40 Mb/s soft-output viterbi decoder. IEEE
Journal of Solid-State Circuits 30(7):812–817, July 1995.

[4] E. Yeo, S. Augsberger, W. R. Davis, and B. Nikolić. 500 Mb/s soft-output
viterbi decoder. ESSCIRC pp. 523–526, 2002.

[5] O. Joeressen, M. Vaupel, and H. Meyr. High-speed VLSI architectures for
soft-output viterbi decoding. Proceedings of the International Conference on
Applications Specific Array Processors pp. 373–384, August 1992.

[6] L. Papke, P. Robertson, and E. Villebrun. Improved decoding with the SOVA
in a parallel concatenated (turbo-code) scheme. IEEE International Confer-
ence on Communications 1(23–27):102–106, June 1996.

[7] L. Lin and R. S. Cheng. Improvements in SOVA-based decoding for turbo
codes. Proceedings International Conference on Communications 3:137–139,
June 1997.

[8] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-
correcting coding and decoding: Turbo codes. IEEE International Conference
on Communications 2:1064–1070, May 1993.

[9] M. Soleymani, Y. Gao, and U. Vilaipornsawai. Turbo Coding for Satellite and
Wireless Communications. Kluwer Academic Publishers, 2002.

[10] L. R. Bahl, J. Cocke, F. Jelinek, and J. Rajiv. Optimal decoding of linear
codes for minimizing symbol error rate. IEEE Transactions on Information
Theory 20(2):284–287, March 1974.

79

BIBLIOGRAPHY

[11] G. D. Forney, Jr. The Viterbi Algorithm. Proceedings of the IEEE 61(3):268–
278, March 1973.

[12] J. Hagenauer and P. Hoeher. A viterbi algorithm with soft-decision outputs
and its applications. Proceedings Globecom pp. 1680–1686, November 1989.

[13] J. Hagenauer. Iterative decoding of binary block and convolutional codes.
IEEE Transactions on Information Theory 42(2):429–445, March 1996.

[14] C. X. Huang and A. Ghrayeb. A simple remedy for the exaggerated extrinsic
information produced by the SOVA algorithm. IEEE Transactions on Wireless
Communications 5(5):996–1002, May 2006.

[15] S. Papaharalabos, P. Sweeney, B. Evans, and P. Mathiopoulos. Improved per-
formance SOVA turbo decoder. IEE Proceedings Communications 153(5):586–
590, October 2006.

[16] IT++, A C++ library of mathematical, signal processing and communication
routines. http://itpp.sourceforge.net.

[17] C.-M. Wu, M.-D. Shieh, C.-H. Wu, Y.-T. Hwang, and J.-H. Chen. VLSI
architectural design tradeoffs for sliding-window log-MAP decoders. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 13(4):439–447,
April 2005.

[18] B. Parhami. Computer Arithmetic Algorithms and Hardware Designs. Oxford
University Press, 2000.

[19] Z. Wang and K. K. Parhi. High performance, high throughput turbo/SOVA
decoder design. IEEE Transactions on Communications 51(4):570–579, April
2003.

[20] J. Dielissen and J. Huisken. State vector reduction for initialization of sliding
windows MAP. Second International Symposium on Turbo Codes and Related
Topics, September 2000.

80

http://itpp.sourceforge.net

	Acknowledgments
	Abbreviations
	Nomenclature
	Introduction
	Turbo Decoding in LTE
	Algorithms for Decoding Turbo Codes
	Log Likelihood Ratio
	MAP Type Algorithms
	SOVA Algorithm

	Improved SOVA Algorithm
	Modifications to SOVA
	Merging and Updating Depths
	Reliability Thresholding
	Scaling of SOVA Outputs
	Simplification of BR-SOVA Update Rule
	Reliability Update Methods for SOVA

	Simulation Results
	Simulation Environment
	Optimum Reliability Thresholding and Scaling Factors for SOVA
	Effects of Simplified BR-SOVA Update Rule
	Comparison of Reliability Update Methods for SOVA
	Results for Hardware Reliability Update Method

	SISO Decoder Hardware Architectures
	Hardware Architecture of Max-Log-MAP
	Resource Utilization
	Memory Requirements
	Latency

	Hardware Architecture for HR-SOVA
	Trellis Stage
	Merge Stage
	Decode Stage
	Example of Hardware Architecture
	Latency and Throughput

	Simplified BR-SOVA Architecture
	Resource Utilization
	Memory and Register Utilization
	Latency and Throughput

	Hybrid-SOVA Architecture
	Resource Utilization
	Memory and Register Utilization
	Latency and Throughput

	Improved BPCU for SB-SOVA
	Resource Utilization
	Memory requirements

	Considerations for Parallel Windows
	Memory Organization for Multiple Windows
	Estimation of Window Initial State
	Inter-Bank Memory Access

	Comparison of SOVA and Max-Log-MAP
	Resource Utilization
	Memory Requirement
	Data Throughput
	Optimal SOVA Decoder

	Conclusions
	Bibliography

