
Method of Free C++ Code Migration Between SoC Level Tests and
Standalone IP-Core UVM Environments

Fedor Putrya
R&D Center ELVEES
fputrya@elvees.com

Abstract

Common way for IP-Core standalone verification
assumes UVM based environments and tests
development. At the same time, IP-core integration
verification at the SoC level and hardware-software
co-verification as a whole, requires development of
the code running on the embedded CPU (usually
written on C/C++). When C/C++ tests and software
are developed it is desirable to reuse IP-Core
standalone level verification code, presented in the
form of UVM sequences library. However, porting of
UVM sequences to C++ is difficult because of
differences in the organization of UVM and C++
programs. Moreover, SoC-level tests development
often requires a lot of time for debugging and
simulation. This paper proposes method of free
verification code migration between the standalone
IP-Core and the system level SoC environments, which
increases code reuse efficiency and accelerates SoC
level tests debugging.

1. Introduction

The following tasks, associated with IP-Cores
verification and maintenance can be highlighted:

 Development of test environments and tests
for standalone IP-Core verification

 Development of tests for FPGA or emulator
based IP-Core prototype verification.

 Development of IP-Core integration tests at
SoC level and tests of IP-Core interaction
with other elements of SoC

 IP-Core drivers and software development
and debug

 SoC level faults found in silicon (or model of
whole SoC) restoration on standalone IP-Core
test environments (in order to fault cause
analysis and regression tests base update)

Development of the code for each of these stages is
a labor-intensive task. Therefore, the ability to reuse

code between the stages of IP-Core and SoC
development is a significant task.

Currently the most popular way for creating
standalone IP-Core test environments and tests is the
UVM methodology [1] based on SystemVerilog
language [2]. This approach perfectly solves the
problem of code reuse for agents - test environment
building blocks. Such standalone test environments are
quite fast, as they include only IP-Core's RTL model
and UVM agents emulating activity of whole system.

UVM test sequences may be reused in SoC level for
IP-Core integration tests. In this case CPU model is
replaced by the UVM agent imitating CPU activity by
executing of UVM sequences.

These UVM sequences also can be used for IP-Core
verification in case of hardware emulator. However, at
the moment it can be only possible in conjunction of a
workstation and the emulator when the IP-Core model
is placed into the emulator and test actions are formed
on the workstation by UVM environment simulation.
But simulation speed of such conjunction is limited,
and the hardware and software tools aimed to
accelerate such environments are very expensive.

Most of SoCs have an embedded CPU as their part.
In this context, the following reasons that prevent the
effective reuse of UVM sequences can be highlighted:

 It is still necessary to create test programs
executed directly on the model of embedded
CPU (commonly C/C++ code) for a complete
SoC verification

 Using of UVM test sequences for topological
netlist and especially for silicon prototype
verification is complicated

 It is difficult to use UVM for IP-Core
prototype verification without expensive
hardware and EDA

 SoC level fault recovery on standalone IP-
Core environments requires modifications of
the code that caused the error

 The number of experts who know how to use
UVM is still significantly less in comparison
with C/C++ programmers for embedded
systems

litvinova eugenia
Текст
978-1-4799-7630-0/14/$31.00 ©2014 IEEE

2. Related work

Solution proposed in patent US6539522 B1 [3] is
closest to verification code reuse problem solving. It's
allows to reuse verification code, written in a high
level language (such as C) for both standalone IP-Core
environment level, and the SoC level. In this solution
verification code is divided on a high-level (test
application) and low-level parts (drivers). However,
this solution has several disadvantages:

 Reuse is possible only for the test application
code, driver code still had to be rewritten

 It is not possible to create code for standalone
master IP-Core verification, in the same style
as it is usually done for SoC level software

 There is no hardware interrupt controller
emulation for standalone environments

 OS simulator is required for standalone IP-
Core verification (development or purchase of
such simulator is needed)

Thus, full verification code reuse between all stages
of IP-Core verification is still complexly realizable
task.

3. The use of IP-XACT and IP-Core driver
classes unification

The lowest level of the verification code is an IP-
Core driver, interacting with the hardware resources of
IP-Core by using of register structures. Nowadays IP-
XACT IP-Core descriptions are growing in popularity
[4]. Such descriptions may be a source of data for
header files generators for SystemVerilog tests (such as
UVM_RGM register map generator) and C/C++
programs (including drivers). Such register structures
can be generated automatically for both standalone
level and SoC level IP-Core drivers. But high level test
code for UVM and SoC level tests are still very
different.

To simplify code reusing it is necessary to unify
low-level drivers for standalone UVM and SoC level
C/C++ tests. In proposed approach IP-Core driver is
created by using object oriented programming. IP-Core
driver base class which provides a unified interface for
IP-Core registers and memory access is generated
automatically. IP-Core driver class itself is developed
by using inheritance from generated driver base class
and expanding by manually written IP-Core
configuration and control functions.

The key point is similarity of IP-Core driver class
interfaces for C++ and SystemVerilog (equivalent set
of register structures, control and configuration
functions). Afterwards, UVM test sequence or C++ test
should be created by using the functions provided by
the IP-Core driver class.

According to examples (Figures 1-3), C++ program
and UVM test sequences that uses unified driver
classes are similar. Thus UVM test sequence can be
easily ported to C++ with test algorithm structure
saving.

However, code porting from UVM to C++ as well
as from C++ to UVM is partly automatic process and
it's involves manual work and time for code rewriting
and debugging. Moreover in case of third party IP-
Cores standalone verification is not strongly required.
In this case most of effort is spending on SoC level
integration tests debugging.

Figure 1. C++ IP-Core register structure
generated from IP-XACT, IP-Core driver base
class and extended IP-Core driver class for

DMA IP-Core as an example.

Figure 2. Access to the register and function
call example for C++ test of DMA IP-Core.

Figure 3. Access to the register and function
call example for UVM test of DMA IP-Core.

4. C++ program as test sequence for
standalone IP-Core test environments

4.1. IP-Core model register and memory access

There is a software-hardware co-verification
method which involves main program running on
workstations CPU instead of SoC models CPU [5].

 class DMA_REGS{

 volatile unsigned int CSR;

 volatile unsigned int RUN;

 }

 class DMA_BASE{

 DMA_REGS * REGS;

 }

 class DMA_DRIVER public DMA_BASE{

 int wait_not_run();

 }

 DMA_DRIVER.REGS->CSR=SET_ENABLE(1);

 DMA_DRIVER.wait_not_run();

 DMA_DRIVER.REGS.CSR.ENABLE=1;

 DMA_DRIVER.REGS.CSR.write()=1;

 DMA_DRIVER.wait_not_run();

In the proposed approach, this method is extended
by using the capabilities of the SystemVerilog DPI
interface and the idea of using IP-Core driver classes.
DPI interface which is a part of SystemVerilog, makes
it easy to implement UVM test environment controlled
by C++ program. In this case SystemVerilog DPI
export functions are used to provide read and write
tasks to the specified addresses in standalone UVM
environment. Thus, main C++ program, that performs
control operations over standalone IP-Core might look
like in an example in Figure 4.

Figure 4. Register read through the
dpi_export_read task exported from

SystemVerilog.

Such an implementation has a serious problem.
Porting code between standalone IP-Core environment
and SoC level tests requires wide code rework (DPI
function calls replacing by regular register and
memory access code and vice versa).

As mentioned above, in the proposed approach
access to registers is performed through generated
register structures with members of unsigned int type.
After initialization of a pointer to such structure its
members are mapping on the address space of real IP-
Core registers. Feature of the proposed solution is
register structure for standalone IP-Core tests
environment. Such register structure is generated with
same register layout as for SoC level, but with
members of specialized register class type (reg_class,
see Figure 5) instead of unsigned int. Register class
reg_class has overloaded function set enough to
provide register access operations from C++ program
(dereference, casting, address taking, etc.).

Figure 5. Register structure class for
standalone IP-Core tests.

In this case, C++ program that controls a
standalone environment will be absolutely the same as
C++ IP-Core test program for the SoC level shown on
Figure 2. But, unlike the program running at the SoCs
CPU, in case of program running on workstations
CPU register access results in chain of function calls.

Register access code execution causes call of
appropriate overloaded function in reg_class.
Reg_class member function causes calls of DPI
functions exported from SystemVerilog and
performing register or memory read/write operations
within SystemVerilog test environment address space,
including IP-Core model address space (Figure 6). In
UVM test environment read or write task call produces
sequence, that puts to master agent, which drives
system IP-Core interface signals.

4.2. IP-Core requests handling

The foregoing is applicable for slave IP-Core. But
IP-Core may also be a master and generate memory
access transaction by itself. When C++ program is
used as test sequence, data arrays intended to IP-Core
can reside in address range allocated for the C++
program. Therefore it is important to provide access to
the C++ program memory from IP-Core model.
For this purpose two modifications of the standalone
environment is needed: 1 – functions which can read
and write given address in C++ should be imported
into a SystemVerilog test environment
(dpi_import_read, dpi_import_write). 2 - UVM agent
connected to the host interface of IP-Core should be
connected to these imported functions.

In this case when IP-Core tries to access addresses
allocated in C++ memory through its host interface,
UVM slave agent generate transaction, which executes
appropriate imported DPI memory access function
call.

4.3. IP-Core interrupt handling

Generally IP-Core is the source of interrupts which
should be handled by C++ test program. If IP-Core
interrupt occurs, UVM IRQ agent catches it and calls
global IRQ handler function imported through DPI to
SystemVerilog test environment. In proposed approach
an IRQ handlers’ registration interface is similar to
that which is used in the OS and in SoC level tests.
Thus, global interrupt function itself determines which
of the registered user IRQ handlers must be called for
current type of interrupt.

Main thread of test application should be stopped
while interrupt handling is executed. So when
imported global interrupt function is executed critical
section should be started. Similar critical sections are
started in case of register access from main thread. So
there is a guarantee that the main thread of test
application code will be stopped in moment of IP-Core
register access until completion of interrupt handler.

In the issue test program for standalone verification
of master IP-Core, which generates an interrupts,
becomes more familiar with the terms of the system
programmer.

 int wait_not_run(int timeout){

 while (dpi_export_read(DMA_RUN_REG));

 }

 class DMA_REGS_BASE{

 reg_class CSR;

 reg_class RUN;

 }

Figure 6. C++ test application and driver code
reuse for a standalone IP-Core test, FPGA

based prototype and SoC level tests.

5. Video encoder verification example

Example of the proposed approach using is
hardware video encoder verification. Main test
program for video encoder is video codec, which is a
complex program written in C++. Some steps of this
program should be performed by hardware encoder
resources. SoC model is extremely slow for debugging
software and hardware such as video encoder.

Figure 7. Video encoder RTL model testing
with driver classes using.

In proposed approach C++ test program runs on a
workstation, and hardware encoder RTL simulation
initiated only in the case of a hardware encoding stage
calls from main program. This reduces simulation
time and helps to verify both hardware and software of
encoder even without model of whole SoC. Moreover,
C++ code could be reused (in any direction) on a
stand-alone video encoder environment, SoC level
environment, FPGA prototype (if it has onboard CPU)
and later in firmware for encoder.

6. Conclusion

Proposed solution simplifies the task of UVM code
reuse and provides an ability of complete reuse of C++

code across all stages of the IP-core verification
process.

SystemVerilog provides a huge advantage in
creating random coverage-driven tests. Therefore,
UVM tests are necessary for IP-Cores which are under
development. In case of using proposed approach to
port UVM test sequence to C++ low-level driver
should be rewritten in part of user-defined methods
(register structures are generated automatically), but
the high-level test application can be ported in semi-
automatic mode. If IP-Core driver port is already done,
porting of average tests may take only couple of hours
against days of full code rewriting in common case.

In case of C++ code test application code is 100%
reusable. And unlike the method from patent [3] IP-
Core driver methods and code with direct register
accesses is reusable too. Moreover interrupt handling
mechanism and master IP-core programming for
standalone IP-Core environment is exactly the same as
for common SoC software. So C++ code written once
according to proposed approach can be used in all
stages of IP-core verification process (days of time
savings for each test). On the other side SoC level code
related to a particular IP-Core can be debugged on a
fast standalone IP-Core environment.

Another advantage of the approach is tool
independence. HDL simulator is only tool needed to
run IP or SoC environments (unlike [3] there is no
need for ISA or OS simulators). In case of SoC chip or
FPGA only toolchains (like gcc) for appropriate CPU
is needed.

 Finally approach provides opportunities to create
stand-alone IP-Core test scenarios for a wider range of
C++ programmers.

7. References

[1] S. Rosenberg, K. Meade “A Practical Guide to Adopting
the Universal Verification Methodology (UVM)”

[2] IEEE Standard for SystemVerilog— Unified Hardware
Design, Specification, and Verification Language / IEEE
1800(TM) -2005

[3] R.J. Devins, P.J. Ferro, “Method of developing re-usable
software for efficient verification system-on-chip integrated
circuit designs”, U.S. Patent US6539522 B1, Mar. 25, 2003

[4] Standard for IP-XACT, Standard Structure for Packaging,
Integrating, and Reusing IP within Tool Flows, IEEE Std
1685 -2009, Published 18 February 2010

[5] A. Jason, “HW/SW co-verification basics: Part 2 -
Software-centric methods”,
http://www.embedded.com/design/debug-and-
optimization/4216264/1/HW-SW-co-verification-basics--
Part-2---Software-centric-methods

